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We provide general discussion on the lower bound of Ricci curvature along Kähler–Ricci
flows over closed manifolds. The main result is the non-existence of Ricci lower bound for
flows with finite time singularities and non-collapsed global volume. As an application,
we give examples showing that positivity of Ricci curvature would not be preserved by
Ricci flow in general.
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1. Introduction and Setup

Ricci flow has been one of the most interesting geometry objects since the intro-
duction by Hamilton in [10]. Although its complex version, Kähler–Ricci flow, is
nothing but Ricci flow with the initial metric being Kähler, the study of Kähler–
Ricci flow has mostly been restricted to the case of fixed Kähler class since the work
of Cao [1] which provides an alternative proof of the famous Calabi–Yau theorem
using geometric evolution method. In recent years, the restriction on Kähler class
has naturally been removed when trying to carrying out the Geometric Minimal
Model Program proposed by Tian. This also brings the study of Kähler–Ricci flow
and Ricci flow itself much closer by having the only additional assumption of the
initial metric being Kähler.

Analysis of geometric quantities like curvature terms is certainly at the center of
the study for geometric (evolution) equations. In this work, we discuss the behavior
of Ricci curvature for Kähler–Ricci flows over closed Kähler manifolds. This relates
to the conjecture proposed by Chen and Li in [6] that Ricci curvature has some
form of lower bound along Ricci flow. A more classic problem is the preservation of
certain positivity conditions along Ricci flow. By explicit constructions, the papers
[12–14] have provided counterexamples regarding the preservation of non-negativity
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of Ricci curvature in both complete non-compact and closed cases. A nice summary
about history of this problem can also be found in these works.

We go for general theory in this direction. A typical result here is the following,
which is a more English version of Theorem 2.1.

Theorem 1.1. For any Kähler–Ricci flow with finite time singularities over any
closed manifold, if the global volume is not going to zero towards the time of
singularities, then the Ricci curvature “cannot ” have a uniform lower bound.

As mentioned earlier, Kähler–Ricci flow (only) requires the initial metric being
Kähler. To make sense of this Kähler condition, the closed smooth manifold under
concern, X , needs to have a complex structure, which is fixed for the consideration.
We still call this complex manifold X . The smooth flow metric remains to be Kähler
over X , as first observed by Hamilton. We consider dimC X = n � 2.

The standard form of Kähler–Ricci flow, which is a direct translation from the
(metric) Ricci flow to the form flow, is, over X × [0, S) (for some S ∈ (0,∞])

∂ω(s)
∂s

= −2 Ric(ω(s)), ω(0) = ω0, (1.1)

where ω0 is the metric form for the initial Kähler metric. The key advantage in our
study of this flow, comparing with most earlier works, is that we no longer force any
cohomology condition on [ω0]. This allows more applications for this geometric flow
technique and more importantly, makes it possible to analyze degenerate situation.
This idea first appeared in [23] and was then rigorized and generalized in [22, 16].

Under the following time-metric scaling for (1.1),

ω(s) = etω̃t, s =
et − 1

2
,

we arrive at an equivalent version of Kähler–Ricci flow over X × [0, T ) with T =
log(1 + 2S) ∈ (0,∞],

∂ω̃t

∂t
= −Ric(ω̃t) − ω̃t, ω̃0 = ω0. (1.2)

In the following, we explain the reason to do this.
To begin with, let us point out that the time scaling makes sure that these two

flows would both exist up to some finite time (with finite time singularities) or
exist forever. In the finite time singularity case, the metric is scaled by a uniformly
controlled positive function depending only on time, and so the equivalence is fairly
strong. When they both exist forever, the metric scaling might have significant
impact on the flow metric. For example, in the case of c1(X) = 0 as studied in [1],
ω(s) converges at time infinity to the unique Ricci-flat metric ωCY in the Kähler
class [ω0] with the lower CY indicating the more popular name of Calabi–Yau
metric, while (X, ω̃t) shrinks to a metric point at time infinity. Meanwhile, in other
cases, ω(s) has the volume tending to infinity while ω̃t has uniformly controlled
volume. For us, (1.2) is more convenient always because the cohomology class [ω̃t]
is always under some uniform control, as is clear from the discussion below.
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We use the convention that [Ric] = c1(X), and then one can reduce (1.2) to an
ODE in the cohomology space H1,1(X, R) := H2(X ; R)∩H1,1(X ; C). It is not hard
to solve it and we get

[ω̃t] = −c1(X) + e−t([ω0] + c1(X)),

which stands for an interval in this vector space with two endpoints being [ω0] for
t = 0 and −c1(X) formally for t = ∞. Meanwhile, for (1.1), [ω(s)] evolves linearly,
which might be a simpler behavior but the control is not uniform in general.

For either one, the optimal existence result in [22] states that the flow metric
exists as long as the class from the above consideration stays inside the open cone
consisting of all Kähler classes, called Kähler cone.

For the rest of this work, we focus on (1.2).

We use KC(X) to denote the Kähler cone of X , and its closure (in the finite-
dimensional vector space H1,1(X, R)), KC(X), is called the numerically effective
cone, with the terminology borrowed from Algebraic Geometry. Now the optimal
existence result simply says that the classic solution of (1.2) would exist up to the
optimal time

T = sup{t |− c1(X) + e−t([ω0] + c1(X)) ∈ KC(X)}.
This would be our definition for T for the rest of this work, which takes value
in (0,∞]. From [22], we already know that singularities only happen when the
class hits the boundary of this cone, at either finite or infinite time. In other words,
[ωT ] ∈ KC(X)\KC(X). Of course, now an interesting problem is how the topological
property of this class at the boundary of KC(X) and the behavior of the Kähler–
Ricci flow would interact with each other.

The study of this, as well as for many other topics regarding Kähler–Ricci flow,
usually makes use of the scalar version of the Kähler–Ricci flow. For (1.2), we define
the following background form,

ωt = −Ric(ω0) + e−t(ω0 + Ric(ω0)),

which is clearly compatible with the notation ω0. The point is that [ωt] = [ω̃t], and
so ω̃t = ωt +

√−1∂∂̄u. It is standard to show that the following scalar evolution
equation for metric potential u over X × [0, T ) is equivalent to (1.2),

∂u

∂t
= log

ω̃n
t

ωn
0

− u = log
(ωt +

√−1∂∂̄u)n

ωn
0

− u, u(·, 0) = 0. (1.3)

This evolution equation can be reformulated as

(ωt +
√−1∂∂̄u)n = e

∂u
∂t +uωn

0 , (1.4)

and so one can see the close relation between the Kähler–Ricci flow and complex
Monge–Ampère equation.

Ricci curvature being bounded from below uniformly is a natural assumption
in the study of the structure of Riemannian manifolds and the (singular) space as
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the limit (for example, in the series of works by Cheeger–Colding [2–4], and the
work [5] by Cheeger–Colding–Tian). In the context of Ricci flow, such a bound
is also favorable as an assumption (for example, in [24]). Our result shows that
under mild cohomology assumption, this is unfortunately impossible. In particular,
Example 2.4 shows that the flow can still generate (finite time) singularities with
no uniform Ricci lower bound when the initial metric has positive Ricci curvature.

The organization of this paper is as follows. In Sec. 2, we consider the finite
time singularity case and prove Theorem 1.1. In Sec. 3, we discuss infinite time
singularity case. Let us first fix some notations frequently used for the rest of this
work.

Notation. (1) C stands for a positive constant, which might be different at places.
(2) A ∼ B for non-negative A and B means 1

C B � A � CB.

2. Finite Time Singularity

In this section, we consider the case of the singular time T < ∞. We have [ωT ] ∈
KC(X)\KC(X). The following is the main result which is Theorem 1.1.

Theorem 2.1. Consider (1.2) with finite time singularities, i.e. T < ∞. If
[ωT ]n > 0, then the Ricci curvature “cannot ” have a uniform lower bound, i.e. there
is “no” (positive) constant D such that Ric(ω̃t) � −Dω̃t uniformly for t ∈ [0, T ).

The proof is a combination of techniques from [28, 29]. We begin with discussion
for the general case and eventually specify to the case in the above theorem to get
a proof.

The following is observed earlier as in, for example, [29, Remark 2.3]. It is clear
that [ωt]n = [ω̃t]n > 0 for t ∈ [0, T ), and we also have [ω̃t]n = [ωt]n → [ωT ]n as
t → T . So [ωT ]n � 0. In exactly the same manner, we see [ωT ]n−k · [ω0]k � 0 for
k = 1, . . . , n − 1. Now rewrite ωt as follows,

ωt =
(

1 − e−t

1 − e−T

)
ωT +

(
e−t − e−T

1 − e−T

)
ω0

and it is then obvious that for t ∈ [0, T ],

[ωt]n ∼ (T − t)K ,

where K is defined as follows,

n � K := min{k ∈ {0, 1, 2, . . . , n} | [ωT ]n−k · [ω0]k > 0},
which is well defined since [ω0]n > 0.

Note. When [ωT ]n > 0, K = 0 and 1
C � [ωt]n � C for some constant C > 0. Only

the lower bound is essential and this is the so-called global volume non-collapsed
case. Otherwise, it is called global volume collapsed case.
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Assuming Ric(ω̃t) � −Cω̃t for some constant C > 0 and plugging it into (1.2),
we have ∂eωt

∂t � Cω̃t. Since T < ∞, we arrive at ω̃t � Cω0, and so Ric(ω̃t) � −Cω0.
The equivalent equations (1.2) and (1.3) give

Ric(ω̃t) = −∂ω̃t

∂t
− ω̃t = Ric(ω0) −

√−1∂∂̄

(
∂u

∂t
+ u

)
,

and so we have

Cω0 +
√−1∂∂̄

(
−∂u

∂t
− u

)
� 0.

Now we apply the classic result in [21] to get a constant α > 0 depending only
on (X, Cω0) such that for t ∈ [0, T ),∫

X

eα(supX(− ∂u
∂t −u)+( ∂u

∂t +u))ωn
0 � C.

Of course, we could make sure α � 1. This then gives

inf
X

(
∂u

∂t
+ u

)
� 1

α
log

(
1
C

∫
X

eα( ∂u
∂t +u)ωn

0

)
.

By the Maximum Principle as already appeared in [27, 28] and summarized in
[29], we have ∂u

∂t + u � C, and so∫
X

eα( ∂u
∂t +u)ωn

0 = eαC

∫
X

eα( ∂u
∂t +u−C)ωn

0

� eαC

∫
X

e
∂u
∂t +u−Cωn

0

� C

∫
X

e
∂u
∂t +uωn

0

= C

∫
X

ω̃n
t

= C[ω̃t]n = C[ωt]n � C(T − t)K ,

where α � 1 is used for the second step after choosing C such that ∂u
∂t +u−C � 0.

So we conclude that for t ∈ [0, T ),

inf
X

(
∂u

∂t
+ u

)
� −C +

K

α
log(T − t)

and so
∂u

∂t
+ u � −C +

K

α
log(T − t)

for α ∈ (0, 1] depending only on (X, Cω0). Directly applying the Maximum Principle
to (1.3), we have u � C and so arrive at

∂u

∂t
� −C +

K

α
log(T − t). (2.1)

Hence in a way slightly different from that in [29], we have u � −C.
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The above estimate provides a pointwise lower bound of the volume form, ω̃n
t =

e
∂u
∂t +uωn

0 . Combining with the metric upper bound, we have proven the following
proposition.

Proposition 2.2. Consider (1.2) with singularities at some finite time T . If
Ric(ω̃t) � −Dω̃t for some (positive) constant D and t ∈ [0, T ), then

C−1(T − t)βω0 � ω̃t � Cω0

for positive constants β and C depending on X, ω0, T and D.

Now we restrict ourselves to the situation in Theorem 2.1. In this case, K = 0
and so the above lower bound for ∂u

∂t , (2.1) is uniform. Hence, the metric control
in Proposition 2.2 is also uniform. The argument in [28] can be recycled to draw
the contradiction. Namely, the characterization of the Kähler cone over a Kähler
manifold in [7] can be applied to show that [ωT ] would be Kähler as a consequence of
this uniform (lower) control of flow metric. This contradicts to the optimal existence
result of Kähler–Ricci flow in [22] and the assumption of T being the finite singular
time. Theorem 2.1 is thus proven.

Remark 2.3. This theorem indicates that for the problem studied in [29] on gen-
eral weak limit, when Ricci curvature has uniform lower bound, the discussion there
is indeed only for the global volume collapsed case. This stresses the point that the
discussion of collapsed case should really be the core for the topic of weak limit.

It is worth pointing out that there are numerous examples satisfying the assump-
tion of this theorem. For instance, we have the case discussed in [19]. In fact, the
manifold in their work belongs to the class of so-called manifolds of general type,
indicating “majority”.

The problem on finite time singularity has been studied extensively since Hamil-
ton’s original work [11]. The Ricci lower bound assumption and Sesum’s result on
the blow-up of Ricci curvature for finite time singularity of Ricci flows over closed
manifolds in [15] automatically give the blow-up of the scalar curvature, which is
conjectured in general and proven for Kähler case in [28]. Our theorem here shows
that the behavior of Ricci curvature has to be very wild, at least in the global
volume non-collapsed case.

Now we provide the example mentioned earlier, which satisfies the assumption of
Theorem 2.1 and also has the initial metric with positive Ricci curvature. The kind
of surfaces involved (usually called Hirzebruch surface) has been discussed in [20] in
the context of flows and we would follow their notations. More detailed discussion
about them (as rational ruled surfaces) can be found in the classic book [9].

Example 2.4. Consider the complex surface X = P(H ⊕ C) where H and C are
the hyperplane line bundle and trivial line bundle over CP

1, respectively. There are
two divisors, D∞ and D0, with the following properties useful for us,

(i) KC(X) = {b[D∞] − a[D0] | b > a > 0};
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(ii) c1(X) = 3[D∞] − [D0] is Kähler;
(iii) [D∞]2 = 1 > 0 and [D∞] ∈ KC(X)\KC(X).

We choose the initial Kähler class [ω0] = 4[D∞]−[D0]. Since c1(X) is Kähler, by
Calabi–Yau Theorem (in [25]), we can choose ω0 properly to make sure Ric(ω0) > 0.
The flow (1.2) has singularity time at T = 1 and [ωT ] = [D∞], and so the global
volume is non-collapsed. Hence by Theorem 2.1, there is no uniform Ricci lower
bound when approaching the singularity time T = 1.

3. Infinite Time Singularity

Now we consider the infinite time singularity case, i.e. T = ∞ and [−Ric(ω0)] =
−c1(X) ∈ KC(X)\KC(X). When X is projective, it is then a minimal manifold.

We assume Ric(ω̃t) � −Dω̃t, which gets weaker as D becomes larger. The
discussion is separated into cases of increasing D value, with the conclusion getting
weaker.

• Case D < 1. In this case, (1.2) gives ∂eωt

∂t � (D − 1)ω̃t, and so ω̃t � e(D−1)tω0.
By letting t → ∞, we have −c1(X) = [−Ric(ω0)] = 0 and so X is Calabi–
Yau manifold. Then the result in [1] can be scaled to provide a very satisfying
description of the flow metric.

Using the notations in Sec. 1, ω(s) = etω̃t converges exponentially fast (see,
for example, [26, Sec. 9.3]) to the Ricci-flat Kähler metric ωCY , where this expo-
nentially fast convergence is with respect to the parameter s = et−1

2 . Thus as
smooth forms, Ric(ω̃t) � −e−Csω0 and ω̃t � e−Ctω0, and so the Ricci lower
bound Ric(ω̃t) � −Dω̃t is certainly true for large time.

• Case D = 1. In this case, (1.2) gives ∂eωt

∂t � 0, and so ω̃t � ω0.
Ric(ω̃t) + ω̃t � 0 also tells us that the corresponding cohomology class

c1(X) + (−c1(X) + e−t([ω0] + c1(X))) = e−t([ω0] + c1(X)) ∈ KC(X),

and so [ω0] + c1(X) ∈ KC(X), providing a topological restriction.
The above uniform metric upper bound allows most of the discussion in Sec. 2

to be carried through. Together with Ric(ω̃t) � −ω̃ � −ω0,

Ric(ω̃t) = −∂ω̃t

∂t
− ω̃t = Ric(ω0) −

√−1∂∂̄

(
∂u

∂t
+ u

)
,

will give us

Cω0 +
√−1∂∂̄

(
−∂u

∂t
− u

)
� 0.

Again apply the classic result in [21] to get constant α > 0 depending only on
(X, Cω0) such that for t ∈ [0,∞),∫

X

eα(supX (− ∂u
∂t −u)+( ∂u

∂t +u))ωn
0 � C.
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Of course, we could make sure α � 1. This gives

inf
X

(
∂u

∂t
+ u

)
� 1

α
log

(
1
C

∫
X

eα( ∂u
∂t +u)ωn

0

)
.

As summarized in [29], we still have ∂u
∂t � C and u � C, and so in the same way

as in Sec. 2, we arrive at ∫
X

eα( ∂u
∂t +u)ωn

0 � C[ωt]n.

Repeating the same discussion at the beginning of Sec. 2, we have [−Ric(ω0)]n−k ·
[ω0]k � 0 for k ∈ {0, 1, . . . , n}, where −Ric(ω0) can be viewed as ωT for T = ∞.
Furthermore, [ωt]n ∼ e−Kt with

n � K := min {k ∈ {0, 1, 2, · · · , n} | [−Ric(ω0)]n−k · [ω0]k > 0},

which is well defined since [ω0]n > 0. So we conclude that for t ∈ [0,∞),

inf
X

(
∂u

∂t
+ u

)
� −K

α
t − C,

and so

∂u

∂t
+ u � −K

α
t − C

for α ∈ (0, 1] depending only on (X, ω0). This provides a pointwise lower bound
of the volume form, ω̃n

t = e
∂u
∂t +uωn

0 . Combining with the metric upper bound,
we arrive at the following proposition.

Proposition 3.1. Consider (1.2) with the solution existing forever but having infi-
nite time singularity. If Ric(ω̃t) � −ω̃t for t ∈ [0,∞), then [ω0] + c1(X) ∈ KC(X)
and

Ce−βtω0 � ω̃t � ω0

for some positive constants β and C depending on (X, ω0).

If we further assume K = 0, i.e. [−Ric(ω0)]n > 0, then it is the global volume
non-collapsed case and the metric bound from the above proposition is uniform.
As in [28] by making use of the result in [7], this implies [−Ric(ω0)] = −c1(X) ∈
KC(X), which contradicts the infinite time singularity assumption, i.e. [−Ric(ω0)] ∈
KC(X)\KC(X). Let us summarize it in the following corollary, which is similar to
Theorem 2.1 but not as neat.

Corollary 3.2. Consider (1.2) with the solution exists forever but having infinite
time singularity. If Ric(ω̃t) � −ω̃t for t ∈ [0,∞), then c1(X)n = 0 and the global
volume has to be collapsed for this Kähler–Ricci flow.
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• Case D > 1. This is the general case. We can only have ω̃t � eCtω0 for some
C > 0. Then

−CeCtω0 � Ric(ω̃t) = Ric(ω0) −
√−1∂∂̄

(
∂u

∂t
+ u

)
,

and we could have

Cω0 −
√−1∂∂̄

(
e−Ct

(
∂u

∂t
+ u

))
� 0.

Applying the same argument as before for e−Ct(∂u
∂t + u), we get

∂u

∂t
+ u � −CeCt.

Hence, the metric bound corresponding to Proposition 3.1 is

e−CeCt

ω0 � ω̃t � eCtω0,

which is not enough to draw a decent conclusion.

Remark 3.3. With this general Ricci lower bound assumption for infinite time
singularity case, when X is a projective manifold of general type, i.e.

(−c1(X)
)n

>

0, by the results in [27], one has the Ricci curvature being bounded from both sides
and ∂u

∂t +u � −C. Thus the metric bound can be improved to e−Ctω0 � ω̃t � eCtω0,
not yet good enough. Notice that by Corollary 3.2, D has to be strictly bigger than
1 to be a reasonable Ricci lower bound assumption in this case.

In the case of −c1(X) being semi-ample but c1(X)n = 0, applying the more
recent work [18] by Song–Tian on the scalar curvature bound, Ricci lower bound
also implies upper bound just as above. So we have a similar bound for flow metric
e−Ctω0 � ω̃t � eCtω0. One can find more discussion on this case in [16, 17, 8].
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