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Abstract

Consider the Kähler-Ricci flow with finite time singularities over any
closed Kähler manifold. We prove the existence of the flow limit in the
sense of current towards the time of singularity. This answers affirma-
tively a problem raised by Tian in [23] on the uniqueness of the weak
limit from sequential convergence construction. The notion of minimal
singularity introduced by Demailly in the study of positive current comes
up naturally. We also provide some discussion on the infinite time sin-
gularity case for comparison. The consideration can be applied to more
flexible evolution equation of Kähler-Ricci flow type for any cohomology
class. The study is related to general conjectures on the singularities of
Kähler-Ricci flows.
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1 Introduction

Let X be a closed Kähler manifold with dimCX = n > 2. We consider the
following Kähler-Ricci flow over X,

∂ω̃(t)

∂t
= −Ric (ω̃(t))− ω̃(t), ω̃(0) = ω0. (1.1)

where ω0 is the initial Kähler metric over X. This setting of Kähler-Ricci flow
is general in the sense that we make no assumption on either the first Chern
class of X, c1(X), or the initial Kähler class [ω0] (not necessarily rational).

The tremendous efforts and great successes in the study of this flow over
the last decade are motivated by all kinds of intentions and visions from al-
gebraic geometry, geometric analysis and several complex variables. The most
prominent one would be Tian’s Program, i.e., the Geometric Analytic Mini-
mal Model Program. Simply speaking, the static equation for this flow (1.1) is
Ric
(
ω̃(∞)

)
= −ω̃(∞), which is in principle the desirable equation to study in
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search of the (singular and generalized) Kähler-Einstein with KX being almost
positive (as in [24], [19], [18] and so on).

This general Kähler-Ricci flow can still be reduced to a scalar evolution
equation for the metric potential as described below.

Set ωt = ω∞ + e−t(ω0 − ω∞) with

ω∞ = −Ric(Ω) :=
√
−1∂∂̄ log

Ω

VE

for some smooth volume form Ω where VE is the Euclidean volume form with
respect to a local holomorphic coordinate chart {z1, · · · , zn}. By the classic
result in Kähler geometry, for a Kähler metric ω, the form Ric(ωn) using the
volume form ωn is equal to Ric(ω), the Ricci form of ω. It’s known that [ωt]
captures the cohomology information of the flow metric ω̃(t), and so by ∂∂̄-
Lemma, ω̃(t) = ωt +

√
−1∂∂̄u with u satisfying

∂u

∂t
= log

(ωt +
√
−1∂∂̄u)n

Ω
− u, u(·, 0) = 0, (1.2)

and this evolution equation is equivalent to (1.1).
By the optimal existence result in [24], the smooth (metric) solution ω̃t exists

as long as the class

[ωt] = −c1(X) + e−t
(
[ω0] + c1(X)

)
= e−t[ω0] + (1− e−t)

(
−c1(X)

)
remains in the Kähler cone of X, i.e., the open convex cone in the cohomology
space H2(X;R) ∩H1,1(X;C) consisting of all Kähler classes of X. Thus if we
define the time of singularity

T := sup{t | [ωt] Kähler} ∈ (0,∞],

the (classic) solution for the flow exists in [0, T ). For convenience, we apply the
convention of e−∞ = 0.

If KX = −c1(X) is Kähler, then T = ∞ and it’s known that this flow
always converges smoothly to the Kähler-Einstein metric for any ω0 (in any
Kähler class). This is the non-degenerate case in [24] or more explicitly in [31].

Otherwise, there has to be (metric) singularities developed for the flow metric
ω̃(t) as t → T because [ωT ] is on the boundary of the Kähler cone for X (and
no longer Kähler). The corresponding cases of T <∞ and T =∞ are naturally
called the finite and infinite time singularities respectively.

Of course, the analysis of various metric singularities when approaching the
time of singularity is crucial in understanding and dealing with the singularities
for applications, for example, in order to carry out Tian’s Program. For this
purpose, it’s useful to justify the existence and uniqueness of the limit, which
provides the sole object for further discussion of regularity. For the uniqueness
concern, the consideration in the weak sense is even more favorable.
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In general, as shown in Tian’s survey [23], we always have a sequential weak
limit for ω̃(t) as t → T in the weak (i.e., current) sense. Let’s point out that
the argument in [23] also works when T =∞ for our version of the Kähler-Ricci
flow because ωt is uniformly controlled as form even if T = ∞. Normalization
of the metric potential u is performed in that work to achieve the sequential
limit, and it’s conjectured there that the sequential limit is actually unique, i.e.,
independent of the sequence chosen.

This is the original motivation of the current work. We attack this problem
by studying the metric potential u itself along the flow without normalization.
If the flow limit exists, then the sequential limit is unique for sure.

In this work, we focus on the finite time singularity case, i.e., T <∞, where
we have the complete answer in the following theorem.

Theorem 1.1. Over a closed Kähler manifold X, if the flow (1.1) develops
finite time singularities, i.e., the time of singularity T < ∞, then we have
Φ = ωT +

√
−1∂∂̄u(T ) with u(T ) ∈ PSHωT

(X) and ω̃(t) → Φ in the weak
sense as t → T . In fact, for some positive constant C, u + Ce−

t
2 decreases to

u(T ) + Ce−
T
2 as t→ T , and u(T ) is of minimal singularities in PSHωT

(X).

The situation for the infinite time singularity case is different in general as
illustrated in Subsection 3.2. However, the above conclusion is true for the
global volume non-collapsed case, even if T =∞.

Proposition 1.2. Over a closed Kähler manifold X, consider the Kähler-Ricci
flow (1.1) with the time of singularity T ∈ (0,∞]. If [ωT ]n > 0, then we have
Φ = ωT +

√
−1∂∂̄u(T ) with u(T ) ∈ PSHωT

(X) and ω̃(t) → ω̃(T ) in the weak
sense as t → T . In fact, for some positive constant C, u + Ce−

t
2 decreases to

u(T ) + Ce−
T
2 as t→ T , and u(T ) is of minimal singularities in PSHωT

(X).

The conclusion in Proposition 1.2 for the case of T < ∞ is weaker than
the result in [3]. Assuming T = ∞, as shown in [27], the converse (or inverse)
statement of Proposition 1.2 is true, i.e. the convergence of unnormalized metric
potential implying the non-collapsing of global volume. Let’s clarify that it is
possible to have weak convergence of metric (form) for the infinite time collapsed
singularity, although the metric potential has to be normalized in this setting
for its own convergence.

In this case, the metric potential actually stays uniformly bounded along the
flow (and so is the limit u(∞)) by the result in [5], [9] and [30]. The limit u(∞)
is actually continuous by the result in [30] and [7].

The organization of this work is as follows. In Section 2, we provide some
general computations useful later and discuss some interesting special cases
including Proposition 1.2. In Section 3, we prove Theorem 1.1. In Section 4,
we provide very brief but sufficient discussion on the generalization of Section
3 in the study of any cohomology class and elaborate on the relation with the
notion of minimal singularity introduced by Demailly. Section 5 is about the
relation between our consideration and general conjectures on the singularities
for the Kähler-Ricci flow.
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Notations: as usual, we use C to stand for a positive constant, possibly differ-
ent at places. Also, f ∼ g means limt→T

f
g = 1.

Acknowledgment 1.3. The author would like to thank Professor G. Tian for
introducing him to this wonderful field of research and constant encouragement.
The interest of V. Tosatti in this work is very encouraging. It’s invaluable for
Professor S. Kolodziej to point out the regularization result by J. P. Demailly.
The careful check and thoughtful comments by a referee help to improve the
writing and are highly appreciated. The work was partially carried out during
the visit to the School of Mathematical Sciences at Peking University and Beijing
International Center for Mathematical Research, as part of the sabbatical leave
from the University of Sydney. The author would like to thank Professor X. Zhu
and these institutes for this wonderful opportunity.

2 The Plan and Special Cases

In this section, we list the discussion for some special cases. Although in Section
3 we take care of the general case altogether, they serve very well as motivations
for this topic. Before heading into them, we provide general discussion for the
Kähler-Ricci flow, leading to the plan of proving the main result, Theorem 1.1.

The following computations are already quite standard as in [24] for example.
The Laplacian, denoted by ∆, in the following is always with respect to the
evolving metric along the flow, ω̃(t).

We start with the t-derivative of (1.2),

∂

∂t

(
∂u

∂t

)
= ∆

(
∂u

∂t

)
− e−t〈ω̃(t), ω0 − ω∞〉 −

∂u

∂t
. (2.1)

Notation: the expression 〈ω, α〉 stands for the trace of the real smooth closed
(1, 1)-form α with respect to the Kähler metric ω. Clearly, 〈ω, α〉 = (ω, α)ω
where (·, ·)ω is the hermitian inner product with respect to ω. This notation is

frequently applied and comes from the calculation, 〈ω, α〉 = nωn−1∧α
ωn .

Then we transform (2.1) into the following two equations,

∂

∂t

(
et
∂u

∂t

)
= ∆

(
et
∂u

∂t

)
− 〈ω̃(t), ω0 − ω∞〉, (2.2)

∂

∂t

(
∂u

∂t
+ u

)
= ∆

(
∂u

∂t
+ u

)
− n+ 〈ω̃(t), ω∞〉. (2.3)

The difference of these two equations above is

∂

∂t

(
(1− et)∂u

∂t
+ u

)
= ∆

(
(1− et)∂u

∂t
+ u

)
− n+ 〈ω̃(t), ω0〉. (2.4)
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In light of 〈ω̃(t), ω0〉 > 0, by the standard Maximum Principle argument, we
have from (2.4)

(1− et)∂u
∂t

+ u+ nt > 0.

Meanwhile, there is a uniform upper bound for the metric potential u by
applying Maximum Principle to (1.2) directly. So the above control gives us

∂u

∂t
6
u+ nt

et − 1
6
nt+ C

et − 1
, (2.5)

which is the essential decreasing (i.e., decreasing up to an exponentially decaying
term) of u along the flow. Notice that this control only depends on the upper
bound of u.

The t-derivative of (2.1) is

∂

∂t

(
∂2u

∂t2

)
= ∆

(
∂2u

∂t2

)
+ e−t〈ω̃(t), ω0 − ω∞〉 −

∂2u

∂t2
− ∂ω̃(t)

∂t

2

ω̃(t)
. (2.6)

Take the sum of (2.1) and (2.6) to get

∂

∂t

(
∂2u

∂t2
+
∂u

∂t

)
= ∆

(
∂2u

∂t2
+
∂u

∂t

)
−
(
∂2u

∂t2
+
∂u

∂t

)
− ∂ω̃(t)

∂t

2

ω̃(t)
.

Applying Maximum Principle to it, one has

∂2u

∂t2
+
∂u

∂t
6 Ce−t,

which implies the essential decreasing of the ”logarithm” of the volume form,
ω̃(t)n = e

∂u
∂t +uΩ, along the flow, i.e.,

∂

∂t

(
∂u

∂t
+ u

)
6 Ce−t.

From this inequality, we can see

∂u

∂t
6 (C + Ct)e−t 6 Ce−

t
2 ,

which also follows from (2.5). Thus, for some C > 0, u + Ce−
t
2 is decreasing

along the flow. By the well known property of plurisubharmonic function, as
long as this term (or equivalently u) doesn’t converge to −∞ uniformly as
t → T ∈ (0,∞], u would converge to some u(T ) ∈ PSHωT

(X), and so Φ =
ωT +

√
−1∂∂̄u(T ) is the flow limit for ω̃(t) as t→ T in the weak sense. Hence,

in order to prove the existence of the flow limit in the weak sense for Theorem
1.1 and Proposition 1.2, we just need to

exclude the possibility of u→ −∞ uniformly as t→ T
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and this is the plan for us. In short, we don’t normalize u as in [23].

Next, we briefly recall the notion of minimal singularity introduced by De-
mailly in the study of positive (1, 1)-current.

Definition 2.1. Consider a smooth real closed (1, 1)-form α over X with

PSHα(X) := {w ∈ L1(X) |α+
√
−1∂∂̄w > 0 in the sense of distribution} 6= ∅.

Then u ∈ PSHα(X) is of minimal singularities if for any v ∈ PSHα(X),
u > v − C for C depending on v.

Any element in PSHα(X) is well known to be bounded from above. So the
”singularity” is used to describe where and how the function approaches −∞.
Obviously, if u ∈ PSHα(X) is bounded, then it’s of minimal singularities.

Remark 2.2. Since |u|pω̃(t)n = |u|pe ∂u
∂t +uΩ 6 CΩ by the known upper bounds

of ∂u
∂t and u, the weak convergence of all wedge powers ω̃(t)k → Φk as t→ T is

also available by the discussion in [12] as long as we have the existence of the
metric potential weak limit u(T ) ∈ PSHωT

(X) for the metric potential u.

2.1 Cases from algebraic geometry

In the consideration motivated by algebraic geometry interest, [ω0] (or at least
[ωT ]) is rational, and the following result is the core of this subsection.

Claim: if T < ∞ and [ωT ] is has a smooth real (1, 1) non-negative form (i.e.,
with non-negative eigenvalues when considered as a hermitian matrix) as a
representative, then the conclusion of Theorem 1.1 holds.

This is because we actually have u > −C in this case by applying Maximum
Principle argument directly on the flow. It has already been shown in [24] and
the argument is included here for later convenience. We start with

∂

∂t

(
(1− et−T )

∂u

∂t
+ u

)
= ∆

(
(1− et−T )

∂u

∂t
+ u

)
− n+ 〈ω̃(t), ωT 〉 (2.7)

which is a proper linear combination of (2.2) and (2.3).
The assumption of the claim gives an f ∈ C∞(X) such that ωT +

√
−1∂∂̄f >

0. We then modify the above equation as follows.

∂

∂t

(
(1− et−T )

∂u

∂t
+ u− f

)
= ∆

(
(1− et−T )

∂u

∂t
+ u− f

)
− n+ 〈ω̃(t), ωT +

√
−1∂∂̄f〉.

Applying Maximum Principle and noticing T <∞, one has

(1− et−T )
∂u

∂t
+ u− f > −C.
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Since u 6 C and ∂u
∂t 6 C, we conclude that for t ∈ [0, T ),

u > −C, ∂u

∂t
> − C

1− et−T
∼ − C

T − t
.

In fact, one can get the lower bound for u more directly using (1.2) as
observed in [21]. After a proper choice of Ω when coming up with (1.2), we can
make sure ωT > 0, and so ωt > C(T − t)ω0 for t ∈ [0, T ). Then by applying
Maximum Principle to (1.2), we have

dminX×{t} u

dt
> n log(T − t)− C −minX×{t}u,

from which the lower bound of u easily follows.

Together with the essential decreasing of u, we have the limit of the metric
potential u as a flow weak limit as t→ T , u(T ) ∈ PSHωT

(X) ∩ L∞(X). Thus
in this case, by a well known result in pluripotential theory as in [1], one has

the flow weak convergence as t → T , ω̃k(t) → Φk =
(
ωT +

√
−1∂∂̄u(T )

)k
for

k = 1, · · · , n. This u(T ) is bounded and so of minimal singularities. Hence
Theorem 1.1 holds in this case.

Let’s point out that if [ω0] is a rational class (and so X is projective by
Kodaira Embedding Theorem), the non-negativity of [ωT ] is available by the
classic Rationality Theorem and the Base-Point-Free Theorem from algebraic
geometry (for example in [14] and [13]). So from the algebraic geometry point
of view, the result in this work is certainly true. Of course, our goal is to remove
the assumption of [ω0] being rational and even X being projective.

Remark 2.3. It remains interesting to see whether the limit of u is continuous,
especially for the collapsed case, i.e., when [ωT ]n = 0. In the algebraic geometry
case, the continuity in the global volume noncollapsed case is known by the result
in [30] and also [7].

The above discussion can be generalized to the case when [ωT ]−D is non-
negative with an effective R-divisor D. For simplicity of notations, we assume
that D is an effective Z-divisor, which can then be identified as a holomorphic
line bundle with a defining section σ such that D = {σ = 0} and a hermitian
metric ‖·‖. We get this information involved in the estimation before as follows.

∂

∂t

(
(1− et−T )

∂u

∂t
+ u− log ‖σ‖2

)
= ∆

(
(1− et−T )

∂u

∂t
+ u− log ‖σ‖2

)
− n

+ 〈ω̃(t), ωT +
√
−1∂∂̄ log ‖σ‖2〉

Since [ωT ] −D has a smooth non-negative representative, by choosing ‖ · ‖
properly, we have over X \D,

ωT +
√
−1∂∂̄ log ‖σ‖2 > 0.
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As T <∞, by Maximum Principle with the minimum clearly achieved in X \D,
we arrive at

(1− et−T )
∂u

∂t
+ u− log ‖σ‖2 > −C.

Since u 6 C and ∂u
∂t 6 C, we conclude that

u > log ‖σ‖2 − C, ∂u

∂t
>
C log ‖σ‖2

1− et−T
∼
C log ‖σ‖2

T − t
.

This (degenerate) lower bound for u is enough to guarantee the existence of its
limit u(T ) ∈ PSHωT

and the weak convergence of ω̃(t) to Φ = ωT +
√
−1∂∂̄u(T )

as t → T . The limit u(T ) is of minimal singularities by the general argument
in Section 3.

Remark 2.4. The case of [ωT ] = D, an effective R-divisor, is a special case
in the above consideration. Furthermore, this generalization would be more in-
teresting in Section 4 when studying a general nef. class by the more general
evolution equation of Kähler-Ricci flow type.

2.2 Global volume non-collapsed case

Obviously, it is always the case that [ωT ]n > 0 since it is equal to the limit of
[ωt]

n > 0 as t → T . Here, we exclude the case of [ωT ]n = 0, i.e., require the
flow to be (globally) volume noncollapsed. The following claim is the focus of
this subsection.

Claim: for T ∈ (0,∞], if [ωT ]n > 0, then as t→ T , u can’t go to −∞ uniformly,
so u → uT ∈ PSHωT

(X) (by the essential decreasing of u and the property of
plurisubharmonic function).

The proof is based on one simple observation. Let’s rewrite (1.2) as follows.

(ωt +
√
−1∂∂̄u)n = e

∂u
∂t +uΩ. (2.8)

Assume otherwise, i.e., u→ −∞ uniformly over X as t→ T .
Meanwhile, [ωt]

n > C > 0 for t ∈ [0, T ) since [ωt]
n → [ωT ]n > 0 as t → T .

We also know ∂u
∂t 6 C. In light of∫

X

euΩ > C

∫
X

e
∂u
∂t +uΩ = C

∫
X

(ωt +
√
−1∂∂̄u)n = C[ωt]

n > C > 0,

we arrive at a contradiction. This argument clearly works for T ∈ (0,∞]. Hence,
we get the claim which is the convergence part of Proposition 1.2.

When T =∞, then [ωT ]n > 0 actually implies the uniform lower bound of u
by the result in [5], [9] and [30]. Clearly, the limit u(T ) is bounded and certainly
of minimal singularities.

When T < ∞, if [ωT ] is rational (which follows from [ω0] being rational
by the Rationality Theorem), it falls into the case considered in the previous
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subsection, so u is bounded and of minimal singularities. When [ωT ] is a real
(not necessary rational) class, we leave the justification of u being of minimal
singularities to the general discussion in Section 3.

Remark 2.5. For T = ∞, as shown in [27], the existence of unnormalized
limit for u, i.e., u not approaching −∞ uniformly, is equivalent to Kn

X > 0 (so
u and the limit have to be uniformly bounded).

Remark 2.6. In general, one has [ωt]
n ∼ C(T − t)k for some k ∈ {0, · · · , n}

when T < ∞ and [ωt]
n ∼ Ce−kt for some k ∈ {0, · · · , n} when T = ∞ by

considering the Taylor series of the explicit function f(t) = [ωt]
n at t = T .

In this subsection, k = 0. All other k values correspond to the global volume
collapsed case.

In the non-collapsed case, the following flow metric estimate, similar to that
in [29], is of particular interest as illustrated in Section 5.

We begin with the following inequality from parabolic Schwarz Lemma. Let
φ = 〈ω̃(t), ω0〉 > 0. Using the computation for (1.1) in [19], one has(

∂

∂t
−∆

)
logφ 6 C1φ+ 1, (2.9)

where C1 is a positive constant depending on the bisectional curvature of ω0.
We also have the following equation which is essentially (2.4):(

∂

∂t
−∆

)(
(et − 1)

∂u

∂t
− u− nt

)
= −〈ω̃(t), ω0〉, (2.10)

which gives (et − 1)∂u∂t − u− nt 6 0.
Multiplying (2.10) by a constant C2 > C1 + 1 and combining with (2.9), one

arrives at(
∂

∂t
−∆

)(
logφ+ C2

(
(et − 1)

∂u

∂t
− u− nt

))
6 nC2 + 1− (C2 − C1)φ

6 C3 − φ.
(2.11)

Now apply Maximum Principle for the term logφ + C2

(
(et − 1)∂u∂t − u− nt

)
.

Considering at the (local in time) maximum value point, one has

φ 6 C,

and so

logφ+ C2

(
(et − 1)

∂u

∂t
− u− nt

)
6 C,

which gives

ω̃(t) 6 Ce−C2((et−1) ∂u
∂t −u−nt)ω0 6 Ce−C(et ∂u

∂t −t)ω0.
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Since ω̃(t)n = e
∂u
∂t +uΩ, one further concludes that

CeC(et ∂u
∂t −t)ω0 6 ω̃(t) 6 Ce−C(et ∂u

∂t −t)ω0. (2.12)

Now we restrict to the case of T <∞. Combining with the upper bound of
∂u
∂t , we have for t ∈ [0, T ),

CeC
∂u
∂t ω0 6 ω̃(t) 6 Ce−C

∂u
∂t ω0. (2.13)

So the control of flow metric can be reduced to the lower control of ∂u
∂t .

Although we know from [29] that it’s impossible to have a uniform lower bound
for ∂u

∂t , this control of metric is pointwise and helpful in light of the higher order
estimates in [15]. This is useful for the discussion in Section 5.

Remark 2.7. In the global collapsed case, this metric estimate blows up from
both directions as ∂u

∂t → −∞ uniformly as t→ T <∞, as discussed at the end
of Subsection 3.2.

2.3 Cases with curvature assumption

Now we inspect several cases with assumptions on Riemannian curvature tensor,
all for the case of T < ∞. They help to motivate our consideration from
Riemannian geometry point of view.

• Case 1: Ricci lower bound, i.e., Ric
(
ω̃(t)

)
> −Cω̃(t) for all t ∈ [0, T ).

Clearly, ω̃(t) 6 Cω0 by (1.1) and the assumption. So we have

−e−t(ω0−ω∞)+
√
−1∂∂̄

∂u

∂t
=
∂ω̃(t)

∂t
= −Ric(ω̃(t))−ω̃(t) 6 Cω̃(t) 6 Cω0,

which gives

Cω0 +
√
−1∂∂̄

(
−∂u
∂t

)
> 0.

Applying the Hörmander-Tian Inequality in [22], there exist uniform pos-
itive constants α and C such that∫

X

eα(max
X
(− ∂u

∂t )−(−
∂u
∂t ))Ω 6 C, uniformly for any t ∈ [0, T ),

where we can certainly choose α < 1. It is∫
X

eα(−min
X

∂u
∂t +

∂u
∂t )Ω 6 C.

So we have ∫
X

eα
∂u
∂t Ω 6 Ceαmin

X ( ∂u
∂t ) 6 Ceα

∂u
∂t (xmin(t),t) (2.14)
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where xmin(t) is a point where u(·, t) takes the spatial minimum. Define
the Lipschitz function U(t) := minX×{t} u, and we have dU

dt = ∂u
∂t (xmin(t), t)

in a proper sense.

Meanwhile, by Remark 2.6, we know∫
X

e
∂u
∂t +uΩ = [ωt]

n > C(T − t)k

for some k ∈ {0, · · · , n}. Together with α < 1 and the uniform upper
bounds for u and ∂u

∂t , we arrive at∫
X

eα
∂u
∂t Ω > C

∫
X

e
∂u
∂t +uΩ > C(T − t)k. (2.15)

Now combining (2.14) with (2.15), we have

dU

dt
> C log(T − t)− C

which gives U > −C. So there is a uniform L∞-bound for u. Hence, we
conclude the following proposition.

Proposition 2.8. Consider the Kähler-Ricci flow (1.1). If it develops
finite time singularities with Ricci curvature uniformly bounded from be-
low, then the metric potential in (1.2) has a uniform L∞-bound. When
approaching the time of singularity, the flow metric weakly converges to a
positive (1, 1)-current with bounded (local) potential.

Remark 2.9. By the same argument, one can replace the assumption of
a uniform Ricci lower bound by Ric

(
ω̃(t)

)
> α for a smooth (1, 1)-form

α. It is a priori a weaker assumption but less geometric. Meanwhile, by
the result in [28], we know that the assumption in the above proposition
actually forces the global volume to collapse, i.e., [ωT ]n = 0, which is
indeed the difficult case in light of the discussion in Subsection 2.2.

• Case 2: Ricci form upper bound, i.e., Ric
(
ω̃(t)

)
6 α for a smooth (1, 1)-

form α.

This assumption is less geometric but still natural, as appearing in [10].
Notice that the upper bound Ric(ω̃(t)) 6 Cω̃(t) indicates a positive lower
bound for the flow metric for any finite time, which rules out the finite
time singularities as discussed in [29].

By the flow equation (1.1),

α > Ric (ω̃(t)) = −∂ω̃(t)

∂t
− ω̃(t) = −ω∞ −

√
−1∂∂̄

(
∂u

∂t
+ u

)
.

So we have for some C > 0,

Cω0 +
√
−1∂∂̄

(
∂u

∂t
+ u

)
> 0.

11



The standard argument using Green’s function then gives∫
X

(
∂u

∂t
+ u

)
ωn0 > C max

(
∂u

∂t
+ u

)
− C > C log(T − t)− C

where the last step makes use of∫
X

e
∂u
∂t +uΩ = [ω̃(t)]n] = [ωt]

n ∼ (T − t)k

for some k ∈ {0, · · · , n}. So we conclude∫
X

uωn0 > −C,

which prevents u from going to −∞ uniformly as t → T . We leave the
discussion for minimal singularity to the general argument in Section 3.

• Case 3: Type I singularity on scalar curvature, i.e., |R(ω̃(t))| 6 C
T−t .

This is weaker than the usual Type I singularity on Riemannian curvature.
In light of the volume evolution equation

∂ω̃nt
∂t

= (−R− n)ω̃nt ,

we have
∂

∂t

(
∂u

∂t
+ u

)
> − C

T − t
.

This implies ∂u
∂t + u > C log(T − t)− C, and so

u > −C,

sufficient for the conclusion of Theorem 1.1.

3 The General Case

Recall that in order to obtain the uniqueness of sequential limit, we consider
instead the existence problem of flow weak limit. For this purpose, we are left to
rule out the possibility of u→ −∞ uniformly over X as t→ T <∞. So far, we
have justified this under various assumptions motivated by algebraic geometry
and Riemannian geometry interests. Here, we provide a general argument for
the finite time singularity case, and then illustrate the difference between the
finite and infinite time singularity cases.
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3.1 The proof of Theorem 1.1

Consider T < ∞, i.e., the finite time singularity case. The following argument
works in general. Of course, in some of the special cases discussed earlier, we
have better control on the metric potential for the conclusion.

To begin with, as [ωT ] is on the boundary of the Kähler cone for X, there
exists ϕ ∈ PSHωT

(X). For this fact, one can for example use the sequential
limit construction in [23].

The fundamental regularization result by Demailly (Theorem 1.6 in [4]) pro-
vides us with a decreasing approximation sequence for ϕ, {ϕm}∞m=1, satisfying:

• ϕm ∈ PSHωT+ 1
mω0

(X);

• ϕm ∈ C∞(X \ Zm) with Zm ⊂ Zm+1 being analytic subvarieties of X.
Furthermore, ϕm has logarithmic poles along Zm, i.e. locally being the
logarithm of the sum of squares of finitely many holomorphic functions,
all vanishing along Zm.

We start with the following combination of (2.4) and (2.7),

∂

∂t

(
1

m
[(1− et)∂u

∂t
+ u] + [(1− et−T )

∂u

∂t
+ u]

)
= ∆

(
1

m
[(1− et)∂u

∂t
+ u] + [(1− et−T )

∂u

∂t
+ u]

)
− n(1 +m)

m
+ 〈ω̃(t),

1

m
ω0 + ωT 〉.

Then let’s modify it using ϕm as follows.

∂

∂t

(
1

m
[(1− et)∂u

∂t
+ u] + [(1− et−T )

∂u

∂t
+ u]− ϕm

)
= ∆

(
1

m
[(1− et)∂u

∂t
+ u] + [(1− et−T )

∂u

∂t
+ u]− ϕm

)
− n(1 +m)

m
+ 〈ω̃(t),

1

m
ω0 + ωT +

√
−1∂∂̄ϕm〉.

(3.1)

where 1
mω0 + ωT +

√
−1∂∂̄ϕm is smooth and positive over X \ Zm. Since

ϕm ∈ C∞(X \ Zm) and has −∞ poles along Zm, the spatial minimum of

1

m
[(1− et)∂u

∂t
+ u] + [(1− et−T )

∂u

∂t
+ u]− ϕm

is always achieved in X \Zm, where everything is smooth. So we can apply the
standard Maximum Principle argument to conclude

1

m
[(1− et)∂u

∂t
+ u] + [(1− et−T )

∂u

∂t
+ u]− ϕm > −C,

13



which is uniform for all m’s over X × [0, T ). Here, we make use of the uniform
upper bound of ϕm’s. This inequality can be reformulated as follows:(

1 +
1

m

)
u+

(
1

m
(1− et) + (1− et−T )

)
∂u

∂t
> −C + ϕm.

For any t ∈ [0, T ), we could choose m(t) large enough with

0 <
2

m(t)
(1− et) + (1− et−T ) < 1.

Combining with u 6 C, ∂u
∂t 6 C and ϕm(t) > ϕ, we conclude

u > −C + ϕ,

which is enough to exclude the possibility of u→ −∞ uniformly as t→ T .
This argument works for any ϕ ∈ PSHωT

(X), and so the flow limit u(T ) ∈
PSHωT

(X) is of minimal singularities among all elements in PSHωT
(X). Hence

we have completed the proof of Theorem 1.1.

Remark 3.1. By Theorem 1.1, the flow provides a smooth descreasing approx-
imation for the flow limit which is of minimal singularities. This interpretation
will be more interesting after the discussion in Section 4. Also, there is similar
discussion in the final version of [3], where the focus is certainly different.

3.2 The difference between T <∞ and T =∞ cases

We start by an example showing that for the infinite time collapsed case, i.e.
T =∞ and [ωT ]n = 0, u→ −∞ uniformly as t→∞.

Example 3.2. Suppose that KX = [ω∞] gives a fibration structure of X with the
generic fibre of dimension 0 < k 6 n, i.e., P : X → CPN with mKX = P ∗[ω

FS
]

and P (X) of complex dimension n − k. Then the flow (1.1) exists forever and
u ∼ −kt as t→∞.

This is justified as follows. Begin with the following scalar potential flow

∂v

∂t
= log

(ωt +
√
−1∂∂̄v)n

Ω
− v + kt, v(·, 0) = 0.

Clearly, it still corresponds to the same metric flow (1.1) and the relation be-
tween u in (1.2) and v is

u = v + f(t) with
df

dt
+ f = −kt, f(0) = 0.

We easily see f(t) ∼ −kt and df(t)
dt ∼ −k as t → ∞. Rewrite the equation of v

as follows,

(ωt +
√
−1∂∂̄v)n = e−kte

∂v
∂t +vΩ.

14



With the upper bound of ∂u
∂t , as in (2.5), and the above description of df

dt , we

have the uniform upper bound of ∂v
∂t . Then applying the L∞ estimate in [8] and

[5], we have |v| 6 C for all time. Hence u ∼ −kt, tending −∞ as t→∞.
Let’s also point out that by the result in [17], ∂v

∂t and also ∂u
∂t are uniformly

bounded from below for all time.

As mentioned before, by the result in [27], if T = ∞ and [ωT ]n = 0, the
unnormalized metric potential u always tends to −∞ uniformly as t → ∞.
Furthermore, if Abundance Conjecture is true as most people believe, the as-
sumption in the above example holds for KX nef. and Kn

X = 0, and so the more
clearly described behavior of u and ∂u

∂t is universal for infinite time collapsed
singularity. By all means, in the collapsed setting, the T =∞ case needs to be
treated differently from the T <∞ case. The difference can be illustrated in a
very intuitive way as follows.

For the finite time collapsed case, one has the following flow for v,

(ωt +
√
−1∂∂̄v)n = (T − t)ke ∂v

∂t +vΩ,

which corresponds to the same metric flow (1.1) and

u = v + h(t) with
dh

dt
+ h = k log(T − t), h(0) = 0.

So we have |h(t)| 6 C and dh
dt ∼ k log(T − t). In principle, we expect that v

stays bounded or at least doesn’t tend to −∞ uniformly (comparable with the
situation in the example), and so that’s also expected for u, which is true by
the main result in Theorem 1.1.

Moreover, the difference also exists in the behaviour of ∂u
∂t . In fact, for

the finite time collapsed case, one can justify ∂u
∂t → −∞ uniformly as t → T ,

different from the T =∞ as in the example. This is seen by the following simple
argument. The essentially decreasing limit of ∂u

∂t + u as t → T is −∞ almost
everywhere by simply considering the volume. This limit is essentially (i.e.,
ignoring measure 0 sets) upper semi-continuous as the essentially decreasing
limit of the smooth function ∂u

∂t + u. So the limit of ∂u
∂t + u is indeed −∞ over

X, and the convergence is then uniform by the classic considersation as for Dini’s
theorem. Finally, by (2.5), we conclude ∂u

∂t → −∞ uniformly as t→ T <∞.

4 Applications to Any Nef. Class

In this section, we generalize the discussion in Section 3 to the study of a
general nef. (i.e., numerically effective) class α, which is a real (1, 1)-class on
the boundary of the Kähler cone of X.

For any Kähler metric ω0, we can choose a class β ∈ H1,1(X;R) in the
complement of the closure of the Kähler cone of X such that the interval joining
[ω0] and β intersects the boundary of the Kähler cone right at α. In other words,

α = (1− a)[ω0] + aβ for a = sup{s | (1− s)[ω0] + sβ Kähler} ∈ (0, 1).
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Of course, the choice of β is not unique even after fixing [ω0]. However, this is
not an issue for our purpose.

We then pick a smooth real (1, 1)-form L representing β, and consider the
following evolution equation of Kähler-Ricci flow type:

∂ω̃(t)

∂t
= −Ric (ω̃(t))− ω̃(t) + Ric(Ω) + L, ω̃(0) = ω0, (4.1)

where Ω is a smooth volume form over X. This equation was introduced in
[26] and further studied in [24] and [31]. It shares a lot of common features
with (1.1), especially when considering the parabolic complex Monge-Ampère
equation for the metric potential.

By the ODE consideration in H1,1(X,R), we know [ω̃(t)] = β+e−t([ω0]−β),
and the corresponding optimal existence result in [24] tells that the flow metric
solution exists as long as the class β + e−t([ω0]− β) remains Kähler. So by our
construction, the flow must develop finite time singularities.

Set ωt = L + e−t(ω0 − L). It’s known that ω̃(t) = ωt +
√
−1∂∂̄u with u

satisfying
∂u

∂t
= log

(ωt +
√
−1∂∂̄u)n

Ω
− u, u(·, 0) = 0, (4.2)

which is equivalent to (4.1).
All the computations and estimations at the beginning of Section 2 can be

carried through in exactly the same way for this flow. We still denote the time
of singularity by T <∞ with α = [ωT ] = β + e−T ([ω0]− β). The construction
in [23] still works for this flow and so we know for example, PSHωT

(X) 6= ∅.
Then the argument in Section 3 justifies the existence of the flow weak limit
and see it’s of minimal singularities. Hence, we conclude the following result.

Theorem 4.1. Use the above notations. For any nef. class, the evolution equa-
tion of Kähler-Ricci flow type (4.1) provides a positive (1, 1)-current of minimal
singularities as its representative, together with a smooth approximation.

In light of the famous example by Serre as described in [2] about a nef. and
big integral class without any positive current representative of bounded local
potential, we know that the flow limit from the above construction can’t always
have bounded local potential.

In the following, we derive a flow metric estimate similar to (2.13) for (1.1).
Let’s begin with the inequality below which follows from [19],(

∂

∂t
−∆

)
log〈ω0, ω̃(t)〉 6 C〈ω̃(t), ω0〉+ C +

〈ω0,Ric(Ω) + L〉
〈ω0, ω̃(t)〉

,

where the last term on the right hand side comes from the extra term in (4.1)
comparing with (1.1). Then one has(

∂

∂t
−∆

)
log〈ω0, ω̃t〉 6 C〈ω̃(t), ω0〉+ C +

C

〈ω0, ω̃(t)〉
. (4.3)
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Let’s recall (2.4) which still holds for (4.1),

∂

∂t

(
(1− et)∂u

∂t
+ u

)
= ∆

(
(1− et)∂u

∂t
+ u

)
− n+ 〈ω̃(t), ω0〉. (4.4)

It implies

(1− et)∂u
∂t

+ u+ nt > 0.

Combining (4.3) and (4.4), we arrive at(
∂

∂t
−∆

)(
log〈ω0, ω̃(t)〉 −B

(
(1− et)∂u

∂t
+ u+ nt

))
6 (C −B)〈ω̃(t), ω0〉+ C +

C

〈ω0, ω̃(t)〉
,

for a positive constant B fixed shortly. At the (local space-time) maximum
value point of the quantity,

log〈ω0, ω̃(t)〉 −B
(
(1− et)∂u

∂t
+ u+ nt

)
,

if the point is not at the initial time (otherwise trivial), one has

(C −B)〈ω̃(t), ω0〉+ C +
C

〈ω0, ω̃(t)〉
> 0.

Recall the elementary algebraic inequality

〈ω0, ω̃(t)〉 · 〈ω̃(t), ω0〉 > n2,

and so 1
〈ω0,ω̃(t)〉 6

〈ω̃(t),ω0〉
n2 . After choosing B > C + 1

n2 + 1, at the maximum

value point, we have
〈ω̃(t), ω0〉 6 C.

Now we apply another elementary inequality

〈ω0, ω̃(t)〉 6 〈ω̃(t), ω0〉n−1 ·
ω̃(t)n

ωn0
.

Together with ω̃(t)n = e
∂u
∂t +uΩ 6 CΩ, we have

〈ω0, ω̃(t)〉 6 C

at that point. Noticing the lower bound for (1− et)∂u∂t + u+ nt, we conclude

log〈ω0, ω̃(t)〉 −B
(
(1− et)∂u

∂t
+ u+ nt

)
6 C,

which gives

ω̃(t) 6 CeB((1−et) ∂u
∂t +u+nt)ω0 6 Ce−C(et ∂u

∂t −t)ω0.
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Since ω̃(t)n = e
∂u
∂t +uΩ, we can further conclude that

CeC(et ∂u
∂t −t)ω0 6 ω̃(t) 6 Ce−C(et ∂u

∂t −t)ω0. (4.5)

which is similar to (2.12). Now we restrict to the case of T < ∞ and have for
t ∈ [0, T ),

CeC
∂u
∂t ω0 6 ω̃(t) 6 Ce−C

∂u
∂t ω0. (4.6)

which is (2.13) for this more general evolution equation. Hence just as for (1.1)
in [29], there can’t be any uniform lower bound for ∂u

∂t (or the volume form

ω̃n(t) = e
∂u
∂t +uΩ) for the finite time singularity case.

Remark 4.2. Similar to the result in [15], with the uniform control of the flow
metric, higher order estimates should be available even in a local fashion.

In all, the discussion so far for (1.1) can be naturally generalized to the more
general flow (4.1).

5 Further Remarks

In this section, we discuss the implication of the lower order estimate of the
metric potential in understanding the formation of singularities for the Kähler-
Ricci flow. Let’s begin by stating the following conjecture.

Conjecture 5.1. For the flow (1.1) with singularities at T < ∞, u > −C for
t ∈ [0, T ).

Notice that the conjecture is on the classic Kähler-Ricci flow, i.e., about the
canonical class KX . For the more general flow in Section 4, the situation is
known to be different by Serre’s example. The confidence here mostly comes
from the cases from algebraic geometry consideration, in which the conjecture
is known to hold as discussed in Subsection 2.1. Also, there is natural relation
with the conjectures on the singularity type of the Kähler-Ricci flow in [20], as
illustrated by the discussion in Subsection 2.3.

Furthermore, there is the fundamental problem regarding the singularities
of the Kähler-Ricci flow: are they always developed along analytic varieties? A
little discussion with Professor F. Campana brought this to my attention.

For the global volume collapsed case, this is obviously the case if one con-
siders singularities in the simple-minded way, i.e. relating to uniform control on
flow metric, because of the vanishing of global volume. In this case, it’s more
meaningful to search for global control of geometric quantities and a more pre-
cise understanding of essential singularities regarding the metric collapsing, i.e.
after excluding the effect of regular collapsing, i.e. proper scaling with respect
to the rate of volume collapsing.

So far, quite some progress has been made for the infinite time singularity
case, for example, as in [19], [18], [11] and [25]. The remaining difficulty is to
achieve global geometric control in the presence of singular fibres. While for the
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finite time singularity case, it’s fairly open with the existing results imposing
serious assumptions, for example, in [16] and [10].

The main result of this paper provides us with a flow weak limit of the
metric potential which is closely related to the limiting class [ωT ]. We expect
the −∞ locus of this limit (of minimal singularities) to characterize the essential
singularities of the flow.

Meanwhile, the situation for the global volume non-collapsed case is a lot
different, for which one naturally expects the singularities to develop along a
subvariety of X. There are evidences for both finite and infinite time singularity
cases, for example, already in [24], where the estimates are degenerate along a
subvariety.

Recently, there has been substantial progress made by Collins-Tosatti in
the fundamental work [3] on the finite time non-collapsed singularities of the
Kähler-Ricci flow. More precisely, among other things, it’s proved there that
the flow stays smooth out of the subvariety EnK([ωT ]) = Null([ωT ]). This
is done by obtaining the proper lower bound of ∂u

∂t . At the same time, it is
impossible for the flow to stay smooth around any point of that subvariety in
the Riemannian sense (i.e., with the curvature staying uniformly bounded in
some fixed neighbourhood, which is one way to characterize flow singularity as
in [6]) by simple cohomology type consideration in light of the definition of the
set Null([ωT ]) (i.e., the union of vanishing subvarieties with respect to [ωT ]).
It’s quite obvious that the discussion in that work can be adapted to the more
general flow (4.1) in Section 4. Of course, for the higher order estimates, one
needs to accept the statement in Remark 4.1 about higher order estimates.

We now provide the following point of view which is certainly related but
slightly different, coming from a different characterization of flow singularities.
Let’s consider the more general evolution equation of Kähler-Ricci flow type
(4.1) with finite time singularities, i.e., T <∞.

At the first sight, the (pluripolar) set {uT = −∞}, looks like the natural
candidate for the singular set of the flow. However, this is not true with many
known cases, for example, uT might well be bounded (and so this set is empty)
in the presence of singularities. Indeed, by the discussion in Subsection 2.2, we
are led to investigate the set

Ŝ := {x ∈ X | ∂u
∂t
→ −∞ for some time sequence}.

By (4.6), the flow metric itself is (pointwise) bounded in the complement of Ŝ.

Since ∂u
∂t 6 Cu+ C (from ∂u

∂t 6 u+nt
et−1 ) and u 6 C, we have

C
∂u

∂t
− C 6

∂u

∂t
+ u 6

∂u

∂t
+ C. (5.1)

By the essential decreasing of the volume form, we can define the limit of ∂u∂t +u
which is an (essentially) upper semi-continuous function V over X valued in
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[−∞, C) for C <∞, satisfying ∫
X

eV Ω = [ωT ]n.

By (5.1), we have

Ŝ = {x ∈ X | ∂u
∂t
→ −∞} = {x ∈ X | ∂u

∂t
+ u→ −∞} = {x ∈ X | V = −∞}.

In the collapsed case, we have V ≡ −∞ as discussed in Subsection 3.2, and
so Ŝ = X which coincides with the usual vision of the singular set.

Now we consider the global volume non-collapsed case. In the algebraic
geometry setting, we already have in [24] that this set is contained in a subvariety

of X. Indeed, by the estimate in [3], we have Ŝ ⊂ Null([ωT ]).

The set Ŝ can be complicated. More precisely, we have

Ŝ = ∩∞A=1 ∪s∈[0,T ) {x ∈ X |
∂u

∂t
+ u+ Ce−s < −A at (x, s)}.

The decreasing of ∂u
∂t + u+ Ce−t tells us that the open set

{x ∈ X | ∂u
∂t

+ u+ Ce−s < −A at (x, s)}

is increasing as s→ T . Also, the result in [29] implies the open set

∪s∈[0,T ){x ∈ X |
∂u

∂t
+ u+ Ce−s < −A at (x, s)} 6= ∅

for any A. However, it’s not even clear whether {x ∈ X | V = −∞} 6= ∅,
as the intersection of a sequence of decreasing open sets. A priori, V might
not actually take the value −∞, although it can’t have a lower bound by the
discussion in [29] for (1.1) and the natural generalization to the general flow
(4.1). Nevertheless, if we consider the the lower semi-continuization V∗, the set

S := {V∗ = −∞}

is a closed set in X and certainly non-empty by the above discussion.
In the complement of S, V is locally bounded (by the semi-continuity of V∗),

and so the flow metric is locally uniformly bounded by (4.6) and then higher
order estimates are available by the result in [15], at least for the classic flow
(1.1). Thus, it is reasonable to consider {V∗ = −∞} as the singular set.

Let’s point out that the function V can a priori be wild. For example,
{V = −∞} = ∅ and {V∗ = −∞} = X might happen simultaneously. However,

by the result in [3], Ŝ ⊂ S ⊂ Null([ωT ]). To conclude the discussion in this
direction, we state the following conjecture.

Conjecture 5.2. Use the notations above. Consider the flow (4.1) of Kähler-
Ricci flow type. If there are finite time singularities, then

Ŝ = S = Null([ωT ]).
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This predicts a more precise and also elementary description for the blow-up
along the singular set of the flow. As mentioned earlier, it’s known to hold in
the collapsed case.
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