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Abstract

In this thesis, we study degenerate Monge-Ampere equations over projective mani-
folds. The main degeneration is on the cohomology class which is Kähler in classic
cases. Our main results concern the case when this class is semi-ample and big with
certain generalization to more general cases.

Two kinds of arguments are applied to study this problem. One is maximum
principle type of argument. The other one makes use of pluripotential theory. So this
article mainly consists of three parts. In the first two parts, we apply these two kinds
of arguments separately and get some results. In the last part, we try to combine the
results and arguments to achieve better understanding about interesting geometric
objects. Some interesting problems are also mentioned in the last part for future
consideration. The generalization of classic pluripotential theory in the second part
may be of some interest by itself.
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Chapter 1

Introduction

1.1 Main Problem

In this thesis, we mainly want to solve Monge-Ampere equations over projective

manifolds when cohomology classes are degenerate (as Kähler class).

The main concern is for the following equation over a projective manifold X:

(L+
√
−1∂∂̄u)n = euΩ

where L is a smooth closed real (1, 1)-form and Ω is a smooth volume form over X.

In the case when [L] is Kähler, classic results guarantee existence and uniqueness

of a smooth solution. The degeneration we are interested in is described by nef. (i.e.,

numerically effective) or big of the cohomology class [L]. The main results are briefly

described as follows:

1) For [L] nef. and big, we have a unique solution which is smooth out of a

subvariety with some controls about the possible singularities, for example, Lelong

number being 0;

2) For [L] semi-ample and big, the solution above would be bounded over X.

Furthermore, the bounded solution is actually unique and continuous.

Actually, some of our discuss would work in more general cases and even for the

equations which are without eu or with e−u instead on the right hand side of the

equation just as well. We might go into details for similarities and differences along

the way.

The whole scheme to attack our main problem is more or less just trying to apply
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continuity method. Various estimates need to be obtained. There are basically two

kinds of arguments which will be heavily used in this work. They are both fairly

classic by themselves.

One is maximum principle type of argument. Grossly speaking, for applying this

argument, we need to work with smooth objects. This kind of argument is very

global, and so it treats the degeneracy mentioned above in a very brutal way. Special

attention should also be paid when studying smooth but degenerate objects.

The other one is “capacity argument”, which might not be a standard way to call

this kind of argument. Anyway, this argument sits inside the setting of pluripotential

theory and moreover, the notion of capacity, as I see it, plays a very crucial role.

The difference is that now we can work with objects with far less regularity. This

argument also has quite some local feature which would give us some room to treat

the degeneracy in a more delicate manner.

As mentioned in Abstract, the main text of this thesis can be divided into three

parts. Part I consists of Chapter 2 where maximum principle type of argument is

mainly used. Part II consists of Chapters 3 to 7 where capacity argument using

pluripotential theory is the main tool. During the process, we also have to generalize

classic pluripotential theory a little bit. This part weights the most in the whole

work. Chapter 8 is the last part which contains applications and generalizations.

Chapter 9 is Appendix where details omitted in the main text are provided together

with discussions about some interesting and related problems which might seem to

be a little too digressive to appear in the main text.

In the following, we are going to give the set-ups of two main objects which will

be used to attack the main problem later. Those two kinds of arguments previously

mentioned are applied in a quite dominant way respectively.

1.2 Kähler-Ricci Flow

Kähler-Ricci flow is a very interesting and classic object by itself. The most primitive

version of it, Ricci flow, was introduced by R. Hamiliton in dealing with quite difficult

problems in Riemannian geometry in the early eighties of the last century (in [Ha1]).

Since then it has drawn a lot of intention from the mathematical world. With the

effort of a huge group of brilliant mathematicians in the past about twenty years,

it has become one of the most active and fruitful fields in Riemannian geometry.
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The recent work of Perelman in [Per], which has at least taken a substantial step

in realizing Hamilton and other people’s hope of applying this geometric tool to

prove topological properties of the underlying manifold, has obviously carried all

mathematicians’ interests about Ricci flow into a new level. There has been quite

some convenient references on Ricci flow as Hamilton’s survey paper ([Ha2]) and a

more recent book by B. Chow and D. Knopf ([ChoKn]).

Kähler-Ricci flow is the complex version of Ricci flow (or say Ricci flow with

complex structure), which was naturally introduced shortly after the appearance of

Ricci flow (as in [Cao] for example). For real dimension 2 (or complex dimension 1)

case, they are trivially the same. The study for this case has been very complete and

satisfying from the works of B. Chow ([Cho]) and Hamilton ([Ha3]). Of course, the

higher dimension case remains to be interesting in general.

More precisely, in Part II of this thesis, we consider the following evolution equa-

tion over a closed manifold X of complex dimension n > 2:

∂ω̃t
∂t

= −Ric(ω̃t) + k · ω̃t + S, (1.1)

with initial metric ω̃0 = ω0. Here k is a fixed real number, S is some fixed smooth

real closed (1, 1)-form, and ω0 is some Kähler metric on X. The requirement of n > 2

is just used to guarantee the nonlinearity of the equation.

Conventionally, we denote a Kähler metric by its Kähler form ω, in local complex

coordinates {z1, · · · , zn},
ω =

√
−1gij̄dz

i ∧ dz̄j,

where we use the standard convention for summation and (gij̄) is the positive hermi-

tian matrix valued function given by gij̄ = g
(
∂
∂zi ,

∂
∂z̄j

)
. Ric(ω) denotes the Ricci form

of ω, i.e., in the complex coordinates above, Ric(ω) =
√
−1Rij̄dz

i ∧ dz̄j where (Rij̄)

is the Ricci tensor of ω.

The positivity of ω̃t can by justified by looking at the real version of the flow

which is just Ricci flow with minor modification and using the corresponding result.

Actually it’s also quite clear once we realize that the eigenvalues for ω̃t should vary

continuously. One can also easily justify by integrating over t for the equation that

the metric ω̃t along the flow remains to be Kähler as long as the flow exists in classic

sense (smoothly).
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So let’s formally take a look at the flow in the level of cohomology class:

∂[ω̃t]

∂t
= −[Ric(Ω)] + k · [ω̃t] + [S]

with [ω̃0] = [ω0]. Here Ω is some smooth volume form over X compatible with the

complex structure (just the orientation), and

Ric(Ω) := −
√
−1∂∂̄log

( Ω

(
√
−1)ndz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n

)
,

which will formally be denoted by −
√
−1∂∂̄logΩ in the rest of this work. This form

actually represents the first Chern class of X (up to a conventional positive constant).

Of course it is important that the underlying manifold X is Kähler in order for this

to be true, but this is already assumed by the existence of Kähler metric ω0.

Now we can solve this ordinary differential equation as follows. First rewrite it as:

∂(e−kt[ω̃t])

∂t
= e−kt([S]− [Ric(Ω)]).

Then integrate over [0, t] to get:

e−kt[ω̃t]− [ω0] = ([S]− [Ric(Ω)])

∫ t

0

e−ksdt.

For the case k = 0:

[ω̃t]− [ω0] = t([S]− [Ric(Ω)]).

This suggests that if we are looking for a limit for ω̃t in any sense, it’s natural to

require [S] = [Ric(Ω)] and then the cohomology class of ω̃t is not going to change

along the flow. In fact, in this case, the limit does exist for any Kähler class and this

actually provides one proof of Calabi’s conjecture as in [Cao]. 1

Now for the case k 6= 0:

e−kt[ω̃t]− [ω0] =
1

k
(1− e−kt)([S]− [Ric(Ω)]).

1More discussion can be found in Appendix.

16



So we can conclude

[ω̃t] = ekt[ω0] +
1

k
(ekt − 1)([S]− [Ric(Ω)])

=
1

k
([Ric(Ω)]− [S]) +

ekt

k
([S]− [Ric(Ω)] + k · [ω0]).

Thus if we are looking for a limit in any sense, it is natural to require either k < 0 or

[S]−[Ric(Ω)]+k[ω0] = 0. Before including this extra information in our computation,

we can do more general computation for k 6= 0. Namely, we can reduce the equation

(1.1) for Kähler metric to the level of potential with respect to some “background

Kähler metric” which is changing in an explicit way, which obviously makes the

problem at least looks much easier. It is also the case when k = 0 as used in [Cao].

This is indeed one of the main differences between Kähler-Ricci flow and general Ricci

flow.

Set ωt = 1
k
(Ric(Ω)−S)+ ekt

k
(S−Ric(Ω)+k ·ω0) (as “background Kähler metric”).

Notice that we do not require ωt to be positive. Then we assume: ω̃t = ωt +
√
−1∂∂̄u

where u is a real smooth function on X for each fixed t. This is reasonable since ωt

and ω̃t are of the same (1, 1)-class over the closed Kähler manifold X. Let’s further

assume that u is also smooth with respect to time t, and so we have:

∂ω̃t
∂t

=
∂ωt
∂t

+
√
−1∂∂̄

∂u

∂t
= ekt(S − Ric(Ω) + k · ω0) +

√
−1∂∂̄

∂u

∂t
.

The equation (1.1) can also be rewritten as:

∂ω̃t
∂t

=
√
−1∂∂̄log(ω̃nt ) + k · (ωt +

√
−1∂∂̄u) + S

=
√
−1∂∂̄log(ω̃nt ) + (Ric(Ω)− S) + ekt(S − Ric(Ω) + k · ω0) + k ·

√
−1∂∂̄u+ S

=
√
−1∂∂̄log(ω̃nt )−

√
−1∂∂̄logΩ + k ·

√
−1∂∂̄u+ ekt(S − Ric(Ω) + k · ω0).

By combining the above two equations, we arrive at:

√
−1∂∂̄

∂u

∂t
=
√
−1∂∂̄log

ω̃nt
Ω

+ k ·
√
−1∂∂̄u.

Notice that the term in “log” is now a global smooth function which is obviously

positive over X.

So if we want to solve (1.1), it would suffice to solve the following scalar equation:

∂u

∂t
= log

ω̃nt
Ω

+ k · u (1.2)
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with initial value u(0, ·) = 0. In fact the converse is also true which can be justified

as follows.

First, the uniqueness of the solution for (1.1) and (1.2) can be seen easily. Actually

for (1.1), one only needs to observe that it is just the slightly modified Ricci flow

over X with initial metric being Kähler. So the uniqueness is inherited from the

classic result of Ricci flow. 2 For (1.2), it’s very easy to take linearization and see

the parabolicity. From above we know the solutions for these two equations will

correspond to the same metrics as long as the solution for (1.2) exists.

Now it only left to show the existence of the solution for (1.2) under the assumption

that the solution for (1.1) exists for certain time interval. Suppose the solution u exists

in [0, T ) while ω̃t exists in [0, T ] for some T <∞. Then by the uniqueness result from

above, we know

ω̃t = ωt +
√
−1∂∂̄u

in [0, T ). The uniform bounds for ω̃t give bounds for the Laplacians of u(t, ·). It only

remains to get a uniform bound of u itself (i.e., the C0 bound) in [0, T ) in order to

prove that u can be extended smoothly to the time T . Using the unform bound of

the metric in [0, T ), this is easy to see from the equation (1.2) itself.

Hence we can conclude the equivalence of the equations in the level of metric (1.1)

and potential (1.2). Clearly similar argument works for the case with general k.

We should notice the value of u can actually be up to some function only depending

on t for the same metric ω̃t. In fact the evolution equation of it, (1.2), can be

modified by adding smooth function only depending on t on the right hand side

without essentially changing the flow. Also we can see the choice of the smooth volume

form Ω is rather superficial, namely, differential choices would lead to equivalent

evolution equations in the level of potential. In fact, the volume form does not

appear in the orginal flow in the level of metric, so this should be the case. Explicit

computation for this would appear later in Chapter 2.

By the way, we’ll only consider the nonzero constant k to be 1 or −1. This will

not affect the general consideration of the equations since we can do a simple rescal-

ing (of metric and time) to translate the equation for a general k into one of these

cases. Of course this is just the standard normalization that people use for geometric

consideration.

2We can also easily see the parabolicity of the equation (1.1) by directly taking linearization and
noticing that we only need to take care of real closed (1, 1)-forms.
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Now we start to consider the cases from the cohomology consideration about the

existence of limit before.

For k = 1 and [S] − [Ric(Ω)] + k[ω0] = 0: We have [ω0] = [ω̃t] = [Ric(Ω)] − [S].

Thus all the metrics have to be in the same Kähler class. By choosing proper Ω we

can in fact set ω = Ric(Ω)−S as before. Here we can omit the lower index t in sight

of t-independence and make sure that it is indeed a Kähler metric. Now the equation

becomes:
∂u

∂t
= log

(ω +
√
−1∂∂̄u)n

Ω
+ u.

This is the usual equation that people work with when studying complex manifolds

with positive first Chern classes. The “+” on the right hand side before u makes the

situation very different from our main concern in this work. But still it’s easy to see

the global existence of the solution for this evolution equation, i.e. the solution exists

for t ∈ [0,∞). For the proof, just notice that we only need to work with any finite

time interval [0, T ] and T < ∞ can be used as a constant in all the estimates. The

global existence can also be by related this flow with other flows. More discussion

can be found in Appendix.

Our discussion here about the k = 1 case is by no means very sophisticated. In

fact this equation is of plenty of interests for a big group of people. A huge number of

results have thrown great light to a bunch of related geometric problems. The paper

by X. X. Chen and Tian ([ChxTi]) provides an excellent example in this direction, so

does the more recent work of D. H. Phong and J. Sturm ([PhSt]).

The case when k = −1 is our main interest in this work. At this moment, we just

point out that in this case, ωt = (S−Ric(Ω)) + e−t(ω0−S+ Ric(Ω)) and the limiting

class would be [ω∞] = S − Ric(Ω). It would correspond to the class [L] in the main

problem.

Remark 1.2.1. Maybe we should end this part by pointing out the reason to study

Kähler-Ricci flow for solving Monge-Ampere equation. Philosophically, they share the

same nonlinearity and the expressions are almost the same. More precisely, Monge-

Ampere equation can be seen as the limit of Kähler-Ricci flow equation as t→∞. 3.

Technically, the estimates used in the study of one of them can usually be established

for the other one.

Unlike the classic case when the class [L] for the equation is Kähler, it’s very

necessary for us to consider the flow with changing cohomology class [ω̃t] since the

3One can realize this by putting the term with t-derivative to be 0 in Kähler-Ricci flow equation.
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classic solution only exists when the class is Kähler.

Kähler-Ricci flow can be seen as a very delicate way to set up continuity method.

We can also set up continuity method much more simple-mindedly as discussed later.

But Kähler-Ricci flow with its own rich structure is a by far more interesting tool,

especially when we want to further consider our main problem as I see it now.

1.3 Pluripotential Theory

Our argument in pluripotential theory basically studies the Monge-Ampere map (op-

erator) “v → (
√
−1∂∂̄v)n” which is essentially the left hand side of the equation we

interest in. The idea is to draw information about the potential v from the property

of the measure (
√
−1∂∂̄v)n which is usually seen from the right hand side of the equa-

tion. Much less regularity is required and we are going to consider (postive) currents

as in [Le].

Remark 1.3.1. From the simple description of the idea above, we see the exact

expression of the right hand side is not that important here as long as we have enough

information about the measure.

As stated below, it’s merely the C0 (or L∞) estimate that we are searching for

right now, so just as in the classic case, we only need to consider the equation whose

the right hand side has no eu term.

The main result for this part is to prove the following theorem which is an improved

version of what is stated in [TiZh].

Theorem 1.3.2. Let X be a closed Kähler manifold with dimCX = n > 2. Suppose

we have a holomorphic map P : X → CPN with the image P (X) of the same dimen-

sion. Let ωM
4 be any Kähler form over some neighbourhood of P (X) in CPN . Then

for the following equation of Monge-Ampere type:

(P ∗ωM +
√
−1∂∂̄u)n = fΩ, (1.3)

where Ω is a fixed smooth volume form over X and f is a nonnegative function in

Lp(X) for some p > 1 with the correct total integral over X, we have the following:

(1) (Apriori estimate) Suppose u is a weak solution in PSHP ∗ωM
(X)∩L∞(X) of

the equation with the normalization supXu = 0, then there is a constant C such that

‖u‖L∞ ≤ C‖f‖nLp where C only depends on P , ωM and p;

4The “M” is the initial of “model” since ωM can naturally be understood as the model metric
of the degenerate metric which we are originally interested in.
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(2) (Existence of bounded solution) There would always be such a bounded solution

for the equation;

(3) (Continuity and uniqueness of bounded solution) If P is locally birational, then

any bounded solution is actually the unique continuous solution.

It might be worth taking a little time to clarify some terminologies appearing in

the statement.

First, u being a weak solution means both sides of the equation are equal as

(Borel) measure. The meaning of the right hand side is classic with u being bounded.

In the definition of Lp(X) space, we choose Ω as the volume form. The choice is

clearly not so rigid.

In (3), “locally birational” means that for a small enough neighbourhood U of

any point on F (X), each component of F−1(U) would be birational to U (under F ).

Clearly it would be the case if F is birational itself and in fact this is the case with

the most geometric interests as far as I can see.

The improvements from [TiZh] are in two places:

i) we need X to be closed Kähler instead of projective;

ii) in statement (3) about continuity, the assumption is weakened a lot.

The punchline for the proof is the generalization of an inequality between Lebesgue

measure and relative capacity. A quite interesting point is that relative capacity,

which has a fairly elementary definition, is quite difficulty to compute numerically on

one hand, but on the other hand there have been a lot of results about the relations

between it and other notions which make it perfect as a bridge to connect things up.

In the theorem above, we require the image side of P to be CPN in order to make

sure that the image is algebraic. This would at least make it easier for us to justify

the construction used in the argument. But the manifold X does not have to be

algebraic (projective). It’s enough for X to be just a holomorphic object.

In the picture of our main problem, [P ∗ωM ] = [L]. Of course the degeneracy of

the class [L] should be nice enough to give us the map P .

The estimate in this theorem can be established not only for this limiting class in

the set-up of continuity method but also uniformly for all the approximation classes.

This is important for existence of such a solution. It also shows the flexibility of the

result.
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For X projective, the results in Theorem 1.3.2 except this version of continuity

result as in (3) were announced and discussed in my previous preprint with my advisor.

They were also presented by Tian in a talk at Imperial College in November, 2005.

The general continuity was proved soon in January, 2006 after a few discussions with

Professors S. Kolodziej and H. Rossi on approximating plurisubharmonic functions

over singular spaces. I would like to thank them both for those very useful discussions.

The current results were presented in my talk at Columbia University in February,

2006. A new result in the recent preprint by Blocki and Kolodziej allows the current

generalization to a closed Kähler manifold X. I really appreciate their informing

about this result. Later, we were informed that similar boundedness result should

also be achieved by Philippe Eyssidieux, Vincent Guedj and Ahmed Zeriahi in the

recent preprint [EyGuZe].

1.4 More History Remarks

In his original work, [Ya], Yau set up the main tool and got remarkable estimates

for the direct study of Monge-Ampere equation in the case of [L] being Kähler. This

could be taken as the starting point for the study of this very classic nonlinear PDE

equation in search for global geometric properties of the underlying manifold. Since

then, this problem has been under intensive consideration for all kinds of applications

and generalizations. Of course the case when k = 1 remains to be a very challenging

and interesting problem even for the nondegenerate case.

The Kähler-Ricci flow mentioned before was essentially studied in [Cao] in the

case when the limiting class is ample and the initial Kähler class coincides with the

limiting class, i.e., the cohomology class is fixed along the flow.

For the canonical class [KX ] = [L] = [ω∞] which is nef. and big with the initial

metric ω0 being sufficiently positive, H. Tsuji studied the Kähler-Ricci flow in [Tsh1]

and proved that (2.1) has a global solution ω̃t and ω̃t converges to a positive current

which is actually a smooth Kähler-Einstein metric outside a subvariety as t→∞. 5

But we noticed that Tsuji’s basic arguments can still go through even after the

extra assumption on ω0 is removed. Our new observations for this case are that the

limiting current is in fact canonical and has bounded (and actually continuous in

his case) potential. Basically, we prove the following theorem which is an improved

version for the main result in [TiZh]).

5The proof for convergence in [Tsh1] contains some unjustified statements. A uniqueness result
was also claimed there whose proof doesn’t seems to work very well in general.
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Theorem 1.4.1. Let X be a projective manifold with its canonical divisor KX nef.

and big (i.e., X is a smooth minimal model of general type). Then for any initial

Kähler metric ω0, the Kähler-Ricci flow (1.1) with k = −1 and S = 0 has a global

solution ω̃t for t ∈ [0,∞) satisfying:

(1) ω̃t → ω̃∞ representing −c1(X) = KX as t→∞ in the sense of current;

(2) ω̃∞ is actually a smooth Kähler-Einstein metric outside a subvariety S ⊂ X

and ω̃t|X\S → ω̃∞|X\S locally in C∞-topology as t→∞;

(3) in any local complex coordinate chart, ω̃∞ =
√
−1∂∂̄ρ for some local continu-

ous plurisubharmonic function ρ; 6

(4) ω̃∞ is canonical, i.e., independent of the choice of the initial metric ω0.

(3) of the above theorem is proved using (the argument of) Theorem 1.3.2 which

is proved by extending pluripotential theory developed by Bedford and Taylor (in

[BeTa]), and Kolodziej (in [Koj1] and [Koj2]) to singular varieties. The notion of

relative capacity was first introduced in [BeTa]. Our argument is a generalization of

the original argument in [Koj1] and [Koj2] where he mainly interests in the case when

[L] is Kähler 7.

I would like to thank Prof. Kolodziej for so generous help in letting a beginner

like me get some idea about pluripotential theory and understanding his orginal works.

Combining all the results, we also gives a partial answer to the following conjecture

(cf. [Ti2]) which is the big picture for this whole program:

For any initial metric ω0, the flow (2.1) has a (possibly singular) solution ω̃t which

converges to a (possibly singular) metric in a suitable sense as t→∞, moreover, this

limiting metric may be singular but should be independent of the choice of the initial

metric.

In fact, it was further expected that all singularities of this limiting metric are of

rational type.

6In this sense, we may refer ω̃∞ as a positive current with locally continuous potential.
7It’s more or less like requiring the map P above to be an embedding. [Koj2] is a survey paper

in this field which combines a lot of works of his.
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Chapter 2

Kähler-Ricci Flow

In this chapter, we discuss the Kähler-Ricci flow introduced before when k = −1.

The S below is a smooth real closed (1, 1)-form which, without loss of generality, is

frequently chosen to be 0.

On the level of metric, the corresponding equation is:

∂ω̃t
∂t

= −Ric(ω̃t)− ω̃t + S, (2.1)

with initial Kähler metric ω̃0 = ω0.

As discussed in Introduction, we can reduce it to the following equivalent equation

on the level of potential:

∂u

∂t
= log

(ωt +
√
−1∂∂̄u)n

Ω
− u, u(0, x) = 0, (2.2)

where ωt = (1− e−t)(S − Ric(Ω)) + e−tω0. The relation is ω̃t = ωt +
√
−1∂∂̄u.

2.1 Warm-up Exercise

In this section, we consider the case when S −Ric(Ω) is a (Kähler) metric. Actually

we can choose proper volume form Ω to achieve this if it is cohomologically possible,

namely, [S]− c1(X) is a Kähler class. We are going to prove the following theorem.

Theorem 2.1.1. In the above situation, for any initial Kähler metric ω0, the flow

(2.1) converges in C∞-topology to the unique Kähler metric ω̃∞ in the class [S]−c1(X)

which satisfies the limiting Monge-Ampere equation

−Ric(ω̃∞)− ω̃∞ + S = 0.
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Now we have ωt is always a Kähler metric and in fact it’ll have uniformly bounded

geometry for all t ∈ [0,∞) (i.e., uniformly bounded metric, curvature and so on).

By maximum principle, we can see u(t, x) itself is uniformly bounded as long as

the solution exists smoothly. In fact, suppose the solution exists for t ∈ [0, s] 1. Then

let’s consider maximal value point of u for (t, x) ∈ [0, s]×X. At that point 2, (t0, x0),

if t0 > 0, then ∂u
∂t

> 0, and we also notice:

ωt0 > 0, ω̃t0 = ωt0 +
√
−1∂∂̄u(t0, ·) > 0,

√
−1∂∂̄u|(t0,x0) 6 0,

where > 0 or > 0 are used to stand for positivity or nonnegativity of the real (1, 1)-

forms as hermitian matrices. Hopefully, when the 0 on the right hand side is replaced

by some real (1, 1)-form, the meaning is also clear.

In above, we have used the fact that ω̃t will remain to be a Kähler metric whenever

the solution of the evolution equation exists 3. Of course this little fact is important

for the study this equation and also makes sense of considering this problem in some

sense. From these, we can see

(ωt +
√
−1∂∂̄u)n 6 ωt

n

at (t0, x0). So we get u(t0, x0) < C for some universal positive constant C from the

original equation (2.2) at this point.

All the C’s in this work will be some universal positive constant but they might

well be different from each other. The possible dependence on some choices would be

stated explicitly when it matters.

If t0 = 0, this estimate is trivially true by looking at the initial value. Thus we

have u < C in this range. The discussion for lower bound is completely analogous.

Though we have chosen some time interval [0, s] at the beginning, the upper and

lower estimates clearly would not be affected by the size of s. Notice that the “−”

sign on the right hand side of (2.2) before u is crucial for this argument, which is also

why it’s usually called the simple sign case.

Then essentially by taking derivative with respect to t on both sides of the equation

1Let’s emphasize that the small time existence, i.e. local existence, of the solution directly
follows from the parabolicity of the equation which is another difference between Kähler-Ricci flow
and general Ricci flow.

2Take anyone if there are more than one such points.
3An elementary way to see this fact here is that the volume of ω̃t should remain positive and at

the minimal value point of u for each fixed t where the solution exists, ω̃t is positive, so it has to
remain positive on X since the eigenvalues would change continuously without becoming 0.
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(2.2): 4

∂

∂t
(
∂u

∂t
+ u) =

∂

∂t

(
log

(ωt +
√
−1∂∂̄u)n

Ω

)
= ∆ω̃t(

∂u

∂t
) + 〈ω̃t, e−t(S − Ric(Ω)− ω0)〉

= ∆ω̃t(
∂u

∂t
) + 〈ω̃t,−ω̃t + (S − Ric(Ω)) +

√
−1∂∂̄u〉

= ∆ω̃t(
∂u

∂t
+ u)− n+ 〈ω̃t, S − Ric(Ω)〉.

(2.3)

Here the notation 〈ω, ·〉 means taking trace of the second term with respect to the

metric ω where of course the second term is a (real) (1, 1)-form 5. And ∆ωv =

〈ω,
√
−1∂∂̄v〉. All these conventions will be used frequently from now on.

Again one applies maximum principle. Consider at the minimal value point of
∂u
∂t

+ u(= log
ω̃n

t

Ω
), (t0, x0) (for (t, x) ∈ [0, s]×X, just as the setting before). If t0 > 0,

we have

〈ω̃t, S − Ric(Ω)〉|(t0,x0) 6 n

by noticing
∂

∂t
(
∂u

∂t
+ u) 6 0, ∆ω̃t(

∂u

∂t
+ u) > 0

at this point (t0, x0). By the classic arithmetic-geometric inequality, we arrive at

ω̃nt > (S − Ric(Ω))n

at that point 6. Thus we have

∂u

∂t
+ u = log

ω̃nt
Ω

> maxX{log
(S − Ric(Ω))n

Ω
} > C

at (t0, x0). If t0 = 0, then the estimate is still OK for a possibly larger but still

universal constant C. So we have ∂u
∂t

+ u > C for all these (t, x)’s where the solution

exists. Hence we can conclude
∂u

∂t
> −C

on this range using the boundedness of u got before.

4This is clearly justified since the solution u(t, x) is smooth with respect to t and x basically from
the form of the equation itself. Of course we are still working on the range where the solution exists.

5This can also be understood as doing contraction of the second term by the dual form of the
metric form or just taking inner product of these two forms under the metric ω.

6The positivity of S − Ric(Ω) (at that point) is very important here.
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We can also do something else after taking t-derivative of the equation (2.2). In

fact after multiplying both sides by et, we get:

∂

∂t
(et
∂u

∂t
) = ∆ω̃t(e

t∂u

∂t
) + 〈ω̃t, S − Ric(Ω)− ω0〉. (2.4)

Meanwhile, the equation (2.3) we used above can also be reformulated as:

∂

∂t
(
∂u

∂t
+ u+ nt) = ∆ω̃t(

∂u

∂t
+ u+ nt) + 〈ω̃t, S − Ric(Ω)〉. (2.5)

The difference (2.5)− (2.4) gives us

∂

∂t
(
∂u

∂t
+ u+ nt− et

∂u

∂t
) = ∆ω̃t(

∂u

∂t
+ u+ nt− et

∂u

∂t
) + 〈ω̃t, ω0〉.

Still by maximum principle, considering the minimal value point for the expression
∂u
∂t

+u+nt−et ∂u
∂t

in the equation above, we can see it can not have positive t because

〈ω̃t, ω0〉 > 0. Then simply by considering the initial value, we have

∂u

∂t
+ u+ nt− et

∂u

∂t
> 0.

Using the upperbound for u, we can conclude

∂u

∂t
<
C + nt

et − 1

for t > 0 and in the range where the solution exists. Since local existence is OK

which means we have (upper) bound of ∂u
∂t

for small t (say for 0 6 t < δ). And the

inequality we just got gives uniform upper bound when t > δ
2
. Thus we obtain

∂u

∂t
< C

for the range where the solution exists. 7

Now we have already got |u| < C, |∂u
∂t
| < C. Standard Laplacian estimate essen-

tially by Yau 8 will then give

〈ω0, ω̃t〉 < C

7Let’s keep in mind that what we really need for proving global existence are estimates for large
t.

8See more details in Appendix.
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in the range where the solution exists. Here the uniform bounded geometry for ωt

is very important. Remember we already have the uniform bound for the volume

form ω̃nt since ω̃nt = e
∂u
∂t

+uΩ from the equation (2.2) itself. Thus we have bounded ω̃t

uniformly as metric.

From here, standard argument will give uniform Ck estimates for all k. Thus we

see the solution will not blow up or say form any singularity along the flow. Thus the

global existence of the solution (in [0,∞)) would follow from local existence.

The strong convergence of the flow is actually quite easy to see in this case as

follows.

Recall the equation (2.4):

∂

∂t
(et
∂u

∂t
) = ∆ω̃t(e

t∂u

∂t
) + 〈ω̃t, S − Ric(Ω)− ω0〉.

From the uniform bound of ω̃t as metric, we now have

∂

∂t
(et
∂u

∂t
) > ∆ω̃t(e

t∂u

∂t
)− C.

So ∂
∂t

(et ∂u
∂t

+ Ct) > ∆ω̃t(e
t ∂u
∂t

+ Ct). The same argument as before will tell us that

the maximal value point of et ∂u
∂t

+ Ct can only have time t = 0. Thus we have

et ∂u
∂t

+ Ct > −C. Hence one can conclude that globally

∂u

∂t
> −Ce−

t
2 .

Similarly from ∂
∂t

(et ∂u
∂t

) < ∆ω̃t(e
t ∂u
∂t

)+C, we can get ∂u
∂t
< Ce−

t
2 globally on [0,∞)×X.

Combining these two inequalities, we arrive at

|∂u
∂t
| < Ce−

t
2 .

This easily gives the smooth convergence of the flow as t → ∞ since it guarantees

this for the C0-norm, and so for all the norms for derivatives from the boundedness

of those norms and the interpolation inequalities. 9

The limiting Kähler metric,

ω̃∞ = ω∞ +
√
−1∂∂̄u(∞, ·) = S − Ric(Ω) +

√
−1∂∂̄u(∞, ·)

9In fact, we can prove the exponential convergence for any Ck(X)-norm. The method will be
used in Appendix to get similar result for “c1 = 0” case.
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would clearly satisfy the limiting equation

0 = −Ric(ω̃∞)− ω̃∞ + S or 0 = log
ω̃n∞
Ω

− u(∞, ·)

over X by the strong convergence.

The uniqueness of a solution for this limiting equation is a classic result which

indeed follows from maximum principle argument in a rather trivial way.

In the case of X having positive canonical class, we can just set T = 0 and

−Ric(Ω) > 0 for some proper smooth volume form Ω. The limit Kähler metric is

the unique Kähler-Einstein metric. The uniqueness follows directly from maximum

principle just as for the general case above.

This case has been treated in [Cao] if one further assumes that the initial class is

proper chosen so that the cohomology class [ωt] remains to be the same along the flow.

But now we have seen no matter which Kähler class we start with, the flow will lead

us to the unique Kähler-Einstein metric. This philosophy is much more important

for later concern when we don’t have the “proper” Kähler class to start with.

2.2 Nef. and Big Class

Now we start to consider the degenerate case. In other words, the limiting class (as

t → ∞) [S] − c1(X) = [S] + KX is no longer Kähler. In the following, we mainly

focus on the case when it is nef. and big. Now we also assume X to be projective.

The meaning of these two terminologies will be clear in the discussion. The following

theorem is what we are going to prove.

Theorem 2.2.1. In the situation above, for any initial Kähler metric ω0, the Kähler-

Ricci flow (2.1) exists for all time, i.e., t ∈ [0,∞). It converges as t→∞ out of Y , a

subvariety of X, locally in C∞-topology to a smooth Kähler metric over X \ Y which

satisfies the same limiting equation as before in this range. The weak limit over X is

a closed positive (1, 1)-current with some controls for the singularities along S. The

limit still does not depend on the choice of the initial metric.

The uniqueness of the limit for choices of initial metric will be proved in the next

section. It should also be pointed out that our arguments can also work in more

general cases as we’ll see below. Further study of those cases are very interesting

problems.
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2.2.1 Long Time Existence

In this subsection, we will prove that (2.2) has a global solution with the assumption

that [S] +KX is nef. (i.e. numerically effective). For simpilcity, we’ll take S = 0 for

simplicity which clearly won’t affect the argument at all. So now we assume that KX

is nef. instead.

At this moment, we can still only require X to be Kähler (and closed), so this

notion of numerically effective should be a natural generalization of the usual notion

for the case when X is projective (or algebraic), i.e., we just require the property that

KX + ε[ω0] is a Kähler class for any ε > 0. Here we use the initial Kähler class [ω0]

for convenience, but of course this should clearly be true for any Kähler class.

Thus for any fixed ε > 0, we can choose a real closed (1, 1)-form ψε such that

[ψε] = KX and ψε + ε · ω0 > 0 with {(ψε + ε · ω0)
n = 0} 6= ∅. Moreover, we can take

Ric(Ωε) = −ψε for some smooth volume form Ωε which is unique up to a positive

constant. Since ψε + ε · ω0 > 0, we have ψε + a · ω0 > 0 for ∀a > ε.

Set ωt = ψε+e
−t(ω0−ψε) and ω̃t = ωt+

√
−1∂∂̄u. We have the following equation

which is just (2.2) with the special choice of volume form above:

∂u

∂t
= log

ω̃nt
Ωε

− u, u(0, ·) = 0. (2.6)

In sight of ωt = (1− e−t)(ψε + e−t

1−e−tω0), we set Tε = log(1+ε
ε

) such that e−Tε

1−e−Tε = ε.

Lets’ first show the solution for (2.6) exists for t ∈ [0, Tε).

From the above choices, ωt is a Kähler metric for t in this range. Thus we see ωt

has uniformly bounded geometry for ∀t ∈ [0, s](⊂ [0, Tε)).

The parabolicity of the equation provides the local existence and uniqueness of the

solution. So just as in the previous section, it only remains to get uniform estimates

of u for t ∈ [0, s] where s < Tε under the assumption that the solution exists in

this range in order to get the existence of the solution for t ∈ [0, Tε). So let’s fix

such an s for now. In fact the following argument is very similar to what is in the

previous section. Notice that we can use s and ε as positive constants in the following

estimates.

By maximum principle, considering the (local in t) maximal and minimal value

points of u, we can get

−Cε,s < u < Cε,

where the lower indices s and ε indicate the dependence on s and ε respectively. The
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upper bound actually does not depend on s.

Take derivative with respect to t for (2.6) to get:

∂

∂t
(
∂u

∂t
) = ∆ω̃t(

∂u

∂t
)− e−t〈ω̃t, ω0 − ψε〉 −

∂u

∂t
,

which can be reformulated to get the following two equations:

∂

∂t
(et
∂u

∂t
) = ∆ω̃t(e

t∂u

∂t
)− 〈ω̃t, ω0 − ψε〉, (2.7)

∂

∂t
(
∂u

∂t
+ u) = ∆ω̃t(

∂u

∂t
+ u)− n+ 〈ω̃t, ψε〉. (2.8)

The difference of these two equalities above gives:

∂

∂t

(
et
∂u

∂t
− ∂u

∂t
− u

)
= ∆ω̃t

(
et
∂u

∂t
− ∂u

∂t
− u

)
+ n− 〈ω̃t, ω0〉. (2.9)

There is also a slightly modified difference (1 + ε) · (2.8)− ε · (2.7):

∂

∂t

(
(1+ε)(

∂u

∂t
+u)−εet∂u

∂t

)
= ∆ω̃t

(
(1+ε)(

∂u

∂t
+u)−εet∂u

∂t

)
−(1+ε)n+〈ω̃t, ψε+εω0〉.

(2.10)

From (2.9), noticing 〈ω̃t, ω0〉 > 0, by maximum principle and noticing et ∂u
∂t
− ∂u

∂t
−

u− nt = 0 when t = 0, one gets that

et
∂u

∂t
− ∂u

∂t
− u− nt 6 0.

Now we combine it with local existence and the uniform upper bound for u to conclude

that
∂u

∂t
< Cε.

From (2.10), noticing 〈ω̃t, ψε + εω0〉 > 0, by maximum principle, we get that

(1 + ε)(
∂u

∂t
+ u)− εet

∂u

∂t
+ (1 + ε)nt > mint=0{

∂u

∂t
} = −Cε

which gives (1 + ε− εet)∂u
∂t

> −Cε − (1 + ε)u− (1 + ε)nt > −Cε. Since 1 + ε− εet >

1 + ε− εes > 0 for t ∈ [0, s], we can conclude

∂u

∂t
> −Cε,s.

Until now we have got all the C0 estimates needed. Now the existence of solution
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for (2.6) for t ∈ [0, s] follows from the standard argument using Laplacian estimate

just as before. More details can be found in Appendix. Hence we get the existence

of solution in [0, Tε).

The global existence of the solution for (2.2) is easy to see by considering the

relations between all the equations (2.6) for different ε’s as follows.

Actually from the equivalence of the equations (2.1) and (2.2) as mentioned in

Introduction, we can get the existence of the solution for (2.1) for any time interval by

taking sufficiently small ε > 0 and using the existence of the solution for correspondent

(2.6) in [0, Tε). Thus we have the global existence of the solution for the metric flow

(2.1) in [0,∞), and so for any potential flow (2.6). In fact we can see this more

concretely without mentioning (2.1) at all.

Consider (2.6) for some δ > 0 other than the fixed ε before. We have ψδ =

ψε+
√
−1∂∂̄f for some smooth real function f over X. Since −Ric(Ωε) = ψε, we have

−Ric(efΩε) = ψδ. Thus one can take Ωδ = efΩε. Now the new “ωt” is

ηt = ψδ + e−t(ω0 − ψδ) = ωt + (1− e−t)
√
−1∂∂̄f.

The corresponding equation (2.6) for δ is:

∂v

∂t
= log

(ηt +
√
−1∂∂̄v)n

efΩε

− v, v(0, ·) = 0.

Define ũ = v + (1− e−t)f . We have ũ(0, ·) = v(0, ·) = 0 (the same initial value) and:

∂ũ

∂t
=
∂v

∂t
+ e−tf

= log
(ηt +

√
−1∂∂̄v)n

efΩε

− v + e−tf

= log
(ωt +

√
−1∂∂̄ũ)n

Ωε

− v − f + e−tf

= log
(ωt +

√
−1∂∂̄ũ)n

Ωε

− ũ.

From uniqueness of the solution for (2.6), ũ is just the original solution u.

The above explicitly gives the relation between the solutions of (2.6) for different

ε’s explicitly which makes it obvious how to use all these equations for different ε’s

to get the global existence of the solution for each one of them. This global existence

in potential level is not so trivial if we only consider those equations separately. The
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discussion above also tells us that when KX is nef., (2.2) can be solved globally no

matter which Ω is chosen. One should notice the volume form Ω is also involved in

the definition of ωt there. 10 We can summarize all the discussion in this subsection

in the following proposition.

Proposition 2.2.2. Over a closed Kähler manifold X with complex dimension greater

or equal to 2, Kähler-Ricci flow (2.1) (or (2.2)) exists uniquely and globally for any

initial Kähler metric provided [S] +KX is numerically effective.

Remark 2.2.3. In fact, the argument here can be used to prove that the Kähler-Ricci

flow exists as long as the class remains to be Kähler. We’ll prove this later in this

chapter in a general setting.

2.2.2 Local Convergence

In this subsection, we discuss the convergence of the Kähler metrics (ω̃t for each time

slice) along the flow. As before, we still do the argument on the level of potential.

Now X is assumed to be a projective manifold with KX being nef. and big. This is

the simplification we are going to consider. As in the previous part, we can do exactly

the same thing for the class [S] +KX when it is nef. and big.

We’ve already known the flow exists globally from the last part. Because the

limiting class KX may not be positive in general, we can’t expect that the limit can

be really a (smooth) metric, which from the way we obtain the limit means that the

estimates for u uniformly over [0,∞) × X should be out of reach. Thus we have to

make a choice of losing some globalness. But if we want to get a limit as t → ∞ in

any sense, the globalness of the estimates for all time is better to be preserved. So

naturally we choose to lose the globalness over X and try to see what we can say

locally on the manifold.

Remark 2.2.4. Actually this idea of localizing the extimates on X was introduced

by Tsuji in [Tsh1] where he used a clever way to get the bigness of KX expressed in

the equation and involved in the application of maximum principle. One of the main

goals for the rest of this subsection is to clarify some details about his argument there.

At the beginning, we’ll make some auxiliary assumptions on our choices for the

flow which make our picture of convergence more clear. They are not essential and

will be removed at the end.
10Since we have to start with some Kähler metric ω0, any choice of Ω will provide some time

interval for existence of solution from the argument in the first part of this section. But we know
the solution of the specific potential flow actually exists forever.
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Let ω∞ = −Ric(ω0
n) = −Ric(ω0) with some initial metric ω0 satisfying ω0−ω∞ >

0. Now ωt = ω∞ + et(ω0 − ω∞) and then ω̃t = ωt +
√
−1∂∂̄u. Hence (2.2) becomes

∂u

∂t
= log

ω̃nt
ω0

n
− u, u(0, ·) = 0.

Taking t-derivative for the above equation as usual, we get

∂

∂t
(
∂u

∂t
) = ∆ω̃t(

∂u

∂t
)− e−t〈ω̃t, ω0 − ω∞〉 −

∂u

∂t
.

The initial value for ∂u
∂t

is also 0 from our choice of the volume form Ω. Since

ω0 − ω∞ > 0 by assumption, simply by maximum principle, we have ∂u
∂t

6 0 globally

and in fact ∂u
∂t
< 0 for t > 0. This also tells us u < 0 for t > 0. Thus we have got the

global upper bounds:
∂u

∂t
6 0, u 6 0.

Moreover, we know u is (strictly) decreasing along the flow, which is obviously helpful

in search of convergence. In fact, this alone would tell us that the limit of u would

be a plurisubharmonic function with respect to ω∞ if there is some very weak lower

bound for u (even just for a point on X) 11.

We also have as before:

∂

∂t

(∂u
∂t

+ u
)

= ∆ω̃t

(∂u
∂t

+ u
)
− n+ 〈ω̃t, ω∞〉. (2.11)

Since the potential flow equation (2.2) can be reformulated as

∂u

∂t
+ u = log

ω̃nt
ω0

n
,

this equation above describes the change of volume along the flow in a straightforward

way.

Now we start to get the bigness of KX involved. The following lemma (see for

example [Ka1] and [Ka3]) tells us how to use it.

Lemma 2.2.5. Over a projective manifold X, if a divisor L is nef. and big, then

L− εE is Kähler for some effective integral divisor E and ε ∈ (0, a) for some a > 0.

The proof of this result essentially makes use of the openness of the big cone for

the projective manifold X. L being nef. means it’s in the closure of the positive cone

11Otherwise, we can’t exclude the case that the limit might be identically −∞.
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(as in [Kl]). The idea is quite obvious when one has the picture of those cones in

mind. In fact we can choose the divisor E to be big. Notice the projectivity of X

is fairly much rooted here. By abusing of notation, the divisor also stands for the

correspondent cohomology class below.

On the level of form, we can have ω∞ + ε
√
−1∂∂̄loghE,ε > 0 for ε ∈ (0, a) where

locally hE,ε stands for the square of the norm for a local holomorphic nowhere 0

section of the holomorphic line bundle correspondent to E with respect to some

bundle hermitian metric which might well depend on ε. The second part of the

summation is nothing but the curvature form of line bundle E (with respect to this

hermitian metric) multiplied by −ε.

Use σ to denote the canonical global holomorphic section for the line bundle E

which vanishes along E in the following. We now have a more global expression of

this inequality as:

ω∞ + ε
√
−1∂∂̄log|σ|2 > 0,

where | · | denotes the bundle norm 12. Be careful that strictly speaking this inequality

above should be understood to make sense only over X \ {σ = 0}. It should be

understood as the expression before using hE,ε if one wants to make sense over the

whole manifold X. But the function |σ|2 is smooth over X and takes value in some

finite interval [0, Cε].

We can reformulate the equation before about volume evolution (2.11) as follows:

∂

∂t

(
log

ω̃nt
|σ|2εω0

n

)
= ∆ω̃t

(
log

ω̃nt
|σ|2εω0

n

)
− n+ 〈ω̃t, ω∞ + ε

√
−1∂∂̄log|σ|2〉.

Indeed there are no changes for both sides of the equation. But this current equation

should also be considered only over X \ {σ = 0}.

For any fixed t, log(
ω̃n

t

|σ|2εω0
n ) will blow up to +∞ along {σ = 0}. Thus if we

consider local minimal value point of it, using estimates local in time, we can see the

point exists in X \ {σ = 0} where this equation actually makes sense. So we can

proceed as before in applying maximum principle. At that point, we have:

〈ω̃t, ω∞ + ε
√
−1∂∂̄log|σ|2〉 6 Cε.

Notice that it is possible for the point to have t = 0. So we use Cε on the right

hand side instead of n. Anyway, we have ω̃nt > Cε(ω∞ + ε
√
−1∂∂̄log|σ|2)n. Hence we

12For simplicity, we omit the lower indices ε and E.
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conclude that at that point,

ω̃nt
|σ|2εω0

n
>
Cε(ω∞ + ε

√
−1∂∂̄log|σ|2)n

|σ|2εω0
n

> Cε,

where the numerator in the middle term is the volume form for a metric over X. By

the choice of the point, we get that globally over [0,∞)×X,

ω̃nt
|σ|2εω0

n
> Cε

since though we choose the point as a local (for time) minimal, the bound we get is

uniform for any chosen time interval. Thus we arrive at:

∂u

∂t
+ u > −Cε + εlog|σ|2.

Together with the upper bounds ∂u
∂t

6 0 and u 6 0, we get the global degenerate

lower bounds:
∂u

∂t
> −Cε + εlog|σ|2, u > −Cε + εlog|σ|2.

Up to now, we already know there is a pointwise limit of u as t → ∞ out of

{σ = 0} which is even global over X if one allows −∞ as a legal value. Of course we

should expect something better than that.

In the following we’ll use the standard Laplacian estimate in a slightly modified

(degenerate) way. For any fixed ε ∈ (0, a), let’s set:

ωt,ε = ω∞ + ε
√
−1∂∂̄log|σ|2 + e−t(ω0 − ω∞).

Then we have ω̃t = ωt,ε +
√
−1∂∂̄(u − εlog|σ|2). One should undertand them over

X \ {σ = 0} in this form, but they have global smooth extensions to the whole of

X by replacing the singular-looking term −
√
−1∂∂̄log|σ|2 by the genuine curvature

form.

The point for doing this is that now ωt,ε takes value in the segment between

ω0 + ε
√
−1∂∂̄log|σ|2 and ω∞ + ε

√
−1∂∂̄log|σ|2 for t ∈ [0,∞). The later one is a

metric for the fixed ε by our choice. The former one is also a metric as we assume

ω0 − ω∞ > 0. Hence we have uniform control for all ωt,ε as metric.
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Over X \ {σ = 0}, (2.2) can be rewritten as:

(ωt,ε +
√
−1∂∂̄(u− εlog|σ|2))n = e

∂u
∂t

+u+log
ω0

n

ωt,ε
n ωt,ε

n.

Now we can get the standard inequality for Laplacian estimate in the following

form after using the uniform upper bounds for ∂u
∂t

, u and the uniform control of the

metric ωt,ε as metric. The inequality is for all (t, x) ∈ [0,∞)× (X \ {σ = 0}): 13

eCε(u−εlog|σ|2)(∆ω̃t −
∂

∂t
)
(
e−Cε(u−εlog|σ|2)〈ωt,ε, ω̃t〉

)
> −Cε + (Cε

∂u

∂t
− Cε)〈ωt,ε, ω̃t〉+ Cε〈ωt,ε, ω̃t〉

n
n−1

> −Cε + (Cεlog|σ|2 − Cε)〈ωt,ε, ω̃t〉+ Cε〈ωt,ε, ω̃t〉
n

n−1 ,

where ∂u
∂t
> −Cε + εlog|σ|2 is used to get the second “>”. Notice that we can have

this lower bound for any ε ∈ (0, a). But we use the same ε as above for simplicity.

Unfortunately we don’t have the uniform control (from below) for all the co-

effcients in the last expression which is important for the classic way of applying

maximum principle. But in fact we can get away with this as follows.

Consider the local maximal value point of e−Cε(u−εlog|σ|2)〈ωt,ε, ω̃t〉. Easy to see this

point exists and in fact is in X \ {σ = 0} since this expression vanishes on {σ = 0}
and is continuous everywhere. The case when the point has t = 0 can be included in

the final esimate trivially as usual. Now at that point which has time t > 0, we have:

0 > −Cε + (Cεlog|σ|2 − Cε)〈ωt,ε, ω̃t〉+ Cε〈ωt,ε, ω̃t〉
n

n−1

= −Cε + Cε〈ωt,ε, ω̃t〉
(
〈ωt,ε, ω̃t〉

1
n−1 + Cεlog|σ|2 − Cε

)
.

Thus we should have 〈ωt,ε, ω̃t〉 < Cε(Cε − log|σ|2)n−1 since |σ| ∈ [0, Cε]. So we can

have at that point:

e−Cε(u−εlog|σ|2)〈ωt,ε, ω̃t〉 6 Cε(Cε − log|σ|2)n−1e−Cε(u−εlog|σ|2).

The whole point of using maximum principle is trying to get a universal control for

the right hand side of this expression which then makes it legal to extend the estimate

to everywhere. Actually we only have to observe the following to achieve this.

The lower bound for u is: u > −Cδ +δlog|σ|2 for any δ ∈ (0, a). Though the norm

13The computation for getting this inequality is pointwise which makes it justified for our situation
here.
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| · | may depend on δ, the difference is only a global smooth nowhere 0 function on X,

so in fact here we can forget about the difference between the norms as we also have

a constant Cδ anyway. Thus let’s say we keep the norm | · | to be the same. Since

u > −Cδ + δlog|σ|2 for some fixed δ ∈ (0, ε), we get

u− εlog|σ|2 > −Cδ + (δ − ε)log|σ|2,

which gives the following

e−Cε(u−εlog|σ|2) < Cε,δ · |σ|Cε(ε−δ).

Thus at the local maximal value point considered above, we have:

e−Cε(u−εlog|σ|2)〈ωt,ε, ω̃t〉 6 Cε,δ(Cε − log|σ|2)n−1|σ|Cε(ε−δ) < Cε,δ

where the last step is from the trivial fact mentioned before: |σ| ∈ [0, Cε]. So now we

get globally that

e−Cε(u−εlog|σ|2)〈ω0, ω̃t〉 6 Cε,δ.

We can fix the choice of δ with respect to ε (for example δ = ε
2
) without losing

any essential information, so Cε,δ can be replaced by Cε for simplicity. Rewrite the

estimate to get more explicit information of ω̃t below using u 6 0:

〈ω0, ω̃t〉 6 Cε|σ|−2εCε . (2.12)

Remark 2.2.6. Recall that the meaning of the positive constant Cε in the power of

|σ| is essentially max{∀x∈X,k 6=l}|(Rω∞,ε)kk̄ll̄| where ω∞,ε = ω∞ + ε
√
−1∂∂̄log|σ|2. Let’s

consider the power of |σ|−2 which is ε ·Cε. If ω∞ > 0 (or KX being Kähler), we can let

ε tend to 0 and see ε ·Cε also goes to 0, which should give the global uniform estimate

which is of course consistent with the case considered in the previous subsection.

Clearly one also has to make sure all the other constants Cε’s won’t blow up to +∞
as ε→ 0 which is indeed the case. Basically the argument goes through without getting

the term ε
√
−1∂∂̄log|σ| involved. This tells us that this power ε · Cε is related to the

degenaracy of KX as a Kähler class which is naturally what we should expect, and so

is the Laplacian estimate got above. The size of it greatly affects the possible control

of the metrics ω̃t and it should be fairly computable in practice.
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Combining this Laplacian estimate with the volume estimate before:

ω̃nt > Cε|σ|2εω0
n, (2.13)

for any ε ∈ (0, a), we have the uniform control of ω̃t as metric over any compact

subset of X \ {σ = 0}. Of course we have already got the t-global C0-estimate for u

for such subsets.

For the higher order estimates, we can either go directly by using the computation

by Yau for third order and use Schauder estimates to iterate, or save the trouble by

applying the general theory about uniformly parabolic nonlinear equation. Anyway

we can have uniform higher order estimates in any compact subset out of {σ = 0}.
More details can be found in Appendix.

Now it’s routine to conclude that u(t, ·) converges in C∞-topology for any compact

subset out of {σ = 0} as t→∞ as follows.

First by Ascoli-Arzela’s Theorem and diagonalizing argument, we have the con-

vergence of u(t, ·) for a sequence of t’s going to infinity locally out of {σ = 0} in

C∞-topology. Then the decreasing of u(t, ·) with respect to t will make sure the con-

vergence is locally in local C0-norm for the whole flow, i.e., t → ∞. Now using the

uniform local bounds of the higher order derivatives and the interpolation inequalities

(see for example [GiTr]), we can get the local convergence in C∞-topology as t→∞.

Simply from the equation itself, we also have such convergence for ∂u
∂t

which means

it should actually go to 0 locally smoothly by the convergence of u. Thus we have in

X \ {σ = 0}:
(ω∞ +

√
−1∂∂̄u∞)n = eu∞ω0

n. (2.14)

where u(∞, ·) stands for the limit which is smooth out of {σ = 0} from above. On

the whole of X, we only have pointwise convergence for u which is simply from the

monotonicity of u with respect to t and the degenerated lower bound of u by allowing

−∞ to be a legal value. But that alone will provide some global information for the

limit as mentioned before. We’ll give more details now.

Recall we have Kähler metrics along the flow

ω̃t = ωt +
√
−1∂∂̄u(t, ·)

where ωt = ω∞+e−t(ω0−ω∞). Locally on X we can have ωt =
√
−1∂∂̄(ϕ∞+e−t(ϕ0−

ϕ∞)) where ϕ0, ϕ∞ are local potentials for ω0, ω∞ which might not be a metric, but

still real, closed, and of type (1, 1). We can easily make sure that ϕ0 − ϕ∞ > 0 by
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adding constants. Thus this local potential for ωt is decreasing with respect to t just

as u(t, ·) does. Thus we have decreasing local potential ϕ∞ + e−t(ϕ0 − ϕ∞) + u(t, ·)
for metric ω̃t whose limit will be a plurisubharmonic function locally on X by the

properties of plurisubharmonic functions 14. We also know it’s ϕ∞ + u∞ almost

everywhere in the open subset of X we started with. Again by the properties of

plurisubharmonic functions 15, we have known the function everywhere from that.

Thus in fact there should be no ambiguity about the limit u∞ over the whole of X

once we get to know the regular part of it. Of course this coincides with the decreasing

limit. But as for now, there could be places where u∞ takes −∞. It’ll be taken care

of later.

Moreover, we see ω∞ +
√
−1∂∂̄u∞ is a real closed (1, 1)-current which represents

the same cohomology class as ω∞ just by noticing the limiting function u∞ is a real-

valued L1 function over X from the bounds on u along the flow. Of course we can also

see the limiting current is actually a Kähler metric in X \ {σ = 0} by the estimates

above for metrics along the flow, and it is Kähler-Einstein in the same range, namely

X \ {σ = 0}, from the limiting equation (2.16) it satisfies there if we are considering

the flow with S = 0.

Remark 2.2.7. The holomorphic section σ used above comes from an effective inte-

gral divisor E which is not necessary unique. We can choose different E’s to study

the same equation (2.2). The limit u(∞, ·) is unique at least in the sense of pointwise

convergence. So all the extra information we can draw from the above argument is

for the same limit. For example, we can say u(∞, ·) is smooth in the complement of

the intersection of all the σ’s and satisfies the limiting equation in the same range.

Of course, we only need finitely many σ’s.

In the terminology of algebraic geometry, the intersection above is called the stable

base locus set (for [S] +KX). And it can be easily seen from above that if this set is

empty, then we actually have a smooth limit from the uniform bounds of u which we

can get by combining the estimates for finitely many σ’s and so [S] + KX is indeed

Kähler. Thus it can be taken as a characterization set for the positivity (ampleness)

of the class [S] + KX . 16 Actually it has been proved in [Nak] by algebraic geometry

argument that this set is just the classic characterization set of the ampleness of the

class [S] +KX , which is the union of the varieties along which the class is degenerate

(see in [Kl]), when the class is rational, nef. and big to start with.

14See for example in [De1], and this is what we called plurisubharmonic with respect to ω∞ before.
15Basically, this is the “essentially upper semi-continuity” as in [Le]. We’ll have more discussion

about this later.
16The other direction is rather trivial.

41



Finally there is just a little mess we need to clean up for this convergence result. As

mentioned at the beginning, we used additional assumption about the initial Kähler

metric ω0 and also we use the volume form ω0
n. It’s time to see all these are not

necessary.

Let’s restate the flow equation in the level of potential (2.2):

∂u

∂t
= log

(ωt +
√
−1∂∂̄u)n

Ω
− u, u(0, ·) = 0,

where ωt = ω∞ + et(ω0 − ω∞) with ω∞ = −Ric(Ω). Simply by maximum principle,

we can get u < C. Recall that we also have (et − 1)∂u
∂t
− u− nt 6 0, so ∂u

∂t
6 u+nt

et−1
for

(t, x) with t > 0. Combining these with the local estimate for small time, we have
∂u
∂t
< Ce−

t
2 globally. The degenerated volume estimate is essentially not benefited

from the additional assumptions, and so will not be affected after removing them.

It can be seen that the Laplacian estimates earlier in this subsection are only

affected in the following way. ωt,ε still takes value in the segment between ω0 +

ε
√
−1∂∂̄log|σ|2 and ω∞ + ε

√
−1∂∂̄log|σ|2 when t varies from 0 to ∞. The later one

is a metric for the fixed ε. But the former one may NOT be now. And in fact

as the norm | · | for the line bundle E might well depend on ε, we might not be

able to say for sufficiently small ε, both of the end-points are metrics. It seems we

are in trouble to find uniformly bounded background metrics which is important for

Laplacian estimate. But remember that we no longer worry about the global existence

of the solution of the flow. It’s safe for us to restrict our attention for sufficiently large

t 17. And also this should clearly be enough for considering the limit of solution as

t goes to infinity. This trivial observation allows us to only consider ωt,ε for t close

to ∞ where we know it’s a metric. In other words, we can now use the argument of

Laplacian estimate before for the range (t, x) ∈ [Sε,∞) ×X where we have uniform

control for ωt,ε as metric. Then everything goes through and we can still make the

same conclusion for 〈ω0, ω̃t〉 and the higher derivatives can be estimated just as before.

Now let’s consider v = u + e−
t
4 . ∂v

∂t
= ∂u

∂t
− 1

4
e−

t
4 which will be negative for t

sufficiently large.

From the estimates for u, we still have v > −Cε + εlog|σ|2 for any ε ∈ (0, a) and

all the estimates for space derivatives. Thus for v we can have the convergence as

t → ∞ which can be easily translated to the convergence for u. And of course we

still have the plurisubharmonicity for the limit 18. This should give us everything up

17The control we need for the rest part of t will follow from the local estimates if we know the
length of the finite t-interval which we want to ignore.

18In fact, it’s easy to see u∞ = v∞.
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to now after removing the additional assumptions.

We can actually save the trouble above by proving a degenerate exponential lower

bound for ∂u
∂t

below.

Let’s recall the following equations:

∂

∂t

(
et
∂u

∂t

)
= ∆ω̃t(e

t∂u

∂t
) + 〈ω̃t, ω∞ − ω0〉,

∂

∂t

(
et
∂u

∂t
− ∂u

∂t
− u

)
= ∆ω̃t

(
et
∂u

∂t
− ∂u

∂t
− u

)
+ n− 〈ω̃t, ω0〉.

Multiply the second one with some constant −A for A ∈ (0, 1) which will be fixed

shortly and then sum up the two equations to get:

∂

∂t

(
(1−A)et

∂u

∂t
+A

∂u

∂t
+Au

)
= ∆ω̃t

(
(1−A)et

∂u

∂t
+A

∂u

∂t
+Au

)
−An+〈ω̃t, ω∞−(1−A)ω0〉.

We can rewrite this equation as below over X \ {σ = 0}

∂

∂t

(
(1− A)et

∂u

∂t
+ A

∂u

∂t
+ Au− ε log |σ|2 + Ant

)
= ∆ω̃t

(
(1− A)et

∂u

∂t
+ A

∂u

∂t
+ Au− ε log |σ|2 + Ant

)
+ 〈ω̃t, ω∞ + ε

√
−1∂∂̄ log |σ|2 − (1− A)ω0〉

where ω∞ + ε
√
−1∂∂̄ log |σ|2 is a Kähler metric over X as before. Thus by taking

0 < A < 1 close enough to 1, by maximum principle, we have

(1− A)et
∂u

∂t
+ A

∂u

∂t
+ Au− ε log |σ|2 + Ant > −C − ε log |σ|2 > −C

since the minimum value point will never be in the set {σ = 0}. And this bound

would be global for X. Then by the uniform upper bounds of ∂u
∂t

and u, we can get

∂u

∂t
> (−C − Ct)e−t + e−tCε log |σ|2 > −Ce−

t
2 + e−tCε log |σ|2.

This is the degenerate lower estimate we want. Clearly it can be done for any such σ

and we only need finite many of them for the stable base locus set. Clearly it gives

better description about the local convergence. 19

19The search of local exponential convergence for Ck-norm is not successful as before. The global
argument used before can’t be carried through since the uniform bound for metrics along the flow is
degenerate. Local argument considering Dirichlet problem, which is used to get the local higher order
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In one word, we get the convergence of the flow equation (2.2) in some (local)

sense and the limit satisfies:

(−Ric(Ω) +
√
−1∂∂̄uω0,Ω,∞)n = euω0,Ω,∞Ω

out of some small set. Here we include the initial Kähler metric ω0 and the smooth

volume form Ω as lower indices for the limiting function to indicate the apriori de-

pendence on them from the discussion above. But we should notice that the small set

which is the stable base locus set of [S] + KX does not depend on choices. Now we

can conclude the following proposition. The statement is for the case S = 0 which is

of most geometric interests. The statement for general case is not so different except

for the Kähler-Einstein part.

Proposition 2.2.8. Over a smooth projective manifold X with complex dimension

greater or equal to 2, for any initial data, Kähler-Ricci flow (2.1) converges locally in

C∞-topology to a smooth Kähler-Einstein metric out of a subvariety of X, with some

control of (possible) singularities along E as above, provided KX is nef. and big. The

subvariety mentioned is actually the stable base locus set of KX .

Moreover, the limit can be extended to X a positive (1, 1)-current and we have the

pointwise convergence of the flow on the level of potential.

Actually, we can draw more information about the solution for the flow equation

itself from the convergence result. In order to do this, we should notice the essential

decreasing of the volume along the flow from the following computation. First recall

the equation below:

∂

∂t
(
∂u

∂t
) = ∆ω̃t(

∂u

∂t
)− e−t〈ω̃t, ω0 − ω∞〉 −

∂u

∂t
.

Taking another t-derivative on both sides and noticing summation of the first two

terms on the right hand side is just 〈ω̃t, ∂ω̃t

∂t
〉, we get:

∂

∂t
(
∂2u

∂t2
) = ∆ω̃t(

∂2u

∂t2
) + e−t〈ω̃t, ω0 − ω∞〉 − (

∂ω̃t
∂t

,
∂ω̃t
∂t

)ω̃t −
∂2u

∂t2
.

Sum up these two equation above to get:

∂

∂t

( ∂
∂t

(
∂u

∂t
+ u)

)
6 ∆ω̃t

( ∂
∂t

(
∂u

∂t
+ u)

)
− ∂

∂t
(
∂u

∂t
+ u).

derivative bounds, doesn’t look good as it’ll need the exponential convergence of the corresponding
boundary term which involves space derivatives (in other words, bounding the term after multiplying
by et on the boundary first).
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That tells us:
∂

∂t

(
et
∂

∂t
(
∂u

∂t
+ u)

)
6 ∆ω̃t

(
et
∂

∂t
(
∂u

∂t
+ u)

)
.

Maximum principle argument gives

∂

∂t
(
∂u

∂t
+ u) 6 Ce−t

which tells the essential decreasing of ∂u
∂t

+ u and also of the volume form of ω̃t as

ω̃nt = e
∂u
∂t

+uΩ. Then it is easy to see the (pointwise) limit of ∂u
∂t

+u exists over X. The

limit would be u∞ out of the stable base locus set and also upper semi-continuous

over X. Thus it should be bigger or equal to u∞ on X which could apriori take value

−∞ at some points in the stable base locus set. Here we have used the essentially

upper semi-continuity of u∞.

We can see the limits are actually the same as follows. If at some point in X, u∞

is −∞, then the limit of ∂u
∂t

+u would also have to be −∞ from the upper estimate of
∂u
∂t

. If u∞ is a finite value at any point of X, then we know the limit of ∂u
∂t

+ u would

be no smaller than u∞ which means it’s also finite and the limit of ∂u
∂t

is nonnegative.

But the limit of ∂u
∂t

would have to be nonpositive if it exists from the estimate, so ∂u
∂t

converges to 0. This should not be surprising from the essential negativity of ∂u
∂t

and

the boundedness assumption of the limit for u.

By integrating the estimate above, we arrive at:

∂u

∂t
+ u > u∞ − Ce−t

over X. If one can have a uniform lower bound for u for all space and time (and

thus for u∞), then it’s also true for ∂u
∂t

. As seen later using pluripotential theory, we

actually have the boundedness of u when [ω∞] is semi-ample and big (which is Tsuji’s

case for the canonical class of a smooth minimal model of general type). 20 And in

this case, from discussion above, we know ∂u
∂t

converges to 0 pointwisely over X.

2.3 Uniqueness Result

In this section, we study the uniqueness of the limit from the previous section. There

are two kinds of uniqueness to consider. One is the uniqueness as limit for the

20So in some sense, the little careless point about Laplacian estimate in [Tsh1] would actually be
OK. But obviously, more complicated C0 (or L∞) estimate is involved and the assumption is more
restrictive than necessary as shown before.
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Kähler-Ricci flow under all the choices. The other is the uniqueness as solution for

the limiting equation, i.e., the degenerate Monge-Ampere equation which is the main

interest for this work.

2.3.1 Uniqueness as Limit of Flow

With the same assumptions as in the previous section, we want to prove the limit for

(2.1) will not depend on the choice of the initial data. For (2.2), we also expect to see

the choice of the volume form Ω will change the limit (of potential) in an explicit way.

In fact the computation about difference choices of volume form Ω is already

contained in the proof of global exsitence of the solution for flow. Of course for

this part we can fix the initial Kähler metric ω0. Recall for Ω2 = efΩ1, we have

u2 = u1− (1− e−t)f where u1 and u2 are the correspondent solutions for (2.2). Then

obviously we have u2,∞ = u1,∞−f which would imply that we have the same limiting

(singular) metric. This can also be seen from the uniqueness result for the solution

of (2.1) since we are starting from the same ω0 and it’s indeed the same flow.

Now we consider the dependence on the initial Kähler metric which is a more

essential problem. We fix Ω for the equation on the level of potential.

First we observe an integral equality for all such limits, u∞, which is rather triv-

ial from what we know about the convergence but plays a quite important for the

uniqueness argument. Recall that we have the estimates for any fixed ε ∈ (0, a):

−Cε + εlog|σ|2 < u < Cε, − Cε + εlog|σ|2 < ∂u

∂t
< Cε.

Also we know u → u∞ and ∂u
∂t
→ 0 as t → ∞ smoothly in any compact subsets out

of some small set (say {σ = 0}). Thus we can easily see that the convergences are

also in Lp-norm for ∀1 6 p <∞ by noticing the contribution for the neighbourhood

of {σ = 0} can be controlled very well. 21.

Remark 2.3.1. We need a smooth volume form on X to make sense of the Lp-norm,

and the choice clearly doesn’t matter. u∞ is clearly in Lp-spaces as it’s smooth out of

{σ = 0} and with possibly log-singularities along {σ = 0}. In fact what we need here

is e
∂u
∂t

+u → eu∞ in L1-norm as t→∞. So we don’t even need the “log” lower bounds

and the upper bounds will be enough.

21In fact by the almost everywhere pointwise convergence, Dominated Convergence Theorem will
do the job.
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Consider the flow equation in the form (ωt+
√
−1∂∂̄u)n = e

∂u
∂t

+uΩ which has both

sides smooth for each time slice along the flow. Integrate over X to see:∫
X

e
∂u
∂t

+uΩ =

∫
X

(ωt +
√
−1∂∂̄u)n =

∫
X

ωt
n.

Now take the limit as t→∞ for both sides to get:∫
X

eu∞Ω =

∫
X

ω∞
n. (2.15)

This is the integral equality we want. Notice there is little difference between the two∫
X

’s since the right hand side one is to integrate over something smooth which is not

the case for the left hand side where you can think about the integration is only for

the regular part or Lebesgue integration.

A byproduct of this equality is
∫
X
ω∞

n > 0 which means ([S] + KX)n > 0. The

above argument for this actually works for general nef. and big line bundle, L, which

gives [L]n > 0. Of course this fact is well known from simple algebraic geometry

argument.

In fact we can go a little further by using the limiting equation to get∫
X

(ω∞ +
√
−1∂∂̄u∞)n =

∫
X

ω∞
n.

At this moment, we should really clarify the meaning of left hand side which is the

integration for the regular part.

Remark 2.3.2. If we can have the boundedness of u∞, then (ω∞+
√
−1∂∂̄u∞)n makes

sense over X as a (Borel) measure by plurisubharmonicity 22. Then the integration on

the left hand side above can be thought of as over X. In fact the weak convergence of

the flow metrics to the limiting current also follows from classic pluripotential theory.

This can be seen as some motivation for the other part of this work.

Now let’s see how this integral equality is going to help in proving the uniqueness

of the limit for any choice of initial Kähler metric, ω0. Basically, it would imply “=”

from “>”.

First it is easy to see that it suffices to prove the limits are the same in the case

when the two initial metrics are comparable, i.e., when one is “>” than the other.

The reason is that provided this is true, then for any two Kähler metrics ω1 and ω2,

22Actually the boundedness of u might not be that necessary only for this as we can see later.
But it will definitely make the whole result much more interesting.

47



we can have uω1,∞ = uω1+ω2,∞ = uω2,∞. So now let’s suppose ω0 and ω are two Kähler

metrics on X, and the initial metrics we are considering are ω0 and ω0 +ω. Then the

correspondent equations on the level of potential would be:

∂u

∂t
= log

(ωt +
√
−1∂∂̄u)n

Ω
− u, u(0, ·) = 0,

∂v

∂t
= log

(ωt + e−tω +
√
−1∂∂̄v)n

Ω
− v, v(0, ·) = 0,

where ωt = S − Ric(Ω) + e−t(ω0 − S + Ric(Ω)). Take the difference to get:

∂(u− v)

∂t
= log

(ωt +
√
−1∂∂̄u)n

(ωt +
√
−1∂∂̄u+ e−tω +

√
−1∂∂̄(v − u))n

− (u− v),

with (u − v)(0, ·) = 0. Applying maximum principle, we can see u − v 6 0. Hence

we have u∞ 6 v∞ over X by pointwise convergence. Since
∫
X
eu∞Ω =

∫
X
ev∞Ω, we

can conclude u∞ = v∞ almost everywhere. In fact they ought to be the same on the

regular part. Then by plurisuharmonicity of the limits, we see u∞ = v∞ over X.

Thus we have got the uniqueness of limit for the flow and the following result is

proved.

Proposition 2.3.3. With the same assumption as before, the limits of the solutions of

(2.2) for all choices satisfy (2.15), and the limits of the solutions of (2.1) for different

choices of initial Kähler metrics are the same.

Now I want to mention a possible alternative way of proving this result above

and the little obstacle which may well come from my own shallow knowledge about

nonlinear PDE’s.

In fact as we can see from our argument before, for equation (2.2), taking derivative

makes it linear-looking. So we imagine that in order to compare the limits from two

(comparable) initial Kähler metrics, it might help to condsider all the limits with all

the metrics between them as the initial metric and study the change by considering

the derivative with respect to the parameter for the initial metrics. More precisely,

using the same set-up as above, for any ε ∈ [0, 1], let’s consider the following family

of equations:

∂uε

∂t
= log

(ωt + εe−tω +
√
−1∂∂̄uε)n

Ω
− uε, uε(0, ·) = 0.

The upper index ε in uε indicates that it corresponds to the initial metric ω0 +

εω. Similar for the metrics below. Now as suggested above, by formally taking

48



ε-derivative, we get the following equation: (formally set βε = ∂uε

∂ε
)

∂βε

∂t
= ∆ω̃ε

t
βε + 〈ω̃εt , e−tω〉 − βε, βε(0, ·) = 0.

From this equation, for each fixed ε, since we have all the metrics ω̃εt which is smooth

for time and space. We can solve for βε. Then by maximum principle as usual, we

see βε > 0. Thus we can get the uniqueness of the limit as before if we can justify

that this solution βε here is nothing but ∂uε

∂ε
. Notice we might still have to make

sense of this term. Easy to see it would suffice to have the smooth ε-dependence

of the solutions uε which is of course true for families of linear equations when the

parameter is involved in a nice and smooth way.

At the first sight, it might look promising to set vε =
∫ ε

0
βsds+u0 which is smooth

for t and x and try to prove it actually satisfies the above family of equations , but

in fact this doesn’t seem to work as ω̃εt , which contains uε, is deeply involved in the

equation for βs and the regularity of it with respect to ε is somehow the problem

here.

Anyway, it should be pointed out that the ε above plays a very different role

from the time parameter t whose derivative gets involved in the evolution equation

which makes it easy to deduce the regularity of the solution with respect to time

t. The ε is really just a fixed value for each equation, so the regularity of all the

solutions with respect to it would probably require some explicit construction of the

solutions as in the case of linear differential equations. It’s most likely that we need

a regularity result about implicit function theorem (or fixed point theorem) for maps

with parameters between function spaces. It looks reasonable in sight of the classic

uniqueness result for each equation.

2.3.2 Uniqueness for Limiting Equation

Recall that the limit for the flow equation (2.2) satisfies, out of the stable base locus

set of [S] +KX , the limiting equation:

(ω∞ +
√
−1∂∂̄u∞)n = eu∞Ω, (2.16)

where ω∞ = S − Ric(Ω). We still assume that X is projective with [S] + KX being

nef. (i.e., numerically effective) and big. Once again, the discussion below will be for

the case when S = 0 for simplicity, but it still works for the general situation.

In case when KX is a Kähler class, we can take ω∞ to be a Kähler metric and find
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the limiting equation is just the classic Monge-Ampere equation on a closed Kähler

manifold. As we mentioned before, u∞ will then be smooth on the whole of X and

obviously is just the classic solution for this Monge-Ampere equation. We can easily

see that the converse is also true below, i.e., if u∞ got before is smooth over X, we

can see KX is Kähler.

We know that out of the stable base locus set, ω∞ +
√
−1∂∂̄u∞ will be a Kähler

metric from our estimates. Moreover, since u∞ is smooth on the whole of X by

assumption, we know ω∞ +
√
−1∂∂̄u∞ is a smooth closed real (1, 1)-form over X.

And of course u∞ will satisfy the limiting equation on the whole of X by continuity

which says that the nth-power of this (1, 1)-form is actually a smooth volume form.

Since the eigenvalues of the (1, 1)-form at one point (indeed a lot of them which only

need to be out of the stable base locus set) are all positive, that should also be the

case for any point on X, and so this (1, 1)-form is actually a Kähler metric form. So

we conclude that KX is a positive class.

Combining all these, we know that in the case of KX being nef. and big, positivity

of KX , emptiness of the stable base locus set of KX and smoothness of u∞ over X

would be equivalent to each other.

From now on, we focus on the case when KX is nef. and big but not positive.

Some singularities should be expected for u∞. A major difference from the classic

case is that we can’t have ω∞ be a genuine metric. As a matter of fact, we can have a

nonnegative ω∞ to represent KX
23 which can be seen as a degenerate metric. That’s

why we call (2.16) as degenerate Monge-Ampere equation. Existence and uniqueness

of solution are usually concerned for any kind of PDE. We’ll give some general

discussion for this degenerate Monge-Ampere equation below.

Since we can’t expect smooth solution, it’s important to specify what kind of

singularities is allowed for the solution. From the flow argument in the preceding

sections, we get a solution u∞ for (2.16) which is smooth and really satisfies (2.16) in

the usual sense out of the stable base locus set of KX , and we also have some controls

of the singularities along the stable base locus set. So it seems quite natural to only

consider solutions for (2.16) with all the similar properties as u∞, which takes care of

the existence of such solutions, and try to get the uniqueness of such solutions.

For now, there doesn’t seem to be too many methods that can be applied here

other than the very classic ones using integration. Let’s recall one of them first in

23We need to use the result from algebraic geometry about semi-ampleness of nef. and big KX as
in [Ka2] which is not true for a general class.
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case of KX being positive. 24 If we have two solutions u and v, i.e.,

ωu
n = (ω∞ +

√
−1∂∂̄u)n = euΩ

and also for v. Then we have the following computation:

0 6
∫
X

(u− v)(eu − ev)Ω

=

∫
X

(u− v)(ωu
n − ωv

n)

=

∫
X

(u− v)
√
−1∂∂̄(u− v)(ωu

n−1 + ωn−2
u ωv + · · ·+ ωn−1

v )

= −
∫
X

√
−1∂(u− v) ∧ ∂̄(u− v)(ωu

n−1 + · · ·+ ωv
n−1) 6 0.

We’ll frequently forget the “∧” when the meaning is clear. From above we can see

u = v and that’s the desired uniqueness.

Now in our situation, using the same set-up as above, noticing it is no longer true

that ω∞ > 0 and u and v are smooth, we still have the computation above for the

first few steps since the integrability is available from our estimates. In fact, let’s

say we are integrating over X \ {σ = 0}. But now we have to be more careful when

applying Stokes’ Theorem as follows:∫
X\{σ=0}

(u− v)
√
−1∂∂̄(u− v)(ωu

n−1 + · · ·+ ωv
n−1)

= limε→0

∫
{|σ|>ε}

(u− v)
√
−1∂∂̄(u− v)(ωu

n−1 + · · ·+ ωv
n−1)

= limε→0

∫
{|σ|>ε}

(
d((u− v)

√
−1∂̄(u− v)(ωu

n−1 + · · ·+ ωv
n−1))

−
√
−1∂(u− v) ∧ ∂̄(u− v)(ωu + · · ·+ ωv

n−1)
)

= limε→0

(∫
{|σ|=ε}

(u− v)
√
−1∂̄(u− v)(ωu

n−1 + · · ·+ ωv
n−1)−∫

{|σ|>ε}

√
−1∂(u− v) ∧ ∂̄(u− v)(ωu

n−1 + · · ·+ ωv
n−1)

)
.

In above we have chosen proper sequence of ε to approach 0 so that {|σ| = ε}’s are

smooth by Sard’s Theorem, which justifies the application of Stokes’ Theorem. Notice

that {|σ| = ε} is oriented by inward normal direction (towards {σ = 0}). We also

24Then ω∞ > 0 and the solution of potential is smooth and corresponds to a K-E metric.
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know that for the final step, only the limit of the whole expression in (· · ·) exists,

i.e. it’s not justified to take the limit for each term separately. But we do know the

second term is nonnegative for any ε. So if by any means we can see “the upper limit

of the first term is nonpositive” (A), we can continue the above by “6 0” which would

give u = v over X \ {σ = 0}. This together with a little argument using properties

of plurisuharmonic functions will give u = v on X.

For the statement A, the most natural way of justifying it would be to prove the

following:

limε→0

∫
{|σ|=ε}

(u− v)
√
−1∂̄(u− v)(ωu

n−1 + · · ·+ ωv
n−1) = 0 · · · · · · (∗).

Now we have to recall the estimates required to hold for u (and also v) which are

essentially the ones we can prove for the solution as the limit of the flow:

−Cδ + δlog|σ|2 < u < Cδ, 〈ω, ω∞ +
√
−1∂∂̄u〉 < Cδ|σ|−2δCδ

for all δ ∈ (0, a) where ω is any fixed metric. Here we only consider these two

inequalities out of {σ = 0}. And we have also had a little discussion about the power

of |σ| in the second inequality. From all these and by interpolation inequalities 25, we

have all the controls for the terms appearing in the limit. It’s quite clear that if we can

take the power mentioned above, −2δCδ, to be sufficiently close to 0 for a properly

chosen δ > 0, then we see (∗) is justified. This would be a sufficient condition for

the uniqueness of the solution we are considering. In fact the required conditions for

the solution can be reduced to only for this “δ” which is sufficiently small in (0, a)

and makes the uniqueness argument above work, but from the way we constructed

the limit solution from the flow, it’ll actually have the estimates for all δ’s sufficiently

small (in (0, a)).

As mentioned before, there could be some other help we can get for proving

uniqueness as follows. Let’s point out that simple observation again. The holomorphic

section σ may not be unique, and there is nothing preventing us from using the good

ones, i.e., those sections which make the above uniqueness argument work. If none

of them can do, we might also use more than one of them simultaneously. More

precisely, for two such sections σ1 and σ2, we can have as before for the limit of the

25We can take the constants universal for compact subsets out of {σ = 0} since they are basically
about diameter for a fixed metric which is uniform for our case (see in [GiTr] for example).
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flow:

−Ci + εilog|σi|2 < u∞ < Ci, 〈ω, ω∞ +
√
−1∂∂̄u∞〉 < Ci|σi|−αi

for i = 1, 2 where αi’s are proper positive constants. It should be emphasized that

for i = 1, 2 respectively, we get these two estimates by all the estimates along the

flow. and so they holds out of {σi = 0} respectively 26. But if we want to combine

the estimates for i = 1, 2 together, we should have them on the whole of X in some

sense, otherwise we can only consider out of {σ1 = 0} ∪ {σ2 = 0} which doesn’t look

too good.

In fact for the first inequality, remember u∞ actually makes sense on the whole of

X as a pointwise limit, so we can have over X:

Ci|σ|2εi 6 eu∞ 6 Ci

where the first “6” can’t be replaced by “<” since u∞ can be −∞ apriori. Thus we

have

C(|σ1|2ε1 + |σ2|2ε2) 6 eu∞ 6 C

over X by taking linear combination. Clearly this is better than each one of those

two at least for degeneracy consideration.

Now for the second one, let’s first write them down as

1

〈ω, ω∞ +
√
−1∂∂̄u∞〉

> Ci|σi|αi

out of {σi = 0} for i = 1, 2. Then we see

1

〈ω, ω∞ +
√
−1∂∂̄u∞〉

> C(|σ1|α1 + |σ2|α2), i.e.,

〈ω, ω∞ +
√
−1∂∂̄u∞〉 <

C

|σ1|α1 + |σ2|α2

out of {σ1 = 0}∩{σ2 = 0}. 27. Of course the limiting metric makes sense in this range

by the discussion before. In the case when the divisors {σ1 = 0} and {σ2 = 0} are

of normal crossing, we can use Stokes’ Theorem around {σ1 = 0} ∩ {σ2 = 0} which

is of complex codimension 2. We can have a better chance for the boundary term

26As we can change the constants, using “<” instead of “6” is OK as everything involved is finite
in the ranges considered here.

27For the complement of {σ1 = 0} ∪ {σ2 = 0}, we get by taking linear combination. It’s rather
trivial for the rest part.
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to have limiting contribution 0. If that’s the case, we can restrict our consideration

to this kind of solutions and get uniqueness result 28. Obviously we can have trivial

generalization of this method for even more sections. But clearly in surface case, we

should not expect this to be of any help.

The above consideration is basically to use the local estimates for the limiting

metric to prove (∗), but in fact we still have a little global information from the

estimates for the limiting solution which has already been mentioned before, namely,∫
X\{σ=0}

(ω∞ +
√
−1∂∂̄u∞)n =

∫
X\{σ=0}

ω∞
n,

where obviously we can take
∫
X

for the right hand side. Thus we get:

0 = limε→0

∫
{|σ|>ε}

(
(ω∞ +

√
−1∂∂̄u∞)n − ωn∞

)
= limε→0

∫
{|σ|>ε}

√
−1∂∂̄u∞

(
(ω∞ +

√
−1∂∂̄u∞)n + · · ·+ ω∞

n
)

= limε→0

∫
{|σ|=ε}

√
−1∂̄u∞

(
(ω∞ +

√
−1∂∂̄u∞)n + · · ·+ ω∞

n
)
.

Notice we don’t have this from the local estimates and it should provide us with extra

global information about this limiting solution. But until now, I can’t see how this

can help us in the uniqueness argument.

By the way, in the case of dimension n = 2, our original computation for comparing

two solutions can be reformulated as follows:

0 6
∫
X\{σ=0}

(u− v)(ωu
2 − ωv

2)

=

∫
X\{σ=0}

(u− v)
√
−1∂∂̄(u− v)(ωu + ωv)

=

∫
X\{σ=0}

(
∂((u− v)

√
−1∂̄(u− v)(ωu + ωv))

−
√
−1∂(u− v) ∧ ∂̄(u− v)(ωu + ωv)

)
.

We don’t have the integrability for each term of the last step. But we do know the

second term has positive (maybe +∞) integral. So again if we want to say the whole

last expression is nonpositive, it has only left to consider the other term which can

28Existence is still by construction of u∞ using flow method before.
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be written down as (up to constant 1
2
):

√
−1∂∂̄(u− v)2(ωu + ωv) = ∆ωu(u− v)2 · ωu2 + ∆ωv(u− v)2 · ωv2.

Then the integration over X looks to be 0 if we forget about the singularities. If we

want to treat it rigorously, we still have to use the estimates before.

There is another kind of argument used for proving the uniqueness (for general n)

in classic case which essentially uses the following computations:

∆ωv(u− v)2 = 2(u− v)∆ωv(u− v) + 2|∂(u− v)|2ωv
,

∆ωv(u− v) = 〈ωv,
√
−1∂∂̄(u− v)〉 = 〈ωv, ωu〉 − n > n · ωu

n

ωvn
− n = neu−v − n.

For our situation, only considering the regular part of the solutions, the second one

tells us u − v > 0 =⇒ ∆ωv(u − v) > 0. Thus we can imagine that “the proper

knowledge (i.e. nonpositivity) for the integral of the left hand side of the first equation

over {u > v}”(B) can give that u− v is a nonnegative constant there. Then a little

argument using the continuity of u and v in the regular part can give us that u > v

or u 6 v in the whole regular part. Hence the uniqueness is proved by the integral

equality used before.

It seems what we need is also proper estimates to justify the statement B, but

remember here we are considering the sets in the domain {u > v} which can be quite

complicated because we can only argue in the regular part. And we can not quite say

that we could consider {u > v} and {u 6 v} together since different metrics are used

which breaks the symmetry. This shows some advantage of the expression earlier for

the case n = 2.

Remark 2.3.4. The requirement here for singular solutions can be translated to the

assumption of the solution being inside some proper Sobolev space, W 2,q for some

q > 1 sufficiently large, 29 which by standard Sobolev embedding results would be

contained in some Hölder space, C0,α, for some proper α > 0. This simple observation

would help us later in different context.

Anyway, the main philosophy for this section is trying to say the limit of the

flow is the unique solution. And all the discussion above is trying to see whether

29We can use Calderon-Zygmund estimate to get control for all second order derivatives from
Laplacian estimate at this place.
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the properties it satisfies can guarantee the uniqueness of the solutions with those

properties.

2.4 Big Class and Finite Time Singularity

We can also say something about the case when [S] +KX is merely big. In this case

we should expect the (regular) flow to end in finite time or say there would be finite

time singularity.

First, we can prove that the flow exists in the maximal time interval [0, T ), where

T := sup{t|(e−t − 1)c1(X) + e−t[ω0] is ample}.

Here we have taken S = 0 as for the main part of the previous discussion, but clearly

there is nothing special about it (unless explicitly stated).

If KX is also numerically effective, then T = ∞ which is the case being considered

before. So now we focus on the case T <∞. The proof is basically the same in spirit

and the details have appeared in [TiZh] in the general case of T 6 ∞. So we just

include the difference of the case of T <∞ from the case of T = ∞ in a very concise

way for completeness.

For any small ε > 0, we can choose Tε > 0 such that Tε + ε < T and a real

closed (1, 1) form ψε such that [ψε] = KX and ψε + aε · ω0 > 0, where aε = 1
eTε+ε−1

.

Choose a smooth volume form Ωε such that Ric(Ωε) = −ψε. This Ωε is unique

up to multiplication by a positive constant. Set ωt = ψε + e−t(ω0 − ψε) and ω̃t =

ωt +
√
−1∂∂̄u. Then u can be chosen to satisfy (2.2) with Ω replaced by Ωε just as

(2.6). As before, we shall first show the solution for (2.6) exists for t ∈ [0, Tε]. Observe

that ωt is a Kähler metric for t ∈ [0, Tε] with uniformly bounded geometry. So by

exactly the same argument as before, we get the existence of solution in [0, Tε]. We

can have the same explicit relation between solutions of (2.6) associated to different

ε’s and it would allow us to glue together all these solutions for (2.6) associated to

different ε’s to get a global solution up to the time T . In fact, the potential flow can

be solved in the maximal time interval [0, T ) no matter which Ω is chosen. We can

summarize the above discussion in the following. 30

Proposition 2.4.1. Let X be a closed Kähler manifold. Then the Kähler-Ricci flow

(2.1) (or (2.2)) with initial metric ω0 has a unique smooth solution on [0, T ), where T

30This result below, after simple rescaling, gives an affirmative answer to one of the problems
listed in [FeIlKn].
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is the supremum of t such that (1− e−t)KX + e−t[ω0] is a Kähler class. In particular,

if KX is numerically effective, the solution exists for all time.

Of course, we still have the essential decreasing of ∂u
∂t

+ u and also of the volume

form of ω̃t.

The convergence of the Kähler metrics along the flow can be achieved with just a

little modification. The limiting class [ωT ] won’t be positive from the definition of T

and the fact that T <∞, so we should expect local convergence.

The uniform upper bounds for u and ∂u
∂t

are obtained as before. Now the following

equation

∂

∂t
(
∂u

∂t
+ u− et−T

∂u

∂t
) = ∆ω̃t(

∂u

∂t
+ u− et−T

∂u

∂t
)− n+ 〈ω̃t, ωT 〉

can be used to get degenerate lower bound for u with [ωT ] replacing [ω∞] = KX .

Clearly the lemma used there can also be applied for this class [ωT ]. Notice we can’t

get the lower bound for ∂u
∂t

in t ∈ [0, T ) since the coefficient is now 1− et−T instead of

1. In order to get a similar lower bound for ∂u
∂t

, we can still use the bigness of KX as

Tsuji did in [Tsh1] by studying the equation about volume evolution (2.11) which is

the only equation used to get degenerate lower bounds of u and ∂u
∂t

for T = ∞ case.

The following result tells us how to use the bigness of KX , which is a generalization

of the lemma used before and can be found in [Ka1] and [Tsh2]. The proof is also

essentially contained in [Ka3].

Lemma 2.4.2. Let L be a divisor in a projective manifold X. If L is big, then there is

an effective divisor E such that L− εE is Kähler for ε ∈ (a, b) where 0 6 a < b <∞.

It’s rather similar to the lemma used before. Recall the proof for that one essen-

tially makes use of the openness of the big cone for the projective manifold X which

clearly contains the positive cone. Even if L is not nef., one can still use the openness

of the cone for big divisors to prove the lemma above. However, the constant ε may

not be as close to 0 as one wants. In this case, this result is called Kodaira’s Lemma

as in [Tsh2].

Now in order to get a lower bound for ∂u
∂t

, we will apply the lemma above to

KX = [ω∞] and use the equation (2.11) which was used before exactly for this purpose.

We can get a similar lower bound for ∂u
∂t

with a constant ε which may not be as close

to 0 as we want. Also for the choice of the divisor E, it’s more restrictive for [ω∞]

than for [ωT ], which is very clear from the geometry of the cones and the positions of

[ωT ] and KX = [ω∞]. Of course, we can also have lower bound for u in this way, but

it’s not as good as what we have previously got by using the new equation.
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Remark 2.4.3. Let’s point out that now the lower bounds for u and ∂u
∂t

have dif-

ferent degeneration in general which might cause trouble for further consideration of

this problem. For example, the degeneration of limiting volume at time T might not

correspond to the map constructed later from the class [ωT ] in surface case.

Anyway, this gives enough C0 estimates. Laplacian estimate would be the same

as before except that the section σ (or say the divisor E) used would have to be for

the big class [ω∞], which then would work for [ωT ] and so for the background metric

ωt,ε and lower bound for u, since we’ll also have to use the lower bound for ∂u
∂t

during

the process. Let’s also point out that in the final estimate for the Laplacian, the ε in

the power can still be as close to 0 as possible since it’s from ωT and u.

Combining this with the known volume estimate:

ω̃nt > Cε|σ|2εω0
n

where this ε may not be as close to 0 as possible. we have a uniform bound on ω̃t

in any given compact subset of X \ {σ = 0}. Here [ωT ] is not ample, the constant

Cε may blow up to ∞ as ε tends to 0. The higher order derivative estimates for u

outside {σ = 0} still follow from the standard theory on Monge-Ampere equations or

Calabi’s third order estimates as shown in [Ya] just as before.

We can conclude that u(t, ·) converges in C∞-topology for any compact subset

out of {σ = 0} as t → T in exactly the same way. The limit uT is smooth outside

{σ = 0}. Moreover, we have

(ωT +
√
−1∂∂̄uT )n = euT + ∂u

∂t
|
T Ω, on X \ {σ = 0}, (2.17)

where ∂u
∂t
|T denotes the limit of ∂u

∂t
. The positive limiting current ωT +

√
−1∂∂̄uT is

actually a Kähler metric in X \ {σ = 0} by the above estimates for u. But now we

do not have any reason to expect that ∂u
∂t

would go to 0 locally as t→ T . In fact, we

can still get a degenerate exponential lower bound for ∂u
∂t

just as before. But the e−t

will not give anything special as t→ T <∞.

Remark 2.4.4. E may not be unique. We can choose different E’s to study (2.2).

However, the limit u(T, ·) is unique for this equation. This implies that uT is smooth

outside the intersection of all such E’s. Let’s emphasize this E should be for the class

KX (not [ωT ]) since we need the lower bound for ∂u
∂t

. With a slight abusing of notion,

we still call such an intersection the stable base locus of KX (or [S] +KX in general).

Now let us summarize the above discussion in the following theorem for the case
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of S = 0, i.e., considering canonical class KX . There is no difference for general

situation here.

Theorem 2.4.5. Suppose X is a projective manifold with big canonical bundle KX

and ω0 is a given Kähler metric. Let T be defined before and T < ∞. Then the

Kähler-Ricci flow (2.1) has a unique solution with initial data ω0 on [0, T ) which

converges as t→ T to a positive (1, 1)-current satisfying: this limiting current, which

represents the cohomology class of KX , is a smooth Kähler metric outside the stable

base locus set of KX and the solution of (2.1) converges to this limiting (singular)

metric in the local C∞-topology for this open subset. Moreover, in a suitable sense,

the flow can be extended to the time T and we have the pointwise convergence of

the flow on the level of potential. Though the limiting current may be singular along

the stable base locus of KX , its Lelong number vanishes everywhere and the potential

function for the limiting current lies in any Lp-spaces for p <∞ at this moment.

There are some other differences between the cases T <∞ and T = ∞.

First, for the complex dimension 2 case, consider the canonical class KX . When

T < ∞, if the initial Kähler metric represents a rational class, then the limiting

class [ωT ] is still rational and indeed semi-ample. And (with a proper choice of the

initial metric which will be described below) the map from X to some CPN using

some multiple of KX would be a blowing-down map which crushes some rational

(−1)-curves and the image would be smooth. When T = ∞, the map would crush

(−2)-curves instead and the image would have rational double points. The details for

this situation would appear later in application of our main results.

Now let’s give some details for T <∞ case. Clearly we have

(
KX +

e−T

1− e−T
[ω0]

)
· C = 0

where C is a irreducible complex curve. If [ω0] is a rational Kähler class, then the

coefficient e−T

1−e−T is rational and so is the whole class. This argument clearly works

for other class ([S] +KX).

Remark 2.4.6. For higher dimension, if one just uses the classic characterization of

ampleness in [Kl] as above, then one might only get the coefficient is integral over Q.

As pointed out to me by Zuoliang Hou, in considering KX (S = 0), there is a classic

result in algebraic geometry, Rationality Theorem (as in [KorMo]), which guarantees

the rationality of the class [ωT ]. But we do not have it for a general class ([S] +KX).
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Applying a result in [Ka1], in considering canonical class KX , we then have that

[ωT ] is semi-ample. Some large multiple of this class (holomorphic line bundle) will

have enough holomorphic sections to give a map from X to some CPN . In fact, as

[ωT ]−E is ample for some rational class E, we can see the map could be birational.

In the following, we justify that it’s just a map which blows down some (disjoint)

(−1)-curves. 31

Let’s first find more information about the curve C before. Obviously, KX ·C < 0.

Since KX − εE > 0 (i.e., Kähler) for some ε > 0 and E an integral effective divisor

(curve), 0 < KX · C − εE · C which tells E · C < 0, so C · C < 0 as the intersection

of two difference irreducible curves is always nonnegative. Then by the adjunction

formula KX · C = KC · C − C · C, we have 0 > KC · C = 2gC − 2 where gC > 0

is the algebraic genus of C. So we see gC = 0 which tells that C is a rational curve

(i.e., isomorphic to CP1). Using again the adjunction formula, we see 0 > −2−C ·C.

Since C ·C < 0, so C ·C = −1 and KX ·C = −1. Conversely, by adjunction formula,

we see any (−1)-curve would have −1 intersection with KX . But it may not be true

that all of them have [ωT ] · C = 0. And the number of (−1)-curves in X would have

to be finite by topological consideration of β-number. All of them should be disjoint

from one to the other simply because (any divisor representative of) KX , which is big,

should always contain some positive rational multiple of each of them as KX ·C < 0,

then we can easily contradicts any positive intersection between any two of these by

KX · C < 0.

The union of those C’s which have 0 intersection with [ωT ] would be the stable

base locus set of [ωT ] from the result in [Nak] mentioned before. Since it’ll be the

intersection of finitely many curves E’s such that [ωT ]− 1
M
E > 0 for sufficiently large

enough integer M , we can see [ωT ] − 1
M

∑
[ωT ]·Ci=0Ci is positive for M large enough

as follows.

We just need to see it intersects any irreducible curve D positively. For one of

those C’s, it’s not a problem. For a curve D with [ωT ] · D > 0, clearly, D is not in

one of those E’s which we still denote by E, and ([ωT ] − 1
M
E) ·D > 0. It’s easy to

see ([ωT ]− 1
M

∑
[ωT ]·Ci=0Ci) ·D > ([ωT ]− 1

M
E) ·D since D intersects every irreducible

curve in E positively. Hence it’s done.

So we know the map from large multiple of [ωT ] would indeed be birational out of

those C’s. As [ωT ] ·C = 0, any holomorphic section, s, would have its 0 locus set not

intersecting C or containing C. Thus for any two such sections s1 and s2, s1 = a · s2

for some a ∈ C over C. So we know the map would crush each C to a point. But it’s

31See for example [BaPetVa] for more systematic treatment for complex surfaces.
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possible that different C’s can be crushed to the same point. This already gives very

restricted information about the map and the possible singularities of the image.

Finally, we want to say each C got mapped to a different point which will give

the blowing-down picture claimed before. This basically requires that for each one

of those C’s, there is a holomorphic section whose 0 locus set contains only it (and

no other C’s). At this moment, it looks difficult for me to justify this. But there

is a trivial case that guarantees this which is when we only have one such curve C.

Notice that different (−1)-curve would represent different cohomology class which

trivial comes from the self-intersection −1 and intersection 0 between different ones.

So we can choose the initial metric properly so that [ωT ] · C = 0 for just one such

C. It’s clear that this choice of ω0 would be proper for all the time in the following

sense. Suppose we can continue the flow on the image which is a smooth manifold

with the initial class to be the hyperplane class which corresponds to the class [ωT ].

Then at the possible finite time when singularities occur, we still only encount only

one (−1)-curve. Though this curve may not be (−1)-curve in the original manifold

X, it’s still decided by cohomology information of X. So a proper choice of [ω0] would

always be proper in the above sense.

Another difference for T < ∞ case is, in general, when [ωT ] has a nonnegative

representative 32, we can have the boundedness of the potential u in [0, T ) simply by

maximum principle argument as follows.

Recall the equation:

∂

∂t
(
∂u

∂t
+ u− et−T

∂u

∂t
) = ∆ω̃t(

∂u

∂t
+ u− et−T

∂u

∂t
)− n+ 〈ω̃t, ωT 〉.

The assumption above tells ωT +
√
−1∂∂̄f > 0. Thus we can easily get:

∂

∂t

(∂u
∂t

+ u− et−T
∂u

∂t
+ nt− f

)
> ∆ω̃t

(∂u
∂t

+ u− et−T
∂u

∂t
+ nt− f

)
.

Then maximum principle gives ∂u
∂t

+u−et−T ∂u
∂t

+nt−f > −C. Since t ∈ [0, T ) where

T <∞, this gives u > (et−T − 1)∂u
∂t
− Ct− C > −C.

T < ∞ is essential for the discussion above. But notice we do not have uniform

boundedness for ∂u
∂t

. In fact, if that’s the case, we would automatically have the

continuity of the limit of potential as t→ T .

Later, using pluripotential theory argument, we’ll see that in the case of T = ∞,

32Semi-ampleness of the class will do, but this is more general-looking.
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when the limiting class is semi-ample, we have the boundedness of u and ∂u
∂t

. But

this would not justify the continuity of the limit of u as t→∞, which can be proved

by later argument using pluripotential theory together with some classic results in

several complex variables 33.

Remark 2.4.7. The most natural and interesting problem for the case T < ∞ now

would be how to continue the flow in a proper sense to infinity and get certain mean-

ingful limit. We hope to address this problem in the future.

2.5 Other Set-ups of Continuity Method

Remember that our main goal is to solve for the limiting equation of the Kähler-Ricci

flow:

(ω∞ +
√
−1∂∂̄u)n = euΩ

where ω∞ is a real closed (1, 1)-form with [ω∞] = KX being nef. and big, and Ω is

a smooth volume form on X with Ric(Ω) = −ω∞ 34. X is a projective manifold of

complex dimension n > 2.

We have already found a solution by considering it as the limit for the Kähler-Ricci

flow equation:
∂v

∂t
= log

(ωt +
√
−1∂∂̄v)n

Ω
− v, v(0, ·) = 0

where ωt = ω∞ + e−t(ω0 − ω∞) with some fixed (initial) Kähler metric ω0.

Of course we have ωt → ω∞ as t → ∞. Intuitively, we can think about the flow

method to get such a solution for the degenerate Monge-Ampere equation (just the

limiting equation) as using a family of changing background forms correspondent to

Kähler classes, ωt, to approach the target form ω∞ with the desirable cohomology

information, correspondingly the modified family of metrics ω̃t = ωt +
√
−1∂∂̄u(t, ·))

will approach the desirable (singular) metric, which satisfies some natural equation

and has the right cohomology information, ω∞ +
√
−1∂∂̄u∞. This is just a lengthy

description about continuity method applied in this situation.

We have used a pretty delicate way of modifying the original family of forms,

namely, the modified family forming a smooth evolving flow (the Kähler-Ricci flow).

33The continuity for uT above can be proved similarly in the case when the class [ωT ] is semi-ample
and big.

34This is rather superficial as we can see from the discussion before. In fact, we can consider
[ω∞] = [S] +KX without any modification of the previous argument. This class [S] +KX would be
the class [L] in the main problem which does not have to be KX . But we’ll still consider this case
in the following for simplicity as usual.
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But only for the concern of the limiting equation, it is not necessary to make the

modified family of metrics so nice. Actually if we do things more brutally, it’ll some-

times reduce the technical difficulties as explained below. By all means, we should

expect the solution thus got to be the same one as before which is indeed the case.

2.5.1 Only Perturbing Background Class

In this subsection, we use perturbation methods which only change the left hand side

of the equation. Basically, we modify ω∞ by some linear term to get a Kähler class.

Since KX is nef., the possibly most natural family of changing forms we should

think of would be {ω∞ + εω}ε∈(0,1] where ω is a fixed Kähler metric. Clearly the

perturbed classes [ω∞ + εω]’s are all Kähler. We require ω > 0 for the argument

below at first for simplicity and it’ll be removed later. But we definitely need [ω] to

be a Kähler class. The modified family of metrics would be {ω̃ε = ωε+
√
−1∂∂̄uε}ε∈(0,1]

satisfying

(ωε +
√
−1∂∂̄uε)

n = euεΩ.

The existence and uniqueness of the modified metrics are classic results. No-

tice that each ωε may not be positive, but it can be made positive by adding some
√
−1∂∂̄fε which may also depend on ε, so now we can apply classic results by chang-

ing uε to uε − fε. In spirit, we have the counterpart of global existence in the flow

case for free using this simple-minded perturbation.

Our mission now is to study the limiting situation of uε and also ω̃ε as ε → 0.

All the discussion below is for each uε separately. But we want the estimates to have

some uniformality which also reminds us about the arguments for flow about global

estimates for all time.

By maximum principle, we have uε < C uniformly for all ε ∈ (0, 1]. 35

Now we can localize the estimates in the same spirit as before using the bigness

of KX
36. Let’s digress a little bit here to see the necessity of the bigness assumption

of the (limiting) class.

X is projective, so there is an integral Kähler class. Thus rational Kähler classes

35At the maximal value point,
√
−1∂∂̄uε 6 0 and ωε +

√
−1∂∂̄uε > 0, thus ωε > ω̃ε > 0, and so

ωε
n > ω̃n

ε . Now ε is fixed in this maximum principle argument, so we only have to take maximum
over X. The life is slightly easier.

36We do not want to use the fact that KX would be semi-ample since the argument is supposed
to be true for any other nef. and big class.
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are dense in the positive cone. All the cones will be in the R picture. By a classic

result of algebraic geometry as in [Kl], nef. cone is the closure of positive cone. The

projectivity of X makes sure that the big cone is open which is essentially proved

using similar argument as in [Ka3] by considering exact sequence of sheaves. And it’s

also proved there that if a rational class [L] is nef., then the bigness of L is equivalent

to [L]n > 0 where n is the complex dimension of X.

Let’s also take a look at the case when [L] is irrational. Suppose it’s nef. and

big. Construct classes [L] +
∑

j a
k
jEj to be rational and positive where positive real

numbers akj → 0 as k → ∞, Ej’s are integral and effective, and the summation is

finite. This is can be done by using [L] is nef. and big and noticing the density of

rational positive classes. Now as it’s clear that each [L] +
∑

j a
k
jEj has “no fewer

holomorphic sections” than [L] though the counting is not that direct, and so the

coefficient for the highest order term, which is ([L] +
∑

j a
k
jEj)

n by positivity of the

class, has to be not smaller than some fixed positive number from the bigness of [L].

Clearly the limit of ([L] +
∑

j a
k
jEj)

n is [L]n as k → ∞, hence [L]n > 0. In fact this

direction has also been proved before using the limit of flow we constructed.

Now assume [L] is nef. with [L]n > 0. Because it’s not rational, in order to count

the number of sections, we have to take the integral part of the muitiple of it. Then

if one wants to apply the proof for rational case in [Ka3], we need to use a integral

class H which is positive enough to dominate what is removed from m[L] to make it

integral. It’s definitely the case if we can fix a representation of [L] by a finite linear

combination of effective integral divisors with positive coefficients when taking the

integral part of any m[L].

Anyway, consider a rational class [L], which is of most geometric interests, in the

main equation

(L+
√
−1∂∂̄u)n = euΩ

where L = ω∞ above. Suppose L is nef. for now. If it’s not big, then the integration

of the left hand side would be 0 in any reasonable sense, so is the right hand side for a

solution u. Thus we can expect nothing but −∞ as a solution which is clearly not so

interesting. 37 This shows the naturality of the bigness assumption in an intuitive way.

As before, we assume ω∞ + δ
√
−1∂∂̄log|σ|2 > 0 for δ ∈ (0, a) 38. Now we fix

any δ ∈ (0, a). Basically let’s use the following expression of the original perturbed

37Of course it’s meaningful to study the way of collapsing.
38The norm | · | may well depends on δ. But in fact for the following we only consider for each δ

and will not use two simultaneously at all, so we can just ignore this.
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equation over X \ {σ = 0}:

(ωε + δ
√
−1∂∂̄log|σ|2 +

√
−1∂∂̄(uε − δlog|σ|2))n = euεΩ.

The minimum value point of uε− δlog|σ|2 clearly exists out of {σ = 0} since uε is

smooth. Thus at that point, we have uε > −Cδ since ωε+δ
√
−1∂∂̄log|σ|2 are uniform

as metric for all ε ∈ (0, 1] 39, and so at that point

uε − δlog|σ|2 > −Cδ − δlog|σ|2 > −Cδ.

This tells that over X, we have the degenerated but uniform lower bounds

uε > −Cδ + δlog|σ|2.

Now rewrite the equation over X \ {σ = 0} as follows

(ωε,δ +
√
−1∂∂̄(uε − δlog|σ|2))n = e

uε+log Ω
ωε,δ

n
ωε,δ

n

with ωε,δ = ωε + δ
√
−1∂∂̄log|σ|2.

Using the uniformality of ωε,δ as metric (for fixed δ) and the uniform upper bound

for uε above, the standard computation of Laplacian estimate for this equation above

gives that over X \ {σ = 0} 40:

eCδ(uε−δlog|σ|2)∆ω̃ε(e
−Cδ(uε−δlog|σ|2)〈ωε,δ, ω̃ε〉) > −Cδ − Cδ〈ωε,δ, ω̃ε〉+ Cδ〈ωε,δ, ω̃ε〉

n
n−1 .

Obviously, it still makes sense to talk about the maximal value point of the term,

e−Cδ(uε−δlog|σ|2)〈ωε,δ, ω̃ε〉 (for each ε), and it is actually out of {σ = 0}. Then at that

point, we have 〈ωε,δ, ω̃ε〉 < Cδ, and so

e−Cδ(uε−δlog|σ|2)〈ωε,δ, ω̃ε〉 < Cδe
−Cδ(uε−δlog|σ|2) < Cδ

where we have used the estimate uε − δlog|σ|2 > −Cδ for the last step. 41 We can

39The assumption ω > 0 makes life easier here. But in fact, as we only need to consider ε
sufficiently small, this assumption is not that important.

40See Appendix for more details about the computation.
41One might want to use the lower estimate for uε with different δ’s to get something more

interesting as in the discussion for the flow. But that won’t be the case here as this is just an
estimate for one point. The good part is that we do NOT have to use different δ’s to carry through
the argument in comparison to the flow case.
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now have e−Cδ(uε−δlog|σ|2)〈ωε,δ, ω̃ε〉 < Cδ for the whole of X, which can be rewritten as

〈ωε,δ, ω̃ε〉 < Cδe
Cδ(uε−δlog|σ|2) < Cδ|σ|−2δCδ .

We can use a fixed metric for ωε,δ since it is uniform as metric. And if we check the

meaning for the power of |σ| in the estimate above, it should be almost the same

as the one for the corresponding estimate for the flow case, namely, representing the

degeneracy of KX as Kähler class.

Unitl now we have got the uniform volume lower bound and Laplacian upper

bound for all ω̃ε with ε ∈ (0, 1] for any compact subset out of {σ = 0}. Then we can

say all the higher order derivative estimates are available from standard arguments.

By Ascoli-Arzela’s Theorem, we can then find a sequence of ε’s such that the

correspondent ω̃ε converges in C∞-topology locally out of {σ = 0} 42. We can already

see that in the regular part, the limit would satisfy the equation for ε = 0, i.e., the

main equation we want to study.

Since all the properties, including the regular part on X and the global integral

equality except for the global “plurisubharmonicity”43, of the limiting solution coming

from the flow method, can be established for this new limit by basically the same

discussion as before because the estimates are the same, we’d better justify that they

are in fact the same solution. Otherwise the uniqueness of such solutions discussed

before will be totally out of luck. Fortunately, they are indeed the same from easy

maximum principle argument as follows.

At the first look, the new limit might even depend on the sequence chosen for ε,

but in fact it won’t as we can have the convergence for ε → 0 which would follow

from the monotonicity of uε proved below. Actually we are proving something a little

more general. Consider two smooth closed (1, 1)-forms ω1 > ω2, and suppose we have

smooth functions u1, u2 satisfying:

(ω1 +
√
−1∂∂̄u1)

n = eu1Ω, (ω2 +
√
−1∂∂̄u2)

n = eu2Ω

with ω1 +
√
−1∂∂̄u1 and ω2 +

√
−1∂∂̄u2 being metrics. Take quotient to get:(

ω2 +
√
−1∂∂̄u2 + (ω1 − ω2) +

√
−1∂∂̄(u1 − u2)

)n
(ω2 +

√
−1∂∂̄u2)n

= eu1−u2 .

By maximum principle, considering the minimal value point of u1 − u2 and noticing

42Just as before, a diagonalization argument is involved.
43It means plurisubharmonic with respect to ω∞.
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ω1 − ω2 > 0, we conclude u1 > u2. This is the desired monotonicity which gives the

decreasing convergence of uε to the limit as ε decreasing to 0 since ω > 0 and will

justify the local convergence in C∞-topology as ε→ 0.

At this point, let’s digress a little to give similar consideration about the depen-

dence of uε on ε which has very much the same flavor as the formal discussion for the

flow.

Formally, take the derivative with respect to ε for the perturbed family of equa-

tions, log (ωε+
√
−1∂∂̄uε)n

Ω
= uε

44 to get:

∆ω̃ε(
∂uε
∂ε

) + 〈ω̃ε, ω〉 =
∂uε
∂ε

.

Then formally by maximum principle, we can see ∂uε

∂ε
> 0 which gives the monotonic-

ity.

But just as in the flow case, we have to justify all these. Obviously, it’ll be enough

to have the smoothness of uε with respect to ε. But it doesn’t look so trivial to me

for now. 45

In fact by this monotonicity and the global integral equality discussed before, we

can easily see the new limit won’t depend on the choice of the perturbing Kähler metric

ω. We can also get the global plurisuharmonicity of this limit by considering the

limit globally from a pointwise decreasing convergent sequence of plurisubharmonic

functions.

There is still a choice for Ω which should also affect the form of ω∞. It’s easy to

see this will not affect the solution in the level of metric since the change of uε is quite

explicit and the equation is indeed the same.

Now there is a minor issue about the perturbation ω. In fact we only need it to

be a smooth real closed (1, 1)-form representing a Kähler class. We still have the

approximations uε and ω̃ε as before. For the estimates, we only have to see that for

44It’s just a handy reformulation of (ωε +
√
−1∂∂̄uε)n = euεΩ for taking derivative.

45Over a closed manifold X, for the equation (ω+
√
−1∂∂̄uδ)n = Fδω

n with ω being a fixed Kähler
metric and Fδ being a smooth positive function which is also smooth with respect to δ, then classic
theory from functional analysis would tell us that uδ would be smooth with respect to δ after being
properly normalized. The main idea is to consider the map from uδ to Fδ which is between function
spaces. But for our case above, ω is changing, so we have to consider a family of such maps between
function spaces. Fixed point theorem is involved in this context and limited regularity on parameter
ε can be guaranteed as I see it now. This problem is in the same spirit as what occurs in the flow
case.
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fixed δ, we still have uniform metrics ωε + δ
√
−1∂∂̄log|σ|2 for sufficiently small ε > 0.

The only difference could be the monotonicity for uε with respect to ε since now

αω may not be positive, and so we do not see the monotonous convergence of uε as

ε → 0 from the above argument. But we still have that the sequence limit won’t

depend on the choice of sequence because we can still use the monotonicity result

above to compare uε with vε correspondent to some big positive perturbation (very

positive “ω”) by noticing that the monotonicity argument before still works. Again

by the global integral equality, we see the limits are the same out of the stable base

locus set.

But if we feel satisfied about the discussion in the previous paragragh, then we

have trouble to get the global plurisubharmonicity for the limit with perturbation not

being nonnegative. And in fact it would be hard to define the limit globally on X

like this. Of course since we know that we can extend the limit from the regular part

to the whole of X when using nonnegative perturbation and the extension is clearly

unique if we require plurisubharmonicity, we should feel comfortable about the global

meaning of the limit as a plurisubharmonic function. However, this is clearly not so

satisfying. Actually we can still directly get all the information as before when ω is

not necessarily positive as follows.

Take ω1 = ω +
√
−1∂∂̄f > 0 for some smooth function f 6 0 over X. Then we

can rewrite the perturbed equations as

(ω∞ + εω1 +
√
−1∂∂̄(uε − εf))n = euεΩ

where uε is clearly the solution for the original perturbed equation. Now consider

ε > δ > 0 and take quotient of the two correspondent equations to get:

(
ω∞ + δω1 +

√
−1∂∂̄(uδ − δf) + (ε− δ)ω1 +

√
−1∂∂̄(uε − uδ − (ε− δ)f)

)n
= euε−uδ(ω∞ + δω1 +

√
−1∂∂̄(uδ − δf))n.

By maximum principle, considering the minimal value point of uε− uδ − (ε− δ)f , we

get that at that point, uε− uδ > 0, and so uε− uδ − (ε− δ)f > 0. The last inequality

would be true over X. So we arrive at

uε − εf > uδ − δf.

This is enough for concluding the convergence of uε as ε→ 0. Moreover, this mono-

tonicity is obviously enough to conclude the plurisubharmonicity of the limit by the
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usual argument.

Finally let’s show the limit is actually just the same as what is previously got

from the flow. Since we have already seen these two limits will not depend on all the

choices respectively, the favorable situation can be chosen to compare them: 46

(ωt +
√
−1∂∂̄ut)

n = e
∂ut
∂t

+utΩ, ωt = ω∞ + e−t(ω0 − ω∞),

(ωε +
√
−1∂∂̄vε)

n = evεΩ, ωε = ω∞ + εω.

Choose proper Kähler metrics ω0 and ω such that ωt = ωε for proper sequences of

t’s and ε’s. The following t and ε will be the correspondent ones from the sequences.

And we also take proper Ω such that ∂ut

∂t
6 0 which we actually used before for the

clean convergence of potential flow.

Still by taking quotient, we have(
ωt +

√
−1∂∂̄vε +

√
−1∂∂̄(ut − vε)

)n
(ωε +

√
−1∂∂̄vε)n

= e
∂ut
∂t

+ut−vε 6 eut−vε .

By maximum principle, we can get ut > vε. Thus we have the one-sided relation

for the limits, which together with the global integral equality will tell us that they

are actually the same for the regular part. Hence they are the same globally by

plurisuharmonicity.

Remark 2.5.1. In fact, the solution(s) for (ω∞ +
√
−1∂∂̄u)n = euΩ we get by these

two methods above can both be approximated by sequences of nice decreasing plurisub-

harmonic functions and that alone can make sure we are getting the same limiting

solution. We’ll discuss this point of view later in this Chapter by applying the theory

about Monge-Ampere operator on unbounded functions.

Actually there is another kind of perturbation of KX which is also very natural,

namely, KX − εE is Kähler for some effective divisor E and ε ∈ (0, a). So it is also

fairly natural to consider the following family of equations:

(ω∞ − εE +
√
−1∂∂̄uε)

n = euεΩ

where by abusing of notation, E is used to stand for the curvature form of the line

bundle E with some fixed hermitian metric. ω∞ − εE may not be positive as form,

46Hopefully the meaning of the lower indices below is self-evident.
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but since it is a Kähler class for each ε ∈ (0, a), we still have a smooth solution uε for

each of these equations. As usual, we’ll then derive necessary estimates for all uε’s in

order to take limit. The discussion is for each of them, just need to make sure the

bounds we get are uniform for all ε’s.

Still by maximum principle, we get uε 6 C uniformly for all ε’s. 47

Now let’s take ωδ = ω∞+δ
√
−1∂∂̄log|σ′|2 > 0 for a nontrivial holomorphic section

σ of some proper divisor E ′ which satisfies KX − δE ′ being Kähler for some δ > 0.

E ′ doesn’t have to be E. | · | is some properly chosen hermitian metric for the line

bundle E ′. By considering ε small enough, we still have ωδ − εE uniform as (Kähler)

metric. Here you still either consider
√
−1∂∂̄log|σ′|2 as the curvature form for this

hermitian metric on E ′ or consider everything out of {σ′ = 0}. But we do need to

realize that ωδ is a smooth Kähler metric over X. The equation can now be rewritten

as the following

(ωδ − εE +
√
−1∂∂̄(uε − δlog|σ′|2))n = euεΩ

in X \ {σ′ = 0}.
By considering the minimal value point of uε − δlog|σ′|2 which clearly exists out

of {σ′ = 0} and noticing the uniform positivity of ωδ − εE, we get, at that point,

uε > Cδ, and so uε − δlog|σ′|2 > C globally. A fixed δ would be enough for our

consideration, so we choose to ignore the dependence of the constants on δ.

Now it is quite routine to see the classic Laplacian estimate can be applied for the

equation in the above form to give us the bound below:

〈ω, ω∞ − εE +
√
−1∂∂̄uε〉 6 C|σ′|−α

where ω is some fixed metric and α is some positive constant.

A little note would be that the inequality used to get this estimate is actually

over X \ {σ′ = 0} and we need to make sure that when applying maximum principle,

the point considered actually exists in this range which is obviously the case just as

before.

Then we run the usual machinery to get all the higher derivative estimates locally

out of {σ′ = 0} and take a sequence of ε tending to 0 to obtain a limit in the local

sense. Call this limit u0 which might depend on a lot of things apriori. And of course

(ω∞ +
√
−1∂∂̄u0)

n = eu0Ω out of {σ′ = 0} 48.

47Noticing at that point we have ω∞ − εE > ω∞ − εE +
√
−1∂∂̄uε > 0, so there is no need to

assume the positivity of the background form, ω∞ − εE.
48Or say the stable base locus set which is trivial to conclude just as before since we can combine

the information got by using any σ′ for this family of equations.
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From all the estimates above, it is easy to see eu0Ω has the right integral over X,

namely
∫
X
ω∞

n, just as in all the previous cases.

In fact by comparing these two perturbations in this subsection:

(ω∞ + εω +
√
−1∂∂̄uε)

n = euεΩ, (ω∞ − εE +
√
−1∂∂̄vε)

n = evεΩ,

we can have

(ω∞ − εE +
√
−1∂∂̄vε + ε(ω + E) +

√
−1∂∂̄(uε − vε))

n

= euε−vε(ω∞ − εE +
√
−1∂∂̄vε)

n.

If we use ω positive enough in the first perturbation, which will not affect the

limit, to make sure ω + E > 0, then by maximum principle, we can have uε > vε

which gives the one-sided relation between the limits. Hence the limits are the same

in sight of the integral equality.

But in fact, for the second perturbation, we can also have the convergence as

ε → 0 just as for the previous perturbation. The situation here is of course very

different. But the argument is still quite easy as follows.

This family of equations can be rewritten in the form:

(ω∞ + ε
√
−1∂∂̄log‖σ‖2 +

√
−1∂∂̄uε)

n = euεΩ

where we choose the proper hermitian metric ‖ · ‖ so that E = −
√
−1∂∂̄log‖σ‖2

where the σ is a nontrivial holomorphic section for E in the usual sense. We are now

only considering in X \ {σ = 0}. As we can see, this can be done for any choice of

σ for this E but not for all E ′ before, so we can’t have the result from the following

discussion for the domain out of the stable base locus set.

Now for ε > λ > 0, we have:

(ω∞ + λ
√
−1∂∂̄log‖σ‖2 +

√
−1∂∂̄uλ +

√
−1∂∂̄((ε− λ)log‖σ‖2 + uε − uλ))

n

= euε−uλ(ω∞ + λ
√
−1∂∂̄log‖σ‖2 +

√
−1∂∂̄uλ)

n.

The maximal value point of (ε−λ)log‖σ‖2+uε−uλ clearly exists in X\{σ = 0}. Let’s

point out that it is very important to have the same σ in order to draw this conclusion,

and so it is difficult to use similar argument to compare the limits of perturbed families
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with E’s not linearly equivalent to each other (i.e., without common σ). Then at that

point, we can have uε− uλ 6 0. That is also just (ε−λ)log‖σ‖2 + uε− uλ 6 C(ε−λ)

at that point. Hence it is true globally over X. Actually let’s take this constant C to

be 0 which can be achieved by rescaling the norm ‖ · ‖. So finally we have

uε + εlog‖σ‖2 6 uλ + λlog‖σ‖2.

Obviously, this would be enough to conclude the smooth convergence of uε locally

out of {σ = 0} 49. But notice the convergence we can get here for uε is definitely out

of {σ = 0} or say out of the intersection of all σ’s for E. So if we want to say anything

about the solution globally on X, for example, plurisubharmonic with respect to ω∞,

we still need to use the first kind of perturbation in this subsection.

Also unlike the situation for the first kind of perturbation where the conver-

gence is essentially a decreasing one 50, here we have an increasing convergence of

uε + εlog‖σ‖2 as ε → 0. Using a little argument in classic pluripotential theory,

those functions are plurisubharmonic with respect to ω∞ on X with the values along

{σ = 0} being −∞ which is quite compatible with the expression, and the limiting

solution is just (supε∈(0,a){uε + εlog‖σ‖2})∗ where the upper “∗” means taking upper

semi-continuization since this is the only function plurisubharmonic with respect to

ω∞ which has the desired values out of {σ = 0}.

In fact, we can apply maximum principle in a similar fashion as above for the

first kind of perturbation when the Kähler class ω used is integral (or rational). Let’s

sketch it below.

Since the class [ω] is integral and positive, we can have ω =
√
−1∂∂̄log|σ|2 where

σ is a nontrivial holomorphic section of the line bundle corresponding to [ω] and | · | is

a proper chosen hermitian metric. Of course one can make sure |σ| ∈ [0, 1] by making

proper choices. Now over X \ {σ = 0}, the perturbed equation can be rewritten as:

(ω∞ +
√
−1∂∂̄(uε − εlog|σ|2))n = euεΩ.

Consider ε > δ > 0 and take the quotient of the two equations to get the following

49Get first for uε + εlog‖σ‖2 using the sequence convergence and monotonicity, then conclude for
uε itself since the other part is that explicit.

50This is also the reason why we can get the global information for the limiting solution.
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equation:

(
ω∞ +

√
−1∂∂̄(uδ − δlog|σ|2) +

√
−1∂∂̄(uε − uδ − (ε− δ)log|σ|2)

)n
= euε−uδ

(
ω∞ +

√
−1∂∂̄(uδ − δlog|σ|2)

)n
.

By maximum principle, considering the minimal value point of uε−uδ− (ε−δ)log|σ|2

which clearly exists in X \ {σ = 0}, we see at that point, uε − uδ > 0, and so

uε − uδ − (ε− δ)log|σ|2 > 0. Thus we conclude

uε − εlog|σ|2 > uδ − δlog|σ|2,

for ε > δ > 0. Clearly this would provide enough information for the convergence of

uε as ε→ 0 by noticing that we can have a lot of sections σ with empty intersection

for their 0 locus sets since the class [ω] is Kähler (ample).

But there is a slightly difference from the second kind of perturbation in this

subsection. Basically, we don’t have uε− εlog|σ|2 above as a global function plurisub-

harmonic with respect to ω∞ over X. Here we can’t extend the function to {σ = 0}
as before, which is essentially caused by the − sign (i.e., the residue is not positive).

Finally let’s use a little remark to end this part.

Remark 2.5.2. As we can see, the perturbation method is quite robust. One just

have to make sure that the forms we used to perturb are small in a uniform way

so that they can be dominated by something like ω∞ + δ
√
−1∂∂̄log|σ|2. Actually an

important requirement is that we should guarantee the existence of the solutions for

the perturbed equations, in other words, the background classes have to Kähler after

being perturbed in order to apply classic results.

2.5.2 Another Natural Perturbation

We are still considering the degenerate Monge-Ampere equation

(ω∞ +
√
−1∂∂̄u)n = euΩ

with [ω∞] = KX nef. and big for X projective. As before, the discussion can be

applied to a general class [S] +KX .

Recall in the previous discussion, a Kähler class [ω] or some proper divisor E,

is used to perturb the left hand side of the equation and make it fit in the classic
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situation where we have a smooth solution. But using the divisor E before, the

following consideration is also quite natural.

Let’s rewrite the equation as

(ω∞ + ε∂∂̄log|σ|2 +
√
−1∂∂̄(u− εlog|σ|2))n = eu−εlog|σ|

2|σ|2εΩ

with σ being a nontrivial holomorphic section of line bundle E and | · | being a fixed

bundle metric for all ε > 0. Strictly speaking, this equation is considered out of

{σ = 0}.
Now use the curvature form E instead of −

√
−1∂∂̄log|σ|2 in the background form

and consider u−εlog|σ|2 as the unknown, uε. We get the following family of equations:

(ωε +
√
−1∂∂̄uε)

n = euε |σ|2εΩ

where ωε = ω∞ − εE.

The notations are very similar to those for the last section, but clearly we are in a

very different situation. Namely, we have also changed the right hand side and there

is even a degenerate term |σ|ε there. Now the family does depend on the choice of

the section σ and the norm | · | which means we can not combine the properties we

might get for all different σ’s as before.

But as we can see from how this family of equations comes up, unlike the per-

turbations in the previous section, it is more like a way of rewriting the degenerate

Monge-Ampere equation itself. And so we may expect this perturbation would pro-

vide more delicate information about the possible solution.

In fact, these equations have already been considered by Yau a long time ago in

[Ya]. The result there tells that we do have a unique solution uε for each of them.51

Formally, we can imagine uε = u − εlog|σ|2. So it looks very much likely to be true

that that we’ll have a convergence of these uε to a solution of the equation started

with.

For this family of equations we are considering, there are two tendences of changes

as ε→ 0 which we’ll describe below.

One is that the background form, ωε, becomes worse with the limit representing

something degenerate as a Kähler class;

51Notice that we have also fixed the hermitian metric | · |. So the background form ωε may not be
positive for all ε’s. But that won’t affect the existence of the solutions for each perturbed equation
from the same reasoning as before. More importantly, this will make the perturbation under control
just as mentioned in the final remark of the previous subsection.
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The other one is that the degenerate term for the right hand side, |σ|2ε, becomes

nicer and finally there would be no degeneration when ε = 0.

Let’s see that the second tendence is really good for us first. This is indeed just

Yau’s original argument which is actually uniform for ε → 0 with fixed background

metric 52. In fact this is the main motivation for the discussion in this subsection.

Though finally it turns out to be not so necessary for our purpose, we still sketch it

a little below.

As usual, we just have to get some uniform estimates for the solutions of the

equations

(ω +
√
−1∂∂̄vε)

n = evε |σ|2εΩ

where ω is now a fixed Kähler metric. From Yau’s result, we can solve each of

these equations for ε > 0 53 by considering the perturbation (|σ|2 + δ)ε by a positive

constant δ for the degenerated term on the right hand side and searching for the limit

of solutions as δ → 0.

More precisely, for each fixed positive ε, we can get uniform bounds for C0-norm

and Laplacian. From these one can get locally uniform bounds for higher order

derivatives out of {σ = 0}. Thus we have a limit vε which satisfies the original

equation. The uniqueness of such a solution can be proved in the way in which we

try to prove the uniqueness of our (singular) solution before (i.e., using integration by

part). In this case, we have better estimates, so there is no problem to carry through

the argument.

Now we just have to check all these estimates can be made uniform for all ε ∈ [0, 1]

in order to see that the limit as ε → 0 of vε’s exists and in fact is just the classic

(smooth) solution for the equation with ε = 0.

In Yau’s argument, there seems to be one step which might break the uniformality

of the estimates for all such ε’s, but in fact that step is quite redundant because the

place where it seems to be used can be dodged by noticing there is an unnecessary

shifting of power in another step. More details can be found in Appendix.

Now let’s come back to the family of equations:

(ωε +
√
−1∂∂̄uε)

n = euε |σ|2εΩ

52In the case of fixed background form representing a Kähler class, using some smooth function,
we can change it to a Kähler metric without essential affecting the feature of the equation itself.

53For the case ε = 0, the discussion is easier, but it can still be contained in the following discussion.
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for ε ∈ (0, a).

From the sketch above, we know the solution for each equation above does exist.

In fact uε is C1,α for any α ∈ [0, 1), as we can have bounded C0-norm and Laplacian,

and smooth out of {σ = 0} where ωε +
√
−1∂∂̄uε is really a Kähler metric in that

range. We denote these metrics by ω̃ε as usual since now they are the metrics which

we want to prove the convergence. Also we have that the integration of ω̃nε over the

regular part is equal to
∫
X
ωε

n by the estimates descrided above.

Consider the maximal value point for uε + εlog|σ|2 (for each ε) which does exist

and should be out of {σ = 0} (and so is a regular point). Rewrite the equation as:

(ω∞ +
√
−1∂∂̄(uε + εlog|σ|2))n = euε+εlog|σ|2Ω

out of {σ = 0} and we can see at that point,

uε + εlog|σ|2 6 log(maxx∈X{
ω∞

n

Ω
}) < C.

So uε + εlog|σ|2 < C uniformly for all ε ∈ (0, a). That is just

uε < C − εlog|σ|2 < C − log|σ|2

as |σ| ∈ [0, C]. Here the second < just to make the upper bound looks more uniform.

And in fact it is still the first < that is used for the Laplacian estimate later. This is

the uniform upper bound for uε locally out of {σ = 0}, a degenerate one just as what

we have encountered several times before, but this time it’s from above.

Now we use the similar trick to localize the estimates out of {σ = 0}. But notice

here we’d better use the same nontrivial holomorphic section σ because our known

smooth regular part of uε is also out of {σ = 0} and smoothness is important in

applying maximum principle.

Set ωε,δ = ωε + δ
√
−1∂∂̄log‖σ‖2 for fixed δ ∈ (0, a) and some proper hermitian

metric ‖ · ‖ for the line bundle E such that ω∞ + δ
√
−1∂∂̄log‖σ‖2 > 0 where the

second term is considered to be the corresponding curvature form over X or only

considered to be over X \ {σ = 0} when using this expression as usual. We still need

that ωε,δ will be uniform as metric for all ε sufficiently small 54. Now one can rewrite

54The “suffciently small” here may mean much smaller than a − δ since we need the form to be
positive rather than representing a Kähler class. But clearly this will still be enough since we are
considering the limit as ε→ 0 anyway.
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the equations over X \ {σ = 0} as follows:

(ωε,δ +
√
−1∂∂̄(uε − δlog‖σ‖2))n = euε−δlog‖σ‖2|σ|2(ε+δ)Ω′,

where Ω′ may be a smooth volume form different from Ω where the difference comes

from the possible difference between the hermitian metrics | · | and ‖ · ‖.

As usual, we consider the minimal value point of uε−δlog‖σ‖2 which clearly exists

out of {σ = 0}. At that point, we have euε−δlog‖σ‖2|σ|2(ε+δ)Ω′ > ωε,δ
n, which gives

euε−δlog‖σ‖2 > Cδ|σ|−2(ε+δ) > Cδ

at that point, and so is true over the whole of X. Hence we have uε > −Cδ+δlog‖σ‖2.

This is the uniform lower bound for uε locally out of {σ = 0} which is again a

degenerate one.

Now using the computation of Laplacian estimate for the following equation

(ωε,δ +
√
−1∂∂̄(uε − δlog‖σ‖2))n = euε |σ|2εΩ,

we have the following inequality over X \ {σ = 0}:

eCδ(uε−δlog‖σ‖2)∆ω̃ε(e
−Cδ(uε−δlog‖σ‖2)〈ωε,δ, ω̃ε〉)

> −Cδ − Cδ〈ωε,δ, ω̃ε〉+ Cδ〈ωε,δ, ω̃ε〉
n

n−1 .

Let’s consider the maximal value point of e−Cδ(uε−δlog‖σ‖2)〈ωε,δ, ω̃ε〉. Here we can also

see it exists out of {σ = 0} since we know from Yau’s argument that 〈ωε,δ, ω̃ε〉 < Cε,δ

over X\{σ = 0} 55 and uε bounded for each ε. Hence the expression we are considering

will go to 0 uniformly when approaching {σ = 0} for each fixed ε. Then at that point,

we have: 〈ωε,δ, ω̃ε〉 < Cδ, which gives,

e−Cδ(uε−δlog‖σ‖2)〈ωε,δ, ω̃ε〉 < Cδe
−Cδ(uε−δlog‖σ‖2).

Using the uniform degenerate lower bound for uε got above, we conclude

e−Cδ(uε−δlog‖σ‖2)〈ωε,δ, ω̃ε〉 < Cδ

55This estimate itself is not good enough for us since it clearly depends on ε. An interesting point
here might be that we use an estimate depending on ε to justify an argument which would give an
estimate uniform for all such ε’s.
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at that point and hence over X. Furthermore, we arrive at

〈ωε,δ, ω̃ε〉 < Cδe
Cδ(uε−δlog‖σ‖2) < Cδe

Cδ(C−(ε+δ)log|σ|2) < Cδ|σ|−2Cδ(ε+δ)

by the uniform degenerate upper bound for uε.

Notice here that we are considering the situation when ε → 0, so the Laplacian

estimate would essentially be like

〈ω, ω̃ε〉 < Cδ|σ|−2δCδ

for any fixed metric ω. Now we have got the uniformality of ω̃ε as metric locally out

of {σ = 0}. Thus we can proceed in the standard way to get uniform estimates for

higher order derivatives locally out of {σ = 0}.

Now by Ascoli-Arzela’s Theorem, we can have a sequence limit, u0, which satisfies

(ω∞ +
√
−1∂∂̄u0)

n = eu0Ω

in X \{σ = 0} and also has some estimates for it from the controls above. Let’s point

out that by the above discussion, the limit only exists out of {σ = 0}.
Essentially using uε + εlog|σ|2 < C and by similar argument as before, we have

the integral equality∫
X\{σ=0}

(ω∞ +
√
−1∂∂̄u0)

n =

∫
X

eu0Ω =

∫
X

ω∞
n.

And this integral equality will be used below to prove that this sequence limit is the

same as the limiting solutions from other methods. Hence we also get to know the

limit here won’t depend on the sequence we choose.

In fact, let’s consider:

(ω∞ +
√
−1∂∂̄(uε + εlog|σ|2))n = euε+εlog|σ|2Ω

over X \ {σ = 0}, and

(ω∞ + εω +
√
−1∂∂̄vε)

n = evεΩ

where ω > 0 and represents a Kähler class.
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Take quotient to get:

(ω∞ + εω +
√
−1∂∂̄vε − εω +

√
−1∂∂̄(uε + εlog|σ|2 − vε))

n

(ω∞ + εω +
√
−1∂∂̄vε)n

= euε+εlog|σ|2−vε .

Consider the maximal value point of uε + εlog|σ|2 − vε which obviously exists out of

{σ = 0}. Clearly at that point,

uε + εlog|σ|2 − vε 6 0,

and so this is for the whole of X. And we know this is true for any ε. Now consider

any point out of {σ = 0} and let ε goes to 0 in the sequence for the sequence limit of

uε. We see u0 6 v0
56 out of {σ = 0}. Then by the integral equality which they both

satisfy, we see they are actually the same over X \ {σ = 0}. Hence they will be the

same if we require plurisubharmonicity over X.

It is also possible to directly see that the sequence limit is independent on the

choice of the sequence just by getting some kind of monotonous convergence result.

For ε > λ > 0 small enough, over X \ {σ = 0}, we have:

(ω∞ +
√
−1∂∂̄(uε + εlog|σ|2))n = euε+εlog|σ|2Ω,

(ω∞ +
√
−1∂∂̄(uλ + λlog|σ|2))n = euλ+λlog|σ|2Ω.

Take quotient to get:

(ω∞ +
√
−1∂∂̄(uλ + λlog|σ|2) +

√
−1∂∂̄(uε − uλ + (ε− λ)log|σ|2))n

= euε−uλ+(ε−λ)log|σ|2(ω∞ +
√
−1∂∂̄(uλ + λlog|σ|2))n.

Considering the maximal value point of uε − uλ + (ε − λ)log|σ|2 which should exist

out of {σ = 0}, by maximum principle, we have

uε + εlog|σ|2 6 uλ + λlog|σ|2

over X \ {σ = 0}. And this would be enough to conclude the convergence as ε→ 0.

The convergence is again an increasing one as ε → 0 as in the second perturbation

considered in the previous subsection. So the same discussion there gives us the same

56They are correspondent sequence limits as ε→ 0. Of course for vε, it’s not just a sequence limit
as proved before.
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form of the limiting solution as (supε∈(0,a){uε + εlog|σ|2})∗.

It would be interesting to consider the relation of this perturbation with the second

perturbation considered in the previous subsection. Now we consider the following

two equations over X \ {σ = 0} with ε > λ > 0: 57

(ω∞ + λ
√
−1∂∂̄log|σ|2 +

√
−1∂∂̄uλ)

n = euλ|σ|2λΩ,

(ω∞ + ε
√
−1∂∂̄log|σ|2 +

√
−1∂∂̄vε)

n = evεΩ.

Again we can take the quotient to get:

(ω∞ + ε
√
−1∂∂̄log|σ|2 +

√
−1∂∂̄vε +

√
−1∂∂̄(uλ − vε + (λ− ε)log|σ|2))n

= euλ−vε+λlog|σ|2(ω∞ + ε
√
−1∂∂̄log|σ|2 +

√
−1∂∂̄vε)

n.

Clearly the minimal value point of uλ−vε+(λ−ε)log|σ|2 exists out of {σ = 0}. Then

at that point, uλ − vε + λlog|σ|2 > 0 which is also

uλ − vε + λlog|σ|2 − εlog|σ|2 > 0

at that point by assuming without loss of generality that |σ| ∈ [0, 1]. So we have

uλ + λlog|σ|2 > vε + εlog|σ|2 globally (even makes sense on {σ = 0}) for ε > λ > 0.

But it is quite easy to see that we don’t have the relation in the other direction, i.e.,

we do not have vε + εlog|σ|2 > uλ + λlog|σ|2 for λ > ε > 0, at least from similar

consideration.

Combining the result from before, we know both sides increasingly converge to

the limiting solution, but in some sense the convergence for the term discussed in this

subsection is better than the one before in sight of the inequality above.

Remark 2.5.3. We found out later that other people had already used this same

method to get the (same) singular metric ( as in [Su]). Our contribution here would

be the uniqueness result of the metrics coming from this method and the further clar-

ification of the convergence.

57Here take both constants positive in order to guarantee the existence, regularity and boundedness
for the solutions of the perturbed equations and take different constants to make sure the extremal
value point discussed below appears in the regular part.
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2.5.3 Big Class

Those perturbation methods discussed above can be applied for nef. and big class

[L] (or say [S] +KX). The basic philosophy behind the argument is that we can use

Kähler classes to approach [L] and the bigness of this class would provide some degen-

erate bounds which come from involving some singular-looking terms and applying

maximum principle 58.

Now one might want to do the similar thing for merely big class [L]. 59 Clearly

we still have the perturbations in the same flavor as before. But now the existence of

solutions for perturbed equation, which needs the background metrics to be Kähler,

would destroy the possiblity to approach the original equation directly. Instead, the

approximation has to stop before it gets to the class [L]. The limiting class would be

like [L+ εω] or [L]− εE for some ε > 0. Clearly this class and the limiting equation

would depend on our choice for the perturbation, i.e., the choice of [ω] or E.

It’s natural to think about how to push the perturbation further towards the class

[L]. But it’s likely to be less natural than the flow method discussed before. The

delicacy of the flow approximation should have its advantage in this situation together

with its technical difficulties. And we expect some new machinery for further study

of this problem.

2.6 Pluripotential-Theoretic Revisit of Uniqueness

Result

In this section we give a more complicated way of proving the uniqueness of the

solution constructed by either the flow method or the perturbation method using a

Kähler metric. This might looks meaningless as we already know the uniqueness and

the proof is not hard at all. But the proof here has a strong flavor of comparison

principle which can actually fit in a more general picture in pluripotential theory. It’ll

use the approaching sequence of functions in a more global way. Of course maximum

principle is already a global argument, but here we are using the integration instead.

No strong derivative is essentially involved and so we need less regularity than before.

58It’s a lovely fact that the singular terms have the right sign (for ∞) which allows us to run
through maximum principle argument before.

59The case when [L] is merely nef. is not so justified in this context from the discussion at the
beginning, at least when we are considering rational classes.
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Suppose we have the following two packages of limiting sequences for m→∞:

um → u∞, ωm → ω∞, ωm+
√
−1∂∂̄um → ω∞+

√
−1∂∂̄u∞, (ωm+

√
−1∂∂̄um)n → eu∞Ω;

vm → v∞, φm → ω∞, φm+
√
−1∂∂̄vm → ω∞+

√
−1∂∂̄v∞, (φm+

√
−1∂∂̄vm)n → ev∞Ω;

where um and vm are smooth, ωm +
√
−1∂∂̄um and φm +

√
−1∂∂̄vm are smooth

Kähler metrics. Here for each package, the first and third limits are in the sense

of local uniform convergence out of {σ = 0} 60 and with certain uniform estimates

locally out of {σ = 0}. Both limits satisfy (ω∞ +
√
−1∂∂̄W )n = eWΩ out of {σ = 0}

where W is the function u∞ or v∞ which are plurisubharmonic with respect to ω∞.

The last convergence is essentially from the estimates and equations which um and

vm satisfy. Finally we require φm − ωm > 0 without requiring either of them to be

nonnegative.

Clearly if we can prove u∞ = v∞ out of {σ = 0}, it’ll be enough for proving

all the independence of sequence limit on the choice of convergent sequence for any

sequences in the flow with any initial metric or sequences in the perturbing family for

any perturbing Kähler metric, where probably some auxiliary sequence will be used

to compare any chosen pair of sequences.

First there is a baby version for the comparison principle argument in classic

smooth case. Suppose ω +
√
−1∂∂̄u and ω +

√
−1∂∂̄v are nonnegative where ω is a

real smooth closed (1, 1)-form, u and v are smooth functions. In the following, we

prove ∫
{u>v}

(ω +
√
−1∂∂̄u)n 6

∫
{u>v}

(ω +
√
−1∂∂̄v)n.

For any δ > 0, we can do the computation below.∫
{u>v+δ}

(
(ω +

√
−1∂∂̄u)n − (ω +

√
−1∂∂̄v)n

)
=

∫
{u>v+δ}

√
−1∂∂̄(u− v − δ)

(
(ω +

√
−1∂∂̄u)n−1 + · · ·+ (ω +

√
−1∂∂̄v)n−1

)
=

∫
{u>v+δ}

d(dc(u− v − δ) ∧
(
(ω +

√
−1∂∂̄u)n−1 + · · ·+ (ω +

√
−1∂∂̄v)n−1)

)
.

By Sard’s Theorem, we can choose proper sequence of δ going to 0 with the boundary

of {u > v+δ} being smooth for each δ. Then by Stokes’ Theorem, the last expression

60Of course the stable base locus set can be used here instead, but we only require this for
simplicity.
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is equal to:∫
∂{u>v+δ}

dc(u− v − δ)
(
(ω +

√
−1∂∂̄u)n−1 + · · ·+ (ω +

√
−1∂∂̄v)n−1

)
,

where the orientation of the boundary is determined by the outer normal direction.

In fact the volume form for the boundary is just ?dρ where ρ is the local defining

function for the boundary which is positive outside and negative inside. We also have

locally u− v − δ = f · ρ where f is nonpositive. Suppose

dc(u− v − δ)
(
(ω +

√
−1∂∂̄u)n−1 + · · ·+ (ω +

√
−1∂∂̄v)n−1

)
= g · (?dρ)

locally on the boundary. Notice dc(u − v − δ) = f · dcρ for the first part and the

positivity of the second part. By wedging dρ on both sides of the equation, it is easy

to conclude that g 6 0. Thus we have∫
{u>v+δ}

(
(ω +

√
−1∂∂̄u)n−1 − (ω +

√
−1∂∂̄v)n−1

)
6 0.

Finally by taking δ → 0, the set we integrate over would enlarge to {u > v}, so we

arrive at the claim above.

Now let’s consider the current situation. First we have:∫
{um>vm}

(ωm+
√
−1∂∂̄um)n 6

∫
{um>vm}

(φm+
√
−1∂∂̄um)n 6

∫
{um>vm}

(φm+
√
−1∂∂̄vm)n,

where the first 6 is from the assumption that φm > ωm
61 and the second one is

from the result in the smooth case just proved above. Thus for any ε > 0, we have,

forδ > 0 sufficiently small and m sufficiently large, that:∫
{um>vm+λ}∩{|σ|>δ}

(ωm +
√
−1∂∂̄um)n 6

∫
{um>vm+λ}∩{|σ|>δ}

(φm +
√
−1∂∂̄vm)n + ε

with any constant λ > 0 62. Now basically we want to take limit for all the parameters.

It needs to be done carefully in sight of all the dependences. We’ll do it as follows.

In {|σ| > δ}, we have uniform convergence of um → u∞ and vm → v∞ as m→∞.

61So we have 0 6 ωm +
√
−1∂∂̄um 6 φm +

√
−1∂∂̄um.

62The part we remove has very little contribution in the total integral from the uniform upper
bound of the volume as included in the assumptions.
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Thus we have the relation below for any λ > 0 and sufficiently large m: 63

{u∞ > v∞ + 2λ} ⊂ {um > vm + λ} ⊂ {u∞ > v∞}.

Combine these to get:∫
{u∞>v∞+2λ}∩{|σ|>δ}

(ωm +
√
−1∂∂̄um)n 6

∫
{u∞>v∞}∩{|σ|>δ}

(φm +
√
−1∂∂̄vm)n + ε

which is for any ε > 0, λ > 0, m sufficiently large and δ > 0 sufficiently small. Now

let’s first take m→∞ to get:∫
{u∞>v∞+2λ}∩{|σ|>δ}

eu∞Ω 6
∫
{u∞>v∞}∩{|σ|>δ}

ev∞Ω + ε.

Then we let λ→ 0:∫
{u∞>v∞}∩{|σ|>δ}

eu∞Ω 6
∫
{u∞>v∞}∩{|σ|>δ}

ev∞Ω + ε.

Now take δ → 0 and get:∫
{u∞>v∞}

eu∞Ω 6
∫
{u∞>v∞}

ev∞Ω + ε.

Actually it is not that necessary to take this limit. We can just replace ε by 2ε by

noticing the part we add back contributes little. Strictly speaking, the integration

after taking limit should be over {u∞ > v∞} ∩ {σ 6= 0}, but clearly it doesn’t bring

any difference. Finally we let ε→ 0 and arrive at:∫
{u∞>v∞}

eu∞Ω 6
∫
{u∞>v∞}

ev∞Ω.

Thus we can see u∞ 6 v∞ in the regular part and hence for the whole of X by

plurisubharmonicity. Notice if we have ωm = φm, we can also get u∞ > v∞ by sym-

metry and hence conclude that they are the same. Otherwise, we still have to use the

integral equality to draw the conclusion.

For the rest part, let’s sketch some results from pluripotential theory related to

the discussion above. This can be seen as a warm-up exercise for going into the next

63Everything is now restricted to {|σ| > δ}, i.e., always considering the intersection with {|σ| > δ}
for each set appearing below.
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part of this work, but somehow the discussion below has little relation with what’s

used there.

Recall that we have not yet seen u∞, satisfying (ω∞ +
√
−1∂∂̄u∞)n = eu∞Ω out

of the stable base locus set of KX , is bounded. Thus though we have it is globally

plurisubharmonic, i.e., ω∞+
√
−1∂∂̄u∞ is a real positive closed (1, 1)-current, it’s not

justified in the usual sense to say (ω∞ +
√
−1∂∂̄u∞)n is a global (Borel) measure over

X. But it is quite obvious that eu∞Ω defines a global measure over X. So we are

very willing to give the left hand side the similar meaning. And indeed this case has

already been considered in pluripotential theory where what people require is a nice

approximation of the possibly unbounded plurisubharmonic function.

Though in the place where I learned this theory ([Koj2]), domains in Cn are

the main object, the spirit can easily been translated to our situation. And the

requirement for the nice approximation can be satisfied by our approximation from

flow or perturbation. Basically, we could take the limit of the measures in the sense

of measure from the approximation. We can also see the limiting measure will not

depend on the nice approximation chosen which of course is of great importance to

define a measure for such an unbounded plurisubharmonic function. Obviously the

right hand side as a measure is also the limit of the approximation measures. So

after making sense of both sides as measure over X, we should be able to see that

they are actually the same. Furthermore, we also have comparison principle 64 for

those unbounded functions in general. From this we can have the uniqueness of the

(possibly unbounded but plurisubharmonic with a nice approximation) solution u for

(ω∞ +
√
−1∂∂̄u)n = euΩ where the equality is in the sense of measure. At least this

uniqueness result looks more general than what’s proved before. But essentially we

have to require a nice approximation, and at this moment we can only get one by the

(continuity) methods discussed before.

We sketch the related argument as follows. Basically it’s quoted from [Koj2] where

it is contributed to [Ce]. Local picture (of a domain V in Cn) is considered in those

works. We’ll deal with the closed manifold case instead. Up to now, what we have

achieved is less than that of the local case, but it is still enough for the application.

Anyway, the argument below is essentially theirs after some modification. 65

Suppose u ∈ PSHω∞(X) is the (pointwise) limit of a decreasing sequence of

functions, uj ∈ PSHωj
(X)∩C0(X) such that uj 6 0 and

∫
X

(−uj)p(ωj+
√
−1∂∂̄uj)

n <

64The integral inequality for u∞ and v∞ proved before which is of course just a special case. We’ll
discuss it more later.

65Professor Kolodziej informed me that Zeriahi and others had also treated the closed manifold
situation for this theory.
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C for some p > 1 and any j. Here assume ωj → ω∞ as j → ∞ in a nice (linear for

example) way and they are all semi-positive 66.

Then we want to prove that (ωj +
√
−1∂∂̄uj)

n is weakly convergent to a (Borel)

measure dµ which is independent on the choice of uj as above. So we can define

(ω∞+
√
−1∂∂̄u)n = dµ. Clearly, the global intergral of the measure would be

∫
X
ω∞

n

by the weak convergence. In the following, we justify this definition.

Let φ be a smooth funtion on X (i.e., a test function). Define v[k := max{v,−k}
for any k > 0 67. Of course uj = uj[k on {uj > −k} which is a closed set and

(ωj +
√
−1∂∂̄uj)

n = (ωj +
√
−1∂∂̄uj[k)

n on {uj > −k} which is open 68. Now we can

have the following computation:

|
∫
X

φ
(
(ωj +

√
−1∂∂̄uj)

n − (ωj +
√
−1∂∂̄uj[k)

n
)
|

6
∫
{uj6−k}

φ
(
(ωj +

√
−1∂∂̄uj)

n + (ωj +
√
−1∂∂̄uj[k)

n
)

= k−p
∫
{uj6−k}

kpφ
(
(ωj +

√
−1∂∂̄uj)

n + (ωj +
√
−1∂∂̄uj[k)

n
)

6 Cφk
−p(∫

X

(−uj)p(ωj +
√
−1∂∂̄uj)

n +

∫
X

(−uj[k)p(ωj +
√
−1∂∂̄uj[k)

n
)
.

In the last expression, the first term in the bracket is uniformly controlled by assump-

tion. If we can also do that for the second term, then we arrive at

|
∫
X

φ
(
(ωj +

√
−1∂∂̄uj)

n − (ωj +
√
−1∂∂̄uj[k)

n
)
| 6 Cφk

−p.

Let’s first show how this is going to give us the unique limit. We know the

measures (ωj +
√
−1∂∂̄uj[k)

n converge weakly to the measure (ω∞ +
√
−1∂∂̄u[k)

n as

j → ∞ since the potentials are (uniformly) bounded after truncation. 69 Then it’s

easy to see the Cauchy property for the sequence of integrals
∫
X
φ(ωj +

√
−1∂∂̄uj)

n.

Thus we can have the weak convergence of (ωj +
√
−1∂∂̄uj)

n to some (positive Borel)

measure dµ. We also want this measure dµ to be independent on the choice of {uj}.

66This semi-positivity seems to be involved for all the argument using pluripotential theory. At
many places, we can trivially reduce the general case to it. However we really seems to need this
assumption here. So this discussion is for a more restrictive situation in comparison to the earlier
part of this section, but we have less assumption for uj ’s.

67In the case when the background form is semi-positive, this would preserve the plurisubhar-
monicity of the functions since the constant function is plurisubharmonic itself.

68This seems to be the only place where the continuity of the approximation functions is needed.
69This result will be discussed later. The nice convergence of background forms ωj makes it legal

to use the classic results for domains in Cn by chooosing proper local potentials.
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This is also quite easy from the inequality above. Taking j → ∞ in the inequality,

by the weak convergences already got, we conclude that

|
∫
X

φ
(
dµ− (ω∞ +

√
−1∂∂̄u[k)

n
)
| 6 Cφk

−p

which obviously guarantees the uniqueness of such a measure dµ.

Now let’s justify that inequality. As mentioned before, it’ll be done if we can

bound the terms containing uj[k uniformly. Of course an obvious idea would be to

use the corresponding term with uj to control these terms. More precisely, we’ll prove

the following. Notice uj and uj[k are bounded functions.

Claim: For any 0 > v > u with v, u ∈ PSHω(X)∩L∞(X) with ω > 0, with p > 1

we have ∫
X

(−v)p(ω +
√
−1∂∂̄v)n 6 C

∫
X

(−u)p(ω +
√
−1∂∂̄u)n

for some universal positive constant C.

Proof. 70 Set Im =
∫
X

(−u)pωu
m∧ωvn−m form = 0, · · · , n where the natural notations,

ωu = ω +
√
−1∂∂̄u and also ωv, are used. Rewrite Im as following when m < n:

Im =

∫
X

(−u)pωu
m ∧ ωvn−m−1 ∧ ω +

∫
X

(−u)pωu
m ∧ ωvn−m−1 ∧

√
−1∂∂̄v.

Now let’s deal with the first term by the following computation:∫
X

(−u)pωu
m ∧ ωvn−m−1 ∧ ω

=

∫
X

(−u)pωu
m+1 ∧ ωvn−m−1 −

∫
X

(−u)p(
√
−1∂∂̄u) ∧ ωum ∧ ωvn−m−1

= Im+1 −
∫
X

√
−1∂

(
(−u)p∂̄u ∧ ωum ∧ ωvn−m−1

)
+

∫
X

√
−1∂(−u)p ∧ ∂̄u ∧ ωum ∧ ωvn−m−1

= Im+1 − p

∫
X

(−u)p−1
√
−1∂u ∧ ∂̄u ∧ ωum ∧ ωvn−m−1

6 Im+1.

70Since these functions are not smooth, many expressions below are not understood in the classic
sense. But the meaning is very natural from pluripotential theory using the boundedness of the
functions. Some terms below are indeed defined by the equation used. It would be very tedious to
make everything down to the ground at this moment. Basically, let’s keep in mind that approxima-
tion argument can be used to justify those bad terms, and so we can actually treat them as if they
are smooth. More discussions about these terms can be found in Appendix.
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For the second term, we have the following:∫
X

(−u)p(
√
−1∂∂̄v) ∧ ωum ∧ ωvn−m−1

=

∫
X

v
(√
−1∂∂̄(−u)p

)
∧ ωum ∧ ωvn−m−1

= p(p− 1)

∫
X

v(−u)p−2
√
−1∂u ∧ ∂̄u ∧ ωum ∧ ωvn−m−1

− p

∫
X

v(−u)p−1(
√
−1∂∂̄u) ∧ ωum ∧ ωvn−m−1

6 p

∫
X

(−v)(−u)p−1ωu
m+1 ∧ ωvn−m−1

6 pIm+1.

In the above steps, the facts
√
−1∂u ∧ ∂̄u > 0, ω > 0 and −u > −v > 0 are used.

And when p = 1, it’s actually easier. Thus we have Im 6 (p + 1)Im+1 which gives

Im 6 CmIn. Hence we have
∫
X

(−v)pωv
n 6

∫
X

(−u)pωv
n = I0 6 C

∫
X

(−u)pωu
n which

is exactly our goal.

In fact, in the computation above, we can switch the role of v and u. The com-

putation would be more like the original computation for domains in Cn. Let’s do it

below. Set Jm =
∫
X

(−v)pωv
m ∧ ωun−m. Then for m = 0, · · · , n− 1, we can have:

Jm − Jm+1

=

∫
X

(−v)p
(√
−1∂∂̄(u− v)

)
ωv

m ∧ ωun−m−1

=

∫
X

(u− v)
(√
−1∂∂̄(−v)p

)
ωv

m ∧ ωun−m−1

= p(p− 1)

∫
X

(u− v)(−v)p−2
(√
−1∂v ∧ ∂̄v

)
∧ ωvm ∧ ωun−m−1

− p

∫
X

(u− v)(−v)p−1
(√
−1∂∂̄v

)
∧ ωvm ∧ ωun−m−1

6 p

∫
X

(v − u)(−v)p−1
(√
−1∂∂̄v

)
∧ ωvm ∧ ωun−m−1

6 p

∫
X

(v − u)(−v)p−1ωv
m+1 ∧ ωun−m−1

6 p

∫
X

(−u)(−v)p−1ωv
m+1 ∧ ωun−m−1

6 pIn−m−1

1
pJm+1

p−1
p ,
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where the last step is by Hölder inequality for the measure ωv
m+1 ∧ ωun−m−1. Thus

we arrive at:

Jm 6 p(In−m−1

1
p + Jm+1

1
p )Jm+1

p−1
p 6 2pIn−m−1

1
pJm+1

p−1
p .

Combining with the result above, we can see all the terms Im and Jm are bounded

by In.

Remark 2.6.1. This control is not as good as the original one for the domain in

Cn. For example, it won’t give the convexity of the set of functions which have this

kind of approximation. More specifically, we don’t know the summation of two such

functions still has such an approximation unless these two functions are comparable.

In order to see that comparison principle still works for the measure defined like

this, by the quasicontinuity of these functions, we only need to see the measure ωuj
n for

any small relative capacity set is uniformly small for all j where ωuj
= ωj+

√
−1∂∂̄uj.

This convention has been used before, but here the background forms are changing.

The relative capacity is defined locally using the classic definition for domains in Cn.
71 In fact it is easy to be seen as follows.

For some ε > 0, suppose O is a subset of X with Cap(O) 6 ε. Then for any

C0 > 0, ∫
O

ωuj

n =

∫
O∩{uj>−C0}

ωuj

n +

∫
O∩{uj<−C0}

ωuj

n

6 C0
nε+

∫
X

C0
−p(−uj)pωuj

n

6 C0
nε+ C · C0

−p.

By taking C0 large enough and ε small enough, we can guarantee
∫
O
ωuj

n to be uni-

formly small.

Another issue for justifying comparison principle for two of these functions (with

the same ω∞ > 0 of course) is about the changing background forms for the approxi-

mation. Basically, we’ll need the forms to be the same for each pair of approximation

functions or at least have the one-sided relation in the favorable direction. However

71One can also define it globally using some background form. It’ll be equivalent to the local
definition if the background metric is positive. Since our background forms ωj are not uniformly
positive, the globally defined ones won’t be uniform. But this is not needed for us here. Indeed, we
only need the uniform control of globally defined capacity by the locally defined one which is rather
obvious.
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this would not be a problem if the ωj’s are like ω∞ + δω for ω > 0 since we can

take proper subsequences of the approximations. There would be no crue left after

taking the limit. And we can treat the sets {v > u} and {u > v} respectively where

u and v are the functions to compare. In fact for our application which is to prove

the uniqueness of such a (possibly unbounded) solution for the equation

(ω∞ +
√
−1∂∂̄u)n = euΩ

where Ω is a smooth nondegenerate (nowhere 0) volume form. It is enough to see

{v > u} is empty since u > v together with the global integral equality would tell

u = v.

Remark 2.6.2. Here the main difficulty is coming from the possible unboundedness

(and also discontinuity) of the limiting functions which would give some trouble in

making sense of the limiting distributions as measure and applying the usual compar-

ison principle. But as mentioned before, it might be the case that the limit is bounded

(even with certain Hölder continuity). This problem will be heavily considered later.

The discussion in this section says we can actually apply comparison principle for

(apriori) unbounded functions like that. Indeed we can see that continuous (or even

just bounded) functions which are plurisubharmonic with respect to some ω∞ > 0 are

also considered in the above discussion 72, which is clearly consistent with the classic

discuss for them.

Thus if by any means, we have a continuous (or even just bounded) solution for

this equation, then we know it is also the solution got before by continuity methods.

This actually can be used to identify the orbifold Kähler-Einstein metric and the

(singular) metric got before for any minimal surface of general type as mentioned in

[TiZh].

72For a continuous function, the approximation could consist of just the function itself which
clearly has the proper uniform bound for the global integrals even if one uses some more positive
background form ω∞ + ω in sight of the boundedness of the function itself. In fact, the current
discussion works for bounded functions. The corresponding approximation result will be discussed
later in this work. The background form can be more positive than ω∞ but converges to it nicely.

90



Chapter 3

Kolodziej’s Argument and Direct

Application

This chapter is devoted to sketch the argument in [Koj1] and [Koj2] by S. Kolodziej.

The argument is quite original and fairly different from classic PDE methods for

Monge-Ampere equation. More importantly, it provides important information about

the solution in some situation where other methods fail to help (at least as we see it

at this moment). Let’s first introduce the classic situation considered in his works.

Over a closed Kähler mainfold X, the equation considered is:

(ω +
√
−1∂∂̄u)n = Fωn,

with ω being a Kähler metric and nonnegative F ∈ Lp(X) for some p > 1 satisfying∫
X
Fωn =

∫
X
ωn. 1 Basically, the existence of a (weak) solution in PSHω(X) ∩

L∞(X), which is also continous and unique, is proved.

Remark 3.0.3. Kolodziej’s original argument applies for F in more general class of

functions. But the above restricted version will be enough for our main interest. And

at certain places, it’ll allow us to simplify the argument to make it easier to generalize

the argument to our situation. The affect will be emphasized when it occurs.

3.1 Classic Results in Pluripotential Theory

In this section, we’ll introduce some of the necessary notions and related results in

classic pluripotential theory used in Kolodziej’s argument. The discussion in this

1Whenever we use the notation Lp(X), a smooth nondegenerated volume form is assumed while
the choice clearly doesn’t have any essential affect.
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section is supposed to be very concise. But sometimes we may also go into details,

especially when it is fairly related our generalization later.

It seems necessary to begin with the definition of plurisubharmonic functions. We

use PSH(V ) to stand for the class of plurisubharmonic functions over V which is an

open set in Cn. Instead of writing down one definition (as in [Le] for example), it

might be better to just illustrate what are those functions.

Basically, they are functions which will be subharmonic when restricted to any

complex direction, in other words,
√
−1∂∂̄u will be a positive (1, 1)-current. The

meaning is quite clear in smooth case. Generally speaking, it’s in the sense of distri-

bution. In the following, we list some basic features of these functions 2:

i) They are L1
loc functions, but they are not equivalent classes of functions, i.e.,

the value for each point is decided. They can take the value −∞, but not +∞;

ii) They have the same mean value property as subharmonic functions. In fact,

since plurisubharmonic functions are subharmonic (i.e., with positive distributional

Laplacian), so this is just inherited from subharmonic functions. Moreover, we have

maximum principle for them just as for subharmonic functions;

iii) They are upper-semicontinuous and Borel measurable. Furthermore, they

are also essentially upper-semicontinuous, i.e., for f ∈ PSH(V ), ∀x ∈ V , we have

limi→∞esssupUi
f = f(x) where {Ui} is a basis of neighbourhoods for x. Thus the

values for all points in X are decided by values almost everywhere, namely, one can

ignore values over any measure 0 set; 3

ix) Their restrictions out of small open sets are continuous. The “small” here

means with relative capacity as small as one wants where relative capacity is an

important notion in this business which will be discussed in great details later;

x) Their convolutions are smooth plurisubharmonic functions and the sequences

of functions coming from convolution will decrease to themselves pointwisely. 4

The last one is frequently used to prove anything local about plurisubharmonic

functions because the smooth ones are usually easy to deal with directly and then

2Some of them come directly from definition, but some are not so trivial results by themselves.
3This is a better restriction for the value at each point then the usual upper-semicontinuity. It

can be used to understand the first part of property i) and is indeed quite useful for us later. The
measure 0 set is usually a subvariety for our application.

4Of course, the convolution is the classic one with some compactly supported and rotationally
symmetric smooth function, ρ, with normalized total integral. The sequence is from rescaling this
function ρ by proper constants for the value and variable which maintains the total integral. The
set, where the convolution can be defined, is relatively compact in V but exhausts the set for a
proper sequence of rescaling constants.
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by taking a limit for the result with respect to the convolutions, we can hopefully

get the result for the original function. Moreover, combining x) with ix) and Dini’s

Theorem, we can see the convergence is really not so bad.

A trivial observation would be that from definition, we can define plurisubhar-

monic functions over a domain with a (holomorphic) complex structure exactly in

the same manner as before. All the local properties above will remain unaffected.

But now we have to worry about the existence of convolution since there might be no

global coordinates. And in fact, this is the main difficulty arising when the domain

V is no longer in Cn and would be a huge cloud over the simple-mindedly straight-

forward generalization of Kolodziej’s orginal argument.

In the following, we put together some results in classic pluripotential theory.

There is no logic order guarding the list of results. We still mainly consider domains

in Cn for these results.

Remark 3.1.1. The domain V is usually assumed to be connected. It’ll make our

picture simpler. But it is easy to see that the discussion below still applies to the

case when there are multiple (even countably many) connected components for V .

Basically we can just consider each component separately and “sum up” the results.

There could be some exceptions since some results are hard to take sum, for exam-

ple, boundedness of the functions would be for each components. So sometimes we’ll

need a uniform bound (of the sizes, for example) for all components in order to get

the result for the whole domain V , which should be easy to see from the context.

The case when V is a connected and unbounded open set in Cn 5 will also be of

some interest. And we do not require V to be bounded for everything below unless

explicitly stated.

It’s easy to see that a plurisubharmonic function over Cn bounded from above will

have to be trivial, i.e., a finite constant by considering the extension on each complex

direction to the point ∞ 6. But that’s not the case for a general unbounded domain

V . For example, when n = 1, the upper half plane is biholomorphic to the unit disk,

so it can have a lot of nontrivial plurisubharmonic functions which are not bounded

from above. Anyway, this is not so related to our main consideration here, but still

of quite some interest by itself.

a) Comparison Principle

5The meaning of “unbounded” clearly needs some ambient space which is Cn for now and can
be other ones with similar properties.

6Similar argument will be used later in another context.
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Proposition 3.1.2. For a bounded domain V in Cn, ∀u, v ∈ PSH(V ) ∩ L∞(V ), if

∀p ∈ ∂V , limx→p(u− v)(x) > 0, then∫
{u<v}

(
√
−1∂∂̄v)n 6

∫
{u<v}

(
√
−1∂∂̄u)n.

Illustration of the proof:

First, let’s point out that under the assumption of this proposition, (
√
−1∂∂̄u)n

can be defined as a Borel measure. 7 So the meaning of the integration in the

conclusion is clear. Notice that the integrals on both sides may be +∞, but 6 would

still be true in natural sense.

The case when everything is smooth and the set integrated over is relative compact

in V is quite clear from Stokes’ Theorem (as V is bounded). “Everything” means the

functions and the boundary of the set {u < v}.
For the general case as assumed in the proposition, we can use smooth approx-

imation to do the job. Here since we are in Cn, convolution will provide a nice

approximation sequence of functions. And during the process, we also need to make

sure the situation for “small” sets (as appeared in property ix) of plurisubharmonic

functions) is under control, but the boundedness of the functions can provide enough

help.

There are quite some technical details for a rigorous proof (see in [BeTa]). For ex-

ample, the convolution will only be defined for sightly smaller sets which are relatively

compact in V , but since the comparison relation near the boundary is also available

from the assumptions, we’ll be fine by using some more approximation arguments.

Remark 3.1.3. Comparison principle may be the most important tool for classic

pluripotential theory. The result is quite natural if one takes the magnitude of pos-

itivity of (
√
−1∂∂̄u)n as some kind of “convexity” of the plurisubharmonic function

u.

Anyway, the justification and application of comparison principle in generalized

situation will be one of our main topics later.

b) Relative Capacity and Relative Extremal Function

• Relative Capacity

Consider any compact subset K in V and define the relative capacity of K with

7There would be more discussion about this later. It actually is a big issue and we just feel it
might be too early to bring it up at this time since the picture here is quite natural if one only
considers smooth functions.
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respect to V as follows:

Cap(K,V ) = sup{
∫
K

(
√
−1∂∂̄u)n|u ∈ PSH(V ), − 1 6 u 6 0}.

Then for any subset E of V , one defines the corresponding capacity as:

Cap(E, V ) := sup{Cap(K,V )|K compact,K ⊂ E}.

It might look favorable if we can use the definition in case of compact sets for any

subset. And it’s easy to see that will depend on how well we can use compact sets

to exhaust any set. In fact, we can do that for Borel sets, and so the definition for

compact sets can be used for Borel sets (or say these two definitions are equivalent

for Borel sets). But for general Lebesgue measurable sets, the exhaustion will be

up to a (Lebesgue) measure 0 set and the integration of (
√
−1∂∂̄u)n for some u ∈

PSH(V ) ∩ L∞(V ) over a measure 0 set might be positive as we can see later by

example.

Anyway the definition here (for any subset) makes it only necessary to only con-

sider compact sets in most cases which is actually very convenient for us.

• Relative Extremal Function:

For E any subset of V , we define relative extremal function of E with respect to

V as follows:

u
E,V

= u
E

:=
(
sup{u|u ∈ PSH(V ), u 6 0 on V, u 6 −1 on E}

)∗
.

Here the “sup” is taken pointwisely and upper semi-continuization (the upper “∗”) is

also used to make sure the function we finally got is still plurisubharmonic (see [De1]

for example).

Notice that upper semi-continuization is used in the definition, and so it is not

true that u
E

= −1 on E, which is obviously the case without “∗” in the definition.

This makes the actual values of u
E

on E \ E̊ hard to describe. But there is a general

result for this situation as follows.

Lemma 3.1.4. For a family of plurisubharmonic functions which are locally uni-

formly bounded from above, the pointwise supremum function, u, which may not

be plurisubharmonic, will have its upper semi-continuization, u∗, plurisubharmonic.

Moreover the set {u∗ > u} is pluripolar.

We don’t want to get into too much detail about this and just want to mention
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that “pluripolar” means the set would have (Lebesgue) measure, relative capacity

and outer relative capacity 0 which essentially allows us to ignore this set when doing

integration. This handy fact actually shows up in a lot of places, for example, the

proof of a very classic fact about relative capacity in [AlTa] whose generalization is

quite important for the proof of our essential estimate later which can be seen as the

punchline for our argument.

For many purposes as will become clear, it would be great to see that it is equiva-

lent to use the function class “PSH(V )∩C0(V̄ )” instead of “PSH(V )” in the defini-

tions. And in fact this is the case for the definition of relative extremal functions for

compact sets when V is hyperconvex whose definition will be given explicitly soon.

Basically it means there is a nice exhaustion function defined in a neighbourhood of

V̄ . The argument is essentially by approximation argument which is under frequent

use for this business and so we sketch it below. 8

Essentially, one uses convolution to get a continuous (smooth in fact) approxi-

mation of any element, u, in PSH(V ) which has proper values as in the definition

of u
E

, and then Dini’s Theorem can be used to describe the approximation more

carefully. The condition on V is used to extend any plurisuharmonic function to a

neighbourhood of V̄ , which would make the convolutions defined on V̄ , as follows.

First we can assume u is valued in [−1, 0] over V and equal to −1 over E since it is

justified to take supremum only over functions like max{u,−1}. It is even enough to

consider functions like max{u, h}, where h is the defining function for hyperconvexity

of V 9, in the original definition of relative extremal function, u
E

.

Now consider max{u, h+ ε} for ε > 0. These functions can obviously be extended

by h+ ε to a neighbourhood of V̄ where h is defined, which then could have convolu-

tions defined over V . And as ε → 0, they decreases to max{u, h}. By diagonalizing

argument, we can have a sequence of smooth plurisubharmonic functions defined on

V̄ and decreasing to max{u, h}. They valued in [−1, δ] where δ decreases to 0 along

the sequence.

The compactness assumption of E is for concern of applying Dini’s Theorem. No-

tice that u = 0 on V̄ and u = −1 on E which of course means it is continuous over

V̄ ∪E. So by Dini’s Theorem, the values of the approximation functions are controlled

well over V̄ ∪E. Now we can apply an elementary property of plurisubharmonic func-

8It would be a slightly different issue for relative capacity which will be discussed in details later.
9By taking multiple if necessary, we can make sure the h here has very negative values (say < −2)

over the set E.
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tions, maximum principle, which is mentioned before, to see that the approximation

functions take almost the proper values over V as required in the definition of u
E

.

Then it’s routine to see the relatively extremal function defined using only continuous

plurisubharmonic function, which will be smaller than the original one, u
E

apriori, is

actually equal to u
E

.

Of course just from the definitions, we can get some elementary properties for

relative capacities and relative extremal functions, for instance, the monotonicity

when the corresponding sets (V and E) become larger or smaller. It’s quite obvious

and so we even omit the statements.

Also when V ⊂ Cn is bounded, it’s easy to see by definition that

λ(K) 6 C · Cap(K,V )

where λ is the standard Lesbegue measure from the standard Euclidean potential,

K is a compact subset and C is a positive constant depending on the size of V . In

fact by the discussion before, we can see that it is also the case for any subset E

since the affect of ignoring measure 0 sets contributes in the favorable direction. This

simple-minded observation, in some sense, can be taken as a guide for us. Stronger

form of it would play an essential role later in our generalization.

Finally, let’s point out a nice relation between these two notions which is at least

beautiful in its own way.

Proposition 3.1.5. Assume V hyperconvex (with meaning as before), then for any

compact set K in V , we have:

Cap(K,V ) =

∫
V

(
√
−1∂∂̄u

K
)n

and in fact the measure (
√
−1∂∂̄u

K
)n is supported on ∂K.

Idea of the proof:

It is actually natural and important to realize that the support of the measure

(
√
−1∂∂̄u

K
)n is ∂K at first. For the interior of K, easy to see the measure vanishes

there since u
K

is identically equal to −1 by definition. For the complement of K, we

can use the idea of pluriharmonic lifting which is exactly in the same spirit as Perron

method for constructing harmonic functions, i.e., locally (in a ball contained in the

complement, for example) lifting the continuous plurisubharmonic function started
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with to be the pluriharmonic one with the same boundary data. Here we’ll need

hyperconvexity for V as continuous functions are used instead of general ones which

is justified before.

Remark 3.1.6. For a while, it looks like we can weaken the meaning of hypercon-

vex here to require the defining function only defined over V̄ by using an exhaustion

sequence of open sets {Vε} for V coming from the defining function and getting the

convergence of u
K,Vε

to u
K,V

which would give the result for V from those for Vε’s.

Notice obviously that Vε’s are hyperconvex as described before.

The problem is in the attempt to get the convergence mentioned above. Of course

the (decreasing) limit of {u
K,Vε

} is a nonpositive plurisubharmonic function defined on

V which is no less than u
K,V

since each of them is no less than u
K,V

. But on the other

hand, we don’t have that the limit is 6 −1 on K since u
K,Vε

may not be smaller than

or equal to −1 there because in the definition of relative extremal function, upper semi-

continuization is applied for the “sup” 10. Thus it is not clear (at least by definition)

that the limit will be (smaller than or) equal to u
K,V

.

Then we basically just need to compare the integration of (
√
−1∂∂̄u

K
)n on K

with that of any other function which we can try in the definition of Cap(K,V )

and see it is not smaller. After proving that, since we can also try u
K

itself in the

definition of Cap(K,V ), it is done. Here a good point about compact sets is that in

the definition of relative capacity, we use
∫
K

in the definition of relative capacity and

∂K is contained in K which is the support of (
√
−1∂∂̄u

K
)n.

From the hyperconvexity of V , we know that u
K

is definitely close to 0 near ∂V .

Now there is just a little technicality left to cook up the proper function to compare

with u
K

by Stokes’ Theorem.

Remark 3.1.7. In fact, after getting this equality for K compact, we can get for

some other sets by using approximation argument. For example, we can get for any

open set from the following simple argument.

A bounded open set, U , can be exhausted by a sequence of closed sets, {Kε} and

a sequence of open sets, {Uε}, contained in the closed sets, i.e. Uε ⊂ Kε, respectively

by considering the distance to the boundary.

Then one can see the decreasing convergence of the relatively extremal functions

u
Kε

to u
U

11, thus we have the convergence of currents from the result in c) below.

10Of course the limit “6 −1” on K̊, but K is compact, so K̊ 6= K.
11It is easy to see the limit is greater or equal to u

U
, and we get the other direction by using the

definition of u
U
, noticing the exhaustion by open sets makes sure the limit is −1 on U .
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Now we see (
√
−1∂∂̄u

U
)n supported on Ū (∂U in fact). Finally the result is from

the earlier definition of Cap(U, V ) using “sup” by noticing it’ll just be the increasing

limit of Cap(Kε, V ).

Actually we can also define something called “outer capacity” for any set by tak-

ing infimum of the relative capacities of open sets containing the set being considered.

The similar equality as above would hold for any general relative compact subset in

V . We sketch the argument as follows. First one gets for compact sets where this new

capacity turns out to be the same as the old one. Then it’s basically left to use the def-

inition to deduce for general sets relatively compact in V (see [Koj2] for more details).

We would like to point out that for our argument, usually this relation above

between relative capacity and relative extremal function is not that needed. We just

use it to make the picture more clear in some cases. But the result itself is fairly nice

and illuminating. And more importantly, we have a natural observation from the

above proof of this relation (for the original relative extremal capacity) as follows.

Recall in the first part of the proof, continuous plurisuharmonic functions are so

easy to work with. But because we use general plurisubharmonic functions in the

definition of u
E

, hyperconvexity has to be imposed on the domain V and E has to be

compact in order to justify the use of continuous plurisubharmonic functions instead

of general ones.

It really seems like that we are giving ourselves unnecessary trouble by defining

u
E

like that. In fact let’s try the following definition instead:

uc
E,V

= uc
E

:=
(
sup{u|u ∈ PSH(V ) ∩ C0(V̄ ), u 6 0 on V, u 6 −1 on E}

)∗
.

Now we see (
√
−1∂∂̄uc

E
)n is supported on ∂E. The proof is just like before, but

now we can use continuous plurisubharmonic functions by definition. And we have

this for any relatively compact subset E in V . 12

But for the whole result before, we still need V to be hyperconvex and E to be

compact since we want to compare the integrations by using the function uc
E

and

other properly modified functions. Notice we do not change the definition of relative

capacity accordingly.

In fact, this observation would make our life much easier later when more general

12The relative compactness is from the consideration that (
√
−1∂∂̄u)n is a current on V anyway,

so we want to have something really inside V which is important for us to apply Stokes’ Theorem
at certain stage. In fact if E is just any subset of V , we still have that the support is on ∂E ∩ V
since that part of the proof still goes through.
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domain V is considered. And because this new definition is equivalent to the one be-

fore in many classic cases, it will also give us no trouble in applying the classic results.

c) Weak Convergence

Proposition 3.1.8. i) Let {ujk}∞j=1 be a uniformly bounded sequence of plurisubhar-

monic functions in V for k = 1, · · ·,m, and ujk → uk ∈ PSH(V )∩L∞(V ) with respect

to capacity for each k. Then we have:

(
√
−1∂∂̄uj1) ∧ · · · ∧ (

√
−1∂∂̄ujm) → (

√
−1∂∂̄u1) ∧ · · ·(

√
−1∂∂̄um)

in the sense of distribution (i.e., weakly). And more generally, we have

(
√
−1∂∂̄uj1) ∧ · · · ∧ (

√
−1∂∂̄ujm) ∧ T → (

√
−1∂∂̄u1) ∧ · · ·(

√
−1∂∂̄um) ∧ T

in the sense of distribution where T is any closed positive (l, l)-current;

ii) If an everywhere decreasing (increasing) sequence {uj}∞j=1 with uj ∈ PSH(V )∩
L∞(V ) decreases (or increases) to some u ∈ PSH(V ) ∩ L∞(V ) almost everywhere,

then the convergence is actually with respect to capacity. Moreover, using the setting

in i), if the convergences are monotonous (decreasing or increasing), we also have

uj1(
√
−1∂∂̄uj2) ∧ · · · ∧ (

√
−1∂∂̄ujm) ∧ T → u1(

√
−1∂∂̄u2) ∧ · · ·(

√
−1∂∂̄um) ∧ T

weakly where T is as above.

Here uj → u as j → ∞ over V with respect to (relative) capacity means for any

compact set K in V and ε > 0, we have

limj→∞Cap(K ∩ {|uj − u| > ε}, V ) = 0.

Remark 3.1.9. The sequence in ii) is obviously (globally) uniformly bounded, so we

could use the convergence results in i). And in fact, since the conclusion in i) is

rather local and the decreasing (increasing) convergence is also a local property, we

can assume the functions are in L∞loc(V ) instead of L∞(V ) for ii).

Also notice that for ii) we only need the convergence to be almost everywhere, 13 but

for the decreasing case, this would imply the convergence everywhere by a fundamental

property of plurisubharmonic functions, and for the increasing case, u would be the

upper semi-continuization of the pointwise limiting function.

13The monotonicity of the sequence is required everywhere.
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Another trivial point from the properties of plurisubharmonic functions would be

that any function in PSH(V )∩L∞(V ) would be bounded everywhere by the L∞-norm

simply by semi-continuity.

Finally, let’s point out that since all the currents involved are positive 14, so the

convergence in the sense of current would imply the convergence in the weak topology of

measure, i.e., we can use compactly supported continuous functions instead of smooth

ones to test the convergence.

We do not require the continuity of all these functions and that’s somehow the

interesting thing about this result. In fact, if we require the continuity for all of

them, then uniform convergence of the potentials can also imply the convergence of

the currents in the weak sense (as in [BeTa] for example). In the following, we say

something about the proof.

First, notice the convergence with respect to capacity is defined in the same spirit

as convergence with respect to measure. But it is more like a local property as there

is a compact set K involved.

The detail of the proof is more or less technical in a standard way. We have to be

careful about the meaning of all the currents, as well as all the previous places where

terms like (
√
−1∂∂̄u)n appeared. We feel it might be a good place to talk about this

a little bit.

Generally speaking, there is no wedge product of currents. Even for positive

currents, we still need to be very careful about taking wedge product. Everything

starts with the following definition

√
−1∂∂̄u ∧ T :=

√
−1∂∂̄(uT )

for u ∈ PSH(V ) ∩ L∞loc(V ) and T a positive current. The right hand side actually

makes sense because uT is also a current from the fact that T is positive and u is a

locally bounded Borel measurable function. And of course the operator ∂∂̄ acts on it

in the sense of current (distribution). If we further assume that T is closed, then it can

also be seen that the right hand side is still a positive current by using approximation

from convolution and general result about convergence of measures. Thus we can

(repeatedly) use this explanation to make sense of all the currents involved above.

More details can be found in Appendix.

In sight of the complication of just making sense of these currents, it can be

imagined that people should be very careful in dealing with them rigorously. A lot

14In fact, nonnegative might be a better way to say it.
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of formulae used in computation which are so obvious in the smooth case need to

be justified. Basically, we just need to make sure that the expression in each step

actually makes sense. The situation is not that bad indeed since all the definitions

should be natural in the smooth case and we can use the smooth case as a guide. Local

approximation (from convolution), together with classic results in measure theory, is

usually all we need to justify them.

Anyway, the results are classic and well known. It would be rather tedious to give

all the details at this moment. We might talk more about some computation related

when they are used somewhere else.

d) CLN Inequalities

They are a set of very classic inequalities which were first introduced in [CLeNi].

We only recall the following two inequalities which are most useful for us.

Proposition 3.1.10. For any open set U such that U ⊂⊂ V (i.e., relatively compact

in V ), we have positive constants C = C(U, V ), such that for any uj ∈ PSH(V ) ∩
L∞(V ) for j = 1, · · ·, n and a compact set K in U , the following inequality holds:

i)

∫
K

(
√
−1∂∂̄u1) ∧ · · · ∧ (

√
−1∂∂̄un) 6 C‖u1‖L1(V )‖u2‖L∞(V ) · · · ‖un‖L∞(V ).

Moreover if u0 ∈ PSH(V ) ∩ L∞(V ) and u0 6 0, we also have:

ii)

∫
K

|u0|(
√
−1∂∂̄u1) ∧ · · ·(

√
−1∂∂̄un) 6 C‖u0‖L1(V )‖u1‖L∞(V ) · · · ‖un‖L∞(V ).

The proof is essentially by formal integration by part. The idea is to use a sequence

of (fixed) smooth plurisubharmonic functions to take away the ∂∂̄ before uj and the

auxiliary terms would contribute to the constant C(U, V ).

In the computation, it would be convenient to normalize the uj’s, whose L∞-norms

appear on the right hand side of the inequalities, to be valued in [−1, 0]. This can be

easily justified by noticing that the L∞-norm will at most be doubled if we add some

constant to the original function to make it nonpositive, and rescaling by positive

constants clearly won’t affect the result. This would be fairly enough to picture the

argument for i).

For ii), there is yet some subtlety about u0 which plays a role different from others,

and we are requiring it to be nonpositive. In fact, if we can formally integrate by part

and switch the role of u0 and u1, the result would follow from the computation for

i). But that can only be carried out if “boundary values” of u0 and u1 are the same
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since then we can use

u0(
√
−1∂∂̄u1)− u1(

√
−1∂∂̄u0) = u0

√
−1∂∂̄(u1 − u0) + (u0 − u1)(

√
−1∂∂̄u0),

and integration by part can now be justified by using compactly supported smooth

functions to approximate u0 − u1 which vanishes on the boundary. Here something

called “Localization Principle” naturally kicks in and let’s discuss it below.

• Localization Principle: in order to prove the weak convergence or local estimates

for a family of locally uniformly bounded plurisubharmonic functions, there is no loss

of generality to assume that the functions are defined in a ball and equal over some

neighbourhood of the boundary.

It is quite easy to prove this principle itself since we can use the rescaling of

standard exhaustion function for a Euclidean ball to modify the family of functions

being considered. Then the positive currents correspondent to the functions will be

the same for inside part which would be enough for proving the statement for weak

convergence and local estimates, while the boundary value would be just the value

for the exhaustion function.

Let’s emphasize that the above CLN inequalities are fairly local in spirit which

make it ready to have more global form. Of course we can still have some information

in case of u0 6 C for some positive C instead of u0 6 0 simply by noticing u0 =

u0 − C + C and combining i) and ii). This trivial observation is actually used to

derive the following result which is what we are actually going to apply later.

Claim: Suppose U open and relatively compact in V . Then for any compact set

K in U , u ∈ PSH(V ) ∩ L∞(V ) and u 6 C0 for some C0 > 0, there exists positive

constant C(U, V, C0) such that:

Cap(K ∩ {u < −j}, V ) 6
C‖u‖L1(V ) + C

j
.

Proof. For any v ∈ PSH(V ) and valued in [−1, 0], consider any compact set, K ′ ⊂
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K ∩ {u < −j}, we have:∫
K′

(
√
−1∂∂̄v)n 6

1

j

∫
K

|u|(
√
−1∂∂̄v)n

6
1

j

∫
K

(|u− C0|+ C0)(
√
−1∂∂̄v)n

6
C‖u− C0‖L1(V ) + C

j

6
C‖u‖L1(V ) + C

j
.

From the definition of capacity, this would give the inequality above.

Remark 3.1.11. The notions and results listed above could by no means give a com-

plete and accurate picture about classic pluripotential theory. We just feel it might

be too distracting to introduce them in the next section which describes Kolodziej’s

orginal arguments if we do not want to leave too many black boxes. We still need a

few other notions and results along the way. But they are more or less involved in

the arguments themselves.

3.2 Kolodziej’s Original Argument

In this section, let’s get into the original arguments in [Koj1] and [Koj2]. We do this

for two good reasons. First, a large part of the arguments can be directly used by us

and so we can put them here for later reference. Second, by putting some of them

in our own language, it could give a more illuminating way for understanding and

generalizing them. For later convenience, we shall separate the arguments into six

parts in the following discussion.

• Part (1): Bound Capacity by Measure

For V an open bounded set inside Cn which is hyperconvex, i.e., ∃h ∈ C0(V ′) ∩
PSH(V ′) where V ′ an open neighbourhood of V̄ such that ρ = 0 on ∂V , sets {ρ < −s}
are relatively compact in V for s > 0 15 and V = {ρ < 0}.

Now consider u ∈ PSH(V ) ∩ L∞(V ), v ∈ PSH(V ) ∩ C0(V̄ ). Assume that

U(s) = {u < v + s} is relatively compact (maybe empty) in V for s ∈ [S, S + D]

15“Relatively compact” means the corresponding closure in Cn is contained in V . A more intuitive
description would be “really inside”. These sets give the nice exhaustion of this domain V mentioned
before.
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with D > 0 of course. Then we claim the following which is the goal for Part (1): for

t ∈ [0, S +D − s],

tnCap(U(s), V ) 6
∫
U(s+t)

(
√
−1∂∂̄u)n.

Proof. The inequality is trivial for t = 0 and also for empty set case, so we assume

t > 0 and U(s) is nonempty below.

Consider any compact set K ⊂ U(s). Define the function w := u−s−t
t

and set

W := {w < uK + v
t
} where u

K
is the relative extremal function of K with respect to

V . Then we can see K ⊂ W ⊂ U(s+ t) as follows:

On K (⊂ U(s)), w = u−s−t
t

< v−t
t

= −1 + v
t

6 u
K

+ v
t
, so K ⊂ W .

On W , u−s−t
t

< u
K

+ v
t

6 v
t
, so u < v + s+ t, thus W ⊂ U(s+ t).

Basically we just use−1 6 u
K

6 0 above. Now we have the following computation:

Cap(K,V ) =

∫
K

(
√
−1∂∂̄u

K
)n 6

∫
K

(√
−1∂∂̄(u

K
+
v

t
)
)n

6
∫
W

(√
−1∂∂̄(u

K
+
v

t
)
)n

6
∫
W

(
√
−1∂∂̄w)n = t−n

∫
W

(
√
−1∂∂̄u)n 6 t−n

∫
U(s+t)

(
√
−1∂∂̄u)n.

Let’s give a little explanation for the steps. The first step is from the relation

between relative capacity and relative extremal function discussed before. The rest

are basically from the relation between the sets proved above and comparison principle

(over V ), where the boundary condition for comparison principle is justified by the

assumption about the relative compactness of U(s+ t) in V . 16

Since the estimate can be done for any compact subset of U(s), we get it for U(s)

itself just by the definition of relative capacity for general sets.

For this result, we can have u and v defined over a set which contains V . There

is no trouble if we have to restrict them to V (in order to satisfy the assumptions).

We mention this to emphasize the locality of the above discussion.

Remark 3.2.1. When proving the important chain of sets above, K ⊂ W ⊂ U(s+t),

we only used the fact that u
K

is valued in [−1, 0]. So we may just use any φ ∈ PSH(V )

valued in [−1, 0] instead of u
K

(also in the definition of W ) in the whole computation

above. And finally by taking supremum over all such φ’s, we can still get the same

estimate for Cap(K,V ). So there is in fact no need to use the relation Cap(K,V ) =

16Notice that the second step is rather trivial from the plurisubharmonicity (and boundedness) of
v. Though that’s the only place where we need v to be plurisubharmonic other than the application
of comparison principle, it is in fact quite crucial for the argument.
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∫
K

(
√
−1∂∂̄u

K
)n. And so the hyperconvexity of V is not that essential here. It’s easy

to see the continuity of v is also not needed. We only need v to be bounded and

plurisubharmonic.

• Part (2): A Fundamental Arithmetic Result

We keep the set-up in Part (1) and further assume that for any (Borel) subset E

of V , we have: ∫
E

(
√
−1∂∂̄u)n 6 A · Cap(E, V )Q

(
(Cap(E, V ))−

1
n

)−1

for some positive constant A, where Q(r) is an increasing function for positive variable

r with positive value. Moreover, we also require the set U(s) defined before to be

nonempty for s ∈ [S, S +D].

For the case when Cap(E, V ) = 0, the inequality above can be trivially under-

stood. 17 This requirement is bascially for the case when Cap(E, V ) > 0. From now

on, we call this condition as “Condition (A)”.

At least for the situation we are mainly interested in, in the sense of Borel measure,

(
√
−1∂∂̄u)n = f · dλ where dλ is the standard Euclidean measure and (nonnegative)

f ∈ Lp(V ) for some p > 1 (or even just say f is Lebesgue integrable ). So Condition

(A) above is equivalent to,∫
E

f · dλ 6 A · Cap(E, V )Q
(
(Cap(E, V ))−

1
n

)−1
.

Thus this condition is also equivalent to require only for compact subsets of V instead

since we can use compact sets to approximate all (Lebesgue measurable) subsets up

to some measure 0 set and the inequality is OK for taking such an exhausting limit

since the left hand side is precisely the limit and the right hand side is no less than

the limit 18. So for our concern, it’s enough to require Condition (A) for any compact

set E. 19

The main claim for this part is as follows: under the set-up in Part (1) with

Condition (A) and U(s) nonempty for s ∈ [S, S +D], we have

D 6 κ(Cap(U(S +D), V ))

17In this case, the left hand side is of course 0 from essentially the boundedness of u and the
definition of Cap(E, V ).

18The monotonicity of function Q is used here.
19Actually, in the original form of this condition, we are only considering E to be any Borel subset

since the measure (
√
−1∂∂̄u)n is only Borel, so the exhaustion argument used above should work in

general. Hence we always only need to take care of compact sets.
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for the function

κ(r) = CnA
1
n

(∫ ∞

r−
1
n

y−1(Q(y))−
1
ndy +

(
Q(r−

1
n )

)− 1
n
)
,

where Cn is a positive constant only depending on the complex dimension n.

Idea of proof: the argument is a little technical but quite elementary in spirit.

Since the detail has already appeared in [Koj1], we’ll only sketch the idea below.

The inequality proved in Part (1) looks like “Cap 6 measure”.

Condition (A) above gives the other direction “measure 6 Cap”.

So we can combine them to get some information about the length of the interval

coming from t in the inequality proved in Part (1). The assumption about nonempti-

ness of the set U(s) is needed because we have to divide both sides by Cap(U(·), V ),

which has to be nonzero, in order to get something explicit for t. Then we can sum

all these small t’s up to get control for D.

We need the trivial fact that for a bounded domain in Cn, nonemptiness, nonzero

(Lebesgue) measure and nonzero (relative) capacity are equivalent for sets like U(s).
20

Of course we’d better use a clever way to carry out all computation just in sight

of the rather complicate final expression of functon κ. And it has been done in great

details very carefully in [Koj1]. We emphasize that except for the little fact above,

all those involved are fairly elementary analysis.

Finally, let’s point out that in the detailed argument, we do not have a positive

lower bound for the t’s summed up, so it is important that the inequality from Part

(1) holds (uniformly) for all small enough t > 0.

Remark 3.2.2. It’s actually not necessary for the V in Condition (A) to be the same

one as the V in Part (1). If we can use a larger V ′ for the “Cap” in Condition (A)

which would make the condition even stronger than the correspondent one using V ,

then the conclusion will be also using “Cap” with respect to V ′ instead of V . The

reason is that by noticing Cap(K,V ′) 6 Cap(K,V ), the result of Part (1) can be

trivially translated to the statement using V ′.

Moreover, from the little sketch of the argument above, we see that in this case,

we still only need Condition (A) for the sets U(s) in V . Also there is no need for

V ′ to be hyperconvex which is needed for V as in the original argument for Part (1).

20From the properties listed at the beginning for plurisubharmonic functions, U(s) having measure
0 would imply U(s) empty, and (relative) capacity controls measure as mentioned before. In fact,
this is true for more general domains which might not be in Cn and the simple argument we just
used can be adjusted to that case quite easily.
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21 But we still emphasize this because it shows that there could be a lot of flexibility

about the domain considered. This is pointed out because it’s easier to get a (uniform)

control for Cap(U, V ) when U ’s are “uniformly” inside V (by CLN inequalities for

example), i.e., all contained in a set relatively compact in V , which is useful in Part

(4) below.

• Part (3): Condition (A)

In this part, we want to show that (
√
−1∂∂̄u)n = f ·dλ for nonnegative f ∈ Lp(V )

with some p > 1 will be enough to justify the condition (A) introduced in Part (2)

for some proper function Q(r), which is essentially like (1 + r)m for some positive m
22.

Recall the condition we want to justify is the following:∫
K

f · dλ 6 A · Cap(K,V )
(
Q((Cap(K,V ))−

1
n )

)−1

for any compact subset K of V (with positive capacity). A should be a positive

constant which depends only on the Lp-norm of f and the domain V .

Let’s first notice that it will follow from:∫
V

|g|nQ(|g|)fdλ 6 A,

where g = (Cap(K,V ))−
1
nu

K
. This is simply because

A >
∫
V

|g|nQ(|g|)fdλ

>
∫
K

|g|nQ(|g|)fdλ

> (Cap(K,V ))−1Q
(
(Cap(K,V ))−

1
n

) ∫
K

fdλ,

which is just what we are heading for. Here we have used u
K

= −1 a.e. on K

since the upper semi-continuization only changes values in a pluripolar set which has

relative capacity and so Lebesgue measure 0 from the facts mentioned before.

Now we only have to get a good upper control of
∫
V
|g|nQ(|g|)fdλ. Using the

condition f ∈ Lp(V ) for some p > 1, by Hölder inequality, we have an upper control

21Of course, the remark at the very end of discussion for Part (1) says the hyperconvexity of V is
also not that essential.

22Essentially, we need that the function κ(r), which is decided by the function Q, goes to 0 as r
goes to 0. The reason will become clear when we combine all the results to draw the conclusion.
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of the whole integral by the Lp-norm of f and
∫
V
|v|ldλ for some large l’s. Here we’ve

already taken the explicit form of Q(r), (1 + r)m, into account. The Lp-norm of f is

under control by our assumption. The other part should be easily taken care of once

we have some kind of uniform bound of the measure of small (very negative) value

part of g, noticing g 6 0. The following will be dedicated to get this bound.

Obviously the claim below will be enough for our goal.

Claim: For any bounded hyperconvex domain U in Cn, consider u ∈ PSH(U) ∩
L∞(U) with the limit to ∂U existing at each boundary point and being nonnegative,

and
∫
U

(
√
−1∂∂̄u)n 6 1. Set Us = {u < −s} for any s > 0.

Then we have λ(Us) 6 Cα · e−2παs with 0 < α < 2 23 and Cα being a positive

constant not depending on u with those properties.

Essentially we want to apply this claim to the function g above. And in order to

justify the conditions in the claim for g, we need V to be hyperconvex. 24.

In order to prove the above claim, there is a useful subclaim that we’ll prove first.

We need a few more notions before getting into that.

e) 25 Lelong Class

The following class of functions is what is called Lelong class:

L := {u ∈ PSH(Cn)|u(z)− log(1 + |z|) < Cu},

where Cu stands for a constant which might well depend on the specific function u

and |z| =
√
|z1|2 + · · ·+ |zn|2 where {z1, · · ·, zn} is the Euclidean coordinate system

for Cn.

Basic examples of elements: log|z|, log(1 + |z|) and some simple modification of

them.

Basic property for such functions: log-growth control as explained below:

For u ∈ L and any complex line I in Cn which may or may not passing through

the origin, consider the function u − log|w| on I, where w is the induced complex

coordinate for I. Clearly u− log|w| is (pluri)subharmonic and bounded from above in

I\{w = 0} since log|w| is harmonic for complex dimension 1 and |w| is still essentially

just the distance to the origin of Cn for points on I. Thus we can extend the function

u− log|w| subharmonically to the ∞ on I, i.e., u− log|w| is now subharmonic on the

23This inequality is trivial for α 6 0.
24We can see this is also not necessary later from another observation.
25We are continuing the introduction of pluripotential theory from before and so starts with “e”

here.
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punctured Riemann sphere extended from I without origin w = 0.

Now by applying maximum principle for balls centered at infinity, we get:

sup∂Br(u− log|z|) 6 sup∂Bs(u− log|z|)

for 0 < s < r, and so

sup∂Bru− sup∂Bsu 6 log
(r
s

)
for 0 < s < r.

This is a much better description of the growth of u than before and is called

“log-growth control”.

Remark 3.2.3. We have used the balls in Cn for above inequalities which is OK since

we can have for each complex line through the origin respectively and the results can

be combined to get for Cn. The “sup” can of course be replaced by “max” by upper

semi-continuity of plurisubharmonic functions.

But we should emphasize here that the argument (using u − log|w|) can not be

carried through for Cn for n > 1 directly because −log|z| is not plurisubharmonic on

Cn \ {0} . This would cause big trouble in some later consideration for generalizing

the argument in this part.

f) Global Extremal Function

For a bounded set E ∈ Cn, define

LE = (sup{u|u ∈ L, u 6 0 on E})∗.

The “sup” is taken pointwisely and “∗” means taking upper semi-continuization just

as in the definition of relatively extremal function before.

There are cases when LE is in fact +∞ everywhere. Those sets are in fact pluripo-

lar (see [Koj2] for example) and will not cause any trouble for our consideration as

basically they are of Lebesgue measure 0. Other than this case, we actually have

LE ∈ L. The upper control is basically coming from the log-growth control for el-

ements in L discussed before. In fact there is also a trivial lower control of LE by

some log-growth function which comes directly from the boundeness of E and the

definition of LE by noticing those examples of elements in L listed before.

There would be some trivial value comparison results for these functions just as

for relatively extremal functions. Similarly, we also have to be very careful about the

affect of the upper semi-continuization which is necessary for the plurisubharmonicity

but makes the function more subtle to understand.
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The same argument as for relative extremal function u
E

will give us that the

(Borel) measure (
√
−1∂∂̄LE)n will be supported on ∂E for E compact. The com-

pactness of E is required since we want to be able to use continuous functons only

for the definition of LE just as for u
E

. 26

There is another property about the functions like LE, i.e., those plurisubharmonic

functions on Cn with log-bounds (from both sides) which gives some very strict restric-

tion about them. In fact, by comparison principle, it is easy to see
∫

Cn(
√
−1∂∂̄u)n has

to be the same for any such function. Thus we can get the precise value by computing∫
Cn

(√
−1∂∂̄ 1

2
log(1 + |z|2)

)n
which is equal to the volume of Fubini-Study metric over

CPn (up to some conventional constant).

g) Global Capacity

For a compact set K in Cn, we define global capacity of K as follows:

TR(K) := e−sup|z|6RLK(z)

for some fixed R > 0.

Directly from the above definition and the result about the global integral of

(
√
−1∂∂̄LE)n from f), we can have control of TR(K) by Cap(K,BR) for compact K

in BR which will be used later.

The control for the other direction is also available for more restricted K (i.e.,

closer to the center). The proof is slightly more involved and makes use of the geom-

etry of Euclidean space in a more subtle way. Since it is not that useful for us, we’ll

ignore it at this moment.

Now we state the subclaim mentioned before.

Subclaim: For any 0 < α < 2, there exists Cα,n such that in Cn, for all u ∈ αL,

B = B0(1), we have: ∫
B

esupBu−udλ 6 Cα,n.

Proof. Clearly we can assume 0 = supBu 6 u(a) for some a ∈ B̄ ⊂ B0(2). Set

Ek = {z ∈ B0(2)|log(k − 1) < u 6 logk}, Fk = ∪∞j=kEj.
We can see v(z) := 1

α
(u(z) + log(k − 1)) belongs to L and is nonpositive over Fk.

Noticing v(a) = 1
α

log(k − 1), from the definition of the global capacity T , we know

26Here since the “background” domain is Cn now, the convolution is globally OK and there is no
need to extend the functions, so it is slightly less involved to justify the restriction to continuous
functions in this case.
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for any complex line I passing through a:

T2(I ∩ Fk) 6 (k − 1)−
1
α

where the T2 corresponds to B0(2) as in the definition.

Now from the classical result about the relation between standard measure and

the global capacity in C1 (see [Tsm] for example), we have:

λ1(I ∩ Fk) 6 C
(
T2(I ∩ Fk)

)2
6 C(k − 1)−

1
α .

Then easy computation will provide: λ(Fk) 6 C(k − 1)−
2
α . Finally a trivial

argument gives
∫
B0(2)

e−udλ 6 Cα,n. The condition on α appears naturally for the

convergence of the infinite summation involved.

Finally we can prove the claim stated before.

Proof. Without loss of generality, assume U ⊂ B(1) where B(1) is of course the unit

ball in Cn. Then it’s easy to see λ(Us) 6
∫
B
e−αLUsdλ simply by noticing LUs = 0

almost everywhere in Us. Here the choice of α is quite flexible and we can take it to

be 1. 27 From the subclaim, we have

λ(Us) 6 C · e−α·supB(1)LUs = C
(
T1(Us

)
)α.

Also notice the inequalities

T1(Us) 6 e−2π(Cap(Us,B(1))−
1
n ) 6 e−2π(Cap(Us,U))−

1
n

where the first 6 is the control of global capacity by relative capacity mentioned in

g) and the second 6 is a rather trivial relation. Combine all of them to arrive at:

λ(Us) 6 C · e−2πα(Cap(Us,U))−
1
n · · · · · · (?).

Now for any t > 1 and compact set K in Us, by comparison principle, we have:

Cap(K,U) =

∫
K

(
√
−1∂∂̄u

K
)n =

∫
{ tu

s
<u

K
}
(
√
−1∂∂̄u

K
)n

6
tn

sn

∫
U

(
√
−1∂∂̄u)n 6

tn

sn
.

27It just needs to be some positive constant strictly less than 2 in order to apply the subclaim.
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Finally we can conclude Cap(Us, U) 6 s−n by letting t → 1 which gives us the

claim in sight of (?).

Until now we have proved the main result for this part which is basically the

justification of Condition (A) for Lp>1 measure.

Remark 3.2.4. The argument above (quoted from [Koj2]) works for more general

class of functions than Lp>1 which is in fact what is originally proved in Kolodziej’s

works. But the special case of Lp is fairly sufficient for our consideration. And in

fact it’s also for this case that we can simplify and generalize the argument a little bit

to study the degenerated Monge-Ampere equation.

Indeed, we’ll observe later that it is the inequality (?) for any compact set K of

U instead of Us that is essential for our purpose. And from the argument above, it’s

quite clear that no hyperconvexity is required for U in order for this to be true. We

only need U to be bounded in Cn.

• Part (4): Bounded Solution

Recall that the equation we are considering is:

(ω +
√
−1∂∂̄u)n = Fωn

over X where F ∈ Lp is nonnegative for some p > 1 with the proper integral over X

and ω is a Kähler metric on X.

There are two strongly related goals for this part. One is to get an apriori L∞

bound for a bounded weak (i.e., in PSHω(X) ∩ L∞(X)) solution for this equation

(after proper normalization). The other one is to get such a solution (or say to prove

existence for bounded solution). The essential argument is the same for both.

For the second one, we need an approximation sequence of equations whose so-

lutions exist by classic results. The approximation solutions would have uniformly

bounded L∞-norm by the apriori estimate which would allow us to take the (weak)

limit to get a bounded solution for the original equation. Let’s take care of this first.

In this case, the main obstacle to get existence of a solution for the original equa-

tion is from the general right hand side which may not be a smooth nondegenarated

volume form. So to begin with, we construct a sequence of smooth and positive

functions {Fj} converging to F in Lp and satisfying
∫
X
Fjω

n =
∫
X
ωn as described

below.
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The positivity is easy to deal with by adding small positive constants to F . Then

the smoothness can be achieved by using partition of unity and convolution. The

positivity is preserved under this action. Thus we have constructed a sequence of

smooth positive functions converges to F in Lp-norm. Finally rescaling by a proper

sequence of constants, which clearly converges to 1, will give us the desired Fj’s above.

By the classic result of Yau’s (see [Ya]), there is a unique sequence of smooth

functions {uj} satisfying

(ω +
√
−1∂∂̄uj)

n = Fjω
n

with maxXuj = 0.

If we can have a uniform L∞ bound for uj’s, it’s quite easy to take limit to get a

bounded solution for the original equation. The detials have been carried out carefully

in [Koj1] and so we might just illustrate it a little bit later. In fact, the limit would

also have supremum (maximum) 0 by a simple argument using Hartogs’ Lemma.

Now we want to prove that uj’s are uniformly bounded in L∞. Notice the Lp>1-

norms for Fj’s are uniformly controlled. So it’s enough for us to get a uniform apriori

L∞ bound for bounded solutions for equations with uniformly bounded Lp>1 measure

on the right hand side. Let’s denote the solution by u and the measure by Fdλ in

the following.

Remark 3.2.5. If we only want to get a bounded solution, then it’s enough to consider

the approximation solutions which are smooth. And as we’ll see below, the life is much

easiler if one only considers smooth solutions. But of course the apriori estimate is

interesting in its only way and at least makes the result more complete.

First, using Green’s function and noticing u is nonpositive with maximum value 0,

we can see that the L1-norm can be controlled uniformly. The argument is standard

for the classic case when the solution is smooth (C2 would be enough). So that’ll

directly work for approximation solution uj. We need to use approximation argument

for solutions with less regularity. For a continuous solution u, Richberg’s method of

approximation provides a sequence of smooth functions {uk} uniformly converges to

u as k →∞ with (1 + 1
n
)ω+

√
−1∂∂̄un > 0. This would give us the desired L1-norm

control for u. For a merely bounded solution, other approximation methods will be

used. When X is projective, there is an approximation which gives a decreasing

sequence of smooth functions plurisubharmonic with respect to some metric, which

may be more positive than ω, converging to u. For a general closed manifold X, a

more recent result appearing in [BlKol] also gives an approximation of u similar to
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that. 28 Classic results in pluripotential theory says the convergence would actually

be in L1 space (as in [Ho] for example). 29 Anyway, we get the L1-norm bound

needed.

Then let’s observe that since X is a closed complex manifold, it’s easy to use

local coordinate balls to reduce the picture to finitely many domains in Cn where

the notions introduced before can be directly used. By the uniform bound of L1-

norm and CLN inequalities, we can see that the capacity of {u < −s} locally in

each coordinate ball will be uniformly controlled by C
s
. Strictly speaking, we are

considering {u < −s}∩Br inside Bs where Br and Bs are balls with 0 < r < s in the

(same) coordinate patch (say r = 1, s = 2). In each local coordinate balls, we have

the local potential, φ, for the background metric ω 30. Since ω is a Kähler metric,

we have no trouble to make the potential convex in a standard way, i.e., the central

part is strictly smaller than the very outer part by some positive number with some

uniform gap in between. Anyway, we have now switched the picture of a manifold X

to finite Euclidean balls with the background information uniform for all of them.

Clearly we only need to get a uniform lower bound of u. Let’s consider the

“minimal” value point of it. There is no trouble to consider this point for a continuous

u. It might seem to be a problem for a merely bounded function. But in fact, we can

just consider the point whose value is very close (up to some small constant δ > 0

which can be as small as we want) to be the infimum of u. The argument can go

through once we choose δ to be controlled by another uniform constant which will

appear below.

This point must fall in the central part of one of the coordinate (unit) balls. Since

we have mentioned above about the uniform controls of the background information,

there should be no trouble to ignore the fact that we don’t know exactly which ball

it falls in. Now we want to apply the results from the previous parts.

Considering in B1, the function “u” in Step (1) would be u+φ here and “v” would

be the minimal value for φ of the outer part, c, which we can choose to be 0. It’s

easy to see {u+φ < c+ s} will be relatively compact in the coordinate unit ball for s

small enough and won’t be empty for proper choice of s 31. We need the point chosen

28We’ll talk about these approximations in greater details later in discussion about comparison
principle.

29The above way to see uniform L1-norm bound might look too complicated especially for bounded
functions. I believe classic pluripotential theory might have more elementary ways to see this.

30This terminology of background metric is quite illusive and will be used repeatedly during the
process.

31For example, take s = infXu. It doesn’t matter that this value is not uniform apriori. We only
need the gap “D” of the interval [S, S +D] to be uniform.
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to have the “minimal” value of u to achieve the relative compactness here. But we

also see that it’s still OK if the constant δ before is chosen to be dominated by the

uniform gap of the local potential φ.

Clearly there would be some room for the constant s from the strict convexity

of φ. So we some uniform room, which is essentially just the difference between the

values of φ for central and outer parts of the ball, to move s around while still having

{u+ φ < c+ s} nonempty and relatively compact in B1. That room will be our D.

Remark 3.2.6. The uniform room is coming from the uniform convexity of local

potential of ω, i.e., from the positivity of ω. This would be the main difference for the

degenerate situation that we are interested in and the current situation.

Condition (A) for Part (2) is justified since Lp-norm for some p > 1 is uniformly

bounded for F . Hence the constant A in the condition is uniformly controlled as from

Part (3). Now from the conclusion of Part (2), we have for Q(r) = (1 + r)m,

D 6 κ(Cap(U(S +D), V )).

TheD is uniformly bounded from below as mentioned above, and so Cap(U(S+D), V )

must be uniformly bounded from below. But we’ve already seen the upper control of

Cap(U(S + D), V ) as − C
S+D

. Here we use B2 as V , but U(S + D) is still contained

in B1 by definition. 32 So we see S has to be uniformly bounded from below (say

S > −C), which means U(−C) would have to be empty. This indicates uniform lower

bound for u. Hence we have got the apriori L∞ bound for the solution.

Remark 3.2.7. Actually, a more global argument has already been carried out in

[Koj2] for this result which looks more concise and simple as one doesn’t have to go

through the previous point-pick construction. We shall use the essential computation

of it later. But the local argument is still interesting in the sense that it tells you what

is really needed for the argument in a more explicit way, and so we can locate the

difficulties more easily when trying to go through similar argument for more general

situation.

As mentioned before, after getting the uniform L∞ bound for the approximation

solutions, a quite routine argument using some general results about plurisubharmonic

functions allows us to take a limit of them in a weak sense (say pointwise almost

32This freedom of choosing domains has been discussed before.
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everywhere or in L1-norm) 33 and the upper semi-continuation of the limit, u, will

be bounded and plurisubharmonic with respect to ω (but may not be continuous

apriori). Of course we also know u solves

(ω +
√
−1∂∂̄u)n = Fωn

where both sides are (Borel) measures over X.

We’ve mentioned that Hartogs’ lemma will tell us that the maximum of the solu-

tion u thus got over X is still 0, just like the approximation solutions. This argument

just uses the convergence of uj to u. But we can have another argument as follows.

Actually, we can have the limiting function u as a limit of a decreasing sequence of

functions {vj} plurisubharmonic with respect to ω and with maximal value 0. 34, and

then we can see the maximum value of u is also 0 which simply uses the fundamen-

tal fact that if a decreasing sequence of closed sets has empty set as the limit, then

already one of them would have to be empty since {u > C} is closed for u upper

semi-continuous and any constant C.

The cohomological condition
∫
X
Fωn =

∫
X
ωn is naturally involved when one tries

to deduce from the inequality (ω +
√
−1∂∂̄u)n > Fωn, which is got by taking limits,

the equality (ω +
√
−1∂∂̄u)n = Fωn by noticing the integrals of both sides are the

same over X.

Remark 3.2.8. In fact, the argument up to now can already be used to provide L∞

(or say C0) estimate for the classic problems considered in Yau’s original paper ([Ya]).

This method is very different from the classic one featuring maximum principle and

can be used to improve some of the classic results a little bit.

In fact, if one tracks down all the steps more carefully, the argument can actually

give L∞-norm bound for the normalized (with 0 as the maximum value) solution by

Lp-norm of F in a more explicit way as follows:

‖u‖L∞ 6 C · ‖F‖nLp

where constant C > 0 depends only on X, ω and p > 1.

The argument is pretty elementary and fairly universal, i.e., it can be directly

33Let’s point out that there is an expression of this limit using the whole sequence which is just
the upper semi-continuization of the upper limit for the sequence. So the choice of a subsequence
involved will not affect the limit. It’s just that sometimes it would be more convenient to use a
convergent sequence.

34Just take vj = (supk>juk)∗ which clearly has maximal value 0 and decreases to u pointwisely.
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applied to our generalized situation and gives the relation claimed in Theorem 1.3.2.

Let’s give the details below. There are some relations used below which will be more

obvious from later treatment. They are also true for the current situation.

The constant A in Condition (A) would now be chosen as ‖F‖Lp with function

Q(r) be chosen as Cm · (1 + r)m for some m > 0, Cm > 0. The lower index m of C

indicates the dependence on m. This choice is slightly different from before because

we want the affect of ‖F‖Lp to be more explicit for the current purpose. The constant

Cm in Q(r) contains the other constant which is essentially from the upper bound of

Lebesgue measure by relative capacity.

Now we can consider κ(r) from the pretty complicated definition and get

κ(r) 6 Cm · A
1
n (

∫ ∞

r−
1
n

y−1−m
n dy + r

m
n2 ) 6 Cm · A

1
n r

m
n2 .

It seems to me that it’s still most convenient to get the estimate by following the

logic of contradiction argument used before. Suppose the sublevel set of u, U(s), is

relatively in V and nonempty for any s ∈ [T −D,T ] with some T < 0 where the D

is the uniform gap got before by the local construction 35, then we need to have

D 6 κ
(
Cap(U(T ), V )

)
6 Cm · A

1
nCap(U(T ), V )

m
n2 6 Cm · A

1
n (−T )−

m
n2

where in the last step , we have used the same CLN inequality as before.

Now we have T > −Cm · A
n
m . This is an explicit expression about how negative

the S + D used before can be. From the way in which this picture is chosen 36, we

have the following L∞ estimate for any m > 0 37

‖u‖L∞ 6 Cm · ‖F‖
n
m
Lp .

The one claimed above is for m = 1. It might seem better to have bigger m in sight

of the lower L1 bound of F . If one considers “rescaling” relation between u and F ,

m = n2 might be a good choice.

Remark 3.2.9. This above discussion makes use of the local argument. As mentioned

35Let’s emphasize that this D only depends on the background form ω over X. Of course, we can
choose it to be smaller than 1 for the convenience of later application where D is more favorable to
be like that. It’s not that essentially anyway. This T is just the S +D before.

36The function v = 0 and the minimal value of u would be larger than T−C for a positive constant
C which depends only on the background form ω over X.

37We need the obvious lower L1 bound of F from the cohomology condition, i.e., the global integral
over X is known to be a positive constant.
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before, there is a corresponding global argument for boundedness result and we can also

use it to do the same thing as above. Actually for this argument, we can consider an

interval [T − 1
2
, T ] where the values of u can stretch over which means the sublevel sets

are not empty. 38 Then similarly we can get a lower bound of T and hence for u. It

seems to be simpler than the previous argument. Usually, we can argue more brutally

and concisely using global argument. But in my opinion, local argument gives better

description about what’s really happening. Furthermore, local argument is necessary

for the continuity result in the case that we are mainly interested in at least for now.

There might be another way to get this bound as follows.

If we can choose S +D such that

Cm · A
1
n

(
Cap(U(S +D), V )

) m
n2 =

1

2
· · · · · · (W ),

then we have 1
2

6 Cm ·A
1
n (−S−D)−

m
n2 which gives −S−D 6 Cm ·A

n
m = Cm · ‖F‖

n
m
Lp .

Combining with D 6 κ
(
Cap(U(S +D), V )

)
6 1

2
, we have the same L∞ estimate for

any m > 0 as above.

Here we do need the equality in (W ) 39, but I am not so sure about whether we

can actually do it. The trouble comes from the picture of u when relative capacity of

U(T ) might jump to “0” which seems possible to me. This seems to be an interesting

question.

• Part (5): Continuity of Bounded Solution

For many reasons, it would be good to know the solution from above is continuous.

For example, there are a lot of choices involved in getting the solution, but we would

like to see the solution is independent on all the choices, i.e., we want some kind of

uniqueness of the solution. It’s quite natural to see a proof for such a uniqueness result

would involve comparison principle. For the case of a closed manifold, continuity of

the functions we want to compare is usually required in classic version of comparison

principle. 40 And in classic pluripotential theory, it is also more favorable if the

function is continuous.

38Clearly if the values of u can’t stretch over an interval of length 1
2 , we are done since the

maximum is 0.
39What we need is upper and lower bounds of the left hand side by constants. In the previous

discussion, we immediately apply the CLN inequality. Maybe now we have chosen a wrong time to
fix the number.

40We’ll see later that for projective or even closed Kähler manifolds, this is not so necessary. We
can compare any two bounded plurisubharmonic functions.
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Now we start to prove the continuity of the solution u got before. The essential

step of the argument, as in [Koj1], is mainly contained in the proof of the uniform

L∞ bound above. Let’s point out that this argument actually works for any bounded

solution u for the equation

(ω +
√
−1∂∂̄u)n = Fωn

where ω +
√
−1∂∂̄u > 0 in the sense of current and both sides are in the sense of

(Borel) measure. We do not need that the solution is from the approximation method.

All the following is quoted from [Koj1]. Suppose a bounded solution u is not con-

tinuous (over X). Since it’s already upper semi-continuous from plurisubharmonicity,

we can assume d := supX{u − u∗} > 0 where the lower “∗” indicates taking lower

semi-continuization. Provided the boundedness of u, we know d <∞.

By noticing that −u∗ is upper semi-continuous, we can safely use “max” instead

of “sup” in the definition of d and in fact the set Y := {u − u∗ = d} is closed and

nonempty by assumption. Moreover we can have x0 ∈ Y such that u(x0) = infY u as

follows.

Suppose u(xj) → infY u as j →∞ with xj ∈ Y . Since Y is closed, we can assume

xj → x0. Just need u(x0) has the right value which does not trivially follow from the

upper semi-continuity. But we can get this from the simple argument below.

We already have as j →∞,

u(xj) → infY u, − u∗(xj) = d− u(xj) → d− infY u.

From upper semi-continuity, we know

u(x0) > infY u, − u∗(x0) > d− infY u.

Now we can take the summation to conclude u(x0) − u∗(x0) > d. It has to be

equal from the definition of d, and so the two >’s before the summation would have

to be =’s. That’s just what we want.

In the following, we want to draw a contradiction from the existence of such a

point x0.

Consider a coordinate chart centered at the point x0. Assume it’s a unit ball,

B(0, 1) where x0 is the origin 0. Then as before, we can take the local potential for
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ω, φ, which is minimal at the center x0 and there is a uniform gap between the values

of φ for the very outer part of the ball and x0, saying infSφ − φ(0) > b > 0 where

S = B̄(0, r) \ B(0, r
2
) with r ∈ (0, 1) being fixed and b is a positive constant which

does not depend on the location of x0 on X 41. Here of course φ is also uniformly

bounded no mattter where x0 is. Since we know that u is bounded over X, it is

justified to assume v := u + φ > 0 on B(0, 1) and A := u(x0) + φ(0) > d by using

some proper choice. Of course we have already implicitly identified the coordinate

neighbourhood on X with the unit ball in Cn.

Using convolution in B(0, 1), we can get a sequence of smooth plurisubharmonic

functions vj decreasing to v in any relatively compact sets in B(0, 1). In fact we

just need to have the decreasing approximation for a smaller ball in the following

discussion.

Now we claim that considering in B′ = B(0, r), for some a0 > 0 and t > 1, the

sets W (j, c) := {w + c < vj} where w := tv + d − a0 are nonempty and relatively

compact in B′ for c belonging to a uniform interval which does not depend on j for j

sufficiently large. Here the constant a0 and t might well depend on the situation. But

this would still be enough for us to apply the results before to draw a contradiction

at the end.

Proof of the claim: We consider the family of sets

E(a) := {v − v∗ > d− a} ∩ B̄′ = {u− u∗ > d− a} ∩ B̄′

for a ∈ [0, d] where we’ve used the smoothness of the local potential φ for ω.

We have 0 ∈ E(a), E(0) = Y ∩ B̄′, and E(d) = B̄′. Furthermore, they are all

closed by upper semi-continuity of u−u∗ and of course E(a) shrinks to E(0) as a→ 0.

Define c(a) := u(0)− infE(a)u. We can see lima→0c(a) = 0 below.

First, since c(a) > 0 which is trivial from above, we have lima→0 c(a) > 0.

Now suppose lima→0 c(a) > 0. We have a positive constant γ and a sequence {ak}
going to 0 such that u(0) − infE(ak)u > 2γ. Moreover, we can take a sequence {xk}
such that xk ∈ E(ak) and u(0) − u(xk) > γ. Then take a subsequence if necessary,

we may assume xk → x ∈ E(0) ⊂ Y .

From the definition of x0 (i.e., the origin of the ball), u(x) > u(x0). And using

the upper semi-continuity of u and −u∗ together with the inequality for xk’s above,

41Actually we don’t need the uniformality for all points on X here. This argument for continuity
is more local in flavor than that for boundedness.
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we get:

lim
k→∞

u(xk) 6 u(0)− γ 6 u(x)− γ, lim
k→∞

(−u∗(xk)) 6 −u∗(x).

Sum them up to get:

u(x)− u∗(x)− γ > lim
k→∞

(u(xk)− u∗(xk)) > lim
k→∞

(d− ak) = d

which contradicts the choice of d.

Thus we have lima→0 c(a) 6 0 and so lima→0c(a) = 0.

Now let’s fix a positive constant a0 such that

0 < a0 < min(
b

3
, d), 0 6 c(a) <

b

3

for a 6 a0. Then we can choose t > 1 such that

(t− 1)(A− d) < a0 < (t− 1)(A− d+
2b

3
).

A special version of Hartogs’ Lemma as follows would be useful for us.

Lemma 3.2.10. With all the notations from before, if v− tv∗ < C on a compact set

K ⊂ B̄′, then we have vj < tv + C on K for j sufficiently large.

Proof. For any x ∈ K, we have that there is a neighbourhood V of it and a constant

C ′ < C such that tv > supV̄ v − C ′ over V̄ as follows.

Suppose it is not true. Then for any constant C ′ < C and a sequence of shrinking

(to x) neighbourhoods {Vk}, there exist {xk} such that xk ∈ V̄k and t · v(xk) 6

supV̄k
v−C ′. Taking limit as k →∞, we have t · v∗(x) 6 limk→∞ t · v(xk) 6 v(x)−C ′.

Thus v(x) − tv∗(x) > C ′ which clearly contradicts the assumption of the lemma

at x since this would be for any C ′ < C.

In the mean time, from Hartogs’ Lemma, we have vj 6 supV̄ v + (C − C ′) for j

sufficiently large and on a smaller neighbourhood of x. 42

Combining these two inequalities, we would have the result for a neighbourhood

of x and the compactness of K can now be used to conclude the proof for this version

of Hartogs’ Lemma.

42In fact, we can have this without using the original form of Hartogs’ Lemma since our vj ’s are
from convolution of v.
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Now let’s come back to our picture. Considering y ∈ S ∩ E(a0) and recalling the

definition for all the constants, we have:

v∗(y) = φ(y) + u∗(y) > φ(0) + b+ u(y)− d > φ(0) + b+ u(0)− c(a0) > A− d+
2b

3
.

We can also get (t− 1)v∗(y) > a0 from the definition of constants t and a0, which

would obviously imply the following:

v(y) 6 v∗(y) + d < tu∗(y) + d− a0.

By a simple contradiction argument using the semi-continuity for both sides and

the closedness of S ∩E(a0), we see this inequality actually holds for a neighbourhood

of S ∩ E(a0).

By the special version of Hartogs’ Lemma discussed above, we see vj < tv+d−a0

on a neighbourhood V of S ∩ E(a0) for j sufficiently large.

Then consider the part S \ V . We have v − v∗ < d − a0 over it since there is no

intersection with E(a0). Thus we can use Hartogs’ Lemma again, noticing t > 1 and

v > 0, to get:

vj < v + d− a0 < tv + d− a0

over S \ V for j large enough.

Hence we have vj < tv + d − a0 on S for j sufficiently big. Thus if we set

w = tv+ d− a0 as stated before, it’s easy to see W (j, c) will be relatively compact in

B′ for c > 0 and j sufficiently large.

Also notice that we have:

tv∗(0) + d− a0 − v(0) = t(A− d) + d− A− a0 = (t− 1)(A− d)− a0 < −a1

for some positive constant a1 from the choice of t.

That is just tv∗(0) + d − a0 < v(0) − a1 6 vj(0) − a1. From the definition of v∗

and the smoothness (even just continuity) of uj, we can see below that for c 6 a1,

there are points as near to 0 as possible which will belong to W (j, c) for any j and

this would imply the nonemptiness of those W (j, c)’s.

More precisely, if t · v(x) + d− a0 > vj(x)− c for x in some small neighbourhood

of 0, then we see for any δ > 0,

tv(x) + d− a0 > vj(0)− c− δ
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in some small neighbourhood of 0 depending on δ from the continuity of (each fixed)

vj. Thus t·v∗(0)+d−a0 > vj(0)−c−δ for any δ > 0, and so tv∗(0)+d−a0 > vj(0)−c.
This would provide a contradiction if c 6 a1.

So far we have seen that for all j’s sufficiently large, W (j, c) would be nonempty

and relatively compact in B′ for c ∈ [0, a1].

Remember the equation v (similarly for w after a rescaling) would satisfy in

B(0, 1):

(
√
−1∂∂̄v)n = fdλ

with nonnegative function f ∈ Lp for some p > 1 and dλ being the standard Lebesgue

measure. This would justify Condition (A) in Part (2) from the discussion of Part

(3) just as before.

Thus we are completely in the set-up for using the previous results and can arrive

at:

a1 6 κ
(
Cap(W (j, 0), B(0, s))

)
for all j’s large enough where 0 < r < s < 1. This would give a lower bound for

Cap
(
W (j, 0), B(0, s)

)
for all large j’s. But notice that

W (j, 0) = {w < vj} = {tv + d− a0 < vj} ⊂ {v + d− a0 < vj}

and the fact mentioned before that vj would converge to v with respect to capacity.

This would give a contradiction for j large enough since we have d− a0 > 0 from the

choice of a0 and W (j, 0)’s are in B′.

So such a situation can not appear. Hence u has to be continuous.

Remark 3.2.11. In fact there is another way of proving the continuity of the solution

got by approximation argument. The essential computation has also been carried out

in [Koj2] in a local version. But it is easy to observe that the argument would work

perfectly in case of a closed manifold. We’ll give some details later. Unlike the proof

above, this proof works only for any bounded solution got by approximation, i.e., the

method we actually use to derive such a solution since basically we are proving the

convergence is actually uniform there.

Though it is at least not apriori trivial to see that any bounded solution can be

approximated like that, since the first argument works for any bounded solution, using

the stability result in the part coming up, we see that it is indeed the case.

• Part (6): Stability and Uniqueness of Continuous Solution
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For this part, we are going to use some global version of the notions, which are

defined previously for domains in Cn, for the closed manifold X. And of course, global

version of the results from previous parts will also be used. Since such generalization

of the notions and results are quite natural and in fact will be put into details later,

we’ll just use them without explicitly defining or stating them here.

Just notice that for now we only use continuous functions basically for the consid-

eration of comparison principle following the argument in [Koj2] 43 and some other

results. The subtlety will be put out along the way and probably more related details

will appear for further consideration.

Specifically, in this part, all the plurisubharmonic functions with respect to the

Kähler metric ω (or say ω-PSH) are continuous by definition 44. It makes sense to

only study these functions for uniqueness result of bounded solution for the current

Monge-Ampere equation as we have already proved in Part (5) that bounded solution

for this equation is actually continuous.

The main difference from the local discussion before, where there is no background

metric ω appearing explicitly 45, would be that convex linear combination is now used

in order to preserve the background metric. But actually we can easily see this is a

rather superficial point and at many places, there is no need to follow this rule that

seriously.

Basically, all the following argument is directly quoted from [Koj2].

Claim: Let φ, ψ ∈ PSHω(X) (i.e., being ω-PSH functions on X) and satisfy

0 6 φ 6 C, then for s > C + 1, we have

Capω({ψ + 2s < φ}) 6
(C + 1

s

)n ∫
{ψ+s<φ}

(ω +
√
−1∂∂̄ψ)n.

Proof. Define E(s) := {ψ + s < φ}. Take any ρ ∈ PSHω(X) valued in [−1, 0]. Set

V = {ψ < s
C+1

ρ+ (1− s
C+1

)φ− s}.
Since −s 6 s

C+1
ρ − s

C+1
φ 6 0, we can easily deduce the following chain relation

of sets:

E(2s) ⊂ V ⊂ E(s).

Now quite similar to what is done in Part (1), we can have the following compu-

43Richberg’s method of approximation is well known to be able to justify comparison principle in
this case. However, it turns out that we can do much better than this as we’ll see later.

44This is not the case before!
45Local potential is used, so we only need to study plurisubharmonic functions.
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tation:

(
s

C + 1
)n

∫
E(2s)

(ω +
√
−1∂∂̄ρ)n 6

∫
V

(
s

C + 1
ωρ + (1− s

C + 1
)ωφ)n

6
∫
V

ωψ
n

6
∫
E(s)

ωψ
n

by the relation of sets above and applying comparison principle for the two functions

appearing in the definition of the set V . Here we have used the notation ωρ =

ω +
√
−1∂∂̄ρ, and similar for the others. This natural simplification of the notation

has appeared in Chapter 2 and will also be frequently used for less regular case here.

Finally we can conclude the result from the definition of Capω just as for the local

version of relative capacity.

Now let’s state the following version of stability result which is slightly weaker

than what’s achieved in [Koj2] because it can be proved for more general class of

functions (measures) than Lp class. But it quite suffices for our concern.

Theorem 3.2.12. In the same set-up as usual, for any nonnegative Lp-functions

f and g with p > 1 which have the proper total integral over X, i.e.,
∫
X
fωn =∫

X
gωn =

∫
X
ωn, suppose that φ and ψ in PSHω(X) satisfy ωφ

n = fωn and ωψ
n = gωn

respectively and are normalized to have maxX{φ − ψ} = maxX{ψ − φ} by adding

constants.

If ‖f −g‖L1 6 γ(t)tn+3 for γ(t) = Cκ−1(t) with some proper nonnegative constant

C depending only on the Lp-norms of f and g 46 , where κ−1(t) the inverse function

of essentially the κ function appearing in Part (2), then we can conclude that

‖φ− ψ‖L∞ 6 Ct

for t < t0 where t0 > 0 depends on γ and C depends on the Lp-norms of f and g.

Proof. Suppose ‖f‖Lp , ‖g‖Lp 6 A. We’ll be careful about the fact that the constants

in the argument will only depend on A and the function γ.

46The dependence on the manifold X and Kähler metric ω should be clear.
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For simplicity, let’s normalize to have
∫
X
ωn = 1. And in fact, we can also assume

maxX{φ− ψ} = maxX{ψ − φ} > 0 since the case for 6 0 is trivial 47.

Without loss of generality, assume
∫
{ψ<φ}(f+g)ωn 6 1 since

∫
X
fωn =

∫
X
gωn = 1.

Then by adding the same constant to φ and ψ which obviously affects nothing,

we can assume 0 6 φ 6 a where “a” is a positive constant only depending on A from

the boundedness result before.

Of course it is OK here to take a larger “a”, which we’ll actually do below, as long

as the dependence on A is clear enough, or say finally we can still fix it to be some

positive constant only depend on A.

As limt→0γ(t) = 0 by definition and the property of the function κ, we can fix

0 < t0 < 1 sufficiently small such that γ(t0)t0
n+3 < 1

3
, which will also hold for

0 < t < t0 since γ is obviously decreasing.

Fix such a t for now and set Ek = {ψ < φ− kat} where the “a” is from above but

we still have not made the choice yet.

Clearly we have:∫
E0

gωn =
1

2

∫
E0

(
(f + g) + (g − f)

)
ωn 6

1

2
(1 +

1

3
) =

2

3
.

Now we construct a function g1 which is equal to 3g
2

over E0 and some other

nonnegative constant power of g for the complement. By the above estimate, it

is easy to see that one can choose a proper constant (in [0,1]) such that g1 is still

nonnegative with Lp-norm bounded by 3A
2

, and more importantly it has the proper

total integral over X.

So we can find a continuous solution ρ ∈ PSHω(X) as before by the approximation

method such that

ωρ
n = g1ω

n, maxXρ = 0

with lower bound of ρ only depend on A 48. By enlarging “a” if necessary which

clearly won’t affect the set E0, we can assume the lower bound of ρ is −a. Now we

can finally fix our constant “a” which clearly only depends on A in an explicit way.

47In this case, we can have φ− ψ 6 0 and ψ − φ 6 0, which says φ = ψ. In other words, we have
the compatible direction.

48Here besides directly using Lp-norm, one can also use the fact that
∫

S
g1ω

n 6 3
2

∫
S
gωn for any

set S to justify Condition (A) in Part (2). Essentially, we still have to use the result in Part (3),
and the control would of course be the same. Notice we’ve used the existence of continuous solution
at this point for the solution ρ.
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By noticing that −2at 6 −tφ+ tρ 6 0, it is easy to see

E2 ⊂ E := {ψ < (1− t)φ+ tρ} ⊂ E0.

Let’s denote the set {f < (1− t2)g} by G. Then over E0 \G, we have:

(
(1− t2)−

1
nωφ

)n
> gωn,

(
(
3

2
)−

1
nωρ

)n
= gωn.

Hence we can conclude that over E0 \G, as measure,

(
3

2
)−

n−k
n (1− t2)−

k
nωφ

k ∧ ωρn−k > gωn.

Remark 3.2.13. This is a rather trivial result in smooth case which is just a direct

application of algebraic-geometric mean value inequality. Then by approximation ar-

gument, it should also hold in our case here. For the conclusion above, there is no

need to restrict us to the set E0\G. We can consider over X and use gχ
E0\G

ωn for the

right hand side. Actually the rigorous approximation argument is local and uses quite

some results about Dirichlet problem for Monge-Ampere equation. The continuity of

the functions are very involved in the proof which seems to be the main obstacle to go

through the whole argument in this part for merely bounded solutions 49. We’ll give

some details later when feeling necessary.

Let’s set q = (3
2
)

1
n > 1, and rewrite the above inequality as:

ωkφ ∧ ωρn−k > qn−k(1− t2)
k
n gωn

over E0 \G. Now the following computation is quite obvious: 50

ωtρ+(1−t)φ
n >

(
(1− t)(1− t2)

1
n + qt

)n
gωn

>
(
(1− t)(1− t2) + qt

)n
gωn

>
(
1 + t(q − 1)− t2

)
gωn

>
(
1 +

t

2
(q − 1)

)
gωn.

(3.1)

49It might seems unnecessary to consider merely bounded solutions in the current case as they are
in fact continuous. But it might still be interesting for more general cases.

50t below can be taken to be sufficiently small.
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From the definition of G and assumption of the theorem, we also have:

t2
∫
G

gωn 6
∫
G

(g − f)ωn 6 γ(t)tn+3

which is just: ∫
G

gωn 6 γ(t)tn+1. (3.2)

Hence we can have the following inequalities:

(
1 +

t

2
(q − 1)

) ∫
E\G

gωn 6
∫
E

ωtρ+(1−t)φ
n (the measure inequality (3.1))

6
∫
E

ωψ
n (comparison principle)

6
∫
E\G

gωn + γ(t)tn+1 (the integration inequality (3.2)).

and arrive at:
q − 1

2

∫
E\G

gωn 6 γ(t)tn.

Therefore by noticing E2 ⊂ E, we get:

q − 1

2
(

∫
E2

gωn − γ(t)tn+1) 6
q − 1

2
(

∫
E2

gωn −
∫
G

gωn) 6
q − 1

2

∫
E\G

gωn 6 γ(t)tn,

and so we have ∫
E2

gωn 6 (t+
2

q − 1
)γ(t)tn 6

3

q − 1
γ(t)tn

for t small enough.

The claim proved before tells us:

Capω(E4) 6 (
a+ 1

2at
)n

∫
E2

gωn.

Combining this with the previous inequality, we have:

Capω(E4) 6 (
a+ 1

2a
)n

3

q − 1
γ(t).

Thus if E ′ := {ψ < φ− (4a+ 2)t} is nonempty, by the argument for boundedness

result before, we should have:

2t 6 κ(Capω(E4)) 6 κ((
a+ 1

2a
)n

3

q − 1
γ(t)) = t.
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Clearly this is a contradiction for t > 0. Here as mentioned at the beginning, we

have used a slightly different version of the result from what’s quoted before, which

considers the global case when we are not in a domain in Cn and have a background

metric. We’ll say more about this later.

Anyway, we have from above that ψ > φ− (4a+ 2)t.

Hence maxX(ψ − φ) = maxX(φ − ψ) 6 (4a + 2)t, which will give the desired

conclusion.

Now from this stability result, it is easy to get uniqueness result for continuous

plurisubharmonic solutions which are normalized to have maximum 0 over X for

Monge-Ampere equation with the general right hand side since they would be the

same up to a constant 51, but the constant would have to be 0 by the normalization.

One can easily see the proof can be simplified a little if we only care about the

uniqueness result. But this result above actually gives much better description of the

variation of the solution under the perturbation of the right hand side of the equation

(i.e, the measure).

Remark 3.2.14. For our main consideration, as we’ll see later, the discussion in this

section would be of little use since we have an extra term eu on the right hand side

of the equation mainly interested in and the argument above can’t be carried through

directly.

In the mean time, the favorable sign of u here might make comparison principle

alone sufficient for proving uniqueness result, and so it’s only left to justify the appli-

cation of comparison principle in all kinds of situation. In fact there would be some

other ways to get uniqueness result for this modified equation in various cases. More

discussion can be found in Appendix.

However, the discussion in this part is quite logically satisfying as a generalization

of classic uniqueness result where the right hand side is smooth.

3.3 Application to Modified Equation

In this section, we apply or adjust the argument quoted above for the modified equa-

tion below which is more like the equation discussed in the previous chapter:

(ω +
√
−1∂∂̄u)n = euFωn

51Consider the case f = g here. In fact the constant C in the definition of γ can be 0 in this case.
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where ω is a Kähler metric over X and F is a nonnegative Lp(X) function over X for

some p > 1 with
∫
X
C · Fωn =

∫
X
ωn for some positive constant C. In other words,

we are in exactly the same situation as before with just an extra term eu on the right

hand side.

In classic consideration about Monge-Ampere equation, this term eu makes our

life much easier 52. For the current discussion, it at least won’t give us too much extra

trouble as we’ll see below.

Let’s first prove the existence of bounded solution for this equation. We still try

to solve it by using approximation (of F ) in the same spirit as before. In other words,

we want an apriori estimate for (smooth) approximation solution.

Considering the following family of equations:

(ω +
√
−1∂∂̄uj)

n = eujFjω
n

where {Fj} is a sequence of positive smooth functions over X which converges to F

in Lp-norm as constructed before.

Classic result guarantees the existence and uniqueness of smooth uj’s. As be-

fore, we should first see uj’s are uniformly bounded. Being motivated by the classic

argument for this kind of equations, let’s consider another family of equations:

(ω +
√
−1∂∂̄vj)

n = Cj · Fjωn

where Cj’s are positive constants chosen to satisfy
∫
X
Cj · Fjωn =

∫
X
ωn. It’s easy to

see that as j →∞, Cj → C, and moreover Cj · Fj → C · F in Lp-norm. Clearly Cj’s

are uniformly bounded.

From the results before, we have a uniform bound for all vj’s if we require

maxXvj = 0. Thus by taking a positive constant C large enough, for ṽj := vj + C,

we have

(ω +
√
−1∂∂̄ṽj)

n = Cj · Fjωn 6 eevjFjω
n.

Comparing this with the equation for uj, we arrive at

(ω +
√
−1∂∂̄ṽj)

n 6 eevj−uj (ω +
√
−1∂∂̄uj)

52We should have got a little taste of this fact with the discussion in the previous chapter, though
we are already in degenerate case there.
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which can be rewritten as

(
ω +

√
−1∂∂̄uj +

√
−1∂∂̄(ṽj − uj)

)n
6 eevj−uj (ω +

√
−1∂∂̄uj)

n.

By maximum principle, considering the minimal value point of ṽj − uj, it is easy to

see ṽj > uj.

Thus we have got a uniform upper bound for all uj’s. Similar argument will pro-

vide the uniform lower bound. Just as the discussion in the previous chapter, the sign

of u in the term eu is very important to carry through this argument. Smoothness

is important for maximum principle argument used above, and so we do not claim

the apriori estimate for bounded solution here. 53 Actually, it can still be achieved

by going around this point using the continuity and uniqueness result which will be

discussed shortly. Basically, we want to say that any bounded (and then continuous

in this case) solution appears like that.

Now we want to get a solution for the original equation by taking limit in some

proper sense and then taking the upper semi-continuation of the limit. There is a

little difference in justifying that the limit would be a solution, i.e., make both sides

of the equation be the same measure, which can be clarified as follows.

In fact we only have to justify the function u got from the above procedure will

satisfy: ∫
X

euFωn =

∫
X

ωn =

∫
X

(ω +
√
−1∂∂̄u)n,

which then guarantees the measure inequality (ω+
√
−1∂∂̄u)n > euFωn got from the

limiting argument 54 an equality. And this can be easily done below.

Obviously we have
∫
X
eujFjω

n =
∫
X
ωn. The following inequality is also trivial:∫

X

|eujFj − euF |ωn 6
∫
X

|eujFj − eujF |ωn +

∫
X

|eujF − euF |ωn.

The control for the first term on the right would come from the uniform bound

of uj’s and the convergence of Fj to F . And we can use Dominated Convergence

Theorem, which is justified by the uniform boundedness of uj’s got before, to control

the second term.

53The L∞-norm of u is involved in the Lp-norm of the measure on the right hand side. It’s even
in the exponent which makes the explicit bound derived before hardly be of any help.

54Use lower limit for uj on the right hand side to get u there. The limit would be pointwisely
almost everywhere, and so different kinds of limits will actually give the same limit.
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Hence the sequence {eujFj} converges to euF in L1-norm 55. Finally, we can

conclude that ∫
X

euFωn =

∫
X

ωn.

It is easy to observe that the continuity of the above solution u follows from ex-

actly the same argument in Part (5) before. This is also the case for any bounded

solution for this equation. Actually, we can directly apply the result there since the

measure on the right hand side is clearly Lp>1 provided the solution u being bounded.

Then we can see the uniqueness of continuous solutions as follows. It should be

pointed out that the full strength of the stability result as in Part (6) in the previous

section is useful here because the obvious argument using comparison principle and

the favorable sign of u on the right hand side of the equation can not quite get us

there in sight of that our F may have 0 locus with nonzero measure. We have to

be more careful than that. More precisely, by comparison principle, if we have two

continuous solutions u and v for the equation, then F has to be almost everywhere

0 in the set {u 6= v}. Thus the right hand side of the equation will have to be the

same Lp-measure after plugging in u or v. Now by applying the stability result in

the previous section, we conclude that u and v will be up to a constant. Hence they

should actually be the same simply by considering the integral of the right hand side

of the equation over X.

Remark 3.3.1. As mentioned before, continuous and uniqueness results actually

justify the apriori L∞ bound for bounded solution. But this method would not be so

satisfying logically.

Besides, it’s also very natural to ask about similar stability result for the equation

discussed in this section. As mentioned before, the original argument in the previous

section would not do the job directly. Intuitively, if one directly apply the stability

result there, then since the solution is also involved in the measure on the right hand

side of the equation, the assumption looks even stronger than the result. 56 But a

more delicate argument is likely to do the trick.

55We can actually have the convergence in Lp-norm by the above argument.
56This is fairly similar to the concern before about apriori L∞ estimate for bounded solution of

this equation.
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3.4 Direct Application of Kolodziej’s Results

In this section, we want to directly apply the previous results in this chapter to the

case considered in the previous chapter. But first, we’ll give some idea about how the

set-up of Theorem 1.3.2 stated in Introduction comes into being.

Recall our main interest there is the case when the class [ω] is no longer Kähler,

i.e., for the equation below

(ω∞ +
√
−1∂∂̄u)n = euΩ

over a projective manifold X where Ω is a smooth volume form and ω∞ is not a

Kähler metric but with [ω∞] integral, nef. and big.

Let’s further assume [ω∞] is semi-ample. Thus we can have a map P : X → CPN

for some positive integer N using the holomorphic sections of the holomorphic line

bundle correspondent to k[ω∞] with some large enough positive integer k. We also

know the (possible singular) image will have the same dimension as X since we have

[ω∞]n > 0 from the nef. and big assumption.

Remark 3.4.1. Classic results in algebraic geometry (as in [Ka2]) tell us this would

be the case if we are talking about nef. and big canonical bundle, KX . But it is

not true that general nef.and big line bundle would be semi-ample. This semi-ample

assumption is quite essential for our argument in this whole business.

Moreover, instead of the general semi-ample line bundle, we’ll frequently talking

about the canonical bundle, KX , where there is some other terminology related, but it

should be quite clear that our argument works perfectly for general line bundle in the

corresponding situation.

Now we have [ω∞] = 1
k
·P ?[ω

FS
] 57 where ω

FS
is the Fubini-Study metric on CPN .

Of course our main interest is for P not being an embedding. But we’ll still require

it to be birational to its image at least for now 58 Basically one just considers the

blow-down picture at this moment.

By a simple transform of the original equation, we can use 1
k
·P ?ω

FS
instead of ω∞

in the expression without changing any essential character. Thus we basically arrives

at the set-up in Theorem 1.3.2 in Introduction.

57Usually, ∗ is used to stand for pullback or pushforward action, but in this section we use ?
instead since upper semi-continuization also appears below which we have used ∗ to denote it.

58We’ll see later that it’s indeed the case if we take the interger k large enough.
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In this section, we consider the case when the image, P (X), is actually a complex

submanifold of CPN 59. And we also assume that P is a birational morphism from

X to P (X), i.e., P is biholomorphic after removing some (strictly lower dimensional)

subvarieties from X and P (X) respectively.

In this case, we can consider the original equation over X as an equation over

P (X) as follows:

(
1

k
ω

FS
+
√
−1∂∂̄v)n = evΩ′,

where Ω′ is a measure over P (X) with its pullback over X by P to be the (smooth)

measure Ω, i.e., P ?Ω′ = Ω in the sense of measure.

For the well-definedness of Ω′ with any general smooth volume form Ω over X, we

have used the birationality of the map P . In fact, Ω′ is essentially just the pullback

of Ω by the inverse of P out of some subvariety in P (X). In other words, Ω′ = P?Ω

where P?Ω is considered as the pushforward of the measure Ω over X.

It is quite easy to see that Ω′ will be Lp for some p > 1 with respect to a usual

smooth measure over P (X) which corresponds to a smooth volume form on P (X).

The idea is that actually one can see the singularities (or poles) are just along the

part of P (X) where X has some subvarieties crushed onto each point by the map P ,

moreover the orders of the poles basically just correspond to the dimensions of the

corresponding subvarieties which are clearly strictly smaller than the dimension of X

(and also P (X)). Using this picture, as we can see that P?Ω is clearly L1 over P (X),

by the explicit form of (possible) singularities as 1
rα where r is like the distance to the

subvariety, we can conclude it to be actually Lp for some p > 1 since it is an open

condition for r here.

The equation we want to solve now is exactly in the situation discussed in the

previous section. So we’ll have a continuous solution v of it which is plurisubharmonic

with respect to ω = 1
k
ω

FS
. And both sides of the equation are measures over P (X).

Now we can pull back everything to X by P . The following equation over X is

what we get:

P ?
(
(
1

k
ω

FS
+
√
−1∂∂̄v)n

)
= eP

?vP ?P?Ω.

Notice obviously that P ?v is a continuous plurisubharmonic function with respect

to P ?( 1
k
ω

FS
) = ω∞, and so (ω∞ +

√
−1∂∂̄P ?v)n is a (Borel) measure over X.

At the first sight, it looks like that by a local argument using approximation (from

59Of course with complex dimension n from discussion before.
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convolution) and the classic weak convergence result, we can deduce:

P ?
(
(
1

k
ω

FS
+
√
−1∂∂̄v)n

)
= (ω∞ +

√
−1∂∂̄P ?v)n.

The natural idea is as follows. Both sides are obviously the same when v is smooth,

so it would be true for the smooth approximation functions and then taking the limit

seems to give us the conclusion. Here for the left hand side, we are using the natural-

looking fact that the pullback of a convergent sequence of measures (as measure, i.e.,

the integration over any Borel set converges) is still a convergent sequence of measures

with the corresponding limit. We are not saying

P ?(
1

k
ω

FS
+
√
−1∂∂̄v) = ω∞ +

√
−1∂∂̄P ?v

(for complex dimension greater than 1) and in fact the left hand side above does not

even make sense in general.

But notice there is yet some other problem for the above argument. More pre-

cisely, the convergence of measures coming from the monotonous convergence of the

potentials is in the sense of distribution and will not give the convergence in the

sense of measure as used above (though it gives the convergence in the weak sense of

measure, i.e., one can use compactly supported continuous functions to test the con-

vergence) generally speaking. We can use the following simple example to illustrate

this point.

Consider in the Euclidean ball B2 ⊂ Cn. We have seen before that the (Borel)

measure (
√
−1∂∂̄uB̄1

)n is supported on ∂B1, where uB̄1
is the relative extremal func-

tion of B̄1 with respect to B2. Now consider the convolution of the function uB̄1
, uε.

At this moment, it should be easy to see (
√
−1∂∂̄uε)

n converges to (
√
−1∂∂̄uB̄1

)n in

the sense of current (distribution) as ε → 0 60. Since the measures correspondent

to uε’s are smooth, the integrals of them over ∂B1 should be 0. But the integral of

the limiting distribution (measure) over ∂B1 is equal to Cap(B̄1, B2) from the results

introduced before which is clearly positive. Hence there is no convergence in the sense

of measure like that in general case.

So it is not justified to use the convergence of the pullback measures on X. But if

a positive top degree distribution is = or > to another one in the sense of distribution,

then this relation also holds in the sense of measure by definition. This is of course a

trivial but handy fact for us.

60We can say this over B2 as ε→ 0. The convolution which is defined in a slightly smaller set but
enlarging to B̄2.
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As we see it, the result itself considering the pullback equation on X is so natural,

and so it should be true. In fact a more careful global argument will justify it as

follows.

For convenience, we set ω = 1
k
ω

FS
. Let’s take a look at how we get v first.

Consider the equation on P (X): (ω +
√
−1∂∂̄v)n = evP?Ω.

Take a sequence of functions {Fj} such that

Fj ∈ C∞(P (X)), Fj > 0, Fj →
P?Ω

ωn
in Lp(P (X)) as j →∞.

We start with solving the approximation equations,

(ω +
√
−1∂∂̄vj)

n = evjFjω
n.

And the solution v for the original equation is basically the pointwise limit of vj

almost everywhere as j →∞ after taking a subsequence if necessary, which is in fact

the everywhere pointwise limit for the first convergence below from the property of

plurisubharmonic functions. Let’s set

Uj = (maxk>jvk)
∗, Wj = mink>jvk, Ej = mink>jFk.

It’s easy to see from definition that

Uj → v decreasingly, Wj → v increasingly, Ej →
P?Ω

ωn
increasingly

almost everywhere on P (X) as j →∞.

Furthermore, it is OK to pull back the approximation equations to X as follows

since they all contain only smooth objects:

(
ω∞ +

√
−1∂∂̄(P ?vj)

)n
= eP

?vjP ?Fjω∞
n.

And we also have the correspondent convergences:

P ?Uj → P ?v decreasingly, P ?Wj → P ?v increasingly, P ?Ej →
Ω

ω∞n
increasingly

almost everywhere over X and in fact the convergence is everywhere for the first one

as mentioned before. It might be a good place to point out the trivial fact that the

pullback of a plurisubharmonic function by a holomorphic map is still plurisubhar-
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monic (see [Le], here the situation of pullback being −∞ clearly won’t happen.).

It is quite easy to see:

(
ω∞ +

√
−1∂∂̄(P ?Uj)

)n
> eP

?WjP ?Ejω∞
n

by applying the classic fact about the measure from the function max{u, v} with

u and v plurisubharmonic, and the weak convergence of current coming from the

monotonous convergence of potential which is stated before. And of course, the

inequality for two positive currents will also give the inequality in the sense of measure.

Now by taking j →∞, we arrive at

(
ω∞ +

√
−1∂∂̄(P ?v)

)n
> eP

?vΩ.

Here we’ve used the monotonicity of the (increasing) convergences to draw the con-

vergence for the right hand side. Finally, one uses∫
X

eP
?vΩ =

∫
P (X)

evP?Ω = [ω]n = [ω∞]n =

∫
X

(
ω∞ +

√
−1∂∂̄(P ?v)

)n
to get = from >. The first and third =’s above comes from the birationality of P

and the rest two make use of the fact that v is bounded. Of course, [ω]n and [ω∞]n,

which are topological pairings, also make sense as integration of smooth forms over

closed manifolds.

Anyway, now we can conclude that

(
ω∞ +

√
−1∂∂̄(P ?v)

)n
= eP

?vP ?P?Ω.

The birationality of P and boundedness of P ?v will justify that the right hand side

is the same as eP
?vΩ in the sense of measure. So we can say u = P ?v is a (continuous)

solution for the original equation (over X) being considered.

For this case, we can have the uniqueness of such (continuous) solution from the

simple argument using comparison principle since Ω is a smooth (nondegenerate)

volume form over X.

Remark 3.4.2. We only know the solution is continuous by the discussion in this

section. Actually we can have more properties of it. 61 In fact, we can see that this

solution is actually the same one got from flow or perturbation methods used in the

61We have already assumed that P (X) is smooth and P is birational to the image up to now.
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previous chapter. One just has to prove that solution got there is continuous (or even

just bounded 62) in order to apply classic versions of comparison principle and go

through the simple argument above. Thus we can combine the properties got from all

these methods.

Actually this also the reason why we assume that Ω is a smooth volume form

which can clearly be weakened only for the argument in this section. Of course, then

the uniqueness argument won’t be so trivial as above.

The discussion in this section up to now is in the direction of pullback. Strictly

speaking, we have only treated the existence of continuous solution for the original

equation over X using it.

Actually the other direction can also be treated in this case. More precisely, start

with any bounded solution for the original equation over X. We can push forward it

to the smooth image, P (X) 63. Using classic extension results for plurisubharmonic

functions, we can easily see the pushforward function would be a bounded solution

for the corresponding equation over P (X) considered before. And clearly these two

operations, pullback and pushforward (of the solutions), are indeed inverse to each

other. So we can get everything for the equation over X in this degenerate case just

as in Kolodziej’s case.

Furthermore, it is quite straightforward to justify that the argument quoted before

from Kolodziej’s works can be well adjusted to the case when X is an orbifold. Of

course then all the things involved in the equation would be required to be compatible

with the orbifold structure.

Basically, instead of considering a domain in Cn, now we need to consider the

quotient of it by a finite group. It might seem to be quite different, but in fact all the

essential discussion would still be done in the domain contained in Cn, i.e., using the

orbifold coordinate chart, and all the notions from pluripotential theory are still for

this domain.

With this observation, we can see that the previous results discussed in this sec-

tion will still hold when the image, P (X), is a Kähler orbifold with the restriction of

ω
FS

being an orbifold Kähler metric and the map P also being compatible with the

orbifold structure 64.

62Actually, we do not need any more informationm than we already have now to see they are the
same in sight of the discussion for unbounded functions at the end of the previous chapter.

63Birationality is important to justify this.
64In order to preserve nice pullback property. In fact, later we’ll also consider the case of oribifold

image when the orignal argument in [Koj1] is generalized. At that time, we’ll need much less
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This ends our attempt to directly apply the results from Kolodziej’s works. Later

on, we’ll try to generalize the original arguments to prove more general and interesting

results, i.e., Theorem 1.3.2 in Introduction.

compatibility with the orbifold structure, for example, the map P doesn’t have to be a map between
orbifolds.
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Chapter 4

Generalized Results and Strategy

to Prove

Recall the (degenerate Monge-Ampere) equation we want to study is the following:

(ω∞ +
√
−1∂∂̄u)n = euΩ

over a projective 1 manifold X, where [ω∞] is big and semi-ample, (not ample though,

i.e., ω∞ > 0 with {ω∞n = 0} nonempty and not X itself) and Ω is a smooth volume

form for X.

In this chapter, we want to see which parts of Kolodziej’s original argument quoted

in the previous chapter need to be modified in order to be carried out similarly for our

case above. The main goal is still to find a bounded (and even continuous) solution

of this equation.

4.1 Generalization

This equation above has eu on the right hand side whose affect has been discussed

before. In other words, for L∞ estimate (of smooth approximation solution), little

effort is needed to translate the result for a proper equation without eu to that for

this equation. So instead of the equation above, let’s consider the following equation

(ω∞ +
√
−1∂∂̄u)n = Ω

1The projectivity is required to be compatible with the terminologies in algebraic geometry. We
can consider general closed Kähler manifolds using a more general picture as used in Theorem 1.3.2
which will be explained later.
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with the smooth volume form Ω satisfying
∫
X

Ω =
∫
X
ω∞

n > 0, which is more like

a generalization of the main equation considered by Yau a long time ago in [Ya].

This equation is also the main object in Kolodziej’s argument quoted in the previous

chapter.

Just as in Part (4) of Kolodziej’s argument, the solution is supposed to be obtained

by taking the limit of solutions for a family of approximation equations. Of course we

want the solvability of the approximation equations to be classic (well known). This

strategy is natural and I haven’t found any other essentially different way.

Unlike the situation before where the difficulty is from the general right hand side

of the equation, our trouble now comes from the semi-positivity of ω∞.

Remark 4.1.1. Actually, for most consideration using pluripotential theory, there is

no need for Ω to be a smooth (nondegenerated) volume form. We merely need it to be

a nonnegative Lp volume form just as in the original argument quoted before. And for

the approximation equations, one only needs to combine the approximation of Ω by

smooth volume forms with the additional approximation which will be introduced below.

Indeed, by directly applying Kolodziej’s results, we don’t have to make the measure on

the right hand side of the equation to be regular in order to have a (unique) continuous

solution for the following approximation equations.

We have already got a natural family of approximation equation as used in the

discussion about one of the perturbation methods in Chapter 2 as follows 2:

(ω∞ + εω +
√
−1∂∂̄uε)

n = CεΩ

where ω > 0 and
∫
X
CεΩ =

∫
X

(ω∞+εω)n for ε ∈ (0, 1]. Obviously, we have Cε ∈ (1, C].

From the classic (or Kolodziej’s when Ω is not so regular) results, we have no trou-

ble to find a unique (continuous) solution for each of these equations after requiring

the normalization supXuε = 0 (or maxXuε = 0).

Just as before, we only have to prove that uε’s are uniformly bounded (from below)

in order to get a bounded solution for the equation

(ω∞ +
√
−1∂∂̄u)n = Ω

2This strategy also works when using flow method or other perturbation methods. One just
notices the background metrics can be made in the form αω∞+ω where α is a positive constant and
ω is a changing metric, so the generalized argument below for boundedness (and other properties)
still works.
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by taking a limit of (a sequence of) uε’s as ε→ 0. 3 There are also some other prop-

erties we want to prove for the possible solution got like that. But as one can easily

observe in the quoted argument in the previous chapter, the boundedness argument

is really the heart of the whole program. We shall see later that it is almost the same

case for our case. For readers’ convenience, let’s restate the main theorem (Theorem

1.3.2) that we prove in this part of the thesis by pluripotential-theoretic argument

below.

Theorem 4.1.2. Let X be a closed Kähler manifold with dimCX = n > 2. Suppose

we have a holomorphic map P : X → CPN with the image P (X) of the same dimen-

sion as X. Let ωM
4 be any Kähler form over some neighbourhood of P (X) in CPN .

For the following equation of Monge-Ampere type:

(P ∗ωM +
√
−1∂∂̄u)n = fΩ, (4.1)

where Ω is a fixed smooth volume form over X and f is a nonnegative function

in Lp(X) for some p > 1 with the proper total integral over X (i.e.,
∫
X
fΩ =∫

X
(P ∗ωM)n), we have the following:

(1) (Apriori estimate) Suppose u is a weak solution in PSHP ∗ωM
(X)∩L∞(X) of

the equation with the normalization supXu = 0, then there is a constant C such that

‖u‖L∞ ≤ C‖f‖nLp where C only depends on P , ωM and p;

(2) (Existence of bounded solution) There would always be such a bounded solution

for the equation;

(3) (Continuity and uniqueness of bounded solution) If P is locally birational, then

any bounded solution is actually the unique continuous solution.

The understanding of the above statement should not be a problem now after all

the previous discussion in pluripotential theory. Let’s emphasize that we require an

extra assumption for (3) which is the local birationality of the map P . The meaning of

it should be self-evident at least intuitively and we have explained it in Introduction.

It would be better to explain this in the actual argument. We also know that this extra

assumption is not that restrictive and will be satisfied in most interesting geometric

pictures.

3In the original equation interested in, there is the term eu on the right hand side of the equation.
We can still see that the limit, which would officially be the upper semi-continuization of the upper
limit, indeed satisfies the equation. The crucial idea has already appeared in the previous chapter
where by taking subsequence if necessary, the limit would also be pointwisely almost everywhere as
in [Ho].

4The “M” is the initial of “model”. ωM can be understood as the model metric of original
degenerated metric interested in.
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Remark 4.1.3. Let’s point out that the integral
∫
X

(P ∗ωM)n is actually positive. This

is very easy to see by Sard’s Theorem since the dimension of P (X) is the same as

that of X.

For projective X, the bigness and semi-ampleness of [ω∞] is to provide us with a

map P as in the theorem. We require the image to be in CPN in order to control the

image P (X) a little bit.

To connect with the equation considered at the beginning, we put ω∞ = P ∗ωM

which is semi-positive.

In the following several sections, we discuss the idea of the proof for this theorem,

focusing on the differences from Kolodziej’s case and the arising difficulties. Brief

description about the way to treat them will also be provided.

4.2 Apriori L∞ Estimate

In this section, we consider (1) in Theorem 4.1.2 above. Let’s consider the apriori L∞

bound for those approximation solutions first.

We can’t just use the original argument of Kolodziej’s since ω∞ + εω is no longer

uniformly positive for ε ∈ (0, 1] which means if we consider the local potentials in

coordinate balls, they will be no longer uniformly convex. And then we can not have

a uniform “D” for the interval “[S, S + D]” considered there which is of course very

crucial for the (uniformality of) argument. This actually says that the picture of a

coordinate ball is too local as we see it now.

A closer look will tell us that this will only cause trouble when the minimum of uε

occurs close to the set {ω∞n = 0}. An important observation is that if one chooses a

domain which has those degenerated directions (of ω∞ as metric) going around inside,

we may still have the uniform convex potential for the domain, i.e., the values for

the very outer part are greater than those of the central part by a uniform positive

constant.

More precisely, assume each component of {ω∞n = 0} is mapped to a point by the

map P . If we take a ball around that point in CPN , then the preimage of that ball in

X would be a neighbourhood, V , of the component we start with. As ω∞ = 1
k
P ∗ω

FS
,

we have the (global) potential of ω∞ in V be convex in the sense above. This domain

V can no longer sit in Cn since it contains a closed subvariety.

Furthermore, we can see the domain V is also hyperconvex in the usual sense which

is quite important at several places for the original argument in [Koj1] as we’ve seen
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before. Of course there are a lot of other pullbacks on V of plurisubharmonic functions

in that ball in CPN . Though we’ve observed before that apparently hyperconvexity

may not be that essential at those places, it still give us the confidence to treat this

general domain V just as a nice domain in Cn.

It seems the treatment above will cause another problem since the perturbing met-

ric ω may (and should) not have a global potential in the domain V . But we can deal

with this by considering plurisubharmonic functions in V with respect to ω∞ + εω for

each ε ∈ (0, 1]. In fact we can also include the case when ε = 0 in the discussion where

they essentially coincides with the usual plurisubharmonic functions since ω∞ has a

global potential in V . The idea is that our argument would actualy be uniform for all

such ε’s once we get for the worst one, ε = 0 (or say ω∞ which is degenerate as metric).

From all the previous consideration, we see that in order to go through similar

argument for uniform boundedness of the approximation solutions in our situation,

it’s necessary (and sufficient) to have all those results in Parts (1) and (3) for the

domain V which is no long inside Cn together with the CLN inequality which is

used to control Cap
(
U(S + D), V

)
. Part (2) will be the same since it only contains

algebraic computation using the result from Part (1) 5.

We can easily have the version of CLN inequality over the above domain V from

the locality of the result itself. 6 We just need to get the uniform bound of L1-norm

for uε’s. As before, that should just be an application of Green’s formula using the

fact that supXuε = 0. Let’s provide some details since at first sight the changing

background metric ω∞ + εω might look troublesome.

For the L1-norm, we choose to use the smooth volume form ωn, and in fact we

use the Green’s function for ω. For fixed ε, suppose uε(x) = 0 7 and C > Gω where

Gω is the Green’s function for the metric ω. Since ω∞ + εω+
√
−1∂∂̄uε > 0, we have

∆ωuε = 〈ω,
√
−1∂∂̄uε〉 > −nε− 〈ω, ω∞〉 > −C

where C is uniformly chosen for ε ∈ (0, 1]. Basically, this tells that there should be

no worry for the changing background metric. Then we have the following standard

5We’ll see later there is a little difference here from the slightly different result for Step (1) with
background metrics. But it won’t affect the main argument.

6We can just divide V further into domains in Cn. The inequality for V can be got by taking
summation. The background metric and the local potential are changing in a very controllable way.

7uε should achieve its maximal value only by upper semi-continuity.
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computation:

0 = uε(x) =

∫
X

uεω
n +

∫
y∈X

Gω(x, y)∆ωuε · ωn

=

∫
X

uεω
n +

∫
y∈X

(
Gω(x, y)− C

)
∆ωuε · ωn

6
∫
X

uεω
n − C

∫
y∈X

(
Gω(x, y)− C

)
ωn

6
∫
X

uεω
n + C,

which gives the uniform L1 bound for uε’s by noticing that they are all nonpositive.
8

Part (3) looks like a difficult one to be generalized since the geometry for Cn is

fairly involved in the original discussion. It’ll be our main concern later.

4.3 Existence of Bounded Solution

Once we get all the necessary preparations above done, Part (4) can be directly carried

through for our case and provides the uniform boundedness of the approximation

solutions. Hence we can get a bounded solution for the degenerated Monge-Ampere

equation by taking a limit just as in Kolodziej’s where the argument is very local.

Remark 4.3.1. Indeed, uε is essentially decreasing as ε → 0 9 which will make the

limit easier to take. More details about this and some uniqueness results for bounded

solutions will appear later.

4.4 Continuity of Bounded Solution and Stability

In Part (5) of the original argument, we need a local smooth (continuous) approx-

imation of the bounded solution. At that time, we have no trouble since we have

convolution in Cn. But now we also need to consider the domain V where convolu-

tion is not available. This makes the whole argument more involved.

8The subtlety about less regular function arises similarly as before and can be treated in the
same way.

9We have this by maximum principle argument when the volume for Ω is good. Here we are
saying that it’s also the case when Ω is less regular.
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Remark 4.4.1. There are quite some classic and recent results about constructing a

decreasing sequence of smooth approximation functions for a (bounded) plurisubhar-

monic function. We might get into details of some of them later. But it seems to me

that the positivity of the background form is very crucial for these results. It’s slightly

different from the situation about comparison principle which will be discussed later.

The first attempt is to restrict us to the solution got from above since we have

some kind of approximation for it. Indeed, for the equation

(ω∞ +
√
−1∂∂̄u)n = euΩ,

we have, from before, a smooth sequence of uε decreasing to it globally on X with the

background metric linearly converging to ω∞. Now for simplicity, we are considering

the case when Ω is a smooth volume form. In fact this is essentially also the case in

general as mentioned above. This looks enough for us at the first sight provided the

uniform L∞ bound is available.

But there is a rather serious problem here. Recall in the argument of Part (5),

finally, we need to use the results from Parts (1) to (3) for the sets similar to “{u∞−s <
uε}”. At this moment, they are plurisubharmonic with respect to different background

metrics, ω∞ and ω∞ + εω. More importantly, uε is not plurisubharmonic with respect

to ω∞. Of course we might want to use ω∞ + εω for both, but then we don’t have

(ω∞ + εω +
√
−1∂∂̄u∞)n = FΩ

with some nonnegative F ∈ Lp for some p > 1, i.e., the correspondent Condition (A)

is not quite justified. In fact, if we can justify this condition, then the same result as

in [Koj1] would have given the continuity of this solution. However we can trivially

see F ∈ L1 as follows.

The global integration is OK from the boundedness of u∞ which means the left

hand side above makes sense as a (Borel) measure. And clearly we can have F

positive and smooth out of {σ = 0} for the regularity of the solution u by defining

it from the equation itself. Moreover, the integral of it over this range is finite and

obviously equal to that of the left hand side of the equation. Finally, since the set

{σ = 0} is pluripolar (and measure 0), it won’t contribute for the total measure of

(ω∞+εω+
√
−1∂∂̄u∞)n. Here the boundedness of u∞ is used to justify this. We know

also any L1 function would have the property that values over a Lebesgue measure

0 set are not important. Hence with a proper chosen (a.e.) positive L1 function F ,
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both sides are (Borel) measures and they are equal as Borel measure. But L1 is not

enough for us.

Be careful that we do need the regularity out of {σ = 0} in order for the measure

to be L1. In general, boundedness of potential would give finite total integral over

X, but the measure might have nonzero contribution from Lebeague measure 0 sets

as illustrated also by the example before.

Remark 4.4.2. It looks like we are facing the same problem about the degenerate

estimates as in Chapter 2. In fact, if we want to use the degenerate control for

Laplacian there, the assumption for the power is less restrictive (better) for F ∈ Lp

for some p > 1 than for the solution to be in some proper Sobolev space which would

also gives the continuity. 10 But our argument here requires the boundedness of the

potential and being in the proper Sobolev space, which is more restrictive, actually

gives Hölder continuity of the solution u which is a stronger result.

However, if we can have the singularities of F along {σ = 0} be like (not just con-

trolled by) |σ|−α, then F ∈ L1 would imply F ∈ Lp for some p > 1. This observation

is used before in direct application of Kolodziej’s results for some special degenerate

situations.

There seems to be another problem for the equation

(ω∞ +
√
−1∂∂̄u)n = Ω

with the volume form Ω having the correct total volume over X. Obviously we can

get a bounded solution by going through the above stategy. But apriori, it is hard

to get the monotonicity of the approximation even when Ω is smooth and we can

use maximum principle argument for the approximation solutions. This is where the

final remark for Part (5) about essential decreasing of the approximation will help us

a little. More details will be provided later.

Remark 4.4.3. There is a subtle difference of the discussion above and the original

one in Part (5). Namely, at that place, we can prove that any bounded solution is

actually continuous, i.e., we do not care how the solution comes up. But the discussion

above can only apply to the solution got by approximation. Of course, if we can prove

10The estimate related here is the following Laplacian estimate:

〈ω, ω∞ +
√
−1∂∂̄u〉 6 C|σ|−α.

For the argument above, we basically need |σ|−(n−1)α to be integrable. For u being in some proper
Sobolev space, W 2,q, one would need |σ|−nα integrable where 2n is the real dimension.
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the uniqueness for the boundedness (which is actually done later in this work for the

main case being considered), then this would not be a problem. This attempt above

doesn’t seem to very successful anyway.

Actually, we seems to be in the wrong track to prove the continuity result. Pro-

fessor Kolodziej pointed out a classic extension result in [FoNar] which says a weakly

plurisubharmonic function over a (singular) variety can be extended locally to the

ambient space CN . 11 In the current situation, if we can push forward the solution

which is plurisubharmonic on X to P (X) by the map P , then we might be able to get

a local continuous approximation using convolution locally on CPN . Notice that lo-

cal continuous approximation is just what we need to go throught Kolodziej’s orginal

argument for continuity. In order to push forward any (bounded) plurisubharmonic

function, we require the local birationality 12 of the map P which is really not that

restrictive.

Once we have the continuity result, it would be easy to see that the further

discussion about stability works without any modification. But since there seems

to be a little more assumption about the continuity, we also want to consider the

stability result for solutions which are merely bounded. 13 So in the following, we

ignore the continuity result from above.

Though the argument for stability for continuous solution in Part (6) seems to

be OK by itself 14, it might be completely meaningless since we do not have the

continuity of the solution got before.

We can actually see that there is only one obstacle to carry through the stability

argument for bounded solution in this case which is just the fact used there that is

trivial for smooth case and proved for continuous case by approximation argument

using results about Dirichlet problem. But for bounded case, it’s not justified for now

or even may not be true. A little more effort using approximation can give us the

uniqueness (or stability) result for all the solutions we can get (by approximation).

But that’s still not for any bounded solution.

11With Professor H. Rossi’s help, I am able to understand the argument there.
12Basically, we do not want any serious branching for the map P .
13In fact, the continuity result took me quite a long time to prove. During the process, I also

thought about the stability result in case we might not have continuity of solution got by approxi-
mation. There seems to be something interesting and I would like to point it out.

14It looks like that we need the existence of a continuous solution for the original argument in
[Koj2], but later we’ll see that it can be easily dodged by approximation argument.
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Rather differently, for the equation

(ω∞ +
√
−1∂∂̄u)n = euΩ,

we can have the uniqueness result for bounded solutions once we can justify the

application of comparison principle. Somehow, we can do this by introducing a fairly

involved approximation. Here Ω needs to be nonzero almost everywhere.

4.5 Comments about Local and Global Arguments

As in [Koj2], we might want to use a global argument to prove the boundedness

of the solution. And in fact the same idea there can be carried out without major

modification. The main steps are just as before. Now we just take the domain V to

be the whole manifold X. The background metric has to be kept along the way. But

in fact they are not going to bring any essential difference. The closedness of X would

easily allow us to patch things up once we’ve known the local pieces well enough. For

our situation, we still need to study the domain V which contains degenerated variety

(directions) of ω∞. The nondegeneracy of directions going out of V would make it

easy to globalize whatever we get for V to the whole of X just as discussed in [Koj2].

The good point for global argument is that we don’t have to go through the point-

picking as mentioned before. Hence it looks more concise. And globally on X, the

justification of comparison principle for bounded functions would also be easier since

there is no boundary to worry about.

Basically, we have both local and global arguments to prove apriori L∞ estimate

for bounded solution and existence of bounded solution. But for continuity, until

now, I can only prove it by local argument since the approximation mentioned before

using results in [FoNar] is only local. Anyway, the differences are rather superficial

for our argument. The details for the global argument have been carried out in [Zh]
15, and in this work, we’ll mainly focus on the local argument which in my opinion,

illustrates the idea in a better way.

15We include part of its main argument, which contains all the details about the technical differ-
ences from the local argument below, in Appendix for readers’ convenience.
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4.6 Application of Boundedness Result

Before going into the details, let’s point out some implication of the boundedness

result, which might motivate readers a little.

From Chapter 2, using Kähler-Ricci flow or perturbation methods, we can get a

solution for the following degenerate Monge-Ampere equation:

(ω∞ +
√
−1∂∂̄u)n = euΩ

where [ω] is nef. and big, Ω is a smooth volume form. The solution would be smooth

out of the stable base locus set of [ω∞] with possible singularities along this variety

which are described by some degenerate estimates.

Now in the case when the class [ω∞] is also semi-ample, we can further have the

boundedness of the solution u. By classic results in pluripotential theory, we can have

all kinds of positive currents and Borel measures with the global integrals over X to

be the natural (finite) ones, for example∫
X

(ω∞ +
√
−1∂∂̄u)k ∧ ωn−k =

∫
X

ω∞
k ∧ ωn−k, k = 1, · · · , n

where ω is a smooth real closed nonnegative (1, 1)-form. Of course, the integrals

would be the same when restricted to the regular part of u because the stable base

locus set is pluripolar. But in fact, those measures would just be the natural smooth

ones when restricted to the regular part. So the integrals over that part would also

be finite, which are not completely available only from the degenerate estimates got

before by maximum principle argument.

Also as we can see in the arguments quoted from [Koj1] and [Koj2], the bounded-

ness is important in applying classic results in pluripotential theory to further study

the solution itself (continuity, uniqueness for example). Though there are some re-

sults about unbounded plurisubharmonic functions, boundedness is very welcome for

the whole business.
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Chapter 5

General Adjustment of Original

Argument

In this chapter, we adjust Kolodziej’s original argument quoted before to our current

situation. Most of the modifications are still classic and can be found in [Koj2].

5.1 Obvious Generalization of Classic Results over

General Domains

As explained in the previous chapter, in order to go through similar argument as in

[Koj1] for our degenerate case, we need to justify those classic results used there,

which are originally for plurisubharmonic functions defined over domains in Cn, for

functions defined in some general domains and plurisubharmonic with respect to some

background (Kähler) metrics with possible degeneration. More precisely, the general

domains are (connected) open subsets of the closed manifold, X and the background

metrics are ωε := ω∞ + εω > 0 for ε > 0.

In this section, we are going to see that some of those results are trivially true in

this situation by their own locality and the following observation.

The (general) domain can be covered by finitely many coordinate balls and the

corresponding local potentials for the background metrics (i.e., background poten-

tials) can be uniformly controlled since everything is on a closed manifold. Though

the background metric is changing, the background potentials can be chosen to vary

in a mild way such that their own values will cause no trouble for us 1.

1Actually we can even manipulate the choice so that the background potentials are increasing or
decreasing as we wish.
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Now let’s list these results. In the following, the potentials u, etc. stand for the

functions in ω +
√
−1∂∂̄u where this current is positive with ω only needs to be a

smooth real closed (1, 1)-form. The item b’) below is the correspondent one for b)

in the Chapter 3, similar for the others. Notice all the functions appearing are not

required to be continuous 2.

b’) Relative capacity can be defined in the same way by using positive current

ωε +
√
−1∂∂̄u instead of

√
−1∂∂̄u as before and also imposing condition on u to be

PSHω
3 instead of PSH. It’s natural to require ωε > 0 in order to make sure such u

always exists. Those basic properties as for the classic notion will trivially hold.

Remark 5.1.1. Obviously we can still extend the definition of relatively extremal

function to this case. But then we don’t have the relation of these two notions as

before. Basically, we don’t have the description about the support of the measure cor-

respondent to thus defined relative extremal function since the background potentials

will get involved in the pluriharmonic lifting argument used before. But this is not a

big deal to us as we have already realized before that the notion of relatively extremal

function is actually not that necessary even for the original argument.

When the background “metric” is ω∞ which has a global potential for the domain

we are considering and so can be taken as a bounded plurisubharmonic function, the

treatment can be even more flexible. Actually it can easily be proved that the relative

capacities defined with or without ω∞ will be equivalent up to positive constants. We

won’t use this fact explicitly, though it is possible to make the argument nicer by taking

this into account.

As mentioned before, with only Richiberg’s method of approximation at hand, in

order to go through the original argument for our case here, we’ll have to clarify the

difference if we only use continuous plurisubharmonic functions in the definitions. Of

course, it turns out to be not so important once we have more advanced methods of

getting approximation for plurisubharmonic functions.

c’) Weak convergence results of currents from the monotonous convergence of po-

tentials is OK since for this result, everything is local. Here the general case when

2The proof of all the results here does not need comparison principle which might need continuity
generally speaking as discussed in details later.

3Forget the requirement about continuity for now. In fact we can still require u to be PSH as
before without changing most of the argument below. The relation between the different definitions
is quite obvious.
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the convergence of potentials is with respect to capacity can also be considered and

is true indeed. The original argument in [Koj2] works perfectly if one includes some

fixed background metric.

d’) CLN inequalities are basically OK with minor changes, i.e., on the right hand

side, we should change ‖ui‖ to ‖ui‖+Ci where Ci is coming from the fixed background

potentials. The result appearing in the discussion of d) will also have its counterpart

in this case.

5.2 Comparison Principle

In this section, we discuss comparison principle for general domains not necessary

in Cn. Notice that the statement of comparison principle is rather global. So local

argument which has been very successful in the previous section will no longer be

enough for justifying it.

In that brief discussion of the proof of classic comparison principle, we need a good

approximation of those plurisubharmonic functions which are compared. In case of

a domain in Cn, we can use convolution, which is not available for general domains.

This is our main concern here.

After all the discussions below, we should be able to apply comparison principle in

all the places needed.

5.2.1 Restriction to Continuous Functions

Let’s first point out that for our argument, it is only necessary to be able to com-

pare functions like relative extremal functions and smooth plurisubharmonic functions

since we basically only consider sets like {u < v + s}. Moreover, for the definition of

relative extremal function, we would like to use functions in PSH(V )∩C(V̄ ) instead

of PSH(V ). As described before, for compact sets, we can easily see this definiton

would be equivalent to the original definition when considering a hyperconvex do-

main in Cn. In fact we also want to see similar results for relative capacity. But the

situation for it is a little bit more involved as follows.

For K compact in a bounded open set V ⊂ Cn which is hyperconvex. Let u
K

and u′
K

be the original relatively extremal function and the one using only continuous

functions respectively. Similarly the two notations, Cap(K) and Capc(K), stand for
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the two relative capacities where the latter one has the lower “c” to indicate the use of

PSH(V )∩C(V̄ ) instead of PSH(V ). The (background) domain V is fixed and so we

omit it in the expression of capacities for simplicity. Notice that we are considering

a domain V in Cn at this moment.

One direction is trivial by definition,

u
K

> u′
K
, Cap(K) > Capc(K).

The other direction will be proved below. From the hyperconvexity of V , we

have that there exists h ∈ C(V ′) ∩ PSH(V ′) where V is relatively compact in V ′,

V = {h < 0}, and h = 0 on ∂V . Clearly one only needs to consider any u ∈ PSH(V )

such that u 6 0 on V and u = −1 on K for u
K

. We can extend such a function

plurisubharmonically to some neighbourhood of V as follows.

Define a function vε by Ah + ε on V ′ \ V and max{u,Ah + ε} over V . For ε > 0

sufficiently small and A > 0 large enough, it is easy to see that vε = u near K and

max{v, Ah + ε} = Ah + ε near ∂V . Thus vε is clearly plurisubharmonic in V ′. For

any small constant δ > 0, by taking V ′′ to be a sufficiently small neighbourhood of

V , we can have vε ∈ [−1, δ + ε] over V ′′.

Also as ε→ 0, vε → v for v ∈ PSH(V ′) and v ∈ [−1, δ] over V ′′. Moreover, v = u

near K and v = 0 on ∂V 4. And of course it would still suffice to consider functions

like max{u,Ah} for u
K

since the information near K is completely preserved.

Now by taking convolution of v, we have functions vj ∈ PSH(V ) ∩ C(V̄ ) valued

in [−1, δ] such that vj → v decreasingly on V̄ (as j →∞ of course, also for the other

convergences in the following). Of course. we have
vj−δ
1+δ

→ v−δ
1+δ

where
vj−δ
1+δ

is valued

in [−1, 0] which is good in view of the definition of relative capacity.

Simply by using Dini’s Theorem, we can see vj converges uniformly to v over

∂V ∪K since v = 0 on ∂V and v = −1 on K. From this, by maximum principle, it

is trivial to see u′
K

> v > u 5. Thus we can conclude uK = u′K . 6

The situation is a little bit more involved for relative capacity as we’ll see now. For

any function u ∈ PSH(V ) valued in [−1, 0], we can still have the extension of it as v

above which is equal to u near K and valued in [−1, δ] in some small neighbourhood

of V̄ . Using convolution, the decreasing convergence of
vj−δ
1+δ

to v−δ
1+δ

clearly gives the

weak convergence in the sense of distribution. But we can not say the integral over

4In fact v is just the extension of the function max{u,Ah}.
5Here the uniform convergence will take care of the values. There is just a little modification

involved anyway.
6This has been discussed before. Because the auxiliary functions will also be used below, we give

the argument again for convenience.
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K also converges. In fact it can’t be true if you consider K in lower dimension as in

the example before. But we can see that for any open set U containing K, for j large

enough, ∫
U

(√
−1∂∂̄(

vj − δ

1 + δ
))n >

∫
V

φ(
√
−1∂∂̄(

vj − δ

1 + δ
)
)n

>
∫
V

φ
(√
−1∂∂̄(

v − δ

1 + δ
)
)n − ε

> (1 + δ)−n
∫
K

(√
−1∂∂̄u

)n − ε,

where φ is a properly chosen cut-off function and ε is any fixed (small) positive

constant.

Thus we have Capc(U) > (1 + δ)−nCap(K), and so Capc(U) > Cap(K). Hence

we can conclude

Cap∗c(K) > Cap(K)

where the upper “∗” represents the outer capacity using Capc. More precisely,

Cap∗c(K) = inf{Capc(U)|K ⊂ U,U open }.

Actually the following chain is obvious

Cap∗(K) > Cap∗c(K) > Cap(K) > Capc(K)

where “Cap∗” is the outer capacity defined using “Cap”, but the first and third >

are the same in our setting (cf. [Koj2]), so the first two “>” are actually “=”.

Recall that for the discussion of original relative capacity “Cap”, there is no need

to require the compactness of K, so it is true for any E relatively compact in V .

But from our argument above, as in the definition of outer capacity, it seems that we

should only take open U such that E is relatively compact in it. Actually it is easy

to see that we don’t need this for the inequality Cap∗c(U) > Cap(U) to be true since:

Capc(U) > Cap∗c(K) > Cap(K)

for any compact set K ⊂ U . Hence Capc(U) > Cap(U) from the property of Cap(U)

(i.e., it can be approximated by those of K’s), then obviously it should be equal since

the other direction is trivial. So we can actually define Cap∗c(U) = Capc(U). 7

7This is consistent with the usual treatment which considers compact sets first and uses them to
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The discussion above requires V to be hyperconvex in Cn except for the previous

paragraphy which clearly holds in more general case as used for our case.

We’ll see later that the above is enough for us to go through the argument after

restricting us to continuous plurisubharmonic functions in the definition of relative

capacity. Basically we use “Cap∗c” instead of “Cap” for generalizing the original ar-

gument in [Koj1] 8 and the results above would allow us to use all the classic results

about relative capacity after getting into local picture in Cn.

Now we can indeed have a nice approximation of relative extremal functions using

continuous plurisubharmonic functions by the (modified) definition of relative capac-

ity. And in order to justify comparison principle for them, the approximation near the

boundary should be nice. We’ll require the domain to be hyperconvex which will give

the nice boundary behavior of the approximation for relatively extremal functions in

the following sketch of the argument.

Given the nice continuous approximations for both of the functions being consid-

ered (which can just be the function itself if it is already nice enough) which behave

well near the boundary, we can use Richberg’s smooth approximation for the contin-

uous approximating functions, which is like convolution for general domains 9. The

plurisubharmonicity might be lost a little bit, but we can add some εω to save that

with ε being as small as we want. Anyway, it is quite routine (just as in [BeTa]) to

take all the limits to justify comparison principle in this case.

Remark 5.2.1. As mentioned before, we only need to consider the continuous plurisub-

harmonic funtions instead of u′
K

provided that the definition of relative capacity is well

adjusted as above (i.e., using essentially “Capc”). For them, we have the Richberg’s

approximation just as described above. Then it’s easy to see that we actually don’t

need the hyperconvexity of V here.

From above, the justification of applying comparison principle for relative extremal

functions earlier in this section is quite redundant in some sense. But it makes sure

that we are allowed to use comparison principle, which is such an important tool in

pluripotential theory, for certain functions in more general domains and this might be

helpful for other consideration.

A final remark for the discussion above would be that all these difficulties come

define for (open) sets in general.
8This modification clearly won’t essnetially do anything for the original case considered there.
9Basically the idea is to smooth the function locally in a proper manner and then use a clever

way to patch them up (see in [De1] for example).
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from the absence of convolution which provides a smooth approximation with value

highly related to the original function. So once we are in Cn, it is just the classic case

being discussed before. And also if we can have something like convolution for some

case, then there should also be no trouble in that case to justify comparison principle.

We still want to discuss a little more modification about classic comparison prin-

ciple which is about the case when we have some background metric. Basically there

should be no major difference when there is a background “metric” 10 involved as

clearly suggested in the smooth case where the proof would be exactly the same as

in the classic case when we only consider smooth plurisubharmonic functions. The

boundary condition is still on the (relative) potentials. It should still be OK when

the potentials are continuous since Richberg’s approximation will then be enough to

reduce the situation to the smooth case. And that is basically what we are going to

work with.

We emphasize here the trivial but important fact that for comparing of two func-

tions plurisubharmonic with respect to the same background “metric”, it is impor-

tant that the (1, 1)-currents are positive after combining the background form with

the potential. Clearly we can have some cheap generalization if we have some in-

equality between the possibly different background “metrics” in the favorable di-

rection. More precisely, in a general bounded domain V which might not be in

Cn, suppose 0 6 ω1 6 ω2 where both are real smooth closed (1, 1)-forms. For

u ∈ PSHω2(V ) ∩ C0(V̄ ) and v ∈ PSHω1(V ) ∩ C0(V̄ ), if limx→∂V (u − v)(x) > 0,

then ∫
{u<v}

(ω1 +
√
−1∂∂̄v)n 6

∫
{u<v}

(ω2 +
√
−1∂∂̄u)n.

The interesting point for this observation is that we can compare two functions with

different plurisubharmonicity. The proof is rather easy after realizing for the smooth

case, ω2 − ω1 > 0 is in our favor. For the rest part which is just like the term for

classic case, after applying Stokes’ Theorem, the sign of boundary contribution is only

related to the comparison for the values of u and v. Of course we still use Richberg’s

approximation. In fact, this can also be trivially seen from the version of comparison

principle with the same background form by noticing that we can actually use ω2 on

both sides.

Also see if we are considering a domain in Cn with a background form which can

10It just needs to be a real smooth closed (1, 1)-form, not necessary to be positive. So sometimes
we also call it as background form. But in most cases, it’ll be nonnegative.
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not be put into a global potential itself on this domain, we still have comparison

principle for general (bounded) functions plurisubharmonic with respect to this back-

ground form since convolution can still be applied to both the background form and

the relative potential by noticing the trivial computation below:

√
−1∂w∂̄w

(∫
Cn

ρ(|w − z|)u(z)dgz
)

=
√
−1∂w∂̄w

(∫
Cn

ρ(|z|)u(w − z)dgz
)

=

∫
Cn

ρ(|z|)
√
−1∂w∂̄wu(w − z)dgz.

Here the convergence of the convoluted smooth potentials to the original potential

can be seen in more or less the same as for plurisubharmonic functions by considering

the local potential for the background form (which is closed). Then we see the classic

proof can go through with little modification.

Remark 5.2.2. There will be more discussion about comparison principle in the

next two subsections where we can see it holds for a closed manifold even when the

functions are not continuous.

For a projective manifold X, if the background form is representing a semi-positive

class, we need another approximation of general plurisubharmonic functions which

makes use of a quite deep extension result.

Finally, a more recent result in [BlKol] allows us to remove the projectivity as-

sumption on X.

5.2.2 Approximation Result for Projective Manifolds

In this subsection, we introduce another approximation of general plurisubharmonic

functions which can be used to justify comparison principle for cases other than what

we’ve already discussed before and containing our main interest. For completeness,

let’s give the details which is essentially quoted from [GuZe].

Proposition 5.2.3. Let L be a positive holomorphic line bundle over a closed (projec-

tive) manifold X. h is a hermitian metric for L with curvature form ω > 0. Then for

any φ ∈ PSHω(X) 11, there exists a sequence of functions, φj ∈ PSHω(X)∩C∞(X),

which decreases to φ.

Furthermore, considering any hyperconvex domain U in X, for any φ ∈ PSHω(U)

with upper bound C < ∞, there exists a sequence φj ∈ PSHω(U) ∩ C∞(U) which

decreases to φ.

11Not identical to −∞ by definition.
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Proof. The proof for X or U will be almost the same. Just notice in the case of

a closed manifold, we always have φ < C. Let’s prove for X below and make the

argument general enough to work also for U .

Consider the following Bergman spaces (for each fixed j large enough):

Hj := {s ∈ Γ(X,Lj)|
∫
X

‖s‖2e−hjωn <∞},

where ‖ · ‖ is norm for the metric h and hj = (j − N)φ with N being a big enough

integer which will be fixed later. Basically, the curvature form for the hermitian

metric ‖ · ‖2e−hj 12 is

jω + (j −N)
√
−1∂∂̄φ = (j −N)(ω +

√
−1∂∂̄φ) +Nω > Nω.

For N large enough, it can dominate all the auxilliary terms coming out and justify

the application of the extension result used later.

This space Hj would at least be separable 13. Taking an orthonormal basis (with

respect to the natural norm as appearing in the definition of the space), {sjk}, we set

ψj :=
1

j
log(

∑
‖sjk‖

2) =
1

j
sups∈Bj

log ‖s‖2

where Bj is the unit ball in the space Hj. The last step actually comes from the fact

that for ak, bk > 0 (Cauchy-Schwarz inequality),

(
∑

akbk)
2 6 (

∑
a2
k)(

∑
b2k).

There is no need to worry about the convergence of
∑
‖sjk‖2 since we are consider-

ing the holomorphic sections for which the (local) L2-norm 14 can control all the local

Ck-norms. And orthonormalization would reduce the control (for any finite sum) to

just one element in Bj. So this summation is actually smooth over X.

It’s easy to justify that ψj ∈ PSHω(X) by elementary property of plurisubhar-

monic functions. For the case of U when it is infinite summation, this is also stan-

dard computation for Bergman kernel. In fact, since it is the increasing limit of such

functions and also of the form logF for some nonnegative smooth function F , the

plurisubharmonicity should be quite easy to see.

12The lack of regularity is not a problem here.
13In fact it’s of finite dimension for a closed manifold.
14Usual local L2-norm is controlled by the norm for Hj as φ < C locally. The notation is a little

confusing as this L2 is not the one as in the proof. Fortunately, we do not use this one in the proof.
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Now for any x ∈ X and s ∈ Hj, consider s as a holomorphic function with respect

to some local frame. Let the metric h on L be represented by e−g (i.e.
√
−1∂∂̄g = ω

locally). As |s|2 would be plurisubharmonic, and so we have

|s(x)|2 6
C

r2n

∫
B(x,r)

|s|2dλ 6
C

r2n
esupB(x,r){hj+jg}

∫
X

‖s‖2e−hjωn

for small enough r such that B(x, r) would be in a trivialized open set. All these

constants will be uniform. Notice that even in the case of U , the background data is

still global over X, and so is controlled uniformly.

Considering all the element s in Bj, by the definition of ψj, we arrive at

ψj(x) 6
1

j

(
C − 2n log r + supB(x,r)(hj + jg)

)
− g

6 (1− N

j
)supB(x,r)φ+

C − 2n log r

j
+ supB(x,r)g − g(x).

For any ε > 0, taking proper r, we can see for j large enough,

ψj(x) 6 (1− N

j
)supB(x,r)φ+ ε 6 (1− N

j
)(φ(x) + ε) + ε.

Upper semi-continuity (with no uniformality on x) of φ is used here, so this is just

pointwise argument which is not uniform on x. But for the term supB(x,r)g−g(x), we

have the uniform control. For any point x out of some measure 0 set, φ(x) > −∞,

and so we can get ψj(x) 6 φ(x) + 3ε for j sufficiently large.

Anyway, we’ve already got an upper control of ψj by φ. Now let’s search for a

lower one which makes use of a deep extension result of Ohsawa-Takegoshi-Manivel

as stated in [De2] which gives the following.

For N large enough, there exists constant C such that for ∀x ∈ X, ∀j > N and

any value s(x) ∈ Ljx, we have an element s ∈ Γ(X,Lj) (with the assigned value at x

as suggested by the notation) satisfying∫
X

‖s‖2e−hjωn 6 C‖s(x)‖2e−hj(x).

This is just a simple application of Theorem 4.1 in [De1]. Notice N is chosen large

enough to allow K−1
X ⊗Lj to have a positive enough curvature form where the metric

on Lj is twisted by “φ” as mentioned before. Moreover those sections of an auxilliary

bundle used to characterize the point x can be chosen to have uniform data for all x
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which is justified by the projectivity of X.

Now take proper s(x) such that the right hand side of the inequality above is 1,

and so the section s would be in Bj. Thus we have

ψj(x) >
1

j
log ‖s(x)‖2 =

1

j
log

1

Ce−(j−N)φ(x)
= (1− N

j
)φ(x)− logC

j
.

As φ(x) <∞, for any ε > 0, we have ψj(x) > φ(x)− ε for j sufficiently large.

Combining these two estimates, we have the almost everywhere convergence of ψj

to φ, thus also in L1(X) (or in L1
loc(U)). At this moment, the convergence is not yet

decreasing and ψj may not be smooth everywhere. Also notice that up to now, we

don’t really need the upper bound of φ over X (or U).

First, let’s make them decreasing. For below, we’ll use lower index N to keep track

of the chosen constant N before, for example, Hj,N stands for the previous space Hj.

Let s ∈ Γ(X,Lj1+j2) with
∫
X
‖s‖2e−hj1+j2ωn < 1. It can also be viewed as the

section over the diagonal ∆ of X ×X of the line bundle π∗1L
j1 ⊗π∗2Lj2) where πi’s for

i = 1, 2 are the natural projections to each factor.

Still consider the corresponding Bergman spaces

Hj1,j2,N := {S ∈ Γ(X×X, π∗1Lj1⊗π∗2Lj2)|
∫
X×X

‖S‖2e
−π∗1hj1, N

2
−π∗2hj2, N

2 π∗1ω
nπ∗2ω

n <∞}

where N
2

in the lower index gives the constant used in the definition of function hj’s.

Clearly the extension result can also be applied to the case when extending sections

from ∆ to X ×X with uniform chosen data as before. Thus for the section s chosen

before, we have S ∈ Γ(X ×X, π∗1L
j1 ⊗ π∗2L

j2) such that∫
X×X

‖S‖2e
−π∗1hj1, N

2
−π∗2hj2, N

2 π∗1ω
nπ∗2ω

n 6 C

∫
X

‖s‖2e−hj1+j2,Nωn 6 C

where C is a uniform constant.

The space Hj1,j2,N (for X × X) has an orthonormal basis coming from the or-

thonormal basis of Hj1,
N
2

and Hj2,
N
2

(for X). Using this basis and Cauchy-Schwarz

inequality as before, it is easy to get:

ψj1+j2,N 6
logC

j1 + j2
+

j1
j1 + j2

ψj1,N2
+

j2
j1 + j2

ψj2,N2
.

Now let’s use the upper bound of φ. In fact we can make it to be 0 without

affecting the result. Then we have ψj,N1 6 ψj,N2 for N1 6 N2 which is trivial from
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the relation between norms for Hj,Ni
and the expression of ψj.

Define ψ̂j = ψ2j ,N + 2−j logC and we can see that {ψ̂j} is decreasing.

It remains to make the functions smooth. The only trouble is from the possibly

nonempty 0 locus of
∑

k ‖s2j

k ‖2. So we can treat just by adding some positive term

to it. Indeed, we can use the term εj
∑
‖σjl ‖2 where {σjl } is a basis of Γ(X,L2j

),

where the bundle is positive enough (very ample), and εj > 0 is properly chosen to

make sure this sequence is still decreasing with the limit still being φ. The resulting

sequence would be the {φj} we want.

Remark 5.2.4. As shown above, this new approximation has more global feature then

convolution or Richberg’s approximation (for continuous functions). So it would be

enough to justify comparison principle over a closed manifold (i.e., a bounded domain

without boundary). If there is boundary for the domain, then the description near the

boundary for the approximating (smooth) functions would not be sufficient to justify

the application of comparison principle even for themselves since the boundary values

may not have the right relation.

Of course, since the approximation is also a decreasing one, for the case of a

domain with boundary, it might be enough to justify comparison principle for functions

which are continuous near the boundary.

Actually, for sets like {u < v}, suppose that the function v is continuous, and so

the approximation for it is actually (locally) uniform. Since the approximation for

u is decreasing, so the boundary condition (i.e., “u > v”) is well preserved for the

approximations. 15

Finally, we want to justify the comparison principle for bounded plurisubharmonic

functions with respect to ω∞ > 0. The idea is not to directly search for a smooth

approximation of functions which are plurisubharmonic with respect to ω∞, but to

get the inequality from comparison principle using background metric ω∞ + εω for

ω > 0 and let ε → 0. Here we need the facts that PSHω∞ ⊂ PSHω∞+εω and∫
{u<v}(ω∞+εω+

√
−1∂∂̄v)n →

∫
{u<v}(ω∞+

√
−1∂∂̄v)n (also for the measure involving

u) as ε→ 0 16. In fact, we don’t need the perturbation to be as clean as εω.

Let’s point out that from the approximation above for a fixed background form

ω∞+εω, we can easily get a decreasing sequence of smooth plurisubharmonic functions

15We’ll give another observation in the next subsection which says that approximation like this is
enough for our application even in local argument considering a domain with boundary.

16For the second fact, you might want to know the function is actually plurisubharmonic in a larger
domain in order to guarantee the finiteness of term including ε, but that’s usually true especially
when we can use hyperconvexity of the domain to “extend” the function considered.
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with background forms also decreasing to ω∞ by choosing proper functions from each

sequence of approximation before 17. This is what’s useful for the discussion at the

end of Chapter 2 for bounded functions. And one might also use this to justify

comparison principle for ω∞ more directly.

For a projective manifold, we can easily justify comparison principle for ω∞ > 0

which might not even represent a rational class as follows. By taking a cohomology

basis consisting of (finite) rational Kähler classes, {[ωj]} with ωj being a Kähler

metric, we have ω∞ +
√
−1∂∂̄f =

∑
j ajωj where aj ∈ R. Then we can use rational

numbers to approximate each aj from above and the corresponding forms would be

the “ω∞ + εω” above. Clearly the extra smooth function f can be absorded by

modifying the potentials simultaneously and so won’t bring us any trouble. Hence

comparison principle for ω∞ is justified.

5.2.3 Approximation Result for Closed Kähler Manifolds

In the recent paper [BlKol] of Blocki and Kolodziej, an improved approximation

method has been given which can be applied for a closed complex manifold. More

precisely, they proved the following theorem. 18

Theorem 5.2.5. For a closed manifold X and a Kähler metric ω over it, suppose u ∈
PSHω(X)∩L∞(X), then we have a sequence of functions, uj ∈ PSHω(X)∩C∞(X),

decreasing to u.

The proof is a generalization of the proof for Richberg’s approximation result for

continuous case, and so is more elementary than the proof of the previous result for

projective manifolds. The construction used is fairly local. So the result can still be

used to treat a domain in X. Then the approximation might be for a smaller domain

(just as for convolution), but that won’t give us any trouble, especially when the

domain is hyperconvex and we can extend the function u being approximated.

Using the approximation result above, we can get the following version of com-

parison principle.

Proposition 5.2.6. Suppose X is a closed Kähler manifold and ω is a smooth real

nonnegative (1, 1)-form over it. For u, v ∈ PSHω(X) ∩ L∞(X), we have∫
{v<u}

(ω +
√
−1∂∂̄u)n 6

∫
{v<u}

(ω +
√
−1∂∂̄v)n.

17The decreasing can be made strict by adding proper constants.
18The result proved there is more general than this, but the following is all we need.
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Notice we only need the semi-positivity of ω. The idea for this is just like what’s

used in the previous subsection using approximation. So we require X to be Kähler

which gives a positive form. The life is slightly easier now.

In the proof, one still needs the boundedness of functions to control the contribu-

tion of small capacity sets. That’s also why though the approximation they got can

be for unbounded functions with Lelong number 0, this comparison principle is still

just for bounded functions.

This is a global version over X which will be sufficient for the global argument.

We also want a local version for local argument. So we need to take care of the

boundary condition for approximation functions. As mentioned before, for set like

{u < v}, by decreasing convergences and Dini’s Theorem, we can deal with function

v which is continuous near the boundary. We would like to see that this is enough

for us.

Basically, the least regular v would appear in the definition of relative capacity.

Let’s consider the case that continuity of the “test” function is not require there. As

we have seen before, one only needs to consider the capacity for a compact set. Let’s

also notice that the (background) domains we are considering in the definition of

relative capacity are hyperconvex. So it’s easy to see that by taking the maximum of

any bounded function v and a large multiple of the function from hyperconvexity, we

can make sure that the resulting function is continuous near the boundary without

the same value as u near the compact set being considered. Clearly this function

would obviously be valued in the proper range and we only need to consider such

functions for the relative capacity of this compact set.

5.3 Presence of Background Form

In this section, we mainly take care of the technical differences when there is a back-

ground form involved in the computation of Kolodziej’s argument quoted before.

5.3.1 About Parts (1) and (2)

In Part (1) of the quoted argument from [Koj1], we need the relation between relative

capacity and relative extremal function of any (compact) set inside the domain we

are considering, i.e. Cap(K,V ) =
∫
K

(
√
−1∂∂̄u

K
)n for K compact set in V . Though

we’ve already seen it’s not that crucial, the hyperconvexity of the domain V (in Cn
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at that time) behind this fact would still be important for us in a general domain in

X.

In view of the discussion about the difficulty coming from the degeneracy of ω∞

as a metric, the natural idea is to consider a neighbourhood of each component of

{ω∞n = 0} separately. And from above, we want the neighbourhood chosen to be

hyperconvex.

This can be achieved if we assume the set {ω∞n = 0} gets mapped to a set of

(finite) points in CPN because each general domain that we need to consider now is

just the preimage of a ball around one of those points in CPN (or say CN locally) and

the exhausting function can be obtained by pulling back the usual one for a ball in

CN . So now let’s assume this for simplicity. Of course, in general, the preimage of a

ball in CPN under the map P would have similar property. So this simplification is

not a big deal.

Remark 5.3.1. This situation we are considering here is quite special but still farily

natural to start with as a prototype. Moreover, for complex dimension 2, this is the

general case. Later on, we’ll try to show this is also not needed for generalizing the

rest of argument.

For this crush-to-point case, we have the potential of ω∞ globally on V . And so

it seems that we don’t have to treat the case when there is a background form. But

since our approximation functions uε for the function u are from the equations

(ω∞ + εω +
√
−1∂∂̄uε)

n = euεΩ,

we still need the results with some background form involved in a nice and explicit

way. That’s what we are going to deal with below. All these are basically quoted

from [Koj2].

Now the domain V is a general domain on a closed Kähler manifold X with Kähler

metric ω.

For any u, v ∈ PSHω(V̄ )∩C0(V̄ ) 19 with U(s) := {u−s < v} 6= ∅ and relatively

compact in V for s ∈ [S, S +D]. Assume v is valued in [0, C].

19For simplicity, we use PSHω(V̄ ) ∩ C0(V̄ ) which means they are actually defined in a neigh-
bourhood of V̄ with these properties, but of course that’s not so necessary. Basically, u can be just
bounded and v is continuous. At the place where comparison principle will be applied, it’s possible
that “v” might be a bounded function which are continuous near the boundary depending on the
definition chosen for relative capacity. But it’s still OK as has been well explained in the discussion
about comparison principle before. Let’s keep this picture in mind from now on.
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Thus for any w ∈ PSHω(V ) ∩ C0(V̄ ) 20 and valued in [−1, 0], we have for any

t > 0:

U(s) ⊂ V (s) = {u− s− t− Ct < tw + (1− t)v} ⊂ U(s+ t+ Ct)

since 0 6 t + Ct + tw − tv 6 t + Ct. So we have the following computation for

0 < t 6 1:∫
U(s)

(ω +
√
−1∂∂̄w)n = t−n

∫
U(s)

(
tω +

√
−1∂∂̄(tw)

)n
6 t−n

∫
U(s)

(
tω +

√
−1∂∂̄(tw) + (1− t)ω +

√
−1∂∂̄((1− t)v)

)n
= t−n

∫
U(s)

(
ω +

√
−1∂∂̄(tw + (1− t)v)

)n
6 t−n

∫
V (s)

(
ω +

√
−1∂∂̄(tw + (1− t)v)

)n
6 t−n

∫
V (s)

(
ω +

√
−1∂∂̄(u− s− t− Ct)

)n
6 t−n

∫
U(s+t+Ct)

(ω +
√
−1∂∂̄u)n,

where the next to the last inequality comes from comparison principle. Hence we can

conclude

tn · Capω(U(s), V ) 6
∫
U(s+t+Ct)

(ω +
√
−1∂∂̄u)n

for t ∈ (0,min(1, S+D−s
1+C

)]. Of course, for our purpose, it is always safe to assume
S+D−s

1+C
< 1. In fact, we’ll only apply this result for intervals with the length, D,

smaller than 1, so there is no need to worry about the value of t appearing in the

computation as in [Koj1].

The definition of this Capω should be clear from above and one uses only contin-

uous functions when taking supremum. 21

In order for the result to look more like the one in Part (1) in Chapter 3, we

20The requirement of continuity may not be that important as discussed before, depending on
how one wants to justify comparison principle and the correspondent definition of relative capacity.

21This won’t bring any essential trouble, and clearly it’s also OK if we don’t require the continuity
as just discussed. Notice that the set U(s) would always be open which makes the outer capacity
easier to handle.
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rewrite the inequality as:

tn · Capω(U(s), V ) 6 (1 + C)n
∫
U(s+t)

(ω +
√
−1∂∂̄u)n

for t ∈ (0, S +D − s].

It is important to notice that this result will not affected by the choice of ω. In

fact it is even not necessary for it to be positive, which is useful if one wants to prove

apriori L∞ bound for bounded solution of the original equation. 22 So this can actu-

ally be considered directly as a generalization of the original computation in Part (1)

quoted before where ω = 0.

Then provided that we have a similar Condition (A), it is easy to come to a similar

conclusion as the one at the end of Part (2). We just have a few more constants

involved. In fact for our application of this inequality to prove boundedness result, v

can be chosen to be 0, and so there could be no difference between the expression of

the results at all.

5.3.2 About Parts (4), (5) and (6)

Part (3) will be the main topic later. Let’s take a look at Parts (4), (5) and (6) now.

Basically, they are not affected at all.

For Part (4), using the global version of CLN inequality mentioned before with

background metric, we can get the (uniform) apriori L∞ bound in the same way.

Notice that though the background metrics are not the same, their local potentials

are obviously controlled uniformly and so the CLN inequality has uniform constants.

The way to get a bounded solution is by taking the limit of approximation solutions

where the convergence is considered locally as in [Koj1] and so can still be applied in

our case. In fact, a global version is also discussed in [Koj2] where the background

form is fixed, but that’s not a big issue as the convergence of background forms for

us is very explicit.

For Part (5), as we’ll see later, local argument is what we are really going to use

to prove continuity. So background form will not appear as before. There will also

be an attempt to argue globally later for continuity motivated by the argument in

[Koj2]. At that place, the background form would still be the same for each pair of

22Of course, the potential still needs to be plurisubharmonic with respect to it.
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functions considered in our case, and so will not bring any more trouble than what’s

treated in [Koj2] which would be quoted there.

For Part (6), there are background forms in the argument quoted in Chapter 3

already, and so that’s not a problem for us. Indeed, in this part, we only need to

consider the backgound form, ω∞ and no approximation of it is really involved.

5.4 First try about Part (3)

In this section, we start the discuss about Condition (A) which is the essential part

of our generalization. First, Let’s make an easy observation which gets rid of all the

background metrics. For any ω > 0, considering the right hand side of Condition (A),

it clearly becomes smaller when one uses the correspondent relative capacity without

ω. Thus it suffices to justify this condition in the form as in Part (3) there. The

only difference would be that now the domain V may no longer be in Cn. The Lp

functions have the naturally generalized meaning on a smooth manifold.

Now take a closer look at the argument in Part (3).

From the original discussion, we can see the result needed is still just the “claim”

there, i.e., we want to have something like:

λ(Us) 6 C · e−Cs,

where Us = {u < −s} and
∫
V

(
√
−1∂∂̄u)n 6 1. 23

At the first sight, it would be helpful to use some kind of correspondence between

the general domain V in X and the other picture of it, i.e., the picture of its image

P (X) in CPN where this domain V really comes from. Here we can use this idea to

treat the case when locally the map P will crush a subvariety, i.e., one component of

{ω∞n = 0}, to a point and map a neighbourhood of the subvariety biholomorphically

to a neighbourhood of that point in P (X) ⊂ CPN after removing the subvariety and

that point respectively. More importantly, we assume that point is also a smooth

point on P (X). Basically, one can think of it as a blow-down map from B̂2n → B2n

where B̂2n is the blow-up of B2n at the center. It is quite easy to go through the

original argument in this case which just corresponds to using a singular volume form

on B2n.

23This u is essentially just (Cap(K,V ))−
1
nu

K
. Of course here λ is a smooth measure over V

corresponding to a nondegenerated smooth volume form.
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In this situation, bounded plurisubharmonic functions on these two domains have

one-to-one correspondence which is clear from the obvious correspondence for the

punctured parts and classic extension result for plurisubharmonic functions. Thus we

have convolution for those functions on B̂2n. So we can just use the classic definitions

of relative capacity, etc. for this domain. And they are actually correspondent to the

same things on B2n since it is easy to see the exception divisor will essentially have

no contribution.

Also the smooth measure over B̂2n corresponds to a measure with the only singu-

larity like 1
r2n−2 near the origin of B2n where r is the distance to the origin. Clearly

this measure, λ′, is Lp on B2n with respect to the standard measure. By studying the

extremal case when there is a difference between these two measures on B2n 24, it’s

easy to see by direct computation that

λ′(K) 6 C · λ(K)α

for some positive constants C > 0, α ∈ (0, 1) and K ⊂ B2n where λ(·) is the

standard measure over B2n. Of course λ′(K) can be looked on as the measure of

the correspondent set in B̂2n which is defined up to the exceptional divisor (variety)

which is of measure 0.

In fact for all the above discussion, we only need to notice that the singularity for

the measure λ′ with respect to λ is of the form 1
rq and obviously the total integral is

finite from the definition of it since we can then see it is actually Lp for some p > 1.

In other words, once we have the explicit form of singularity like that, the fact that

it is Lp for some p > 1 comes from it being L1 by the openness of the condition on q.

We have used the same idea before.

Thus for justifying Condition (A), we can see the only modification would be in

the proof of the “claim” where (?) is changed by taking power α and multiplying some

constant, which clearly will not affect the argument too much. Hence for this case we

can have the boundedness of the approximation solutions and so for the solution.

The situation discussed above might look very similar to what has been treated

in Chapter 3 in sight of the smooth image assumption. But the argument now is

fairly local in flavor. We actually generalize the original argument a little bit instead

of directly applying the original results. In fact we can see that this argument here

works for the case when the map P is locally blow-down to a smooth image in CPN .

24This is of course the case when the set considered is a disk centered at origin in B2n.
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This should be more general than the situation considered in Chapter 3 where P is

required to be birational.

Remark 5.4.1. There could be similar discussion when the image has an orbifold

structure instead 25. More precisely, we can use the convolution on the orbifold coor-

dinate chart to get continuous approximation of bounded plurisubharmonic functions

on some general domain in X 26.

25We don’t require the map P to be compatible with the orbifold structure now.
26Strictly speaking, the construction still needs to go through the image P (X) and the classic

extension of plurisubharmonic functions is used. Here we should also need that the convolution
of G-invariant plurisubharmonic functions will still be G-invariant where G is the finite group for
orbifold structure which is essentially made up of rotations. Basically, we require G ⊂ SL(n,C) in
order to preserve the Euclidean volume form when using this (averaging) convolution.
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Chapter 6

Essential Estimate

In this chapter, we justify Condition (A) for our degenerated case in general. The

argument we are going to use is different from the original one in [Koj1] as quoted in

Part (3). Let’s motivate it first.

It might seem natural to push the discussion at the end of last chapter to the case

when the image of the domain in CPN is singular at the center, i.e., that point onto

which a subvariety in X is crushed is no longer a smooth point of P (X). But there

seems to be some substantial difficulties when trying to carry out similar argument

as explained below.

The difficulty is basically lying in the proof of the “subclaim” where some trivial

but important geometric information of Cn is heavily used. For the singular image

case, we still consider plurisubharmonic functions over the original domain V which is

smooth. But at the same time we want to push them onto the image to get some help.

If we are considering the simple local picture of P (X) as {x2 + y2 + z2 = 0} ⊂ C3,

there are still a lot of problems which make it too difficult to carry through the same

argument as described below.

The obvious attempt is to defined similar L-functions on this singular variety since

the infinity is still regular (see for example [Ze]). But then notice that in the proof

of the subclaim, there is a point “a” which will not be on the origin (0, 0, 0), and so

we don’t have all the complex lines through it to cover the whole domain. It might

seem reasonable to consider general algebraic curves instead of Riemann sphere. But

somehow it turns out to be at least too difficult for me at this moment.
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6.1 Reduction to Essential Estimate

Let’s give up this line by line generalization and search for something different. In

fact by taking a closer look at the discussion in Part (3), it is easy to see that before

we arrived at the “claim” there, we did something very rough. We can actually do

something else.

For our consideration where the measure is Lp for some p > 1, just from the

original form of Condition (A) and using Hölder inequality for the left hand side, we

can see in order to prove Condition (A), it suffices to get for any compact subset

K ⊂ V ,

λ(K) 6 C ·
(
Cap(K,V )(1 + Cap(K,V )−

1
n )−m

)q
where λ is the smooth measure over V and q is some positive constant depending on

p. Here we have already used the explicit form of function Q(r) there.

Obviously, it is enough to prove that

λ(K) 6 Cl · Cap(K,V )l · · · · · · (??)

for l sufficiently large. Of course we have λ(K) < C, so in fact we can get for every l

in between. In the following, we’ll consider Condition (A) in this form. Let’s observe

that this inequality can be easily summed up in the sense that if we have it for

different V ’s, then we can get a similar version for the union of all these V ’s as long

as there are only finitely many of them. Since X is closed, this makes the essential

estimate for the global argument available once we get it for all the local pictures.

When V ⊂ Cn, we’ve mentioned before that the result for l = 1 is trivial from

definition. And the general inequality would follow from (?) in Part (3) before which

actually gives the exponential control and is a much stronger result. The estimate

(??) we want here is a generalization of it for general domains.

As discussed before about comparison principle used in the proof, we may use

“Capc” instead of “Cap”. 1 Notice in the proof of boundedness result, the function

v as in Part (1) is taken to be smooth (constant in fact), so the set U(s) there is

open. Thus by the discussion before about “Capc”, we can in fact use Cap∗c for the

result of generalized Part (1) in the case of general domains. Then for Condition (A),

we can also use Cap∗c on the right hand side, and so we have reduced the proof of

1This is how we first came up with the proof, though the discussion before allows more flexibility.
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boundedness result to the following inequality:

λ(K) 6 Cl · Cap∗c(K,V )l · · · · · · (A)

uniformly for any K compact in V where l is large enough. It’s easy to see that it

suffices to prove this when Cap∗c(K,V ) is small.

Remark 6.1.1. Once we justify the essential estimate above, then we have proved

the boundedness result and the careful track-down argument in Chapter 3 would also

give us the explicit apriori L∞ estimate as claimed in the theorem.

6.2 Proof of Essential Estimate

When P (X) is smooth, the argument at the end of the previous chapter would give

us this estimate. Basically, we can directly use the estimate in for domains in Cn

which are in P (X). The singular measure on P (X) can be controlled by power of

smooth measure on it. For the rest part, we consider the case when P (X) is singular.

Let’s start with the easiest case and gradually remove the extra assumptions in order

to give a clear picture about what’s happening.

6.2.1 Blow-down to Point Case

At the beginning, let’s look at the case of crush-to-point which has been illustrated

before. Basically, we still require the map P to be biholomorphic away from those

points locally, i.e., a blow-down picture locally.

We have V ⊂ V̄ ⊂ V ′ where V ′ is the preimage of a small ball in CPN around one

of the points being crushed onto. Here “small” means it only contains one singular

point in the image and the punctured ball is biholomorphic to V ′ after removing the

corresponding variety being crushed to this point. The domain V , which is our main

concern, corresponds to a smaller ball inside. Naturally, V ′ is referred to whenever

we want to extend functions over V to a bigger domain. They are both hyperconvex

in the usual sense.

In our proof of the estimate (A), the essential step is to prove the inequality below:

λ(K) 6 C1 · εN1 + C1 · ε−N2exp
( C2

logε · Cap∗c(K,V )
1
n

)
· · · · · · (B)
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for any (sufficiently small) 1
2
> ε > 0 where K is a compact set in V . All the other

constants Ci’s are positive and NOT depending on ε.

After getting this, it is easy to see we can put ε = Cap∗c(K,V )β for some proper

β to justify the inequality for any chosen l we need when Cap∗c(K,V ) > 0. Basically,

one just needs to use the dominance of exponential growth over polynomial growth

(over logarithmic growth). If Cap∗c(K,V ) = 0, then it’s easy to see λ(K) = 0 by

using the potential of ω∞, which makes Condition (A) trivially true and won’t give

us any trouble.

The rest part of this subsection will be devoted to the proof of this inequality in

the current situation. The following construction, which will be called “small-piece-

cover”, is of fundamental importance for this goal.

We can use finite unit coordinate balls on X to cover V ′. Essentially, only one

needs to cover the crushed variety. Then we take two finite sets of open subsets

depending on ε > 0 as follows: 2

{Ui} and {Vi} with i ∈ I, two finite coverings of V \W , whereW is ε-neighbourhood

of the crushed variety, i.e., corresponding to the intersection of a ball of radius ε cen-

tered at the point being crushed onto with the image, P (V ), such that Vi ⊂ Ui in one

of the coordinate balls chosen above. Moreover, when mapped to CPN , Ui and Vi are

in fact the intersections of the image of V with balls of size 1
2
ε and 1

6
ε. The I is the

index set with |I| being controlled by C · ε−N2 .

It is easy to justify such a choice by considering the picture in CPN . Basically

in the current case, for the upper picture (i.e., the preimage side of the blow-down

map), each coordinate ball on V which covers some part of the crushed variety should

contain a positive “cone angle” in the lower picture (i.e., the image side of the blow-

down map). That allows us to put in Ui’s and Vi’s. The numbers of these sets are

controlled by the number of balls needed to cover the whole ball in CPn. One can

use the example, {x2 + y2 + z2 = 0}, to see what’s really happening. We know that

the tangent cone (lowest order part) of the singular point should be something like

that and it’ll be basically the situation when we talk about very small scale 3. Our

construction would clearly survive small peturbation from the primitive situation.

Furthermore, in the construction above, we can choose the size of the small pieces to

be in the scale εC for any fixed (large) C > 0 without affecting the application below.

This would be useful for more general cases.

2All the ε-dependences involved are explicitly stated below.
3the situation for small ε > 0 is obvious the only essential content of the inequality we are proving.
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The essential computation to prove (B) is the following:

λ(K) 6 λ(W ) +
∑
i∈I

λ(K ∩ V̄i)

6 C · εN1 +
∑
i∈I

C · exp
(
− C

Cap(K ∩ V̄i, Ui)
1
n

)
6 C · εN1 +

∑
i∈I

C · exp
( C

logε · Cap∗c(K ∩ V̄i, V )
1
n

)
6 C · εN1 +

∑
i∈I

C · exp
( C

logε · Cap∗c(K,V )
1
n

)
6 C · εN1 + Cε−N2 · exp

( C

logε · Cap∗c(K,V )
1
n

)
.

(6.1)

That gives just what we want. Here we use C1 and C2 because the C’s at different

places have different affects on the magnitude of the final expression. In the following,

we’ll justify the computation above.

First, let’s notice that the computation above is clearly justified even if some

capacity terms are 0. If one doesn’t want such terms, then he can take summation

over a subset of I such that this won’t happen, which would not affect the final

control. Anyway, 0 capacity implies 0 measure as pointed out before (using ω∞).

The only nontrivial steps are the second and third ones. 4 In fact the second one

is the direct application of (?) in Chapter 3, the classic result in Cn because Vi and

Ui are in one of the finitely many unit coordinate balls of V which can of course be

taken as the unit Euclidean ball in a uniform way and we are even using a smaller

domain Ui as the background domain, which increases the relative capacity. Here we

should realize that the only difference is that the measure is not the standard one,

but not too different either.

The third step makes use of the following inequality:

Cap(K ∩ V̄i, Ui) 6 C · (−logε)n · Cap∗c(K ∩ V̄i, V ).

This is nontrivial since we are enlarging the background domain from Ui to V , while

the coefficient (−logε)n can be really big.

This is also a classic fact in case of a hyperconvex domain V ⊂ Cn. In the following,

we prove it by extending plurisubharmonic function from Ui to V . Argument using

the similar idea has appeared before.

4The “εN1>0” control of the measure of W should be clear from the holomorphicity of the map
P and the definition of W .
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Consider v ∈ PSH(Ui) valued in [−1, 0]. Define the function

h =
(
log(

36|z|2

ε2
)
)+ − 2,

where the upper + means taking maximum with constant 0 which clearly preserves

the plurisubharmonicity, on the unit ball in CPN but with the coordinate system z

centered at the center of Vi
5.

Then it’s easy to see the pullback of this function on V , still denoted by h, is

plurisubharmonic on V . Of course the function max{h, v} on Ui is equal to v near V̄i

and equal to h near ∂Ui. So we can use this function to extend v to the whole domain

V while keeping the value near K ∩ V̄i (and so the extended function will correspond

to the same measure near K ∩ V̄i as v itself under Monge-Ampere operator.). We call

this function H.

We also want to deal with the subtlety that the orginal v may not be continuous

but the definition of Cap∗c requires continuity of the functions that one can use to take

supremum. 6 Consider the convolution of max{h, v} in Ui
7, Hj. This might be a

confusing notation, but notice that it is actually the convolution of H, just not global

on V . Since H is in fact equal to h and so continuous near ∂Ui, by Dini’s Theorem,

Hj converges to H uniformly in some annulus near ∂Ui. Thus the continuous function

max{h + δ,Hj} will be equal to h + δ for some small δ > 0 and j sufficiently large,

and so it can be extend to the whole of V continuously by h + δ. Let’s call it Hδ,j.

Notice that near V̄i, this function Hδ,j will be equal to Hj as Hj > H and h is −2

there. So as j → ∞, it’ll still decrease to v near V̄i. Moreover, Hδ,j is valued in

[−1,−2logε+ C].

Now by applying the convergence of (
√
−1∂∂̄Hδ,j)

n to (
√
−1∂∂̄v)v in the sense

of distribution over some open neighbourhood of V̄i as j → ∞, we can draw the

conclusion just as before by using cut-off functions and the definitions of those relative

capacities. The coefficient C · (−logε)n appears because the values of function Hδ,j

range in an interval with length controlled by some multiple of −logε.

Remark 6.2.1. The classic result for domains in Cn can be proved using the relative

extremal function as in [AlTa]. It’s very likely that we can also do this here if the

relation between the relative extremal function and relative capacity is still available.

For this consideration, it might be better to work with open sets instead in sight of

5This would only change things in a uniform way. The power of ε would be some 2C for general
cases discussed later, but it clearly won’t affect our following discussion.

6This part is rather superficial as we can see it now.
7This is OK since Ui is in some coordinate ball.
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Capc(U) = Cap(U) for open sets. Anyway, the idea of extending plurisubharmonic

functions by hyperconvexity of the domain is really what’s behind the screen.

Also we see it is OK for us to work with open sets only since the sets U(s) = {u <
v + s} there in the argument, which we’ll apply the Condition (A) over, are all open

as the v is always chosen to be continuous.

However, for later discussion about stability, in sight of the quoted argument before,

we are going to working with sets which might not be open (if the functions are not

continuous). In this case, we can come back to the relative capacity “Cap” and we

know there should be no worry about comparison priciple.

Thus we conclude our justification of Condition (A) for the case of crush-to-point

and get boundedness result.

Finally, let’s point out that we get the estimate above with “Cap∗c” on the right

hand side simply because that’s what we currently need since continuous functions

are used instead of general (bounded) functions. But it is easy to see the argument

for this estimate, as sketched below, would actually be simpler if we want “Cap”

instead, i.e., for any l > 0, there exists a constant Cl > 0 such that for any compact

set K inside V ,

λ(K) 6 Cl · Cap(K,V )l.

Clearly, it still only takes to prove the corresponding inequality (B). In the

computation used above for justifying the corresponding (B), we can just change

“Cap∗C” to “Cap”. In order to prove the third step, the argument is easier since we

only have to extend the function on Ui to V basically using the function h and we

don’t even bother to make it smooth (continuous) now.

Remark 6.2.2. As mentioned before, there could also be a global version of the

argument for boundedness result. It is quite natural to imagine that we’ll need a

global version of Condition (A). For the classic case as in [Koj2], it is quite easy to

get the global version of this condition from the local version by patching things up. For

our case here, to carry out the patching argument, the degeneracy of the background

metric will cause trouble if one wants to patch thing up in exactly the same way

(using coordinate balls). But since we have already treated the neighbourhood of the

degenerate part, similar argument can go through now.
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6.2.2 Birational Case

In this section, we remove the assumption about crushing varieties to points. But

we still assume P : X → P (X) to be a birational morphism. In other words, we are

considering the case of crushing varieties to varieties 8.

We start by assuming that the map P is locally a blow-down map with (possibly)

singular image with the blown-down part to be the set {ω∞n = 0}. Here the “locally”

means we are considering the map P from an open set of X to an open set of P (X)

inside some Euclidean ball in CPN . The one in X is the preimage of the one in P (X).

There couldn’t be more than one component by the birationality assumption.

At the first sight, this is very different from the previous case because if we want

to consider the neighbourhood of {ω∞n = 0}, it’ll no longer correspond to something

inside a ball in CPN under the map P . Thus we lose all the local functions we can

construct on this neighbourhood by pulling back those elementary functions over a

(Euclidean) ball inside CPN . But the following observation would help a lot which

can actually be traced back to our original idea of generalizing the argument discussed

in Chapter 4.

Basically, we don’t have to consider a general domain which contains (one con-

nected component of) the degenerated variety of ω∞. It’s only necessary to make sure

that the degenerate directions will not go through the boundary of the domain being

considered transitively. Then the semi-positivity of ω∞
9 will provide some room D

for us which is crucial for the argument. 10

Now we can easily see that there is actually no difference between the case now

and that of the previous subsection. Let’s describe the argument a little bit as follows.

Take finite Euclidean balls to cover P ({ω∞n = 0}) in CPN . Then the preimages

of them are our general domains V . Just as before, we can have a slightly larger ball

for each of them. Now it is only needed to consider them one by one.

It is easy to see that we still only need to check Condition (A) in the form as in

the previous subsection, i.e., inequality (B) there. The most important part is the

construction of small-piece-cover (i.e., the Ui and Vi there). The construction used is

pretty local. Basically you just have to avoid the degenerate part by removing the

ε-neighbourhood of it and then cover the rest by such sets. Clearly it still works here

just as before. The justification doesn’t even need to be modified except that the

8Of course, we expect the dimension to decrease by calling it “crushing”.
9In fact the convexity of its potential.

10We do need ω∞ to be reduced to potential globally over the general domain considered.
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scale of small ball needs to be like εC with some large but fix C > 0.

Hence we can conclude the boundedness result when P is locally blow-down.

Remark 6.2.3. In fact, as we can see for the discussion above, the only essential

part of the proof is just to prove (B). Our proof here is essentially only dependent on

the construction of the small-piece-cover before.

For the construction, we only have to make sure the sets are kind of regular in

CPN and can be put in coordinate balls in the neighbourhood V in X. In fact their

preimages don’t have to be connected or even in the same coordinate ball respectively.

Moreover, the cover we need is not for the whole neighbourhood V . In fact we can

remove some ε-neighbourhood of any subvariety in it and the algebraic structure of

the (singular) image will generally provide us with the uniformality with respect to

all ε sufficiently small, which is very important for the argument. We only need

holomorphic structure on X since it’s smooth.

All the observations above provide quite some flexibility for our argument. So it is

very natural to guess that we can conclude the boundedness result without assuming

the local blow-down picture of P by finding enough properties for such a holomorphic

map P with dimCX = dimCP (X). In fact, combining with the argument in the next

subsection, we’ll justify that it is indeed the case.

Now we justify our argument for the case when P : X → P (X) is a birational

morphism. In the following, we are going to make sure that our small-piece-cover

construction works in this case which will provide us with the proof for Condition

(A) and so the boundedness result.

Let’s start with a better description about the map P : X → CPN .

First by Proper Mapping Theorem, we know the image P (X) is a subvariety of

CPN . And so we have the local picture of it as a finite-sheet covering of a standard

Euclidean ball of the same dimension branched over some subvariety (see in [GrHa]

for example).

By the birationality of the map P : X → Y where Y = P (X), we can find

dense open sets Xo ⊂ X and Yo ⊂ Y such that the restriction P : Xo → Yo is

an isomorphism (i.e., a biholomorphism). We also have several obvious relations as

follows.

Yo ⊂ Y \ {singular locus}, {ω∞n = 0} ⊂ X \Xo where {ω∞n = 0} and the image

of it are subvarieties of X and P (X) (or CPN) respectively. Also Y \Yo ⊂ P (X \Xo)

and the equality will not be true in general. In fact, the equality case is more or less

just the crush-down case considered before.
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Set W = P (X \Xo). From above, it is a subvariety of Y containing Y \Yo. Finally

set Z = P−1(W ) which is clearly a subvariety of X containing X \Xo (and {ω∞n = 0}
of course). We can now summarize the following picture of P :

Z andW = P (Z) are subvarieties ofX and Y = P (X) respectively, {ωn∞ = 0} ⊂ Z

and the complements are biholomorphic to each other under the map P . Observe

that this is essentially what we need from the crush-down picture. The only difference

is that we are now “crushing down” more than the degenerate variety of ω∞.

Now for the construction of small-piece-cover, one can use W and Z instead of

the variety being crushed down to (P ({ω∞n} = 0)) and the variety being crushed

({ω∞n = 0}) as in the picture of crush-down considered before. More precisely, we

consider the local picture of P (X), i.e., the picture of it inside a small Euclidean ball

in CPN , and its preimage in X. Here notice that without loss of generality, we can

consider only connected X and so is P (X). In fact P (X) is irreducible, and so the

smooth part of it is connected (see in [GrHa] for example) as well as all the open

sets appearing above. So we can conclude that P (X) ∩B and its preimage in X are

connected open sets in P (X) and X respectively for sufficiently small Euclidean ball

B in CPN .

Moreover, if we want to make sure the pullback of the elementary functions over

P (X) ∩ B onto the preimage can be used as before as the defining functions of the

hyperconvexity of the domain 11, it is important to make sure that the boundary

value is correct, in other words, we need

∂
(
P−1(P (X) ∩B)

)
⊂ P−1

(
∂(P (X) ∩B)

)
,

where for a general open set U , ∂U := Ū \U . The relation above is generally true for

a continuous function f : X → Y and an open set U in Y in place of P and P (X)∩B
above. The proof is trivial from definition as follows.

For any x ∈ ∂(f−1(U)), by definition, we know x is not in f−1(U) but there is an

element of f−1(U) in any neighbourhood of x. Thus f(x) is not in U by definition

and there is an element of U in any neighbourhood of f(x) by the continuity of f , so

f(x) ∈ ∂U and x ∈ f−1(∂U). Of course one can also see this by noticing f−1(Ū) is a

11Actually, hyperconvexity (of the domain in X) is not that necessary for the extension used in
our construction. Basically, we only need the pullback function from the image side valued in an
interval with controllable length. So the following discussion is only for the sake of a picture more
similar to the classic situation. The only place where it’s useful might be the hyperconvexity of the
domain in a projective manifold which is require in the approximation results discussed in Chapter
5.
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closed set in X containing f−1(U).

Let’s emphasize that the equality may not true in general, but the extra part of

the preimage of ∂U is not in our consideration of the domain f−1(U).

Remark 6.2.4. This result could be a little confusing when one thinks about the map

of a close disk in R2 being projected to an interval. This confusion actually comes

from the definition of boundary ∂U . The boundary of the whole space would always

be empty using the above definition. But this definition of boundary would correspond

to the usual one, which is also what we want, when X and Y are closed (i.e., without

boundary). It might get people nervous since Y = P (X) is singular as used before, but

for this concern here, the “Y ” can be chosen to be CPN , and so everything is classic.

P−1(P (X) ∩ B) also needs to be able to be enlarged to be a strictly bigger open

set in X as part of our requirement of hyperconvexity. But there is also no need to

worry about this since it is come from P (X) ∩ B in P (X) and so we may take ball

B’s of different sizes to get all the open sets needed with desirable functions.

Anyway, we’ve seen from above that the global geometry of the domains (preim-

ages) in X is good enough for us. Now we need to take care of the small pieces.

Obviously, it is enough to consider them out of Z and W respectively. Since P is

biholomorphic between those parts, we can do just what we did before and there is no

need to worry about the geometry which would give the uniformality for the size of the

small pieces. Just as mentioned, the point is that in the construction of small-piece-

cover, we can avoid any subvariety in the preimage by removing ε-neighbourhood of

it. The reason for us to introduce all the other varieties above is to make the sure

that the neighbourhood in X would correspond to a Euclidean ball in CPN in order

to use the geometry there.

So in fact we are actually considering more than what we need (domains covering

a neighbourhood of {ω∞n = 0}) in order to justify Condition (A).

The birationality will then make sure that it is good enough to compute the

measure of any set in X using the data from P (X) 12. Again the uniformality with

respect to ε is from the algebraic picture of P (X) and the complex analytic picture

of P described above. Simply speaking, any coordinate neighbourhood which covers

part of the variety Z would contains a uniform “cone” pointed at the corresponding

part of W .

This ends the proof of boundedness result when P is birational to its image.

12In fact it just says the total number of the small pieces are controlled well, and from here we
can see the birationality is actually not that crucial.
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6.2.3 General Case

Actually when we are considering a semi-ample (and big) class [L] (for example, the

canonical class KX which is nef. and big), for sufficiently large integer m, the map

P : X → CPN given by the holomorphic sections of m[L] would be birational to its

image. Of course, now the manifold X is algebraic (or projective). So the discussion

in the previous subsection would be sufficient to conclude boundedness result with

such a (nonnegative) class [ω∞] (rational or ratinal up to a positive real constant) in

the degenerated Monge-Ampere equation. The reasoning is simple as follows.

Suppose the class [L] is semi-ample (and big). We know for some (integral) ef-

fective divisor E, [L] − 1
m

[E] would be positive for sufficiently big integer m > 0.

Thus the holomorphic sections of the holomorphic line bundle ml[L]− l[E] (for large

enough integer l > 0) would provide an embedding of X to some projective space.

Hence the sections of ml[L] would do the same thing (i.e., tell apart the points and

tangent vectors) out of E at least, which would give the birationality of the map P

thus got.

We can actually do better. The stable base locus set of [L] is the (finite) inter-

section of of those E’s, and so sufficiently large finite multiple of [L] can take care of

the tangent vectors at each point out of the stable base locus set since by taking N

large enough, we can have N [L]−Ni[Ei] to be the ml[L]− l[E] above for those finite

i’s and each z out of ∩iEi would be out of some Ei. The situation for telling apart

points out of the stable base locus set would be a little different since for two points

not inside the stable base locus set, they might not be out of the same Ei. So as far

as I can see, we only have local isomorphic out of stable base locus set and the image

of the complement of the stable base locus set under the map from N [L] might not

be smooth. Even for the special case of complex dimension 2, the situation is not

much better. Of course, when [L] = KX , the picture is much more clear as we’ll see

in our application.

Remark 6.2.5. Ths discussion above actually tells that the map P would be locally

isomorphic out of the stable base locue set of [L], telling apart the tangent vectors.

So the pullback of Fubini-Study metric on CPN to X would be nondegenerated out

of the stable base locus set. Thus {ω∞n = 0} ⊂ {stable base locus}. We have also

mentioned before that Nakayame’s result tells that the stable base locus set is just the

union of all the subvarities, Z, such that [L]dimCZ · Z = 0. Since [L] = [ω∞], we

know {stable base locus} ⊂ {ω∞n = 0}. Hence we conclude that for m large enough,

{ω∞n} = {stable base locus}.
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The above discussion tells that we have done enough to get the boundedness result

when the class [L] = [ω∞] is semi-ample (and big). This could be the main interest

for this problem.

In the following, we’ll show that by combining all the previous arguments, the

boundedness result can be proved in case of [ω∞] merely coming from a map. More

precisely, as stated in the theorem, there exists a holomorphic map

P : X → Y ⊂ CPN

with dimCY = dimCX, and ω∞ = P ∗ωY where ωY is a Kähler metric defined on a

neighbourhood of Y . Here we just need X to be a closed Kähler manifold. This ωY

is denoted by ωM before.

As before, it is still only left to justify Condition (A) using the small-piece-cover

coming for the map P .

First, it’s easy to see the differential of the map P would be invertible at one point

as follows.

Use W to denote the singular variety of Y , and Z = P−1(W ), a subvariety in X

which can’t be X itself as P (X) = Y . Now for the restriction of the map P from

X \Z to Y \W (of the same dimension), by Sard’s Theorem, the set of critical points

is of measure 0 on Y (and thus a genuine subvariety of Y ). So there are actually

plenty of points on X at which the differential of P is invertible. Actually, this is also

how we know
∫
X
P ∗(ωY )n > 0.

In fact, the injectivity of differential for one point implies also for a dense open

subset of X. Thus by removing a big enough variety W in Y = P (X) which contains

the singular locus variety of Y and defining Z = P−1(W ) which is a subvariety in X

just as in the previous subsection, we have the restriction P : X \ Z → Y \W be a

covering map (i.e., with injective differential at each point).

For any y ∈ Y \ W , P−1(y), which is a subvariety of X consisting of points,

should just be a finite set of points. Since Y \W is connected, we can say the map

P : X \ Z → Y \W is an γ-sheet covering map for some finite positive integer γ.

Then still taking the local picture of P (X), i.e., P (X)∩B for small Euclidean ball B

in CPN , now the preimage might have several (6 γ) components and the boundary
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of each one still gets mappped to the boundary of P (X) ∩ B 13. So we can consider

each of these components as the domain V and this would be enough for proving the

boundedness result as explained below.

It is easy to confirm that the small pieces can be constructed just as before. There

is just a small difference here. Recall that for the construction, the small pieces in

V ⊂ X are the preimages, Vi ⊂ Ui, of the small pieces, Si ⊂ Ti, in P (X) which

are the intersections of the image with small balls in CPN . Of course, we now only

cover the part away from W (or Z). In the cases considered before, each small piece

in X would be connected just as in P (X) (from birationality). But for the current

situation, the preimage of a small piece in P (X) may have several components even

when restricted to V and the numbers of components for preimages of open sets O1

and O2 with O2 ⊂ O1 may not be the same in V since when one enlarges the open set

in the image, the components in preimage might become connected. We are done if

it is true that there is one component of Ti for each component of Si such that both

sit in the same coordinate chart in V . But this is still obvious from the consideration

of “cone” mentioned before from the analyticity of the map P and the algebraicity

of the image P (X). The pullback of the functions from the lower picture in CPN

would work as before since the boundary values would be preserved by the simple

topological result discussed before.

But we have to be careful here since the above statement would be true if we can

make sure that the preimage of the small balls in CPN will have each component sit

in one of those chosen coordinate charts in a relatively compact way. This is not as

obvious as in the earlier case when the map is birational at least locally. For the case

here, we can’t get this no matter how small the neighbourhoods that we choose are

since the neighbourhoods of W and Z are considered near these varieties where in

general there could be things like branching happening.

To deal with this problem, we still just need to see the size of the “ball” Ti can

be chosen as εC for some fixed C > 0 large enough. Again, we need the properties of

the map P to justify this.

Actually, there is another way to understand this picture which might give more

intuition as follows.

Still choose finitely many coordinate balls on X to cover V . Then let’s consider a

curve (for a complex direction in CPN) in P (X) passing through a point z ∈ Z. It’s

13Classic result for covering spaces and the simple relation proved in the previous subsection are
used here.
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easy to see that the preimage of it would be the union of several (6 γ in fact) curves

on X, which intersect W transitively, and a subvariety of W . Now by choosing a

complex cone (with some high order as the C > 0 in the power of ε before) pointed

at z around the curve, after removing the part in W from the preimage of it, we can

have each component contained relatively compactly in a coordinate ball. Of course

we might have to consider in a smaller ball in CPN for each curve like that. But we

can do this for each curve and the parameter space of all such objects is compact just

as all the complex directions from Z. Thus we can definitely choose finitely many

such cones which cover P (X)∩B′ for some presumably ball B′ smaller than the ball

we started with in CPN and the preimage of each cone is contained in the coordinate

balls in X in a nice way. Now we can have the small pieces in X by pulling back the

small balls in those cones and they will work just as before. For the argument, we do

not even need to make sure that Ui and Vi are connected.

Also there is another difference coming along which is that the total number of

small pieces in this domain V might be a multiple of the number of small pieces in

P (X) ∩ B. Fortunately that’s just a uniformly finite (6 γ) multiple, and so it will

not affect our essential computation used before to prove the inequality (B). Thus

the inequality (B) can be proved in exactly the same way, and so is Condition (A).

Hence boundedness result has been proved for the general case. Until now, we

have finished proving (1) and (2) for Theorem 4.1.2 (or Theorem 1.3.2).
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Chapter 7

Continuity of Bounded Solution

and Stability

To begin with, let’s recall that in the proof for the classic case as in Part (5) of

Kolodziej’s argument, we pick a special point after assuming the discontinuity of a

bounded solution. We can still do the same thing for the degenerated case here. The

argument is completely local. If the point lies in the part where ω∞ > 0, then the

original argument would give us the contradiction. So it’ll suffice for us to provide the

argument when that point thus chosen actually lies on the degenerate set, {ω∞n = 0}.
As before, we can still get a neighbourhood which has the convexity for the po-

tential of ω∞. But the problem is that now there is no convolution to provide us with

a smooth (decreasing) approximation, which is very involved in the argument, since

this domain is no longer in Cn. As pointed out before, we do need the approximation

functions to be plurisubharmonic. In other words, for u ∈ PSHω∞(V ) ∩ L∞(V ), we

need uj → u decreasingly as j → ∞ with uj ∈ PSHω∞(V ) ∩ C∞(V ). This is not

available from the approximation results listed before because ω∞ is not positive. 1

7.1 Orbifold Image Case

A trivial doable case would be when the map P is locally birational with a smooth

image P (X). This is basically the first case considered for the proof of bounded-

ness result in which the original proof in [Koj1] is easily carried through with little

modification.

The whole point is that we can use the convolution locally on P (X) for functions

1The situation is slightly different from that of comparison principle.
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over V ⊂ X. Now V is the preimage of a Euclidean ball B in P (X) by the smooth-

ness. The main observation is that plurisubharmonic functions over V are one-to-one

correspondent to the plurisubharmonic functions over B. This can easily be justified

by considering the biholomorphism between the dense open parts, which is the reason

we require the local birationality, and using the extension property of plurisubhar-

monic functions to treat the rest part which is analytic (algebraic). 2 Clearly this is

enough for us to carry through the original continuity argument for this case.

We can actually generalize the above case a little bit. When P (X) carries an orb-

ifold structure instead, since we also have the continuous approximation of plurisub-

harmonic functions by using the convolution on the orbifold coordinate chart, the

continuity argument still goes through. Let’s provide a little detail below.

We can still push a plurisubharmonic function u over V to the image P (V ) which

has orbifold singularities. Denote the function over P (V ) by v. Clearly v is plurisub-

armonic on a dense open (smooth) part of P (V ), and the values for the rest part

would make v satisfy essential upper semi-continuity over P (V ). Thus the pullback

of v over the orbifold coordinate chart U would be a G-invariant plurisubharmonic

function w where G is the local orbifold group and P (V ) = U/G. The convolution

of the oribifold coordinate chart can be descended to the (singular) quotient if it

preserves the G-invariance. This would be the case since G usually consists of just

some rotations. More precisely, we just need G ⊂ SL(n,C) which would preserve the

Euclidean volume form over U . The functions from this “convolution” would only be

continuous in general, but that’s is still enough for our application. Here we do not

require the map P to be compatible with the orbifold structure.

Remark 7.1.1. There is also some other thing for the above case. Usually, the func-

tions on X which are pullbacks of orbifold smooth functions on P (X) would actually

be Hölder continuous. So we would also get more than the continuity of the solu-

tion. This somehow makes us feel the orbifold structure of P (X) should not be that

necessary merely for the solution to be continuous.

One might also want to use the obvious generalization of the results in [Koj1] in

orbifold case as mentioned before, i.e., treat a proper equation over the image P (X)

instead. But if the map P is not birational, then it’ll be impossible to get a proper

(singular) volume form corresponding to a general volume form over X.

There might be a small issue about the convolution we get from the image since

2More complicated picture will be considered later where more details can be found.
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the convolution needs to avoid boundary. But the boundary of the domain where we

actually use the convolution might be more than the boundary of the general domain

when we consider on X as from the simple topological relation discussed in Chapter

6. But we can deal with this by considering bigger domains. More presisely, the idea

is pretty easy as follows. For the application in continuity argument, we have the

function in a domain strictly containing V , so in a strictly bigger domain in P (V )

and also in the orbifold coordinate chart. Thus we can have the functions from the

convolution defined over V . 3

7.2 Attempt for Global Argument

For a long time, it seems too hard for me to carry through the continuity argument

as above in general. So a different route has been tried a little. It’s interesting in its

own way and provides some useful information about the solution. This section is

devoted to this “wrong” way.

Let’s provide the global proof mentioned before for the continuity of the solution

in the classic case when the background form is actually a (Kähler) metric. We would

like to point out that essentially everything is already contained in [Koj2].

Lemma 7.2.1. Let ω be a Kähler metric over a close manifold X. Suppose we have

a sequence of uniformly bounded plurisubharmonic (with respect to ω) functions {uj}
such that

(ω +
√
−1∂∂̄uj)

n = Fjω
n

with Fj > 0 and uniformly bounded in Lp-norm for some p > 1. Then there is a

subsequence which uniformly converges to a bounded plurisubharmonic function u.

Remark 7.2.2. For the original approximation as in [Koj1], uj’s are actually smooth

from classic results since the measures, Fjω
n, are smooth nondegenerate volume

forms. So the limit u would also be continuous by the above lemma. In fact, the

uniform convergence would tell us that the corresponding measures would converge

weakly to some measure which will just be the Monge-Ampere measure of u. Thus

this discussion actually provides a slightly different point of view about the results in

[Koj1].

3Sometimes we have to extend the original function to achieve this and the hyperconvexity of the
domain will be eough for us if we do not worry too much about the values near the boundary which
is usually the case.
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Proof. Suppose |uj| 6 C for some positive constant C > 1
3
. As usual, the same C

with starting value greater than 1
3

might change during the process. From the earlier

discussion about the limit, we can assume uj converges in L1-norm to u.

Set aj,k = Capω(Ej,k(2δ)) where δ is some sufficiently small positive constant and

Ej,k(2δ) = {uj + 2δ 6 uk}.
For any v ∈ PSHω(X)∩C0(X) valued in [−1, 0], set Vj,k = {uj +δ 6 (1− δ

3C
)uk+

δ
3C
v + δ

3
}. From the following inequalities

uk − δ 6 (1− δ

3C
)uk +

δ

3C
v +

δ

3
6 uk +

2δ

3
,

we have the following chain of sets:

Ej,k(2δ) ⊂ Vj,k ⊂ Ej,k(
δ

3
).

Comparison principle gives the following:∫
Vj,k

(ω +
√
−1∂∂̄((1− δ

3C
)uk +

δ

3C
v +

δ

3
))n 6

∫
Vj,k

(ω +
√
−1∂∂̄(uj + δ))n

which can be rewritten as∫
Vj,k

( δ

3C
(ω +

√
−1∂∂̄v) + (1− δ

3C
)(ω +

√
−1∂∂̄uk)

)n
6

∫
Vj,k

(ω +
√
−1∂∂̄uj)

n.

Considering arbitrary such a function v and using the relation between those set,

we arrive at

aj,k(δ)
( δ

3C

)n
6

∫
Ej,k( δ

3
)

Fjω
n.

Since uk − uj > δ
3

over Ej,k(
δ
3
), we can have the following computation

aj,k
δn+1

3n+1Cn
6

∫
X

|uk − uj|Fjωn

=

∫
{Fj>M}

|uk − uj|Fjωn +

∫
{Fj6M}

|uk − uj|Fjωn

6 2C

∫
{Fj>M}

Fjω
n +M

∫
X

|uk − uj|ωn

6
2C

Mp−1
‖Fj‖pLp +M

∫
X

|uk − uj|ωn.

From the uniform bound of ‖Fj‖Lp and the L1 convergence of uj to u, by choosing
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the constant M large enough, we can have that for any (small) ε > 0, if j, k are large

enough, then the following is true

aj,k 6 εδ−n−1.

Let’s emphasize that the discussion above is uniform for all δ > 0 sufficiently

small. 4

Suppose Ej,k(3δ) is nonempty. Then the global argument (for Part (1)) quoted

before would give for j, k sufficiently big,

3δ − 2δ = δ 6 κ(aj,k) 6 κ(εδ−n−1).

When ε is very close to 0, this would be a contradiction. Hence we conclude that

fixing any δ > 0, for large enough j, k, we have uj + 3δ > uk. The indices are

symmetric, so we get the uniform convergence of this sequence {uj}.

Remark 7.2.3. The proof actually tells that a sequence would be uniformly convergent

if it’s L1 convergent provided the measures are uniformly controlled. The background

Kähler metric ω is fixed which is important for the symmetry of indices j, k mentioned

at the end.

The argument is globally over X and the relative capacity used here is not “Cap∗c”.

But it’s OK as discussed before.

However, the situation is very different for our current consideration, the approx-

imation solution, uε ∈ PSHω∞+εω, have less plurisubharmonicity than the solution

u ∈ PSHω∞ itself.

More precisely, the plurisubharmonicity is “increasing” as ε decreasing to 0. So

we’ll meet with the same kind of difficulty as in applying the local argument which

is discussed before, i.e., not knowing (λω + ω∞ + εω +
√
−1∂∂̄uε)

n as an Lp-measure

for some λ > 0 and p > 1. Notice now the condition will be on all the approximation

solutions (with some uniform bound of the norm) instead of the limiting solution itself.

These two conditions are not quite equivalent. In some vague sense, the condition for

local argument before looks less restrictive which is sort of natural to accept as the

local argument makes use of some fairly delicate construction.

Remark 7.2.4. In fact, from the way (flow or perturbation method) we get the

4Actually we just need “1− δ
3C > 0”.
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(bounded) solution 5, the continuity of the solution out of the stable base locus set

is justified. But as we know from results in algebraic geometry, the stable base locus

set is contained in {ω∞n = 0}. 6 So we actually do have to consider the degenerate

set.

7.3 General Case

Professor Kolodziej pointed out a classic extension result in [FoNar] which can be used

to treat the main difficulty of the argument for continuity, i.e., the lack of smooth

(or just continuous) local approximation of plurisubharmonic functions in a general

domain which is not in Cn. In this section, we prove (3) in Theorem 4.1.2 (or Theorem

1.3.2).

The idea is again to use the image of the map P . Let’s restrict ourselves to the

case when the map is birational. This covers our main interest when the map is

from a semi-ample (and big) bundle as discussed before. Indeed, it’s OK if the map

is locally birational which also allow us to push forward the solution to the image

locally as explained below.

7.3.1 Weak Plurisubharmonicity

For a birational map P : X → P (X), we can push forward the solution u for the

degenerate Monge-Ampere equation (ω∞ +
√
−1∂∂̄u)n = fΩ over X to the image

P (X) as follows.

First, by the local isomorphism from birationality, we get a function v on a dense

open part of P (X) (out of a subvariety). For the rest part, we can see the preimage of

each point in P (X) would have to be a connected subvariety of X. In order to justify

this, we only have to use the connectedness of a neighbourhood in P (X) (which is

clearly irreducible) of this point and the birationality of the map P . The background

forms ω
FS

and ω∞ = P ∗ω
FS

7 have corresponding local potentials, and so we can still

get a lawful value of v for this point from the function u. It’s quite easy to see the

function v thus get will be upper semi-continuous on P (X) just from definition. Of

course, P ∗v, the pullback of v on X would be u itself from the construction. The

function v is clearly bounded.

5Ω is a smooth volume form and eu is on the right hand side of the equation.
6In fact, we have seen they are actually the same set using proper choices.
7We can use any Kähler metric ωM as in the statement of the theorems. But ω

F S
comes with

the most geometric interests.
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Remark 7.3.1. It’s also natural to think about this pushforward in another way. By

the birationality of P , we can get v out of a subvariety of X. Then we can use upper

semi-continuization to extend v to the whole P (X), ṽ. Clearly, the pullback of this

function to X by P would be u itself out of that subvariety, but we can’t just say

P ∗ṽ = u from this since we haven’t seen the plurisubharmonicity of P ∗ṽ.

But if we use the essential upper semi-continuity (along varieties) discussed below,

it’ll be easy to see ṽ would exactly correspond to the function over P (X) constructed

before. So these two points of views are actually equivalent.

Now the idea is to locally extend v plurisubharmonically (after being combined

with the local potential of ω
FS

) to a neighbourhood of P (X). Everything is inside a

Euclidean ball of CPN . So finally the usual convolution would provide the approxi-

mation for v (and also for u by pulling back to X). The following is some discussion

about the extension result.

First, we want to make sure that the function v is weakly plurisubharmonic as

used in [FoNar]. The definition would be clear from the discussion below.

We have already seen that it is upper semi-continuous. In fact, it’s essentially

upper semi-continuous just as in classic case for plurisubharmonic functions over a

domain in Cn since a measure 0 set in the image P (X) would have the preimage also

with measure 0 in X. 8 Indeed, we can only consider subvarieties on P (X) and X

instead of all those measure 0 sets. It might be easier to feel more convinced like this.

The above property is emphasized because it tells that the value at any point of

P (X) can be decided from the values for enough points near it. Since we have the

plurisubharmonicity of the function v in a big part of P (X) which is isomorphic with

its preimage in X, this will make it easier to control the values for the remaining part.

In fact, for the functions in the general domain in X 9, we can go one step fur-

ther to get essential upper semi-continuity along closed varieties. Classic results tell

us (restriction of) any plurisubharmonic function over a variety would have to be a

constant. 10

Combining the observations above, we have the following fact.

Claim: Keep the above notations. Then for any surjective holomorphic map

8The measure for P (X) is induced from some metric in CPN which is clearly dominated by the
pushforward measure from some smooth measure on X.

9The following is for any domain in a manifold which contains closed varieties.
10The constant can be −∞ apriori, but clearly we don’t have to worry about this as the functions

are all bounded for our consideration.
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R : Y → P (X) 11, where Y is a smooth manifold with the same dimension as P (X),

we have R∗v ∈ PSHR∗ω
FS

(Y ).

The dimension assumption guarantees that R would be a covering for a dense

open part. This assumption is not very restrictive since R would be a resolution of

singularities for P (X) in our application.

The justification of this result is as follows. First, R∗v is plurisubharmonic with

respect to R∗ω
FS

for a dense open part of Y coming from the regular part of P (X).

Over Y , we can extend such a function plurisubharmonically to the whole of Y since

it’s smooth. This element would be essentially upper semi-continuous along varieties

which are preimages of points on P (X). Clearly, this is also true for the original

pullback R∗v over Y . Hence they should be the same and we get what we want.

The property left to be justified in order to see that v is weakly plurisubharmonic

is the following.

For any holomorphic map f : ∆ → P (X) where ∆ is the unit (open) disk for

C, we need to know f ∗v is subharmonic over ∆. Clearly, this is a local statement

about P (X) and would be the same as requiring v to be plurisubharmonic if P (X)

is smooth.

Let’s start with a prototype to illustarte the proof first. Suppose P (X) has the

local picture of {x2 + y2 + z2 = 0} ⊂ C3 which has been our favorite choice of

singularity. If the image f(∆) does not contain (0, 0, 0) which is the only singular

point, the subharmonicity of the pullback function is classic. Otherwise, we can

assume the following two local cases. One is that f(∆) = {(0, 0, 0)} which is a trivial

case for us. The other one is that only the center of ∆ is mapped to (0, 0, 0). In

the second case, it’s easy to see that the map f can be lifted by the resolution of

singularity map for P (X) since one just needs to blow up the point (0, 0, 0) once to

make it smooth. 12 As we have seen before, the lift of function v by the resolution of

singularity map is indeed plurisubharmonic. So we conclude f ∗v is subharmonic.

Using the similar idea, we can treat the general case as follows. In general, by

Hironaka’s classic result about resolution of singularities, we can make P (X) smooth

by blowing up along subvarieties for finitely many times. Thus if we are in the

counterpart of the second case considered above, then similar argument would work.

Basically, we have a nontrivial tangential direction at f(0) and it can be used to life

11The “holomorphic” means that the map R : Y → CPN is holomorphic with the image inside
P (X).

12Essentially it’s the tangential direction that is used to lift f at the center.
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the map f , though we might have to do this several times to get a smooth range

object as mentioned above. The nontrivial case becomes the counterpart of the first

case considered in the above example. Now we have to consider the map f : ∆ → W

where W a subvariety of P (X) with lower dimension which is basically the variety

being blown up in the resolution of singularities. Consider the restriction of resolution

map R : Z → W , we know for dense open (regular) parts Z0 and W0 for Z and W

respectively, the map R : Z0 → W0 is a smooth holomorphic fibration, and so the map

f : ∆ → W can be lifted locally for this part and if the image is not in the complement

of W0 in W , the local lift can be done for ∆. Then we have the (pluri)subharmonicity

of f ∗v. Now we only need to further consider the case when f(X) ⊂ W \W0 and it

can be treated similarly using smooth fibration picture as above. The dimension is

strictly decreasing and so it must end after finitely many steps.

Hence we conclude the subharmonicity of f ∗v in general and get the weak sub-

harmonicity of v. This would allow us to apply a classic extension result which is

discussed in the next subsection and provides us with the local plurisubharmonic

approximation needed to run through continuity argument.

7.3.2 Extension Result and Application

In [FoNar], a local extension result is proved. Let’s state the result below. The proof

is not that long, but it’s fairly much unrelated to the rest part of this work, and so

the details won’t be presented here.

Theorem 7.3.2. Any weakly plurisubharmonic function over a complex space can be

locally extended to a plurisubhamonic function over the smooth local ambient space.

The complex space has local picture of (singular) analytic varieties and so the

smooth local ambient space is just a ball in CN. The locality of the extension depends

on all kinds of things including the function itself.

Remark 7.3.3. The proof actually makes use of the results in another big branch in

pluripotential theory. Stein domain, Runge domain, etc. are the main objects there.

Rossi’s local maximum modulus principle is also used in an essential way. Professor

Rossi’s help is very important for me to get a hold of the argument used in proving

this theorem. A few things will be discussed in Appendix in order to make it possibly

easier for people who are not so familiar with these stuffs to understand the proof in

[FoNar].
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Now let’s see why this result helps us to eventually prove the continuity of any

bounded solution of the degenerate Monge-Ampere equation under the assumption

that the map P is locally birational.

First, as pointed out before, the original argument (by deriving contradiction),

which we want to follow, starts with picking a special point x ∈ X. This point

obviously has its own image P (x) ∈ P (X) which is a variety in CPN . Moreover,

we only need to consider the case when this point is in the general domain V which

covers (a part of) the degenerated set {ω∞n = 0}.
By the assumption for the map P , the solution ũ, (after combining with the po-

tential of the semi-positive background form ω∞) restricted to the general domain V

can be pushed onto P (V ). Then the result above allows us to extend this function

to a Euclidean ball in CPN centered at P (X). We can clearly pick our new domain

V from this. Then convolution in this ball gives a smooth decreasing approximation

locally for this pushforward function over P (V ) and so the pullback to V by P gives

a decreasing approximation by smooth plurisubharmonic functions.

In the following, we briefly sketch how this would give the continuity. The punch-

line of the argument is as follows. Suppose {ũj} is the sequence of smooth plurisub-

armonic functions constructed above which are defined on a neighbourhood slightly

larger than V 13 which decreases to ũ pointwisely. Then by the construction in [Koj1]

quoted before, which is very local and can be easily adjusted to our case, we can

prove the sets {ũ + c < ũj} are nonempty and relatively compact 14 inside V for all

c ∈ (0, a) for a > 0 and j > j0.

The local argument for L∞ estimate before gives

a

2
6 κ(Cap({ũ+

a

2
< ũj}, V )).

We also notice that the relative capacity of the set {ũ+ a
2
< ũj} would go to 0 as

j → ∞. This can be justified by the decreasing convergence and a
2
> 0. Finally, we

can draw the contradiction by letting j →∞ in the equality above because the right

hand side is going to 0.

Remark 7.3.4. Recently, Professor Kolodziej has proved some Hölder continuity

result in the classic case in [Koj3]. Things like convolution and the geometry of

13This is not a problem by the flexibility of our choices.
14For the relative compactness of the sets, strictly speaking, we have to use another function (as

w there) which is constructed from ũ linearly instead of ũ itself in the setting. The quoted argument
in Chapter 3 contains details for this.
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Euclidean disk seem to be involved in a more essential way. But somehow, this should

give us hope for further results in the degenerate case. In fact, when the map P is

very nice (but not an embedding), Hölder continuity of solution can be seen from other

ways for special equations.

7.4 Stability for Continuous Solution

Let’s end this chapter by pointing out that the Kolodziej’s argument for stability of

continuous solution can be used line by line for our case without any change. So

we can have exactly the same conclusion as in Theorem 3.2.12 for the degenerate

Monge-Ampere equation. Of course, this gives uniqueness of continuous solution.

Remark 7.4.1. It’s not that satisfying in comparison to Kolodziej’s case when the

background form is positive. In that case, boundedness implies continuity which means

the stability result is also for bounded solution. But now, the assumption on the map P

for boundedness result is slightly weaker than that for continuity result. In Appendix,

there are some discussions about corresponding results for bounded solution.
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Chapter 8

Applications and Further Problems

In this chapter, we present some applications of the results got from the previous

(two kinds of) arguments. Further consideration about this whole program is also

discussed.

8.1 Miyaoka-Yau Inequality

In this section, we give an application of the (singular) metric constructed in Chapter

2. As we see below, the result is in a strong flavor of differential geometry, and so

unfortunately the results from pluripotential-theoretic argument, which are basically

about C0-norm at least for now, are not so useful. We’ll also see one reason why

we introduce the perturbation methods after we’ve already got the metric by flow

method.

There is a classic result about the Chern classes for a Kähler-Einstein manifold

which could be seen as a standard application of the Kähler-Einstein metric. We want

to see that our (singular) K-E metric can also do similar job possibly with proper

assumption about the singularities. In the following, we’ll use the same convention

and notations as in [CheOg] where standard computation is carried out explicitly.

The original result in that paper is as follows.

Theorem 8.1.1. For a closed Kähler-Einstein manifold of complex dimension n > 2,

M , we have:

[ω]n−2c2 >
n

2(n+ 1)
[ω]n−2c1

2

where ω is Kähler-Einstein 1, “[ · ]” means taking the corresponding cohomology class

1There is no need for normalization of the constant as is clear from the rescaling invariance of
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as usual. c1 and c2 are the first and second Chern classes of X (i.e., the holomorphic

tangent bundle of X). The pairing on both sides are the standard topological one.

Furthermore, the equality holds only when the manifold M is a complex space form.

The proof basically makes use of the following two classic results (see [CheOg])

which are obtained by pointwise computation.

Lemma 8.1.2. For any closed Kähler manifold, M , with Kähler metric ω, we have:

[ω]n−2c2 = A ·
∫
M

(ρ2 − 4‖S‖2 + ‖R‖2)ωn,

[ω]n−2c1
2 = 2A ·

∫
M

(ρ2 − 2‖S‖2)

where ρ, S and R are scalar curvature, Ricci tensor and curvature tensor with respect

to the metric ω respectively and the norm ‖ · ‖ is also taken with respect to ω. “A” is

some universal positive constant depending only on n.

Remark 8.1.3. The statement can actually be made pointwise if we use the metric

ω to compute the Chern forms. In that case we do not have to require the closedness

of the manifold. But what we really need is just the cohomological statement above.

Lemma 8.1.4. For any Kähler manifold ,M , with Kähler metric ω, we have point-

wisely that
n(n+ 1)

2
‖R‖2 > 2n‖S‖2 > ρ2.

All the notations have the same meaning as in the previous lemma. The left equality

holds when ω is a complex space form metric. The right equality holds when ω is

Kähler-Einstein.

After getting these two results, there is only a little algebra left to conclude the

theorem above. In fact we’ll do something quite similar for our case with just a little

modification. Basically, we’ll use Lemma 8.1.2 for the approximation metrics and

Lemma 8.1.4 for the limiting metric.

We’ll use the perturbation approximation below. So let’s recall the setting first

ω̃nε = (ωε +
√
−1∂∂̄uε)

n = euεΩ

where ωε = ω∞ + εω for a fixed Kähler metric ω, and [ω∞] = KX nef. and big.

this inequality.
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The following are the main estimates got from before:

ω̃nε > Cα|σ|αωn, 〈ω, ω̃ε〉 6 Cβ|σ|−β, (8.1)

where α, β are positive constants uniform for all ε ∈ (0, 1]. Notice that α can be

as close to 0 as we want, but that’s not the case for β. Actually, we can have the

following control of the approximation metrics as metric 2

C|σ|(n−1)β+αω 6 ω̃ε 6 C|σ|−βω,

where the right “6” is obvious from the bound of trace, while the left one can be

seen by using contradiction. Notice ω̃ε is a smooth metric for all these ε’s.

We also have the convergence ω̃ε → ω̃∞ = ω∞ +
√
−1∂∂̄u∞ locally smoothly in

X \ {σ = 0} as ε → 0. Here the ∞ is used in ω∞ to indicate it is also the one from

flow construction.

The observation below is trivial but useful:

Ric(ω̃ε) = −
√
−1∂∂̄log(euεΩ) = −ω∞ −

√
−1∂∂̄uε.

Remark 8.1.5. We see above that the Ricci form is essentially the metric form for the

approximating Kähler metrics up to an explicit term. If we use the flow construction,

then
√
−1∂∂̄(∂u

∂t
) comes up. Of course we have the local control of it in X \ {σ = 0}

from the bounds for higher derivatives by classic interior estimate, but that is not as

explicit as the estimates listed above.

Now for all ε > 0, we suppose

[ω̃ε]
n−2c2 = aε[ω̃ε]

n−2c1
2

which is also true if one uses ωε instead as basically a cohomology result. The limiting

situation is

[ω∞]n−2c2 = a∞[ω∞]n−2c1
2.

Here we have the well-definedness of aε and aε → a∞ as ε→ 0 because [ω∞]n−2c1
2 6= 0

by noticing the right hand side is some nonzero multiple of [ω∞]n > 0 from nef. and

big assumption. The lower index ∞ is still inherited from the flow construction which

does not look so natural in this setting.

2This has been mentioned and used before as uniform control of the metrics locally out of the
set {σ = 0}. Here we just put it into a more global-looking version.
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Now we can carry out the following computation:

0 =

∫
X

(
(1− 2aε)ρε

2 − 4(1− aε)‖Sε‖2 + ‖Rε‖2
)
ω̃nε

>
∫
X

(
(1− 2aε)ρε

2 − 4(
n

n+ 1
− aε)‖Sε‖2

)
ω̃nε

=

∫
X

(
(1− 2aε)ρε

2 − 4(
n

n+ 1
− aε)‖Sε‖2

)
euεΩ,

(8.2)

where ρε and ‖Sε‖2 are essentially (up to positive constants) just the following two

terms respectively

〈ω̃ε,−ω∞ −
√
−1∂∂̄uε〉,

(−ω∞ −
√
−1∂∂̄uε,−ω∞ −

√
−1∂∂̄uε)ω̃ε .

Thus if we can take β in (8.1) to be small enough, then we can apply Dominated

Convergence Theorem for the last expression above as ε → 0. In this case, we can

of course only consider the integration over X \ {σ = 0} where the limiting metric is

Kähler-Einstein. The following is what we’ll get:

0 >
∫
X\E

(
(1− 2a∞)ρ∞

2 − 4(
n

n+ 1
− a∞)‖S∞‖2

)
ω̃n∞

= 4(n− 1)

∫
X\E

( n

2(n+ 1)
− a∞

)
‖S∞‖2ω̃n∞.

By noticing S∞ is essentially just −ω̃∞ over X \ {σ = 0}, we get a∞ > n
2(n+1)

.

Hence we arrive at the following inequality:

(−1)nc1
n−2c2 > (−1)n

n

2(n+ 1)
c1
n

because C · [ω∞] = −c1 for some positive constant C due to different convention and

[ω∞]n > 0.

Remark 8.1.6. In the classic case, there is also characterization about when equality

would hold. But that’ll make use of (8.2) for the (singular) Kähler-Einstein metric,

which means we have to use Dominated Convergence Theorem there. So we’ll need

the control for ‖Rε‖. But just as mentioned before, until now the control we have is

not very satisfying for this purpose.

Hence we conclude the following theorem:

Theorem 8.1.7. For a smooth projective manifold X with KX nef. and big, if there
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is some proper control of the trace of the singular Kähler-Einstein metric constructed

before near the singular variety, i.e., the β in (8.1) can be taken to be sufficiently

small, then we conclude, just as in the case when KX positive, that:

(−1)nc1
n−2c2 > (−1)n

n

2(n+ 1)
c1
n.

Remark 8.1.8. The inequality should hold when X is a projective surface and KX

is only big (see in [Mi]). So it seems reasonable to conjecture that the assumption in

the above theorem will always be satisfied in the case of complex dimension 2.

8.2 Combining Results

In this section, we give an example about how to study interesting geometric ob-

jects by combining the results got before from the two kinds of arguments. More

specifically, we prove Theorem 1.4.1 stated in Introduction.

From the discussion in Chapter 2, we can already prove statements (1), (2) and

(4) of this theorem. Now by the argument from pluripotential theory in Part II of

this work, we can get (3) as follows.

Consider the Kähler-Ricci flow equation (2.1) with S = 0:

∂ω̃t
∂t

= −Ric(ω̃t)− ω̃t, ω̃0 = ω0,

where ω0 is any given Kähler metric.

Let ω∞ = −Ric(Ω) for a volume form Ω. Set ωt = ω∞ + e−t(ω0 − ω∞) and

ω̃t = ωt +
√
−1∂∂̄u, we can put (2.1) on the level of potential and more in the

Monge-Ampere setting as:

(ωt +
√
−1∂∂̄u)n = e

∂u
∂t

+uΩ.

We have seen in Chapter 2 that the right hand side has a uniform Lp-norm bound

for all t with any 1 < p 6 ∞. In fact, we know u and ∂u
∂t

are bounded uniformly from

above.

Now we know [ω∞] = KX is nef. and big by assumption. Hence it would be semi-

ample and provide us with a birational map P from X to some CPN as mentioned

before, and so it falls right into the picture of Theorem 1.3.2.

Though in ωt = ω∞ + e−t(ω0 − ω∞), we do not assume that ω0 − ω∞ > 0 which

would make it more like the perturbation previously used in Part II, by combining
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with the degenerate lower bound of u from Chapter 2 which works like assuming

“maxXu(t, ·) = 0”, we can still have the uniform L∞ estimate for u(t, ·) with t ∈ [0,∞)

simply by using part of ω∞ in the front to dominate the second term. In other words,

let’s consider ωt as 1
2
ω∞ + e−t

(
ω0− (1− 1

2
et)ω∞

)
where 1

2
ω∞ can be used as P ∗ωM in

Theorem 1.3.2 (or Theorem 4.1.2) and the rest part is a harmless positive perturbation

for our argument for t sufficiently large. 3

This would give us the boundedness of the potential and so its limit. The conti-

nuity follows directly from Theorem 1.3.2 since the map P is birational to its image.

Hence (3) in Theorem 1.4.1 is true.

Actually we can also see that the limiting solution is more canonical than what’s

stated in (4) since it’s even unique for the limiting equation by comparison principle.

Remark 8.2.1. The above is more or less like building connection between different

pictures. But we have very good reasons to expect that they can eventually tells us

much more about these objects.

8.3 Surface Case

In complex dimension 2 case, using the rich theory about complex surfaces, we can

show some relation between the (singular) Kähler-Einstein metric constructed before

with other known metrics as follows.

Now X is a minimal complex surface of general type. This is just another way

of saying that KX is nef. and big. It is well known that a basis of sections of mKX

for some m > 0 gives rise to a holomorphic map P : X → CPN . The map P will

contract finitely many rational curves to points (as stated in the appendix of [Za] by

Mumford which basically makes use of the results in [Ar]) and the image X = P (X)

is a Kähler orbifold (see for example in [Du]) with rational double points. We can

explain part of this picture using some simple algebraic geometry argument below. It

looks simple only because we make use of some results already been mentioned before

which might not be easy to prove at all.

Since KX is nef. and big, we know the map P would be a local isomorphism out

of the stable base locus set of KX for m sufficiently big as discussed before. From

Nakamaye’s result mentioned and also used before, the stable base locus set should

be the union of the varieties over which the class KX is degenerate as Kähler class.

3In fact, the uniqueness result already proved before allows us to only consider the case when
ω0 > ω∞. But the treatment here gives some idea about the flexibility of the argument.
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In the surface case, it should just be the union of the (irreducible) curves C such that

KX · C = 0.

We can use adjunction formula to study these curves.

0 = KX ·C = KC ·C −C ·C = 2gC − 2−C ·C. Since KX − εE would be Kähler

for some ε > 0 and curve E from the bigness of KX , we have (KX − εE) · C > 0.

As KX · C = 0, we have E · C < 0 and so C · C < 0. By plugging this back into

the adjunction formula above, we see gC = 0 and C · C = −2. So C is a (rational)

(−2)-curve. Clearly, there could only be finitely many of them by cohomological

consideration. It’s easy to see that the argument above can be reversed. So the

stable base locus set of KX consists of all (−2)-curves. Anyway, we now know that

every C is contained in the divisor E used above. And we can see by a simple

computation that the intersection between different C’s can only be 0 or 1. In the

following, C would stand for a connected component of the union of (−2)-curves in

sight of the possible intersection 1 between them.

These properties would characterize the singularity of the image and give the pic-

ture above. In fact, as KX · C = 0, we know that a holomorphic section of mKX

would have its 0 locus set either not intersect C or contain C. Since mKX is also

base-point-free, both situations should appear. We can easily conclude from this that

the map P would contract each C to a point, though we can not see here that the

point would be different for each C (a chain of (−2)-curves). 4

Anyway, we have the picture of the map P described before. The argument in

[Ar] tells that P ∗KX = KX and now KX is an orbifold K-E class. Set mω∞ = P ∗ω
FS

,

where ω
FS

is the standard Fubini-Study metric on CPN . We know that the (singu-

lar) K-E metric (from Kähler-Ricci flow or other perturbation methods) got before is

smooth outside those rational curves contracted by P .

In the following, we’ll show that the singular metric constructed before actually

coincides with the pullback of the unique Kähler-Einstein orbifold metric on X with

KX as its Kähler class.

Let ω = 1
m
ω

FS
|X . Since it represents KX , there is a (orbifold) volume form Ω on

X such that Ric(Ω) = −ω.

Moreover, we can see the pullback of this form to X is a smooth volume form

Ω such that Ric(Ω) = −ω∞ as follows. Basically, since KX · C = 0, we know the

4Actually, this situation is called as A-D-E singularity. See for example [BaPetVa] for more
systematic discussion.
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canonical bundle is actually trivial in a small neighbourhood of C. Thus the orienta-

tion bundle is also trivial there. The pushforward of a local volume form |s|2 in that

neighbourhood in X, where s is a nowhere 0 holomorphic function (i.e., a section of

KX there), is a volume form away from the rational double point. We can lift it to the

orbifold coordinate chart. This volume form is defined only out of a point which is of

codimension 2. Applying Hartogs’ Theorem to the function s, we know the extension

would be a orbifold volume form and that’s exactly what we want.

Now write the Kähler-Einstein orbifold metric as ω +
√
−1∂∂̄v 5, where v is a

smooth function in the sense of orbifolds. In particular, v is continuous on X. Fur-

thermore, on X, it satisfies the following Monge-Ampere equation

(ω +
√
−1∂∂̄v)2 = evΩ.

This equation can be pulled back to an equation on X:

(ω∞ +
√
−1∂∂̄u)2 = euΩ,

where u = P ∗v clearly belongs to PSHω∞(X) ∩ C0(X).

By uniqueness result of such a solution for the degenerated Monge-Ampere equa-

tion which is rather trivial by applying comparison principle, we know that these two

metrics have to be the same.

Remark 8.3.1. In fact, we don’t even need the boundedness of the solution got before

(from flow method) to conclude this because we can justifiy comparison principle for

more general class of functions as mentioned at the end of Chapter 2.

The following corollary is what has been proved.

Corollary 8.3.2. If X is a minimal complex surface of general type, then the global

solution of the Kähler-Ricci flow converges to a positive current ω̃∞ which descends

to the Kähler-Einstein orbifold metric on its canonical model. In particular, ω̃∞ is

smooth outside finitely many rational curves and has local continuous potential.

Remark 8.3.3. Of course the consideration above also works for higher dimensions

under proper assumption. But it’s of course much more restrictive.

5This can be obtained essentially by applying Yau’s argument in [Ya] to the orbifold picture as
done in [Koi] for example.
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8.4 Direct Generalization

We have kept mentioning the canonical line bundle KX over X and Kähler-Einstein

metric and correspondingly in the equation (ω∞ +
√
−1∂∂̄u)n = euΩ, we assume

ω∞ = −Ric(Ω) besides the more essential assumption on the class [ω∞], though it is

pointed out that this assumption is not necessary for most of our argument. But at

that time, the real meaning (or say more geometric meaning) of the equation without

this extra assumption is not quite clear. Now we are going to clarify this.

Let’s reconsider the equation (2.1) which is the main flow equation being consid-

ered on the level of metric:

∂ω̃t
∂t

= −Ric(ω̃t)− ω̃t + S, ω̃0 = ω0

where ω0 is the initial Kähler metric and S is some smooth real closed (1, 1)-form.

This is just the k = −1 case of (1.1) at the very beginning which is our main

interest. Notice that in the general computation in Introduction, S always appears

in S − Ric(Ω) where Ω is a smooth volume form. So we might want to replace S

by Ric(Ω) + L where L is another smooth real closed (1, 1)-form. Now the equation

becomes:
∂ω̃t
∂t

= −Ric(ω̃t)− ω̃t + Ric(Ω) + L.

In this form, at least cohomologically, it is clear that the flow is a tool for us to deal

with the class [L].

If we remove the “−Ric(ω̃t)+Ric(Ω)” part on the right hand side of the equation,

the remaining part is a rather trivial evolution equation and the limit is trivial L in a

strong sense which it is not so interesting. In fact we use the part −Ric(ω̃t) + Ric(Ω)

to make sure that the solution (if exists) will be a metric for each time slice while

hoping the limit in any sense would preserve the positivity.

Now intuitively we want to get a limit as t→∞ for the flow which means we are

heading for a “metric”, ω̃∞, satisfying

0 = −Ric(ω̃∞) + Ric(Ω)− ω̃∞ + L.

Formally considering in the level of cohomology, we would have [ω̃∞] = [L] which

means we could find a metric representative for the class L if there is such a limit. Of

course we do not expect this to happen for general L, but this will give one way to

see how we are going to fail or succeed in finding such a representative. Moreover we

might lower our standard of the limit by allowing singularities (essentially allowing
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weak convergence), which is just what have been done earlier.

Let’s explicitly write down what we have to treat. Set ωt = L+ e−t(ω0 − L), and

ω̃t = ωt+
√
−1∂∂̄u. Then formal computation tells us that u will satisfy the following

evolution equation:
∂u

∂t
= log

ω̃nt
Ω
− u, u(0, ·) = 0

which should look very familiar up to now. And we’d better focus on this equation in-

stead of the equation on the level of metric as usual. Clearly all the equivalence about

these equations can be justified in the same way as before. The limiting equation now

becomes

(L+
√
−1∂∂̄v)n = evΩ,

and there is no relation between Ric(Ω) and L now. In fact there is nothing very

fancy here if one notices that in the discussion before, we suppose S = 0 and so

L+ Ric(Ω) = 0. At this moment we just make it more explicit that it is the class [L]

that the flow is heading for and it could in fact be anything.

No difference needs to be made to essentially all the discussions for the flow

equation above in dealing with this general case and we briefly sketch the output

below.

For [L] positive, for any choice, we always have that the limit exists in C∞-topology

which satisfies

(L+
√
−1∂∂̄u∞)n = eu∞Ω

for any L and Ω we might choose. This is classic.

For [L] numerically effective, for any choice, we still have the global existence of

the solution for the flow equation. In fact the flow exists as long as the class remains

to be Kähler in general.

For [L] nef. and big, we still have [L] − εE positive for some effective divisor E

and ε ∈ (0, a). So there is no change for all the local discussions. We get a limit u∞,

which is smooth out of the stable base locus set of [L] with some estimates near the

stable base locus set and globally plurisubharmonic over X, satisfying

(L+
√
−1∂∂̄u∞)n = eu∞Ω

over the regular part in usual sense 6.

And recall we have seen if the stable base locus set is empty for KX , then the limit

6Over X in the sense of measure since the left hand side is a measure even if u∞ is unbounded
as discussed at the end of Chapter 2.
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is a smooth metric which represents [KX ]. It is of course also the case here. Hence

the following is true just as before:

[L] nef. and big with empty stable base locus set ⇐⇒ [L] positive.

The perturbation method using a positive class is totally unaffected. Now for

the other perturbations using
√
−1∂∂̄log|σ|2, notice that if ω∞ > 0 which is now

L > 0, then we can actually take a proper norm | · | which makes all the perturbed

background forms actually positive, and this will make the argument looks cleaner.

In the case when [L] = KX (and related ones), by Kawamata’s result, nef. and big

will imply that [L] is semi-ample, and so it is easy to get such a representative. We

don’t have this for general class. But clearly our argument is not so affected by this

fact.

Remark 8.4.1. For all the discussion above, we can consider real class, while ra-

tional class, which essentially comes from some holomorphic line bundle, is usually

considered for notions like nef. or big. But the meaning can clearly be generalized to

real case.

But even when restricted to rational class which is of basic interest for geometric

consideration, we yet can not say that there is an L > 0 for such class [L] in general.

So it is indeed nice to recognize all the results still hold without requiring L > 0.

In sight of the previous discuss, there would be a tough issue when applying results

from our argument using pluripotential theory to general class [L]. We need the map

P which should come from the semi-ampleness of this class.

8.5 Further Problems

In this section, let’s list some directions for further consideration on the degenerate

Monge-Ampere equation.

8.5.1 Big Bundle

As pointed out before, the flow method seems to be the most promising one in this

situation. It corresponds to the case of T < ∞ as in Section 2.4, i.e., finite time

singularity.

We’ve already known if the limiting class [ω∞] is the canonical class KX which

is big, then [ωT ] would be big and semi-ample for a rational initial Kähler class by
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Rationality Theorem and Kawamata’s result. Thus all the results before can be

applied in this case. The only unsatisfying thing is that the finite time limit of

potential uT , which is continuous, would not satisfy the K-E equation since the term
∂u
∂t
|t=T is not 0.

The problem would become more serious in general since though the class [ωT ]

which would be real nef. and big class for us, it may not even be rational and so

the map P is out of reach. Even for the surface case with [ω0] to be rational, the

semi-ampleness won’t follow from the rationality of the class [ωT ] from results in [Ka2].

In any case, the possible strategy is to continue this flow in some weak sense and

get a weak limit. There are two ways of looking at this as we see it now.

The first one is to continue the flow on some other (singular) space. The space

might come from the map P from the class [ωT ] in some cases. The simplest situation

for a smooth surface of general type is still of quite some interests. We have had some

discussion about it in Chapter 2. At that time, the new space is still a smooth

manifold. But we should expect singularities on the new manifold in general, which

would obviously bring some substantial difficulties in the analysis.

The second one would be to try keeping the flow over X in some weak sense. As

suggested in [Tsh2], Dirichet problem for domains on X might be a proper object

to study for this purpose. Here the choice of the domains and the boundary values

should be quite subtle.

Somehow, these two points of views should be equivalent and the (weak) limit

should be canonical, i.e., independent on all the choices. At this moment, it seems

that we need a little bit better estimates for the situation at time T .

This program is suggested in [Ti2] as stated in Introduction.

8.5.2 Nef. Bundles

As discussed before, the equation (L +
√
−1∂∂̄u)n = euΩ can’t have a bounded

solution when the rational class [L] is nef. but not big. But that doesn’t mean this

equation is of no interest at all. In fact, as we’ve seen, the corresponding Kähler-

Ricci flow has a global solution for all time by nefness and it would be interesting to

study the limiting behavior of the metric along the flow. Basically, no bigness means

the volume should be collapsing when t → ∞. It’s expected that the volume would

degenerate to the dimension equal to the Kodaira dimension which in this case is
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strictly smaller than the dimension of the manifold X itself.

In Song and Tian’s recent work [SoTi], the case when [L] = KX for X, a minimal

surface of Kodaira dimension 1, has been successfully treated with complete descrip-

tion about the collapsing. Quite some arguments there can be applied to general

dimensions provided the Kodaira dimension is still 1. Hopefully we can address this

problem further by combining the different techniques.

8.5.3 More General Equations

It should also be natural to consider the following version of the degenerate Monge-

Ampere equation:

(ω∞ +
√
−1∂∂̄u)n = Ω (8.3)

where [ω∞] is nef. and big and Ω is a smooth volume form. Of course we should

require
∫
X

Ω = [ω∞]n. In fact this is exactly the main equation considered Part II of

this work. But now we focus on the case when Ω is smooth so that the maximum

priciple argument used in Chapter 2 can also be applied. Basically, the feature of

the degeneration is just like in our main interest before, so we can also try to solve it

using the same spirit.

It’s easy to see the perturbation methods used before also provide families of

approximation equations. We can just rescale the right hand side by positive constants

to maintain the equality of integrals over X for both sides.

Now since there is no eu term on the right hand side, we can not get uniform

degenerated C0 estimates as in Chapter 2. Indeed the classic method as in [Ya] doesn’t

look feasible to me either at this moment. But once C0 estimate is available, it is

easy to realize that there is no difficulty in carrying out the (degenerate) Laplacian

estimate and higher order estimates. Then we can have the same kind of limit as

before.

When [ω∞] is big and semi-ample (or just comes from a map P as in Theorem

1.3.2), we can have the uniform C0 estimate for the (normalized) approximation

solutions which even better than what we’ve used before in Chapter 2. 7

The solution is actually continuous when [ω∞] is semi-ample and big (or the map

P locally birational). The uniqueness of such a solution is clear from the stability

result mentioned before. Hence we have proved the following theorem.

Theorem 8.5.1. For the equation (8.3), if [ω∞] is semi-ample and big, we have a

unique bounded solution u ∈ PSHω∞(X) which is smooth out of the stable base locus

7This is also the case for equation with eu on the right hand side.
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set of [ω∞] and continuous over X. We also have some controls about the singularities

along the stable base locus set of [ω∞].

It would be a different story if one uses flow method to study the equation above.

Clearly that type of flow introduced in Introduction is not going to help us. But using

the original flow equation in the level of potential, it is easy to cook up the following

flow equation that’ll have (8.3) as the limiting equation:

∂u

∂t
= log

(ωt +
√
−1∂∂̄u)n

Ω
, u(0, ·) = 0 (8.4)

where ωt = ω∞ + e−t(ω0 − ω∞). Then we can trace back to see what is the equation

in the level of metric. Set ω̃t = ωt +
√
−1∂∂̄u as before. We can get the following by

taking “
√
−1∂∂̄” on both sides of the above flow equation:

∂ω̃t
∂t

= −Ric(ω̃t) + Ric(Ω)− e−t(ω0 − ω∞), ω̃0 = ω0

which is no longer canonical as before, i.e., depending on the choices of ω∞, ω0 and

Ω.

We still have the long time existence when [ω∞] is numerically effective. In fact,

general existence result can be proved using similar argument as in Chapter 2.8

Quite mysteriously, in order to get a similar convergence result under proper

assumptions on the limiting class [ω∞], the main obstruct, as I see it now, is merely

the lack of a proper lower bound for ∂u
∂t

. And even for the case when the limiting

class is Kähler, such a bound is not yet available in general as far as I know at this

moment. Related discussion can be found in Appendix.

8One can do a change of the unknown to create a “−u” for (8.3). It won’t do any harm when
searching for finite time estimates.
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Chapter 9

Appendix

9.1 Inequalities for Laplacian Estimate

In this section, we clarify the computation for the inequalities used in Chapter 2 to

get Laplacian estimate. And there are also some other things we might want to pay

attention to when using the inequalities for local estimate. A very brief discussion

for higher order derivative estimates will also be provided. It’s the flow method that

requires the most intention. Essentially all these are a direct application of the result

in Yau’s original work [Ya]. So let’s recall what Yau’s classic computation gives at

the beginning.

On a (closed) Kähler manifold X with dimCX = n > 1, consider the following

equation

(ω +
√
−1∂∂̄u)n = eFωn,

where ω is a Kähler metric and F is a smooth function. u is supposed to be a smooth

solution. Set ω̃ = ω +
√
−1∂∂̄u.

Then we have the following inequality at any point p ∈ X:

eCu∆ω̃

(
e−Cu〈ω, ω̃〉

)
> (∆ωF − n2infi6=jRīijj̄)

− Cn〈ω, ω̃〉+ (C + infi6=jRīijj̄)e
− F

n−1 〈ω, ω̃〉
n

n−1 ,

where C is a positive constant such that C + infi6=j,XRīijj̄ > 0 (i.e., the sum is a

positive constant) and Rīijj̄ is for the metric ω where i and j are for some local or-

thonormal frame for the holomorphic tangent bundle with respect to the metric ω.

Let’s emphasize that this inequality is pointwise and the “inf” is taken at the point

p. So there is no requirement on the global topology of X which is closed in all our
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consideration.

Let’s consider the flow case first. The equation considered is the following:

∂u

∂t
= log

(ωt +
√
−1∂∂̄u)n

Ω
− u,

where ωt = L + e−t(ω0 − L) is uniform as metric for the range in which we use the

computation and everything is smooth. Here we use L to match the notation in

general case. This equation can be rewritten as:

(ωt +
√
−1∂∂̄u)n = e

∂u
∂t

+u+log Ω
ωt

n ωt
n.

Now we can apply Yau’s computation to get: (ω̃t = ωt +
√
−1∂∂̄u)

eCu∆ω̃t

(
e−Cu〈ωt, ω̃t〉

)
>

(
∆ωt(

∂u

∂t
+ u+ log

Ω

ωtn
)− n2infi6=jRīijj̄,t

)
− Cn〈ωt, ω̃t〉+ (C + infi6=jRīijj̄,t)e

−
∂u
∂t

+u+log Ω
ωt

n

n−1 〈ωt, ω̃t〉
n

n−1 ,

where C is a positive constant such that C + infi6=jRīijj̄,t > 0 and Rīijj̄,t is for the

metric ωt (i and j are for local frame correspondent to ωt). This is still pointwise (for

(t, x)) and here we just use Yau’s computation for each fixed t.

The t-derivative can be treated directly as follows:

eCu(− ∂

∂t
)(e−Cu〈ωt, ω̃t〉) = C

∂u

∂t
〈ωt, ω̃t〉 −

∂

∂t
〈ωt, ω̃t〉

= C
∂u

∂t
〈ωt, ω̃t〉 − 〈ωt,

∂ωt
∂t

+
√
−1∂∂̄

∂u

∂t
〉+ (

∂ωt
∂t

, ω̃t)ωt

= C
∂u

∂t
〈ωt, ω̃t〉 − (

∂ωt
∂t

, ωt)ωt − 〈ωt,
√
−1∂∂̄

∂u

∂t
〉+ (

∂ωt
∂t

, ω̃t)ωt

= C
∂u

∂t
〈ωt, ω̃t〉+ (

∂ωt
∂t

,
√
−1∂∂̄u)ωt −∆ωt(

∂u

∂t
).

Here the second “=” can be justified either by local explicit computation using coor-

dinates or can be seen intuitively by using the diagonal form of the metrics 1. We have

also used the obvious relation 〈ωt, ·〉 = (ωt, ·)ωt above. This computation is general,

i.e., not relying on the special form of metric ωt.

1In fact this intuitive way can be made rigorous by noticing we can use ωt0 + ∂ωt

∂t |t=t0 · (t − t0)
instead of ωt for each t0, and then we can diagonalize them simultaneously.
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Noticing ∆ωtu = −n+ 〈ωt, ω̃t〉, we can sum up the above two to get

eCu(∆ω̃t −
∂

∂t
)
(
e−Cu〈ωt, ω̃t〉

)
>

(
∆ωt(log

Ω

ωtn
)− n2infi6=jRīijj̄,t − n

)
+ (−Cn+ C

∂u

∂t
+ 1)〈ωt, ω̃t〉

+ (
∂ωt
∂t

,
√
−1∂∂̄u)ωt + (C + infi6=jRīijj̄,t)e

−
∂u
∂t

+u+log Ω
ωt

n

n−1 〈ωt, ω̃t〉
n

n−1 .

Now we include the relation ωt = L+ e−t(ω0 − L):

(
∂ωt
∂t

,
√
−1∂∂̄u)ωt =

(
−e−t(ω0 − L), ω̃t − ωt

)
ωt

= (L− ωt, ω̃t − ωt)ωt

= (L, ω̃t)ωt − (L, ωt)ωt − (ωt, ω̃t)ωt + (ωt, ωt)ωt

> −C〈ωt, ω̃t〉 − C,

where for the last step, we use −Cωt < L < Cωt from the uniformality of ωt as

metric.

By the uniformality of ωt as metric, we can get uniform controls for log Ω
ωt

n ,

∆ωt(log Ω
ωt

n ) and infi6=jRīijj̄,t. Noticing the uniform upper bounds for u and ∂u
∂t

always

got before taking care of Laplacian estimate, the above would be sufficient for the

Laplacian estimate before we localize the estimates by including “log|σ|2”.

Now we want to justify the inequality when terms like log|σ|2 are involved. The

equation is now in the following form: 2

(
ωt,δ +

√
−1∂∂̄(u− δlog|σ|2)

)n
= e

∂u
∂t

+u+log Ω
ωt,δ

n
ωt,δ

n,

where ωt,δ = L + δ
√
−1log|σ|2 + e−t(ω0 − L) is uniform as metric 3 for the range we

are applying this inequality. Again by Yau’s computation, we have

eC(u−δlog|σ|2)∆ω̃t

(
e−C(u−δlog|σ|2)〈ωt,δ, ω̃t〉

)
>

(
∆ωt,δ

(
∂u

∂t
+ u+ log

Ω

ωt,δn
)
− n2infi6=jRīijj̄,t,δ)− Cn〈ωt,δ, ω̃t〉

+ (C + infi6=jRīijj̄,t,δ)e
−

∂u
∂t

+u+log Ω
ωt,δ

n

n−1 〈ωt,δ, ω̃t〉
n

n−1 ,

2Everything should be understood out of {σ = 0} now.
3It can be considered as over X to feel more comfortable about the uniform bounds.
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where C + infi6=jRīijj̄,t,δ > 0 and Rīijj̄,t,δ is of course for the metric ωt,δ.

One can also compute the t-derivative part as before:

eC(u−δlog|σ|2)(− ∂

∂t
)(e−C(u−δlog|σ|2)〈ωt,δ, ω̃t〉)

= C
∂u

∂t
〈ωt,δ, ω̃t〉 −

∂

∂t
〈ωt,δ, ω̃t〉

= C
∂u

∂t
〈ωt,δ, ω̃t〉+ 〈ωt,δ, e−t(ω0 − L)〉 − 〈ωt,δ,

√
−1∂∂̄

∂u

∂t
〉 −

(
e−t(ω0 − L), ω̃t

)
ωt,δ

= C
∂u

∂t
〈ωt,δ, ω̃t〉 −∆ωt,δ

(
∂u

∂t
)−

(
e−t(ω0 − L),

√
−1∂∂̄(u− δlog|σ|2)

)
ωt,δ
.

Sum them up to get: (∆ωt,δ
u = −〈ωt,δ, ωt〉+ 〈ωt,δ, ω̃t〉)

eC(u−δlog|σ|2)(∆ω̃t −
∂

∂t
)
(
e−C(u−δlog|σ|2)〈ωt,δ, ω̃t〉

)
>

(
∆ωt,δ

(log
Ω

ωt,δn
)− n2infi6=jRīijj̄,t,δ − 〈ωt,δ, ωt〉

)
+ (−Cn+ C

∂u

∂t
+ 1)〈ωt,δ, ω̃t〉 −

(
e−t(ω0 − L),

√
−1∂∂̄(u− δlog|σ|2)

)
ωt,δ

+ (C + infı 6=jRīijj̄,t,δ)e
−

∂u
∂t

+u+log Ω
ωt,δ

n

n−1 〈ωt,δ, ω̃t〉
n

n−1 .

We can still get rid of the only term not explicitly containing 〈ωt,δ, ω̃t〉 by the

following consideration:

−
(
e−t(ω0 − L),

√
−1∂∂̄(u− δlog|σ|2)

)
ωt,δ

= (L+ δ
√
−1∂∂̄log|σ|2 − ωt,δ, ω̃t − ωt,δ)ωt,δ

= (L+ δ
√
−1∂∂̄log|σ|2, ω̃t)ωt,δ

− (L+ δ
√
−1∂∂̄log|σ|2, ωt,δ)ωt,δ

− 〈ωt,δ, ω̃t〉+ (ωt,δ, ωt,δ)ωt,δ

> −C〈ωt,δ, ω̃t〉 − C,

where the last step is justified still because ωt,δ is uniform as metric in the range

considered. Actually in our application, since L + δ
√
−1∂∂̄log|σ|2 > 0, one can just

use (L + δ
√
−1∂∂̄log|σ|2, ω̃t)ωt,δ

> 0, and so the coefficient for 〈ωt,δ, ω̃t〉 can be just

−1 in the final expression.

Still from the uniformality of ωt,δ as metric and the upper bounds for u and ∂u
∂t

,

we can get the controls for the coefficients in the inequality above. Notice that for

the term 〈ωt,δ, ωt〉, we have ωt uniform as form.

This should be enough for the Laplacian estimate for the flow method.
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If we want to get the estimates for higher order derivatives directly, we can just

use Yau’s computation for G = g̃ij̄ g̃kl̄g̃sr̄uil̄suj̄kr̄. In the case of flow equation, we

have to do the computation for t-derivative directly, but it is not hard to see that

the terms containing “∂u
∂t

” will still cancel themselves just as before and finally we’ll

get an inequality with ∆ω̃t − ∂
∂t

instead of ∆ω in Yau’s work. The idea for getting

local estimates is very similar to what’s used in [CafNiSp]. Though elliptic equation

is considered there, the argument can be used for parabolic case without essential

modification. From the (local) estimates of G, we have enough derivative estimates

to run the iteration using standard estimates in parabolic case (as standard Schauder

estimates in elliptic case) to get all the higher ones.

All these above should be enough for the flow case.

For the perturbation methods, there is no t-derivative, so it should be a more

direct application of Yau’s computation. In case when the perturbation is only for

the background “metric” (as in Subsection 2.5.1), it’s rather trivial to see the original

Yau’s computation is enough.

For the case when perturbation happens on both sides of the equation as in Sub-

section 2.5.2, our equation becomes, out of {σ = 0} where everything is smooth,

(
ωε,δ +

√
−1∂∂̄(uε − δlog‖σ‖2)

)n
= e

uε+εlog|σ|2+log Ω
ωε,δ

n
ωε,δ

n,

where ωε,δ = L + ε
√
−1∂∂̄log|σ|2 + δ

√
−1∂∂̄log‖σ‖2 is uniform as metric for fixed

small δ > 0 and sufficiently small ε > 0. Notice there is even no need for ωε =

L+ ε
√
−1∂∂̄log|σ|2 to be a metric. Once more, Yau’s computation gives:

eC(uε−δlog‖σ‖2)∆ω̃ε(e
−C(uε−δlog‖σ‖2)〈ωε,δ, ω̃ε〉)

>
(
∆ωε,δ

(uε + εlog|σ|2 + log
Ω

ωε,δ2
)− n2infı 6=jRīijj̄,ε,δ

)
− Cn〈ωε,δ, ω̃ε〉

+ (C + infi6=jRīijj̄,ε,δ)e
−

uε+εlog|σ|2+log Ω
ωε,δ

n

n−1 〈ωε,δ, ω̃ε〉,

where C + infi6=jRīijj̄,ε,δ > 0 and Rīijj̄ is for ωε,δ.

Just as before, using the equation ∆ωε,δ
uε = 〈ωε,δ, ω̃ε〉− 〈ωε,δ, ωε〉, we can continue

the above inequality as follows:

>
(
∆ωε,δ

(εlog|σ|2 + log
Ω

ωε,δn
)− n2infi6=jRīijj̄,ε,δ − 〈ωε,δ, ωε〉)− (Cn− 1)〈ωε,δ, ω̃ε〉

+ (C + infi6=jRīijj̄,ε,δ)e
−

uε+εlog|σ|2+log Ω
ωε,δ

n

n−1 〈ωε,δ, ω̃ε〉
n

n−1 .
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By noticing that uε+εlog|σ|2 < C got before in Subsection 2.5.2,
√
−1∂∂̄log|σ|2 being

the curvature for the line bundle “E” with respect to the norm | · |, and ωε,δ being

uniform as metric, we can get the controls for all the coefficients. This is enough for

the Laplacian estimate there.

In fact if we want to get the estimates for higher order derivatives directly, we can

also use Yau’s computation for G = g̃ij̄ g̃kl̄g̃st̄uil̄suj̄kt̄. In this case, since there is no

“t-derivative”, we just have to use the original computation by Yau since we already

have local uniformality of ω̃ as metric 4. From the (local) estimates of G, we have

enough derivative estimates to run the iteration using standard Schauder estimates

to get all the higher ones.

9.2 Uniform Estimates

In this part, let’s take care of the uniformality of the estimates in [Ya] mentioned in

Subsection 2.5.2. We are considering the following family of equations:

(ω +
√
−1∂∂̄uε)

n = euε |σ|2εΩ

for ε ∈ [0, a], where | · | is fixed, and a fixed Kähler metric ω. We want to get some

uniform estimates for all uε’s.

Following Yau’s argument, we just need to find uniform estimates for the family

of equations: 5

(ω +
√
−1∂∂̄uε,δ)

n = euε,δ(|σ|2 + δ)εΩ

where ε ∈ [0, a] and δ ∈ (0, C].

We know that a smooth solution uε,δ exists and is unique for each of these equa-

tions. For simplicity, the lower indices will be omitted below. All the positive con-

stants C in the following should be independent on ε and δ above which is the uni-

formality wanted. The most essential part will be proving the C0 uniform bound for

u’s.

Lower bound is easy to get as follows. Considering the minimal value point of

(each) u, we get at that point,

eu(|σ|2 + δ)εΩ > ωn.

4Since the condition is local, it will give us local estimates for G as in [CafNiSp].
5In fact this also gives the solvability of each equation with ε > 0 above.
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So u > logω
n

Ω
− εlog(|σ|2 + δ) > −C at that point, and so for the whole of X.

The proof for uniform upper bound is more involved as follows. Consider the

family of equations

(ω +
√
−1∂∂̄v)n = Cε,δ(|σ|2 + δ)εΩ

where Cε,δ is the proper constant such that
∫
X
Cε,δ(|σ|2 + δ)εΩ =

∫
X
ωn. Clearly Cε,δ

can be uniformly controlled for all the above ε and δ. We know that the smooth

solution exists for each equation and is unique by requiring
∫
X
vωn = 0 6.

It’s easy to see the uniform upper bound for such v above by using Green’s function

for ω over X. If we have uniform lower bound for v, then we can take a contant A

such that ṽ = v + A > Cε,δ. Then we see

(ω +
√
−1∂∂̄ṽ)n < eṽ(|σ|2 + δ)εΩ

with ṽ still being uniformly bounded. Thus we get by taking quotient:

(
ω +

√
−1∂∂̄u+

√
−1∂∂̄(ṽ − u)

)n
< eṽ−u(ω +

√
−1∂∂̄u)n.

Considering the minimal value point of ṽ − u, one gets at that point, ṽ − u > 0. So

we have ṽ > u on the whole of X. Hence we get a uniform upper bound of u.

Then the argument will be quite standard after noticing

∆ω(|σ|2 + δ) >
|σ|2

|σ|2 + δ
∆ωlog|σ|2.

We can only get local estimates for higher order derivatives since the volume

bound is not so good from the equation itself. But we already have enough to get

uniform C1,α-estimate for all the solutions with α ∈ [0, 1) and that’ll be enough for

getting a C1,α solution by taking limit.

So now it only remains to show the uniform lower bound for v. Let’s recall the

equation

(ω +
√
−1∂∂̄v)n = C(|σ|2 + δ)εΩ

with proper C controlled uniformly for ε, δ and the normalization
∫
v = 0. One still

6X and ωn will be omitted in the integration expression later for simplicity.
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uses Yau’s computation to get: (ω̃ = ω +
√
−1∂∂̄v, eFωn = Ω)

∆ω̃(e−Cv〈ω, ω̃〉)

> e−Cv
(
ε∆ωlog(|σ|2 + δ) + ∆ωF − n2infi6=jRīijj̄)− Cne−Cv〈ω, ω̃〉

+ (C + infi6=jRīijj̄)C(|σ|2 + δ)−
ε

n−1 e−
F

n−1 e−Cv〈ω, ω̃〉
n

n−1

> −Ce−Cv − Ce−Cv〈ω, ω̃〉+ Ce−Cv〈ω, ω̃〉
n

n−1 ,

where one requires C + infi6=jRīijj̄ > 0 and notices (|σ|2 + δ)−
ε

n−1 > C for all ε and δ.

Applying the arithmetic-geometric inequality in the form Cη + ηa
n

n−1 > Ca for

any positive C and η, we arrive at:

∆ω̃(e−Cv(n+ ∆ωv)) > −Ce−Cv + Ce−Cv∆ωv.

Using the volume form ω̃n = C(|σ|2 + δ)εeFωn to integrate both sides of above

over X, we get:

C

∫
(|σ|2 + δ)εe−Cv

>
∫

(|σ|2 + δ)εe−Cv∆ωv

= −
∫

(d((|σ|2 + δ)εe−Cv), dv)ω

= C

∫
(|σ|2 + δ)εe−Cv|dv|2 − ε

∫
(|σ|2 + δ)ε−1e−Cv(d|σ|2, dv)ω.

For the case ε = 0, of course we have∫
(|σ|2 + δ)εe−Cv|dv|2 6 C

∫
(|σ|2 + δ)εe−Cv.

For the case ε ∈ (0, a], we can do the following computation: 7

∫
(|σ|2 + δ)ε−1e−Cv(d|σ|2, dv)ω

=

∫
e−Cv

(
C(|σ|2 + δ)

ε−2
2 d|σ|2, C(|σ|2 + δ)

ε
2dv

)
6 C

∫
e−Cv(|σ|2 + δ)ε−2|d|σ|2|2 + C

∫
e−Cv(|σ|2 + δ)ε|dv|2

6 C

∫
e−Cv(|σ|2 + δ)ε + C

∫
e−Cv(|σ|2 + δ)ε|dv|2,

7The case when ε = 0 can be included below, but it’s not necessary.
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where the last step is justified by the fact that |d|σ|2|2 6 C|σ|2 6 C(|σ|2 + δ).

Thus by combining with the previous inequality, we can get∫
e−Cv(|σ|2 + δ)ε|dv|2 6 C

∫
e−Cv(|σ|2 + δ)ε

by choosing C’s properly, which corresponds to the trivial one claimed for ε = 0

above. Here the C’s are positive constants, but may not be the same at different

places.

Now we can have from the discussion above that∫
|d((|σ|2 + δ)

ε
2 e−

Cv
2 )|2

6 C

∫
(|σ|2 + δ)ε−2e−Cv|d|σ|2|2 + C

∫
(|σ|2 + δ)εe−Cv|dv|2

6 C

∫
(|σ|2 + δ)εe−Cv.

Afterwards, Yau’s original argument can be applied to get a uniform lower bound

for v without any modification.

9.3 Relation between Different Flows

The following general flow equation is our main interest

∂ω̃t
∂t

= −Ric(ω̃t) + k · ω̃t + S, ω̃0 = ω0

where k = −1, 0, or 1 for simplicity and S is some real smooth closed (1, 1)-form.

When k = −1 or 1, the equation can be reformulated as follows:

∂(e−ktω̃t)

∂(− 1
k
e−kt)

= −Ric(e−ktω̃t) + S.

We will call it as the rescaled flow in the following. Notice that the time and metric

are getting rescaled simultaneously and Ricci curvature form is invariantly under

rescaling.

Different k makes the new time parameter − 1
k
e−kt behave in a very different way.

•k = 1: −e−t ∈ [−1, 0), so it becomes finite time situation. As before, we can
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have the changing background form as:

ωt = Ric(Ω)− S + et(ω0 − Ric(Ω) + S) = (et − 1)(ω0 − Ric(Ω) + S) + ω0.

If [Ric(Ω)−S] is positive, then we can take a proper initial metric ω0 with [ω0] =

[Ric(Ω)−S]. The original flow will exist forever (t ∈ [0,∞)) which is not hard to see

and will be discussed later.

The rescaled flow has [e−tω̃t] = e−t[ω0] go to 0 (cohomologically) as t → ∞. So

singularities should appear when −e−t approaches 0. The fairly famous recent work

of Perelman’s ([Per]) on finite time singularity might be applied to study the current

situation.

Clearly, as t → ∞, the convergence of e−tω̃t is a much weaker result than the

convergence of ω̃t itself. If we know more information about the possible convergence

of ω̃t, for example, it converges to a Kähler-Einstein metric or a soliton (which has

to be shrinking), then we have e−tω̃t → 0 as t → ∞ in a very nice way. But clearly,

this is not the only situation we can expect from this simple-minded consideration.

We can also consider the case when [ω0 − Ric(Ω) + S] is nef., then the original

flow will still exist forever just as before. Now we have [e−tω̃t] → [ω0 − Ric(Ω) + S]

as t → ∞. For the rescaled flow, we should still expect finite time singularity when

−e−t approaching 0 in this case.

•k = −1: et ∈ [1,∞), so it is still infinite time situation. Basically we are going

to see the interaction between this case and k = 0 case which has been considered in

[Cao]. 8 The two equations considered here and in [Cao] are:

∂ω̃t
∂t

= −Ric(ω̃t)− ω̃t + S,
∂φ̃s
∂s

= −Ric(φ̃s) + S

and we can easily find the relation φ̃s = etω̃t, s = et with φ̃0 = ω̃0 = ω0. We also have

the following background forms:

ωt = −Ric(Ω) + S + e−t(ω0 − Ric(Ω) + S),

φs = ω0 − Ric(Ω) + S + s(−Ric(Ω) + S).

Thus if we want any kind of convergence for φ̃s, it is natural to require [S−Ric(Ω)] = 0.

8This kind of interaction might also be used to prove the global existence result for the modified
flow discussed at the end of Chapter 8.
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The volume form Ω can be chosen properly so that S = Ric(Ω). So actually we have

ωt = e−tω0, φs = ω0.

The result in [Cao] gives us the convergence of φ̃s (or etω̃t) as s→∞ (or t→∞).

Obviously this implies the nice convergence of ω̃t → 0 as t→∞.

The equivalence relation above also gives the equivalence of long time existence

results.

Actually, combining with the results in [Cao], we can draw more information about

the convergence as follows.

In the level of potential, we have the following equations:

(ωt +
√
−1∂∂̄u)n = e

∂u
∂t

+uΩ, (ω0 +
√
−1∂∂̄(etu))n = e

∂u
∂t

+u+ntΩ.

Using the parameter s = et and setting h(t) = net(t− 1), U(s) = etu+ h(t), we have
∂U
∂s

= ∂u
∂t

+ u+ nt. Thus the second equation is just

(ω0 +
√
−1∂∂̄U)n = e

∂U
∂s Ω

which is exactly in the setting of [Cao]. From the convergence result there, we know

e−tω0 +
√
−1∂∂̄u converges to 0 since ω0 +

√
−1∂∂̄U converges to the K-E metric

as metric. So we should expect that u would converge to a constant after proper

normalization. In fact, it is quite easy to see this below.

From [Cao]: ∂U
∂s

→ C as s → ∞. Thus for any small ε > 0, we have proper

constants C1 and C2 such that

(C − ε)s+ C1 6 U 6 (C + ε) + C2

which gives us that

C − ε+ C1e
−t 6 u+ nt− n 6 C + ε+ C2e

−t.

So we conclude u + nt − n → C as t → ∞ and the convergence would be in C∞-

topology by all the uniform estimates.

The above can also be seen in the following way. As proved in [Cao],

(supX×{s} − infX×{s})U(s) 6 C.
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In our setting, this is just

(supX×{t} − infX×{t})(u+ nt) 6 Ce−t.

Then if we only use the boundedness of u+ nt from the discussion before, combining

with the higher order estimates, we still get the convergence of u+nt to some constant.

The limits of u+ nt− n and ∂U
∂s

are the same. So we have ∂u
∂t

converges to −n as

t→∞. But here we don’t have the convergence of U itself, which will be considered

later.

In the following, a careless point in [Cao] is pointed out and treated. In fact, we

can give further description of the convergence in the level of potential.

Recall the flow in the level of potential as in [Cao]:

∂u

∂t
= log

(ω +
√
−1∂∂̄u)n

Ω
, u(0, ·) = 0

where ω̃t = ω +
√
−1∂∂̄u with ω being the initial metric and Ric(Ω) = S. Using

Yau’s computation for Laplacian estimate, it can be shown that over X × [0, T ]:

〈ω, ω̃t〉 6 C · eC(u−infX×[0,T ]u)

where C’s do not depend on T .

In [Cao], the function v = u − 1
V olω(X)

∫
X
uωn is considered. Of course V olω(X)

means the volume of X with respect to the metric ω which is just
∫
X
ωn. For simplicity

of notations, let’s assume the volume is 1. All the integration will always be over X.

It’s proved there that |v| 6 C on X × [0,∞). But notice that
∫
uωn well depends

on t. So though we have

v − infX×[0,T ]v = u−
∫
uωn − infX×[0,T ](u−

∫
uωn),

the following inequality

infX×[0,T ](u−
∫
uωn) > infX×[0,T ]u+ inf[0,T ](−

∫
uωn)

means that we don’t have the relation

u− infX×[0,T ]u = v − infX×[0,T ]v
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or even just “6” which would be enough.

But it’s not so hard to get around this by the following simple modification of the

original argument. We have ∂u
∂t

= ∂v
∂t

+C(t) where C(t) =
∫

∂u
∂t
ωn which only depends

on t. Since |∂u
∂t
| 6 C by maximum principle argument, we have |C(t)| 6 C. Anyway,

|∂v
∂t
| 6 C. Now let’s rewrite the flow equation as follows:

(ω +
√
−1∂∂̄v)n = e

∂v
∂t

+C(t)Ω.

Then we apply the classic Laplacian estimate for this equation to get:

〈ω, ω +
√
−1∂∂̄v〉 6 C

which is what we want. This might make people feel that the classic inequality used

for Laplacian estimate is not that optimal, but the flexibility is also great.

In [Cao], the convergence of metric ω̃t is proved. More precisely, the convergence

of v as t → ∞ is proved together with the convergence of ∂u
∂t

to a proper constant

which only depends on the choice of Ω. In fact, we can get more detailed information

about the convergence of u itself. Basically, we just carry out more computation

similar to those in [Cao] and the convergence about ω̃t is heavily used.

We consider ψ = ∂u
∂t
−

∫
∂u
∂t
ω̃nt as he did. The metric ω̃t is used instead of ω as in

the definition of v. It’s proved there that ‖ψ‖L2(X) 6 C · e−Ct.
In the following, the Laplacian ∆ will always be with respect to the metric ω̃t.

For l > 1, we consider the function ∆lψ = ∆l(∂u
∂t

). We’ll prove below that ‖∆lψ‖ 6

C · e−Ct for all l’s. The essential part is the deduction of an ODE equation just as in

[Cao]. Induction is used, i.e., we’ll assume this estimate up to l − 1 for some l > 1.

l = 1 (i.e., l− 1 = 0) case has been proved there. A lot of ∂
∂t

’s below are actually just

ordinary differential d
dt

.

We start with the following computation where ∂u
∂t

can be replaced by ψ since

l > 1.

∂

∂t

(∫
(∆l∂u

∂t
)2ω̃nt

)
= 2

∫
∂

∂t
(∆l∂u

∂t
) ·∆l∂u

∂t
ω̃nt + n

∫
(∆l∂u

∂t
)2∂ω̃t
∂t

ω̃n−1
t .

Notice here that the term ∂ω̃t

∂t
=
√
−1∂∂̄ ∂u

∂t
would go to 0 as t→∞.

Recall the following equations:

(
∂

∂t
−∆)

∂u

∂t
= 0,

( ∂
∂t

∆
)
f = −(

∂ω̃t
∂t

,
√
−1∂∂̄f)ω̃t .
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Thus we have the computation

∂

∂t
(∆l∂u

∂t
) = ∆l ∂

∂t
(
∂u

∂t
) +

∑
l−1>α>0

∆l−1−α(
∂

∂t
∆)∆α(

∂u

∂t
)

= ∆l+1(
∂u

∂t
) +

∑
l−1>α>0

∆l−α−1
(
Ric(ω̃t)− S,

√
−1∂∂̄∆α(

∂u

∂t
)
)
ω̃t
.

So we can have the following:∫
∂

∂t
(∆l∂u

∂t
) ·∆l∂u

∂t
ω̃nt

=

∫
∆l+1∂u

∂t
·∆l∂u

∂t
ω̃nt +

∫ ∑
l−1>α>0

∆l−1−α(Ric(ω̃t)− S,
√
−1∂∂̄∆α∂u

∂t

)
ω̃t
· (∆lψ)ω̃nt

= −
∫
|∇(∆l∂u

∂t
)|2ω̃t

ω̃nt +

∫ ∑
l−1>α>0

∆l−α(Ric(ω̃t)− S,
√
−1∂∂̄∆α(

∂u

∂t
)
)
· (∆l−1ψ)ω̃nt .

By the convergences of ω̃t and ∂u
∂t

and the induction assumption, applying Hölder’s

inequality and Poincare’s inequality, we can conclude that for large enough t,

∂

∂t

(∫
(∆l∂u

∂t
)2ω̃nt

)
6 −2

∫
|∇(∆l∂u

∂t
)|2ω̃t

ω̃nt + ε

∫
(∆l∂u

∂t
)2ω̃nt + Ce−Ct

6 −C
∫

(∆l∂u

∂t
)2ω̃n + C0e

−Ct.

where all the constants are positive, ε is properly chosen to be small enough and the

two C’s can be chosen to be the same. The metric ω̃t is uniform as metric, so the

constants in those inequalities can be uniform. Hence we have for large t,

∂

∂t

(
eCt‖∆lψ‖2

L2(X)

)
6 C0

where the L2(X) is with respect to the metric ω̃t. This gives ‖∆lψ‖L2(X) 6 Ce−Ct

which would be for any l. Of course now the definition of L2(X)-norm can be more

flexible in result. 9

Classic Lp estimates then give ‖ψ‖W l,2 6 Ce−Ct for any l. Sobolev inequalities

would give ‖ψ‖Cl 6 Ce−Ct for all l. Of course, the constant C would depend on l.

9We need a good choice for the computation above.
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Now let’s consider
∫

∂u
∂t
ω̃nt which is the difference between ψ and ∂u

∂t
.

∂

∂t
(

∫
∂u

∂t
ω̃nt ) =

∫
∂

∂t
(
∂u

∂t
)ω̃nt + n

∫
∂u

∂t
· ∂ω̃t
∂t

ω̃n−1
t

=

∫
∆
∂u

∂t
ω̃nt +

∫
∂u

∂t
·∆∂u

∂t
ω̃nt

= −
∫
|∇∂u

∂t
|2ω̃t
ω̃2
t > −Ce−Ct.

In fact, we only need ‖∆ψ‖L2(X) 6 Ce−Ct and we have a more delicate proof only

for this (l = 1) case as follows. It basically makes use of the following inequality: 10

|
√
−1∂∂̄

∂u

∂t
|2ω̃t

>
1

n
(∆

∂u

∂t
).

And in this case, we have the special form of the equality considered before as

∂

∂t
(∆

∂u

∂t
) = ∆2∂u

∂t
+

(
Ric(ω̃t)− S,

√
−1∂∂̄

∂u

∂t

)
ω̃t

= ∆2∂u

∂t
− |
√
−1∂∂̄

∂u

∂t
|2ω̃t
.

We can carry out the following computation, using the results above, for t sufficiently

large,

∂

∂t

(∫
(∆

∂u

∂t
)2ω̃nt

)
= 2

∫
∂

∂t
(∆

∂u

∂t
) ·∆∂u

∂t
ω̃nt + n

∫
(∆

∂u

∂t
)2 · ∂ω̃t

∂t
ω̃n−1
t

= 2

∫
∆2∂u

∂t
·∆∂u

∂t
ω̃nt − 2

∫
|
√
−1∂∂̄

∂u

∂t
|2ω̃t
·∆∂u

∂t
ω̃nt +

∫
(∆

∂u

∂t
)2 ·∆∂u

∂t
ω̃nt

6 −2

∫
|∇(∆

∂u

∂t
)|2ω̃t

ω̃nt +

∫
(∆

∂u

∂t
)2(1− 2

n
)∆

∂u

∂t
ω̃nt

6 −C
∫

(∆
∂u

∂t
)2ω̃nt .

It’s the second term in the second to the last expression that we use sufficiently large

t to control. If n = 2, that term is 0 automatically. This final inequality gives the

exponential control as before.

Anyway, now we have 0 > ∂
∂t

(
∫

∂u
∂t
ω̃nt ) > −Ce−Ct. Let’s consider T1 > T2,

0 > (

∫
∂u

∂t
ω̃nt )(T1)− (

∫
∂u

∂t
ω̃nt )(T2) > C(e−CT1 − e−CT2) > −Ce−CT2 .

10Recall that the Laplacian ∆ is with respect to ω̃t.
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Hence we have

‖∂u
∂t

(T1)−
∂u

∂t
(T2)‖C0

= ‖ψ(T1)− ψ(T2) + (

∫
∂u

∂t
ω̃nt )(T1)− (

∫
∂u

∂t
ω̃nt )(T2)‖C0

6 ‖ψ(T1)‖C0 + ‖ψ(T2)‖C0 + |(
∫
∂u

∂t
ω̃nt )(T1)− (

∫
∂u

∂t
ω̃nt )(T2)|

6 Ce−CT2 .

We already know ∂u
∂t

converges to a constant as t→∞. By choosing Ω properly,

the constant would be 0 and indeed it’s equivalent to considering u + Ct instead.

Anyway, by taking T1 →∞, we arrive at

‖∂u
∂t

(t)‖C0 6 Ce−Ct.

Thus we have |u| 6 C and more precisely, the exponential convergence of u in C0-

norm. Together with all the higher space derivative estimates of ∂u
∂t

(just as for ψ),

we can see the exponential convergence is for all norms.

Let’s try to say something about the limit. It should be different from the one

for v which has integral over X with respect to ω be 0. Clearly this is a canonical

construction for a metric ω which will decide the choice of Ω as Ric(Ω) = S and∫
X

Ω =
∫
X
ωn. Of course, if we choose some general constant instead of 0 as the

initial value, then the limit would change accordingly. But it seems hard to say

more, for example, about the relation between limits with respect to different initial

metrics. Even in the same class which means the limiting metrics are the same but

the potentials might be up to some constant as I see it.

9.4 Other Flows

For this part, we give brief discussions about some modified flows mentioned in Chap-

ter 8.

9.4.1 Class-Changing Flow for k = 0 Case

Let’s consider the following flow

∂u

∂t
= log

(ωt +
√
−1∂∂̄u)n

Ω
, u(0, ·) = 0
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where ωt = ω∞+e−t(ω0−ω∞). ω0 is any initial Kähler metric and [ω∞] is the limiting

class as t → ∞. The goal is to study the equation (ω∞ +
√
−1∂∂̄u∞)n = Ω. Ω is

a smooth volume form with proper total integral over X. As we have shown before

in Chapter 8, the corresponding metric flow is no longer canonical, i.e., the equation

itself depends on ω0 and ω∞ generally.

We can still have the existence of the solution as long as ωt remains Kähler. One

way is to set etv = u. Then we can get C0-norm bound for v similarly as in Chapter

2 and run through the similar argument. So we can still have ω̃t = ωt +
√
−1∂∂̄u as

the metrics along the flow. 11

The discussion for convergence will not be so easy. When [ω∞] is nef. and big, the

local convergence would be expected for t→∞. Basically, we just need to get the C0

estimates for u and ∂u
∂t

to run through the argument used before. The situation is very

different and the trick above is not going to work. We can still have the following.

Take t-derivative once to get:

∂

∂t
(
∂u

∂t
) = ∆ω̃t(

∂u

∂t
)− e−t〈ω̃t, ω0 − ω∞〉. (9.1)

Another t-derivative gives:

∂

∂t
(
∂2u

∂t2
) = ∆ω̃t(

∂2u

∂t2
) + e−t〈ω̃t, ω0 − ω∞〉 − (

∂ω̃t
∂t

,
∂ω̃t
∂t

)ω̃t . (9.2)

Sum up the above two equations to arrive at:

∂

∂t
(
∂2u

∂t2
+
∂u

∂t
) = ∆ω̃t(

∂2u

∂t2
+
∂u

∂t
)− (

∂ω̃t
∂t

,
∂ω̃t
∂t

)ω̃t .

Maximum principle then tells us that ∂2u
∂t2

+ ∂u
∂t
< C. Thus ∂

∂t
(et ∂u

∂t
) < Cet which

gives ∂u
∂t
< C. If we know [ω∞] is also “semi-ample”, then this would give C0 bound

for normalized u by Theorem 1.3.2 proved as one of our main results. Say the nor-

malized u is v = u −
∫
X
uΩ if we assume

∫
X

Ω = 1. But the uniform (degenerated)

lower bound for ∂u
∂t

remains to be a big problem.

If we consider the classic situation when ω∞ is a Kähler metric, it should be true

that the convergence is in C∞-topology over X (to the smooth metric got in [Cao]).

In fact, in this case, once we have the uniform lower bound for ∂u
∂t

, then we can run

11For these estimates, t is always in a finite time interval, and so the term et is not going to give
us any trouble. But it causes big trouble in search of the estimates for t ∈ [0,∞).
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through the argument in [Cao] and get the convergence. Clearly, if ω0 6 ω∞, then

(9.1) gives this bound and hence we have the convergence. It would be an interesting

question to get this in general which might help to understand the degenerated case

because we can’t have ω0 6 ω∞ when ω∞ can not be positive.

A final remark would be that for the case when [ω∞] is merely big, i.e., the local

convergence should be for t→ T <∞. There are some differences since now the time

is always finite, so the term et used in proving global existence is also acceptable. So

the trick used before might be of some help.

9.4.2 k = 1 Case

Now we consider the following evolution equation

∂u

∂t
= log

(ωt +
√
−1∂∂̄u)n

Ω
+ u, u(0, ·) = 0

where ωt = ω∞+e−t(ω0−ω∞). ω0 is any initial Kähler metric and [ω∞] is the limiting

class as t→∞. The goal now is to study the equation (ω∞ +
√
−1∂∂̄u∞)n = e−u∞Ω.

As in the previous subsection, the corresponding metric flow is no longer canonical.

This equation would be the classic one if we have ω0 = ω∞. The Kähler class

would then be fixed along the flow, i.e., ωt = ω0. As mentioned in Introduction,

we can easily have global existence of the solution in this case. In fact, let’s take

derivative with respect to t for this equation to get:

∂

∂t
(
∂u

∂t
) = ∆ω̃t(

∂u

∂t
) +

∂u

∂t
.

By maximum principle, we can easily get a bound as |∂u
∂t
| < Cet which also gives

similar bound for u. These finite time C0 estimates would be enough for us to carry

out finite time higher order estimates through Laplacian estimate as usual. Hence we

get the global existence of the solution.

Here we also consider the flow when the class is changing. The limiting equation

is still the classic and interesting one. Clearly the way in which ωt changes, though

is quite artificial, is inevitable if the class [ω∞] is no longer Kähler.

Likewise, the global existence (as long as [ωt] remains Kähler) is not too hard a

problem by direct justification as before. One still needs to notice that t would be in
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a finite time interval for this question and the form of ωt can be changed according to

the potential u without changing the flow. Meanwhile, in certain cases, we might also

use the relation discussed before between the equations with different k’s to translate

the existence result from one to the other. More precisely, one can set v = ektu for

k = 1, or 1 and this would change the equation to a form quite similar to the one in

the main text. Then we can prove the global existence similarly.

The convergence, as expected in sight of people’s usual consideration of this prob-

lem, should be a completely different story even in the classic case when the limiting

class [ω∞] is Kähler. The degenerate case should even be harder in a sense.

9.5 More Facts in Pluripotential Theory

In this section, we discuss some more results in classic pluripotential theory which

are used or briefly described before. For greater details, we refer to the classic works

in this field.

• Borel Measure

We explain why (
√
−1∂∂̄u)n is a (Borel) measure for u ∈ PSH(V )∩L∞(V ). This

is clearly just a local statement, and so it won’t hurt to assume V is an open subset

in Cn.

Classic results in measure theory allow us to reduce this result to prove that it is

a positive distribution. As mentioned before, we only need to prove
√
−1∂∂̄(uT ) is a

positive distribution when u is as above and T is a closed positive (k, k)-current.

We can assume u > 0 for simplicity by boundedness. Then uT is a positive dis-

tribution. Convolution can be used to locally construct smooth plurisubharmonic

functions uj decreasing converges to u pointwisely (as j → ∞). Results in mea-

sure theory would give the convergence of ujT → uT in the sense of distribution

(i.e., weakly). Thus
√
−1∂∂̄(ujT ) →

√
−1∂∂̄(uT ) weakly by the definition. As

√
−1∂∂̄(ujT ) =

√
−1∂∂̄uj ∧ T > 0 as T is closed, so the limit is also positive.

• Positive (1, 1)-Current

We explain why the (1, 1)-current
√
−1∂u ∧ ∂̄u is positive for u ∈ PSH(V ) ∩

L∞(V ). This is still local. Basically, it’s a definition as follows. Let’s again assume
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u > 0 for simplicity.

√
−1∂u ∧ ∂̄u :=

1

2

√
−1∂∂̄(u2)− u

√
−1∂∂̄u.

The meaning of right hand side is clear as a distribution. To see it’s positive, let’s

use the same uj as above. Clearly, the equality is classic when we have uj in the place

of u above. 12 We have the convergence of uj → u and so the weak convergence for

the first term on the right hand side. The weak convergence results in [BeTa], whose

special version is introduced before, give the weak convergence for the second one.

Hence we conclude the positivity of this current.

Remark 9.5.1. Starting from this, it’s easy to consider the case when the u above

is replaced by linear combination of bounded plurisubharmonic functions. Basically,

we can do all the classic computation, while using convolution and weak convergence

results to justify them.

• Semi-continuity of Plurisubharmonic Functions

The logic order for this part might be horrible. We just want to illustrate the

picture in a simple way.

The upper semi-continuity of plurisubharmonic fucntions can be seen by the de-

creasing convergence of functions from convolution. But it’s not the case for the

essential upper semi-continuity which is most useful for us. The rigorous way to

describe this fact is discussed (in the best way as I see it) in Lelong’s book [Le] by

giving several equivalent definitions of plurisubharmonic function. The monotonicity

of convergence from convolution plays an important role there.

It’s important to keep in mind that plurisubharmonic functions we are talking

about are functions with a fixed value at each point. They are not classes of func-

tions as elements in L1.

The rest of this section is aiming to help beginners understand the proof of the

extension result in [FoNar] which is used in our proof for the continuity of bounded

solution. The result in [Si] is also important in the proof. The proof for Siu’s result

is very technical, but the result itself is quite natural and easy to catch (even just by

the title of the paper).

• Stein and Runge Property

12In fact, the distribution would be positive as long as u has enough regularity.
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The definition of Stein space used there is classic as in [Le]. But the definition

of Runge space seems to be a little different from the one in [Le]. We would like to

know that they are actually the same. Actually this is a very classic observation as

showed in [AnNar] which is also where I got to know it.

Suppose Y is an open set in a Stein space X. We claim Y is Runge in X iff for

any compact set K, K̂X ⊂ Y . The definition in [Le] only requires K̂X ∩Y is compact

in Y . K̂X is the holomorphically convex hull of K in X, i.e., the largest set where the

C0-norm of any holomorphic function over X over K controls that over this set. 13.

To prove the equivalence, We need to see K̂X is actually in Y since it’s compact

because X is Stein. It’ll be done once we know the fact that each component of K̂X

would intersect K since we have K̂X ∩ Y compact.

Using Oka-Weil’s approximation result, this fact can be proved once we know that

there is a Runge neighbourhood basis for K̂X . The idea is the following. By contradic-

tion, we can have a Runge neighbourhood of K̂X which has at least two components

with K in only one of them but both containing part of K̂X . Then the characteris-

tic function for the other part can be approximated by holomorphic functions using

Oka-Weil’s result. This would contradicts the definition of holomorphically convex

hull.

The construction of a Runge neighbourhood basis for K̂X (any holomorphically

convex set) is classic by using sublevel sets of the norms of holomorphic functions as

shown in [Nar].

• Local Maximum Modulus Principle

We now explain the application of Rossi’s local maximum modulus principle in

[FoNar] which is crucial for that argument. The picture there is as follows. Suppose

X is an affine variety in the disk in CN (which is of course Stein) and K is a compact

set in it. If we have a point p ∈ K̂X \ K, then set E = ∂Bp(r) ∩ X with r small

enough so that E ∩K is empty. The claim is that p ∈ ÊX .

This result was pointed out and explained to me by Professor Rossi. The proof

makes use of local maximum modulus principle.

Suppose it’s not true. Then there exists a holomorphic function over X, f such

that |f(p)| > |f(q)| for q ∈ ∂Bp(r) which might apriori be empty 14. Hence the

(obviously nonempty) set {|f | > |f(p)|} has a component inside Bp(r) because it

13In our application, it would be the same as polynomially convex hull and even plurisubharmon-
ically convex hull as we are basically considering over a subvariety in the unit disk.

14It’s indeed impossible as the proof indicates.
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doesn’t intersect the boundary from above. However, by (a later version of) local

maximum modulus principle in [Ro], we know this component would intersect the

Silov boundary of K̂X . Classic results tells us that this Silov boundary has to be

contained in K which brings us a contradiction. In fact, the argument in [Ro] tells

how to construct a holomorphic function which takes its global maximum of modulus

over X only in Bp(r) and this would automatically contradicts the definition of K̂X

without using the knowledge about Silov boundary.

9.6 Stability for Bounded Solution

In this section, we basically consider uniqueness of bounded solution for the degen-

erate Monge-Ampere being considered (with or without eu on the right hand side).

No continuity is assumed and so Part (6) in Kolodziej’s argument can not be applied

directly. This consideration makes sense when one does not require the map P to be

locally birational.

9.6.1 Integration by Part

For two bounded plurisubharmonic solutions of the equation

(ω∞ + +
√
−1∂∂̄u)n = euΩ

with Ω > 0 almost everywhere and ω∞ > 0. The manifold X is at least a closed

Kähler in our problem and so comparison principle is justified. By comparison prin-

ciple, we have the set where these two equations are different would have measure 0,

and so they have to be the same by plurisubharmonicity.

There is actually another way of proving uniqueness of bounded solution for this

equation which is by justifying the classic argument for the smooth and nondegener-

ated case as follows. Suppose u, v ∈ L∞(X) ∩ PSHω∞(X) satisfying

(ω∞ +
√
−1∂∂̄u)n = euΩ, (ω∞ +

√
−1∂∂̄v)n = evΩ.

where [ω∞] is semi-ample (and big) and Ω is a smooth volume form. Let’s use ωu and

ωv to denote the two positive (1, 1)-currents (singular metric). Then we have

0 6
∫
X

(u− v)(eu − ev)Ω =

∫
X

(u− v)
√
−1∂∂̄(u− v)(ωu

n−1 + · · ·+ ωu
n−1).
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In the classic case when everything is smooth, integration by part can give that the

integral on the very right is nonpositive which tells u = v. Now we want to justify

this with less regularity of the functions.

Basically, we use a fact introduced in the previous section. For u ∈  L∞
loc(U) ∩

PSH(U) where U is a domain in Cn, we can define the following positive (1, 1)-

current √
−1∂u ∧ ∂̄u :=

1

2
∂∂̄(u2)−

√
−1u∂∂̄u.

We’ve mentioned that this fact can be generalized to the case when the function u

are linear combination of bounded plurisubharmonic functions and in fact, we can

consider the function u − v with u, v ∈ L∞(X) ∩ PSHω(X) when ω has a local

potential representation. Thus we have the following computation

∫
X

(u− v)
√
−1∂∂̄(u− v)(ωu

n−1 + · · ·+ ωv
n−1)

=

∫
X

(1

2

√
−1∂∂̄(u− v)2 −

√
−1∂(u− v) ∧ ∂̄(u− v)

)
(ωu

n−1 + · · ·+ ωv
n−1)

= −
∫
X

√
−1∂(u− v) ∧ ∂̄(u− v)(ωu

n−1 + · · ·+ ωv
n−1) 6 0

which gives the uniqueness result.

Remark 9.6.1. Apparently, this argument looks better than the previous one using

comparison principle as there is no assumption on ω∞ (and even the Kählerity of X).

But as we have seen before, those assumptions are needed for the existence of such

solutions.

Recall that in Chapter 2, we have repeatedly used maximum principle to prove that

the solutions got by all kinds of methods (flow, perturbations) are actually the same

and also not dependent on all the possible choices. But if we have the boundedness of

the solutions, it’s easy to see that in order to prove all these solutions are the same,

we only need to use the fact that the solutions got are smooth out of some subvariety

of X, which is the same for all solutions, namely, the stable base locus set of [ω∞] 15,

using the following argument.

15We do not actually need this fact here.
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0 6
∫
X

(u− v)
√
−1∂∂̄(u− v)(ωu

n−1 + · · ·+ ωv
n−1)

= −
∫
X

√
−1∂(u− v) ∧ ∂̄(u− v)(ωu

n−1 + · · ·+ ωv
n−1)

6 −
∫
X\E

√
−1∂(u− v) ∧ ∂̄(u− v)(ωu

n−1 + · · ·+ ωv
n−1) 6 0,

where E is the subvariety out of which u and v are both smooth with ωu and ωv being

smooth metrics. The positivity of the currents justifies the second 6 above which is

actually = since the set E is pluripolar. Clearly, this tells that ∂(u− v) = 0 on X \E
which means u and v are the same up to a constant out of E, and so over the whole

of X which gives u = v from this equation. Here we need the regularity of both u

and v.

A good point about this discussion is that it works, to some extent, for the case

when there is no eu on the right hand side of the equation. So now let’s discuss the

following equation:

(ω∞ +
√
−1∂∂̄u)n = Ω

where Ω is a smooth volume form with proper total integral over X. We’ve seen in the

argument for Theorem 8.5.1, if we can have boundedness of the approximation solu-

tions (with certain normalization of course), then the Laplacian estimate and higher

derivative estimates can be obtained just as for the equation (ω∞+
√
−1∂∂̄u)n = euΩ,

and so we can obtain a bounded solution with similar kind of regularity. But now

uniqueness result for bounded plurisubharmonic solution of this equation can’t be

proved by merely applying comparison principle since there is no eu term on the right

hand side of the equation. There are two ideas to treat this.

The first one would be trying to generalize the original argument in [Koj2] quoted

before. Unfortunately, there is a little fact involved which seems to rely on the

continuity of the functions a lot as I see it right now. But this method should work

for more general Ω as discussed in the next subsection.

The other idea would be the justification of the argument for the classic case.

But the argument earlier would not work, which is not surprising since the argument

should be different even in the classic case for these two kinds of equations. We can

do it in a slightly different way as follows.

For two (bounded plurisubharmonic) solutions u and v for this equation above.

We want to see that they are the same. Obviously it’s enough to prove for the case
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when one of them (say u) is the solution got before by perturbation methods (and so

with some more regularity). We still have the following computation.

0 =

∫
X

(u− v)(ωu
n − ωv

n)

=

∫
X

(u− v)
√
−1∂∂̄(u− v)(ωu

n−1 + · · ·+ ωv
n−1)

= −
∫
X

√
−1∂(u− v) ∧ ∂̄(u− v)(ωu

n−1 + · · ·+ ωv
n−1)

6 −
∫
X\E

√
−1∂(u− v) ∧ ∂̄(u− v)ωu

n−1,

where the subvariety E is for u from before. Since ωu is a metric over X \E, we have

the current
√
−1∂(u− v)∧ ∂̄(u− v) = 0 over X \E. This actually tells that u− v is

a constant over X \ E. The proof is as follows which is local argument.

By convolution, we can have smooth wj’s converges weakly to u− v (of course as

j → ∞). Also from the discussion about the current
√
−1∂(u − v) ∧ ∂̄(u − v), we

know
√
−1∂wj ∧ ∂̄wj →

√
−1∂(u− v) ∧ ∂̄(u− v) = 0 weakly. This would imply that

Dwj → 0 weakly (or even locally in L2) essentially from the definition. But we also

have Dwj → D(u − v) weakly. Thus we see D(u − v) = 0 which gives the desired

result (as an exercise in [Ev]).

For the last part of discussion above, we can also try to argue on the manifold X

instead of X\E. The advantage is that on X, Poincare inequality, which directly gives

the constant difference between the two solutions, is at least easier to be justified.

The idea is quite natural since on a closed manifold, (local) interior result is enough

for the global result and the spectrum of Laplacian is very clear. The detail is as

follows. Let’s keep the setting above.

We have already seen
√
−1∂(u−v)∧ ∂̄(u−v) = 0 as (positive) current over X \E.

This current is actually defined over X and positive globally. Notice that the set E is

a subvariety and so is pluripolar. Hence we actually have
√
−1∂(u−v)∧ ∂̄(u−v) = 0

over X by splitting the integration into two parts and taking a limit. By the same

kind of local argument as above, we know u− v ∈ W 1,2(X) and D(u− v) = 0 on X.

Now we can finish by using the following Poincare inequality over X∫
X

|D(u− v)|2dµ > C

∫
X

|(u− v)− C0|2dµ

which can be justified by the obvious one for smooth case from the spectrum of Lapla-

cian and using approximation argument.
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Remark 9.6.2. Most of the argument before only uses pluripotential theory, so there

is no need to require Ω to be a smooth volume form. In fact let Ω be an Lp measure,

which will be enough for the boundedness result, and we can argue similarly. But there

are also several places where we do need more regularity.

9.6.2 Generalizing Kolodziej’s Stability Argument

In this part, we can see that for the the equation without eu on the right hand side

considered before with general Lp>1 measure on the right hand side which we have

existence of bounded solution, all the solutions that we can get (by approximation)

are the same.

We basically generalize Kolodziej’s original argument for stability result to our

case. But as mentioned before, there is a fact which needs continuity and we further

discuss below.

V is an open set in Cn. Suppose u, v ∈ PSH(V )∩C0(V ) with (
√
−1∂∂̄u)n > g ·dλ

and (
√
−1∂∂̄v)n > g · dλ for nonnegative g ∈ L1 where dλ is standard Euclidean

measure, then (
√
−1∂∂̄u)k ∧ (

√
−1∂∂̄v)n−k > g · dλ.

When everything is smooth, this is just an application of algebraic-geometric mean

value inequality. Approximation is used to get in this case. Be careful that we have

to make sure the approximation is nice for the potential (“→ u”) and the measure

(“> g”), and so convolution will not do the job well. In the above case, one has to

set up proper Dirichlet problems to get the approximation needed.

If one can justify this result for bounded instead of continuous functions, then

Kolodziej’s stability argument quoted before can be applied in our case to get stabil-

ity for bounded solution.

In the following, we try to get around with this. Indeed, it’ll be OK if the solutions

we considered are from approximation (i.e., continuity method). It’s more or less

like we are using this in the place of the Dirichlet problem used above. The “g”

above is now well chosen and in Lp>1. And we only need to make sure that the

convergence of potentials (approximation solutions) is good enough (to gaurantee the

weak convergence of distribution).

Actually, we can construct a decreasing sequence of functions converging to the

solution which comes from approximation solutions. Here it’s OK that the plurisub-

harmonicity of those functions is weaker than that of the solution. More precisely,
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the construction makes use of the global argument for continuity quoted before in

Chapter 7.

Recall the way we get a solution for (ω∞ +
√
−1∂∂̄u)n = ekuΩ where k = 0 or 1

and Ω is a nonnegative volume form with Lp-norm bounded for some p > 1. Of course

we need
∫
X
ekuΩ =

∫
X
ω∞

n to be possible. 16.

Consider the perturbation (ωε +
√
−1∂∂̄uε)

n = Cεe
kuεΩ where ωε = ω∞ + εω

for some Kähler metric ω and Cε is some positive constant to make this equation

cohomologically possible. For all ε > 0, we have a continuous solution uε uniformly

bounded (after proper normalization for k = 0 case). Then we have a sequence {uεi}
for εi decreasing to 0 (as i → ∞) converges to a bounded solution u of the original

solution in L1-norm and pointwisely almost everywhere.

Now let’s construct a decreasing sequence of functions converging to u from the

sequence above. For simplicity, we use ui to denote uεi above.

From the global argument for continuous quoted from [Koj2] before, for any δ > 0,

there exists Nδ such that uj − ui 6 δ if j > i > Nδ. Take subsequence {ukα} such

that ukα − ukβ
6 δ

2β for α > β. Then set vα = ukα + δ
2α−1 .

We have vα − vβ = ukα − ukβ
+ δ

2α−1 − δ
2β−1 6 δ

2β + δ
2α−1 − δ

2β−1 6 0 for α > β.

So {vα} is a uniform bounded decreasing sequence of continuous solutions of the

perturbed equations which clearly still converges to u. This is what we need for the

weak convergence of distribution with mixed terms.

Remark 9.6.3. Actually, this tells us that the obstruction for proving the continuity

of the bounded solution from approximation will be the same with or without eu on the

right hand side and for general volume form Ω if we want to use the global argument

in [Koj2].

Hence, we can get uniqueness of solution from approximation for this equation.

In fact, we can have similar stability result as Theorem 3.2.11. But this is not that

satisfying.

9.7 Global Argument for Boundedness Result

In this section, we present the global argument for boundedness result as in Theorem

1.3.2. It has already appeared in [Zh] and so we only include the main part here for

readers’ convenience. We also provide a little more explanation along the way.

16This is known as the cohomological condition which just means that Ω is not almost everywhere
0 when k = 1.
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9.7.1 Preparation

Many classic results in pluripotential theory are quite local, for example, weak con-

vergence results, and so can be used in our situation automatically. Many definitions

also have their natural versions for the domain V with background metric which can’t

be reduced to potential level globally in V , for example, relative capacity. Since it is

of the most importance for us in this work, let’s give the definition below in the case

when V = X, which is the version that we are going to use in the following discussion.

Definition 9.7.1. Suppose ω is a (smooth) nonnegative (1, 1)-form. For any (Borel)

subset K of X, we define the relative capacity of K with respect to ω as follows:

Capω(K) = sup{
∫
K

(ω +
√
−1∂∂̄v)n|v ∈ PSHω(X), − 1 6 v 6 0}.

We require ω to be nonnegative so that PSHω(X) is not empty. We also point

out that usually, it only takes to consider any compact set K in order to study any

set by approximation.

In fact, if X can be covered by finitely many domains which are hyperconvex

with respect to the local potentials of ω, then the global definition above would be

equivalent to the summation of locally defined relative capacity. The case that we

are interested in here is clearly in this situation. Basically, one just needs to give

a method to extend any bounded local plurisubharmonic function to an element in

PSHω(X) valued in an interval with a proper length. Let me illustrate the idea

which is from [Koj2]. Suppose we have V1 ⊂⊂ V2 where both of them are hypercon-

vex domain mentioned above 17. Let’s consider the relative capacity for any compact

set K ∈ V1. For v ∈ PSH(V2) valued in [−1, 0], the uniform multiple of a proper

chosen local potential of ω, ψ, can have max{v, ψ} equal to v near K and equal to

ψ near ∂V2. Then the extension to the rest part of X would be very clear (by ψ).

The multiple used is uniform controlled and won’t bring us any trouble. In fact this

argument above also works if the background form used in tha global definition is no

smaller than ω.

The only thing which is not so trivially adjusted to our situation might be com-

parison principle which is so important and has a global feature. Now let’s state the

version of comparison principle we are going to use later.

Proposition 9.7.2. For X as above, suppose u, v ∈ PSHω(X)∩L∞(X) where ω is

17This is our usual setting of a local picture.
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a smooth nonnegative closed (1, 1)-form, then∫
{v<u}

(ω +
√
−1∂∂̄u)n 6

∫
{v<u}

(ω +
√
−1∂∂̄v)n.

This version is slightly different from other more classic versions because X may

not be projective, ω may not be positive and the functions may not be continuous.

The brief description of justification is as follows.

Basically we still just need a decreasing approximation for any bounded plurisub-

harmonic function by smooth plurisubharmonic functions according to the argument

in [BeTa]. This is not as easy as in Euclidean space where convolution is available.

And the possible loss of projectivity of X makes it difficult to use some other classic

results.

But according to the recent result of Blocki and Kolodziej in [BlKol], we can

have a decreasing smooth approximation for plurisubharmonic function over X. The

approximation result need the background form to be positive (i.e., a Kähler metric),

but clearly nonnegative form (as ω∞ for us) is acceptable when it comes down to

comparison principle by simple approximation argument by a simple approximation

used before. 18 This is also why we can now have X to be just Kähler instead of

projective as stated in [TiZh].

The next few subsections will be devoted to prove each of the statements about

boundedness result in Theorem 1.3.2.

9.7.2 Apriori L∞ Estimate

• Bound Relative Capacity by Measure

In the following, ω is a (smooth) nonnegative closed (1, 1)-form. Keep in mind

that ω stands for ω∞+ εφ 19 for any ε ∈ [0, 1] for our application and all the constants

do not depend on ε.

For u, v ∈ PSHω(X) ∩ L∞(X) with U(s) := {u− s < v} 6= ∅ for s ∈ [S, S +D].

Also sssume v is valued in [0, C].

Then ∀w ∈ PSHω(X) valued in [−1, 0], for any t > 0, since

0 6 t+ Ct+ tw − tv 6 t+ Ct,

18Of course, we do need X to be Kähler to guarantee such an approximation.
19This φ is a Kähler metric.
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we have the following chian of sets:

U(s) ⊂ V (s) = {u− s− t− Ct < tw + (1− t)v} ⊂ U(s+ t+ Ct).

So we have for 0 < t 6 1:∫
U(s)

(ω +
√
−1∂∂̄w)n = t−n

∫
U(s)

(
tω +

√
−1∂∂̄(tw)

)n
6 t−n

∫
U(s)

(
tω +

√
−1∂∂̄(tw) + (1− t)ω +

√
−1∂∂̄((1− t)v)

)n
= t−n

∫
U(s)

(
ω +

√
−1∂∂̄(tw + (1− t)v)

)n
6 t−n

∫
V (s)

(
ω +

√
−1∂∂̄(tw + (1− t)v)

)n
6 t−n

∫
V (s)

(
ω +

√
−1∂∂̄(u− s− t− Ct)

)n
6 t−n

∫
U(s+t+Ct)

(ω +
√
−1∂∂̄u)n.

Comparison principle is applied to get the second to the last 6. All the other steps

are rather trivial from the setting. Thus from the definition of Capω, we conclude

tn · Capω(U(s)) 6
∫
U(s+t+Ct)

(ω +
√
−1∂∂̄u)n.

for t ∈ (0,min(1, S+D−s
1+C

)]. Of course, for our purpose, it is always safe to assume
S+D−s

1+C
< 1. In fact we can just choose D < 1. Now let’s rewrite this inequality as:

tn · Capω(U(s)) 6 (1 + C)n
∫
U(s+t)

(ω +
√
−1∂∂̄u)n

for t ∈ (0, S +D − s] by rescaling the t before.

Intuitively, the constant D can be seen as the gap where the values of u can stretch

over.

• Bound Gap D by Capacity

We are still in the previous setting. Now assume that for any (Borel or compact)
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subset E of X, we have:∫
E

(ω +
√
−1∂∂̄u)n 6 A · Capω(E)

Q
(
Capω(E)−

1
n

)
for some constant A > 0, where Q(r) is an increasing function for positive r with

positive value. From now on, this condition will be denoted by Condition (A).

The result to be proved in this subsection is as follows:

D 6 κ(Capω(U(S +D)))

for the following function

κ(r) = (1 + C) · CnA
1
n

(∫ ∞

r−
1
n

y−1(Q(y))−
1
ndy +

(
Q(r−

1
n )

)− 1
n
)
,

where Cn is a positive constant only depending on n and 1 + C comes from the

resacling at the end of the previous step.

The proof is a little technical but quite elementary in spirit. We will briefly

describe the idea below.

The previous part gives us an inequality as “Cap 6 measure”.

Condition (A) gives the other direction “measure 6 Cap”.

We can then combine them to get some information about the length of the interval

which comes from t in the inequality proved before. The assumption of nonemptiness

of the sets is needed because we have to divide Capω(U(·)) from both sides in order

to get something purely for t.

Finally, we can sum all these small t’s up to control for D. 20

Of course we’d better use a delicate way to carry out all these just in sight of the

rather complicated final expression of the function κ. It has been done beautifully in

[Koj1]. In that paper we do not have the extra 1 + C for κ, but it won’t bring any

essential difference here as we can just add it into the computation there. We just

need to rescale the interval a little. In fact, for boundedness consideration, we can

choose v to be 0 (so C = 0) and there would be no difference at all. But we do need

general v when apply this result to prove continuity.

Let’s emphasize that in the argument, we do not have a positive lower bound for

the t’s to be summed up, so it is important that the inequality proved in the previous

20We use the trivial fact that nonemptiness, nonzero (Lebesgue) measure and nonzero capacity
are equivalent for such sets U(s) from the fundamental properties of plurisubharmonic functions.
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part holds (uniformly) for all small enough t > 0.

• Bound Capacity

For u ∈ PSHω(X) ∩ L∞(X) and u 6 0, suppose K is a compact set in X which

can well be X itself, then there exists a positive constant C such that:

Capω(K ∩ {u < −j}) 6
C‖u‖L1(V ) + C

j
.

This is aiming for a uniform upper bound for the relative capacity appearing on

the right hand side of the inequality proved in the previous subsection.

Proof. For any v ∈ PSHω(X) and valued in [−1, 0], consider any compact set K ′ ⊂
K ∩ {u < −j}, using CLN inequality 21 in [Koj2]:∫

K′
(ω +

√
−1∂∂̄v)n 6

1

j

∫
K

|u|(ω +
√
−1∂∂̄v)n

6
C‖u‖L1(V ) + C

j
.

From the definition of relative capacity, this would give the inequality above.

Now we consider the L1-norm for those approximation solutions uε (and also the

solution u if it exists by assumption). The following is just the standard Green’s

function argument. Strictly speaking, the computation needs the function to be

smooth, but we can achieve the final estimate by using approximation sequence given

by the result in [BlKol] for our situation. So let’s pretend that we have the needed

regularity in the following.

For fixed ε ∈ [0, 1], suppose uε(x) = 0 and C > G where G is the Green function

for the metric ω1 = ω∞ + φ. Also since ω∞ + εφ+
√
−1∂∂̄uε > 0, we have

∆ω1uε = 〈ω1,
√
−1∂∂̄uε〉 > −〈ω1,−ω∞ − εφ〉 > −C

where C is uniform for ε ∈ [0, 1]. Basically, this tells that there should be no worry

21The global version of this inequality over X is quite easy to justify in sight of the locality of the
result.
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for the changing background metric. Then we have:

0 = uε(x) =

∫
X

uεω1
n +

∫
y∈X

G(x, y)∆ω1uε · ω1
n

=

∫
X

uεω1
n +

∫
y∈X

(
G(x, y)− C

)
∆ω1uε · ω1

n

6
∫
X

uεω1
n − C

∫
y∈X

(
G(x, y)− C

)
ω1

n

6
∫
X

uεω1
n + C.

(9.3)

This gives the uniform L1 bound for uε’s by noticing that they are all nonpositive.

Hence we know the set where uε has very negative value should have (uniformly)

small relative capacity.

• Conclusion

Combining all the results above, if we assume Condition (A) for some function

Q(r) and set the function v at the beginning to be 0, we have:

D 6 κ(
C

D
)

if U(s) = {u < −s} nonempty for s ∈ [−2D,−D] where C is a positive constant.

Furthermore, if we can choose the function Q(r) to be (1 + r)m for some m > 0

so that Condition (A) holds, this would imply that the function u only take values in

a bounded interval since D can not be too large 22. This D can well be larger than

1 and so can’t be used directly as the gap D before. But since it’s clear that the

existence of a big gap would imply the existence of small ones (with length smaller

than 1), one can still get contradiction from above. Of course, one can also use argue

for an interval like [S, S + 1
2
] and see S can’t be too negative. There is no essential

difference between these ways to draw the conclusion.

That’s enough for the lower bound in sight of the normalization supXu = 0. The

more explicit bound claimed in the theorem is not hard to get by carefully tracking

down the relation just as in the main text.

• Condition (A)

In this part, we justify Condition (A) under the measure assumption in the main

theorem. This part is the essential generalization of Kolodziej’s original argument.

22As D goes to ∞, κ goes to 0.
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In our case, f ∈ Lp for some p > 1, which is the measure on the left hand side of

Condition (A) from the equation we want to solve. For the approximation equations,

the measures are different, but clearly we can bound the Lp-norm uniformly.

Applying Hölder inequality, we know that it suffices to prove the following in-

equality:

λ(K) 6 C ·
(
Capω(K)(1 + Capω(K)−

1
n )−m

)q
,

where λ is the smooth measure over X and q i s some positive constant depending

on p > 1 23. Obviously, it would be enough to prove:

λ(K) 6 Cl · Capω(K)l · · · · · · (A)

for l sufficiently large.

Of course we have λ(K) < C, and so in fact we can get for any nonnegative l if the

above is true. And the case when measures or capacities of some sets are 0 trivially

brings no harm just as in the main text. In the following, we’ll consider Condition

(A) in this form.

For ω (uniformly) positive, this can be easily reduced to a Euclidean ball. As

by the argument quoted in Chapter 2 from [Koj2], using a classic measure theoretic

result in [Tsm], we have:

λ(K) 6 C · exp
(
− C

Capω(K)
1
n

)
· · · · · · (?).

This is actually stronger than the version above after noticing small capacity situation

is of the main interest.

In the following proof of Condition (A), the essential step is to prove the following

inequality:

λ(K) 6 C1 · εN1 + C1 · ε−N2exp
( C2

logε · Capω(K)
1
n

)
· · · · · · (B)

for sufficiently small 0 < ε < 1. All positive constants Ci’s do NOT depend on ε.

This ε has nothing to do with the ε appearing before in ω∞ + εω. After proving this,

by putting ε = Capω(K)β for properly chosen β > 0, we can justify Condition (A)

for any chosen l by noticing the dominance of exponential growth over polynomial

growth.

It is easy to notice that we can have uniform constants for all ω’s related once

23 1
q + 1

p = 1 and q = 1 when p = ∞.
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we get for ω∞ from the favorable direction of the control we want. And we also only

need to prove Condition (A) for sets close to the subvariety {ω∞n = 0} in sight of

the results in [Koj2] by localizing the problem.

The rest part of this section will be devoted to the proof of inequality (B). The

following construction is of fundamental importance for this goal.

Let’s start with a better description of the map P : X → P (X) ⊂ CPN . For

simplicity, we’ll assume here that P provides a birational morphism between X and

P (X). This assumption will be removed at the end.

Using this assumption, we have subvarieties Y ⊂ X and Z ⊂ P (X) such that

X \ Y and P (X) \ Z are isomorphic under F and P (Y ) = Z. Clearly Z should

contain the singular subvariety of P (X). It’s the situation near Y (or Z) that is of

the main interest to us.

Now we use finitely many unit coordinate balls on X to cover Y . The union of

the half-unit balls will be called V . Then we take two finite sets of open subsets

depending on ε > 0 as follows.

{Ui}, {Vi}, with i ∈ I, finite coverings of V \W , where W is the intersection of ε-

neighbourhood of Y 24 with P (X), such that each pair Vi ⊂ Ui is in one of the chosen

unit coordinate balls. Moreover, P (Ui) and P (Vi) are the intersections of P (X) with

balls of sizes 1
2
εC and 1

6
εC where some fixed C > 0 are chosen to be big enough in

order to justify the above construction.

Clearly |I| is controlled by C · ε−N2 .

For any compact set K in V , we have the following computation:

λ(K) 6 λ(W ) +
∑
i∈I

λ(K ∩ V̄i)

6 C · εN1 +
∑
i∈I

C · exp
(
− C

Cap(K ∩ V̄i, Ui)
1
n

)
6 C · εN1 +

∑
i∈I

C · exp
( C

logε · Capω∞(K ∩ V̄i)
1
n

)
6 C · εN1 +

∑
i∈I

C · exp
( C

logε · Capω∞(K)
1
n

)
6 C · εN1 + Cε−N2 · exp

( C

logε · Capω∞(K)
1
n

)
.

That’s just what we want. C1 and C2 are used in the original statement of (B)

24That’s a neighbourhood of Y correspondent to the intersection of balls of radius ε in CPN

covering Z.
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since the C’s at different places have different affects on the magnitude of the final

expression. Of course, the same C for each term in the big sum have to be really

the same constant. In the following, we justify the computation above. The only

nontrivial steps are the second and third ones.

The second one is the direct application of (?), the classic result in Cn, as Vi and

Ui are in one of the finitely many unit coordinate balls which clearly can be taken as

the unit Euclidean ball in a uniform way, and we are using Ui instead of the big ball

here.

The third step uses the following inequality:

Cap(K ∩ V̄i, Ui) 6 C · (−logε)n · Capω∞(K ∩ V̄i).

This result also has its primitive version in classic pluripotential theory for domains

in Cn. Extension of plurisubharmonic function is all what we need to prove it as

described below.

For any v ∈ PSH(Ui) valued in [−1, 0]. If we can “extend” this function to an

element −Clogε · ṽ where ṽ is plurisubharmonic with respect to ω∞ valued in [−1, 0]

over X, and also make sure that the measures (
√
−1∂∂̄v)n and (ω∞ +

√
−1∂∂̄ṽ)n

are the same over V̄i, then this would clearly imply the inequality above from the

definition of relative capacity.

The construction will be done mostly on P (X). The function v can be considered

over P (Ui). We’ll “extend” it to a neighbourhood P (X) \ Oi in CPN where Oi is a

neighbourhood of V̄i in Ui.

Let’s first extend it locally in CPN . We can safely assume that the construction

happens in (finite) half-unit Euclidean balls in CPN which cover the variety Z and

have ωM defined on the correspondent unit balls. ωM can be expressed in the level of

potential, and so the construction is merely about functions.

Consider the plurisubharmonic function function

h =
(
log(

36|z|2

ε2C
)
)+ − 2,

where the upper + means taking maximum with 0, on the unit ball in CPN but with

the coordinate system z centered at the center of P (Vi). It’s easy to see that the

pullback of this function, still denoted by h, is plurisubharmonic and max(h, v) on

Ui is equal to v near V̄i and equal to h near ∂Ui. So this function extends v to the

preimage of the unit ball in CPN while keeping the values near V̄i.
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Now we want to extend further to the whole of X. We still work on F (X) ⊂ CPN .

And it’s only left to extend the function h for the remaining part where the value is

less restrictive.

|h| is bounded by −C · logε in the unit ball. So we can have

√
−1∂∂̄h = −C · logε · (ωM +

√
−1∂∂̄H)

for H plurisubharmonic with respect to ωM valued in [−1, 0] in the unit ball 25. Then

using the same argument as in [Koj2], which has been illustratd before to give the

equivalence of globally and locally defined relative capacities, we can extend H to

(uniformly bounded) H̃ ∈ PSHωM
(O), where O is a neighbourhood of P (X), using

the positivity of ωM . Finally we just take ṽ = P ∗H̃.

This ends the argument for the case when P : X → P (X) is a birational map.

Now we want to remove the birationality condition. In fact, after removing proper

subvarieties Y and Z = P (Y ) of X and P (X) respectively, we can have P : X \ Y →
P (X)\Z is a finitely-sheeted covering map, since the map is clearly of full rank there

and the finiteness of sheets can be seen by realizing the preimage of any point in

P (X \ Z) should be a finite set of points.

Then it’s easy to see that the argument before would still work in this situation.

Basically, we can still have the construction used before, and now the only difference

is that the numbers of small pieces Ui and Vi need to be multiplied by (at most) the

number of sheets, which clearly won’t affect the previous argument too much.

Hence we get the apriori L∞ bound in general.

Existence of bounded solution follows after getting this apriori bound.

25We can clearly achieve this by requiring the potential of ωM is valued in a short interval.
Actually, it’s OK if we have H valued in a interval with length C > 1 as long as C is uniformly
controlled which is of course the case here.
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[Ho] Hörmander, Lars: The analysis of linear partial differential operators, I. Dis-

tribution theory and Fourier analysis. Grundlehren der Mathematischen Wis-

senschaften [Fundamental Principles of Methematical Sciences], 256. Springer-

Verlag, Berlin, 1983. ix+391pp.

[Ka1] Kawamata, Yujiro: The cone of curves of algebraic varieties. Ann. of Math. (2)

119 (1984), no. 3, 603–633.

[Ka2] Kawamata, Y.: Pluricanonical systems on minimal algebraic varieties. Invent.

Math. 79 (1985), no. 3, 567–588.

[Ka3] Kawamata, Yujiro: A generalization of Kodaira-Ramanujam’s vanishing theo-

rem. Math. Ann. 261 (1982), no. 1, 43–46.

[Kl] Kleiman, Steven L.: Toward a numerical theory of ampleness. Ann. of Math. (2)

84 (1966), 293–344.

[Koi] Kobayashi, Ryoichi: Einstein-Kähler V -metrics on open Satake V -surfaces with

isolated quotient singularities. Math. Ann. 272 (1985), no. 3, 385–398.

255



[Koj1] Kolodziej, Slawomir: The complex Monge-Ampere equation. Acta Math. 180

(1998), no. 1, 69–117.

[Koj2] Kolodziej, Slawomir: The complex Monge-Ampere equation and pluripoten-

tial theory. Mem. Amer. Math. Soc. 178 (2005), no. 840, x+64 pp.
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