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Introduction

Let X be an n-dimensional (n > 2) projective manifold of general type, i.e., its
canonical divisor KX is big. This is our main interest in this note.

We denote a Kähler metric by its Kähler form ω, in local complex coordinates
z1, · · · , zn,

ω =
√−1gij̄dz

i ∧ dz̄j ,

where we use the standard convention for summation and (gij̄) is the positive
Hermitian matrix valued function given by gij̄ = g

(
∂

∂zi ,
∂

∂z̄j

)
.

Consider the following Kähler-Ricci flow

∂ω̃t

∂t
= −Ric(ω̃t)− ω̃t, ω̃0 = ω0, (0.1)

where ω0 is any given Kähler metric and Ric(ω) denotes the Ricci form of ω,
i.e., in the complex coordinates above, Ric(ω) =

√−1Rij̄dz
i ∧ dz̄j where (Rij̄)

is the Ricci tensor of ω.
It is natural to study properties of solutions for this flow when KX is big

and show how they are related to geometry of the underlying manifold X.
The main purpose of this note is to examine the global existence and conver-

gence for the solution of this evolution equation when KX is also numerically
effective. On one hand, we clarify the situation regarding the Kähler-Ricci flow
on projective manifolds of general type, on the other hand, we show some new
observations and results.

Theorem 0.1. Let X be a projective manifold with its canonical divisor KX

big and numerically effective (i.e., nef.). Then for any initial Kähler metric ω0,
the flow (0.1) has a global solution ω̃t for all time t ∈ [0,∞) satisfying: (1) ω̃t

converges to a positive current ω̃∞ representing −c1(X) as t tends to infinity;
(2) this limiting current is actually a smooth Kähler-Einstein metric outside a
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subvariety S ⊂ X and ω̃t|X\S converges to ω̃∞|X\S locally in C∞- topology; (3)
in any local complex coordinate chart, ω̃∞ =

√−1∂∂̄ρ for some locally bounded
plurisubharmonic function ρ; 1 (4) ω̃∞ is canonical, that is, independent of the
choice of the initial metric ω0.

Remark 0.2. We further expect that the local potential in (3) of the above
theorem is continuous in general. It is very much likely that the continuity can
be proved by a more delicate extension of Kolodziej’s results in [Koj]. We hope
to address this question in a forthcoming paper.

This theorem was proved in [C] in the case when KX is ample and the initial
Kähler class coincides with the canonical class itself. When X is given as above
and the initial metric ω0 is sufficiently positive, H. Tsuji proved in [Ts1] the first
two statements in the above theorem, that is, (0.1) has a global solution ω̃t and
ω̃t converges to a positive current which is actually a smooth Kähler-Einstein
metric outside a subvariety as t tends to infinity. 2 But we noticed that his basic
arguments can still go through even after the extra assumption on ω0 is removed.
Our new observations are that the limiting current is in fact canonical and has
bounded local potentials. This last property was proved by using results in
the second named author’s thesis which extends the potential theory developed
by Bedford-Taylor [BT] and Kolodziej [Koj] to singular varieties. Theorem 0.1
also gives a partial answer to the following conjecture (cf. [T]): For any initial
metric ω0, the flow (0.1) has a (possibly singular) solution ω̃t which converges
to a (possibly singular) metric in a suitable sense as t → ∞, moreover, this
limiting metric may be singular but should be independent of the choice of the
initial metric. In fact, it was further expected that all singularities of this
limiting metric are of rational type.

When X is a minimal complex surface of general type, by classification
theory of complex surfaces, KX is numerically effective and its canonical model
X is a Kähler orbifold. It is known (cf. [Y], [Ko]) that X admits a Kähler-
Einstein orbifold metric which pulls back to a current with locally continuous
potential and representing −c1(X). Then by an easy uniqueness result, one can
deduce

Corollary 0.3. If X is a minimal complex surface of general type, then the
global solution of the Kähler-Ricci flow converges to a positive current ω̃∞ which
descends to the Kähler-Einstein orbifold metric on its canonical model. In par-
ticular, ω̃∞ is smooth outside finitely many rational curves and has local con-
tinuous potential.

In order to prove Theorem 0.1, we first reduce (0.1) in a standard way to a
scalar parabolic equation.

1In this sense, we may refer ω̃∞ as a positive current with locally bounded potential. The
complete proof of this part will appear in the thesis of the second author [Z].

2The proof for convergence in [Ts1] contains some unjustified statements. A uniqueness
result was also claimed there.
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Formally taking cohomology classes on both sides of (0.1), we can easily
show that the cohomology class of ω̃t is equal to that of

ωt := −Ric(Ω) + e−t(ω0 + Ric(Ω)),

where Ω is any fixed volume form on X and in local coordinates z1, · · · , zn,

Ric(Ω) := −√−1∂∂̄log
( Ω
(
√−1)ndz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n

)
,

which is formally denoted by −√−1∂∂̄logΩ. This form actually represents the
first Chern class of X.

Write ω̃t = ωt +
√−1∂∂̄u for a smooth function u on X and t. We have

∂ω̃t

∂t
=
∂ωt

∂t
+
√−1∂∂̄

∂u

∂t
= e−t(−Ric(Ω)− ω0) +

√−1∂∂̄
∂u

∂t
.

Plugging this into (0.1), we can derive a scalar equation

∂u

∂t
= log

ω̃n
t

Ω
− u, u(0, ·) = 0. (0.2)

Clearly, given a solution of this equation, we can easily construct a solution
of (0.1) by reversing the steps above. Since this equation is parabolic, one can
immediately get the short time existence and uniqueness of its solution. It also
follows the equivalence of (0.1) and (0.2). 3 Theorem 0.1 will be proved by
studying (0.2).

The organization of this note is as follows. In Section 1, we show that (0.2)
has a solution for a maximal time interval [0, T ), where T is determined by KX

and the initial Kähler metric. In Section 2, we will study the convergence of the
solution as t→ T . In Section 3, when KX is numerically effective, we will show
that the limiting current is independent of the choice of the initial metric. In
Section 4, we will show that the limiting current has locally bounded potential.
Some applications and generalizations will be discussed in the last sections.

Cascini and La Nave informed us that they independently proved Proposition
1.1 and a weaker version of Theorem 0.1 in [CL].

1 Existence Of Maximal Solutions

In this section, we will prove that (0.2) has a solution in the maximal time
interval [0, T ), where T := sup{t | (e−t − 1) c1(X) + e−t[ω0] is ample}. If KX is
numerically effective, then T = ∞.

For any small ε > 0, we can choose Tε > 0 such that Tε + ε < T and a
real closed (1, 1) form ψε such that [ψε] = KX and ψε + aε · ω0 > 0, where
aε = 1

eTε+ε−1
. 4 Choose a smooth volume form Ωε such that Ric(Ωε) = −ψε.

This Ωε is unique up to multiplication by a positive constant.
3Clearly, all the above discussions still hold if X is only a closed Kähler manifold.
4The notations, > 0 and > 0, indicate the semi-positivity and positivity of forms in this

note.
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Set ωt = ψε + e−t(ω0 − ψε) and ω̃t = ωt +
√−1∂∂̄u. Then u can be chosen

to satisfy (0.2) with Ω replaced by Ωε:

∂u

∂t
= log

ω̃n
t

Ωε
− u, u(0, ·) = 0. (1.1)

We shall first show the solution for (1.1) exists for t ∈ [0, Tε].
First observe that ωt is a Kähler metric for t ∈ [0, Tε] with uniformly bounded

geometry.
The parabolicity of this equation assures the local existence and uniqueness

of solutions. In order to prove the existence of solutions for t ∈ [0, Tε], it only
remains to get uniform estimates of u for t ∈ [0, Tε].

Applying maximum principle to (1.1), we can easily have |u| ≤ Cε
5.

Taking derivative of (1.1) with respect to t, we get

∂

∂t
(
∂u

∂t
) = ∆ω̃t

(
∂u

∂t
)− e−t〈ω̃t, ω0 − ψε〉 − ∂u

∂t
.

Here ∆ω denotes the Laplacian of a Kähler metric ω and 〈ω, F 〉 means the trace
of F with respect to ω, where F is a real (1, 1)-form.

The equation above can be rewritten as follows:

∂

∂t
(et ∂u

∂t
) = ∆ω̃t(e

t ∂u

∂t
)− 〈ω̃t, ω0 − ψε〉, (1.2)

∂

∂t
(
∂u

∂t
+ u) = ∆ω̃t(

∂u

∂t
+ u)− n+ 〈ω̃t, ψε〉. (1.3)

The difference of these two gives

∂

∂t

(
et ∂u

∂t
− ∂u

∂t
− u

)
= ∆ω̃t

(
et ∂u

∂t
− ∂u

∂t
− u

)
+ n− 〈ω̃t, ω0〉. (1.4)

There is also a slightly modified difference version (1 + aε) · (1.3)− aε · (1.2):

∂

∂t

(
(1 + aε)(

∂u

∂t
+ u)− εet ∂u

∂t

)

= ∆ω̃t

(
(1 + aε)(

∂u

∂t
+ u)− εet ∂u

∂t

)− (1 + aε)n+ 〈ω̃t, ψε + aεω0〉. (1.5)

From (1.4), noticing 〈ω̃t, ω0〉 > 0 and using maximum principle, we see that
the maximum of et ∂u

∂t − ∂u
∂t − u− nt is non-increasing, so we have that

et ∂u

∂t
− ∂u

∂t
− u− nt 6 0.

5The constant C can be different at places with possibly some lower indices (as ε here)
indicating the dependence of it on other constants. At time when confusion is likely to occur,
we’ll use different C’s to clarify. In fact, here the upper bound of u can be uniform for all
time t ∈ [0, T ).
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Now we combine it with local existence for small time and the uniform upper
bound for u to conclude that ∂u

∂t < Cε.
From (1.5), noticing 〈ω̃t, ψε + aεω0〉 > 0, by maximum principle, we see that

minimum of (1 + aε)(∂u
∂t + u)− aεe

t ∂u
∂t + (1 + aε)nt is non-decreasing. It follows

(1 + aε)(
∂u

∂t
+ u)− aεe

t ∂u

∂t
+ (1 + aε)nt > mint=0

∂u

∂t
= −Cε,

which is (1 + aε − aεe
t)∂u

∂t > −Cε − (1 + aε)u− (1 + aε)nt > −C ′
ε.

As 1 + aε − aεe
t > 1 + aε − aεe

Tε > 0 for t ∈ [0, Tε], we can conclude that

∂u

∂t
> −Cε.

Until now we have got all the C0-estimates needed. The existence of solution
for (1.1) for t ∈ [0, Tε] follows from the standard argument using second and
higher order estimates. Hence we get the existence of solution in [0, Tε].

The desired existence of the solution for (0.2) is easy to see by considering
the relations between all the equations as (1.1) for different ε’s as follows. 6

Consider (1.1) for some δ > 0. Assume ψδ = ψε +
√−1∂∂̄f for some smooth

real function f over X. Since −Ric(Ωε) = ψε, we have −Ric(efΩε) = ψδ. Thus
can take Ωδ = efΩε. Now the new “ωt” is

ηt = ψδ + e−t(ω0 − ψδ) = ωt + (1− e−t)
√−1∂∂̄f.

The equation (1.1) for δ is

∂v

∂t
= log

(ηt +
√−1∂∂̄v)n

efΩε
− v, v(0, ·) = 0.

Define ũ = v + (1− e−t)f . Have ũ(0, ·) = v(0, ·) = 0 and

∂ũ

∂t
=
∂v

∂t
+ e−tf = log

(ηt +
√−1∂∂̄v)n

efΩε
− v + e−tf

= log
(ωt +

√−1∂∂̄ũ)n

Ωε
− v − f + e−tf = log

(ωt +
√−1∂∂̄ũ)n

Ωε
− ũ.

(1.6)

From uniqueness of the solution for (1.1), ũ is just the original solution u.
This actually gives the explicit relation between solutions of (1.1) associated

to different ε’s and would allow us to glue together all these solutions for (1.1)
associated to different ε’s to get a global solution of (0.2) until the time T . In
fact, (0.2) can be solved in the maximal time interval [0, T ) no matter which Ω
is chosen. Notice Ω is also involved in the definition of ωt there without affecting
the cohomological information and so the definition of T . We can summarize
the above discussion in the following. 7

6The equivalence between potential flow and metric flow gives a quicker proof.
7This result below gives an affirmative answer to one of the problems listed in [FIK].
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Proposition 1.1. Let X be a closed Kähler manifold. Then the Kähler-Ricci
flow (0.1) (or (0.2)) with initial metric ω0 has a unique smooth solution on
[0, T ), where T is the maximum of t such that (1−e−t)KX +e−t[ω0] is a Kähler
class. In particular, if KX is numerically effective, the solution exists for all
the time.

There is another observation which will be useful later. First recall the
following equation

∂

∂t
(
∂u

∂t
) = ∆ω̃t(

∂u

∂t
)− e−t〈ω̃t, ω0 − ω∞〉 − ∂u

∂t
.

Taking another t-derivative on both sides, we get:

∂

∂t
(
∂2u

∂t2
) = ∆ω̃t

(
∂2u

∂t2
) + e−t〈ω̃t, ω0 − ω∞〉 − (

∂ω̃t

∂t
,
∂ω̃t

∂t
)ω̃t

− ∂2u

∂t2
.

Sum up these two equation to get:

∂

∂t

( ∂
∂t

(
∂u

∂t
+ u)

)
6 ∆ω̃t

( ∂
∂t

(
∂u

∂t
+ u)

)− ∂

∂t
(
∂u

∂t
+ u)

which is just: ∂
∂t

(
et ∂

∂t (
∂u
∂t +u)

)
6 ∆ω̃t

(
et ∂

∂t (
∂u
∂t +u)

)
. Maximum principle then

gives
∂

∂t
(
∂u

∂t
+ u) 6 Ce−t

which tells the essential decrease of ∂u
∂t + u and also of the volume form of ω̃t.

2 Convergence Result

In this section we discuss the convergence of the Kähler metrics along the flow.
We shall still work on the level of potential and adopt the notations in the last
section. Assume that X is a projective manifold with KX being big. It’s known
from the previous section that the solution exists in the maximal time interval
[0, T ). Because the limiting class [ωT ] may not be positive in general, we can’t
expect that the limit is a smooth metric. Actually, the idea of proving the
convergence in such a situation was already used by H. Tsuji in [Ts1]. The idea
is to explore the bigness of KX to get local estimates for the flow.

Recall the equation (0.2):

∂u

∂t
= log

ω̃n
t

Ω
− u, u(0, ·) = 0.

We have shown in Section 1 by using maximum principle that u itself is uni-
formly bounded from above and

(et − 1)
∂u

∂t
6 u+ nt.
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It follows that ∂u
∂t is uniformly bounded from above by Cte−t for some uniform

constant (after some small time).
Using (1.2) and (1.3), we can get

∂

∂t
(
∂u

∂t
+ u− et−T ∂u

∂t
) = ∆ω̃t(

∂u

∂t
+ u− et−T ∂u

∂t
)− n+ 〈ω̃t, ωT 〉, (2.1)

where ωT = ω∞ + e−T (ω0 − ω∞) (T = ∞ is allowed). Since (0.2) implies

∂u

∂t
+ u = log

ω̃n
t

Ω
,

the above equation determines how the volume form changes along the flow.
Now we want to use the bigness of KX as Tsuji did in [Ts1]. The following

lemma can be found in [Ka1] and the proof is essentially contained in [Ka3].

Lemma 2.1. Let L be a divisor in a projective manifold X. If L is nef. and
big, then there is an effective divisor E and a number a > 0 such that L − εE
is Kähler for any ε ∈ (0, a).

The proof essentially makes use of the openness of the big cone for the
projective manifold X which clearly contains the positive cone and the fact
that L should be in the closure of positive cone. In fact one can choose E to be
big. Actually, if L is not nef., one can still use the openness of the cone for big
divisors to get a similar result, however, the constant ε may not be as close to
0 as one wants. This result will be applied later and is called Kodaira’s Lemma
as in [Ts2].

Lemma 2.2. Let L be a divisor in a projective manifold X. If L is big, then
there is an effective divisor E such that L − εE is Kähler for ε ∈ (a, b) where
0 6 a < b <∞.

In our situation, the cohomology [ωT ] may not be rational. However, one
can check that the arguments for proving the above lemmae still work, more
precisely, there is a divisor E and a Hermitian metric hE,ε such that ωT +
ε
√−1∂∂̄loghE,ε > 0 for ε ∈ (0, a). Let σ be a defining holomorphic section for
E. Then we have

ωT + ε
√−1∂∂̄log|σ|2 > 0,

where | · |ε denotes the norm induced by hE,ε
8. Notice that E = {σ = 0} and

the function log|σ|2 is only well-defined and smooth outside E ⊂ X.
We can reformulate (2.1) on X \ {σ = 0} as

∂

∂t

(
log(

ω̃n
t

|σ|2εΩ
)− et−T ∂u

∂t

)
(2.2)

= ∆ω̃t

(
log(

ω̃n
t

|σ|2εΩ
)− et−T ∂u

∂t

)− n+ 〈ω̃t, ωT + ε
√−1∂∂̄log|σ|2〉.

8For simplicity, if there is no possible confusion, we will drop the subscripts E and ε in
the norm later. The dependence will not affect the estimates below since we are going to
work with at most two of them simultaneously and the difference is just a smooth nowhere 0
function.
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For any t < T , log( ω̃n
t

|σ|2εΩ ) blows up to +∞ along {σ = 0}. Hence, the

minimum of log( ω̃n
t

|σ|2εΩ )− et−T ∂u
∂t is attained inside X\E. At such a minimum

point which might have time 0, we have

〈ω̃t, ωT + ε
√−1∂∂̄log|σ|2〉 6 Cε.

It follows that (ωT + ε
√−1∂∂̄log|σ|2)n ≤ Cεω̃

n
t . Hence, we have

log(
ω̃n

t

|σ|2εΩ
)− et−T ∂u

∂t
> log(

(ωT + ε
√−1∂∂̄log|σ|2)n

|σ|2εΩ
)− C > −Cε.

Here we have used that (ωT +ε
√−1∂∂̄log|σ|2)n

|σ|2εΩ is uniformly bounded from below
over X\E and et−T ∂u

∂t is bounded from above by C. Therefore, on X\E, we
have

log(
ω̃n

t

|σ|2εΩ
)− et−T ∂u

∂t
> −Cε.

This implies (1 − et−T )∂u
∂t + u > −Cε + ε log|σ|2. Since both u and ∂u

∂t are
bounded from above, we deduce from the above

u > −Cε + ε log|σ|2,

moreover, if T = ∞, then we also have ∂u
∂t > −Cε + ε log|σ|2.

In order to get a lower bound for ∂u
∂t when T <∞, we will apply Lemma 2.2

to KX = [ω∞]. It’s easy to see that considering the equation (1.3) and by the
same arguments using maximum principle as above, we can have a similar lower
bound for ∂u

∂t with a constant ε which may not be as close to 0 as we want. Also
for the choice of the divisor E, it’s more restrictive for [ω∞] than for [ωT ] when
T <∞, which is very clear from the geometry of the cones and the positions of
[ωT ] and KX = [ω∞].

Anyway, this ends our searching for C0-estimates, the lower bound of which
are locally uniform out of {σ = 0}.

Now we present a modified second order estimate following arguments in [Y]
and [Ts1]. For any ε ∈ (0, a) small enough, we set

ωt,ε = ω∞ + ε
√−1∂∂̄log|σ|2 + e−t(ω0 − ω∞).

Then for any t ∈ [0, T ], ωt,ε is a smooth Kähler metric, in particular, its cur-
vature is uniformly bounded by a constant which may depend on ε. Also we
have ω̃t = ωt,ε +

√−1∂∂̄(u− εlog|σ|2). Notice that the function u− ε log |σ|2 is
defined only outside E.

On X \ {σ = 0}, (0.2) can be rewritten as:

(ωt,ε +
√−1∂∂̄(u− εlog|σ|2))n = e

∂u
∂t +u+log

ω0
n

ωt,ε
n ωt,ε

n.

8



Using the bounds on ∂u
∂t and u and the curvature of ωt,ε, one can get as Tsuji

did in [Ts1] by using Yau’s computation in [Y] that 9

eCε(u−εlog|σ|2)(∆ω̃t
− ∂

∂t
)
(
e−Cε(u−εlog|σ|2)〈ωt,ε, ω̃t〉

)

> −Cε + (Cε
∂u

∂t
− Cε)〈ωt,ε, ω̃t〉+ Cε〈ωt,ε, ω̃t〉

n
n−1

> −Cε + (Cεlog|σ|2 − Cε)〈ωt,ε, ω̃t〉+ Cε〈ωt,ε, ω̃t〉
n

n−1 .

(2.3)

Unfortunately, the coefficients in the last inequality are not bounded, so one has
to take some extra care of using maximum principle.

The maximum of e−Cε(u−εlog|σ|2)〈ωt,ε, ω̃t〉 must be attained inside X \ {σ =
0}. At such a maximum point, we have

0 > −Cε + (Cεlog|σ|2 − Cε)〈ωt,ε, ω̃t〉+ Cε〈ωt,ε, ω̃t〉
n

n−1

= −Cε + Cε〈ωt,ε, ω̃t〉
(〈ωt,ε, ω̃t〉

1
n−1 + Cεlog|σ|2 − Cε

)
.

We can derive from this that 〈ωt,ε, ω̃t〉 ≤ (Cε−Cε log|σ|2)n−1 as |σ| is bounded.
It follows that at a maximum,

e−Cε(u−εlog|σ|2)〈ωt,ε, ω̃t〉 ≤ (Cε − Cεlog|σ|2)n−1e−Cε(u−εlog|σ|2).

Recall that for any δ ∈ (0, a), we can choose Cδ such that u > −Cδ+δ log|σ|2.
Choose δ = ε

2 , then we have

u− εlog|σ|2 > −C ′ε −
ε

2
log|σ|2.

Hence, at the maximum point considered above,

e−Cε(u−εlog|σ|2)〈ωt,ε, ω̃t〉 6 (Cε − Cεlog|σ|2)n−1|σ| εCε
2 ≤ C

′′
ε .

Then we get the second order estimate e−Cε(u−εlog|σ|2)〈ω0, ω̃t〉 6 C
′′
ε , that is,

〈ω0, ω̃t〉 6 C
′′
ε |σ|−2εCε . (2.4)

Combining this with the known volume estimate:

ω̃n
t > Cε|σ|2εω0

n, ∀ε ∈ (0, a),

we have a uniform bound on ω̃t (in terms of a fixed metric) in any given compact
subset of X \{σ = 0}. Hence, we have a locally uniform second order derivative
estimate of u. In general, when KX is not ample, the constant Cε may blow
up as ε tends to 0, so we may not get a uniform bound on second derivatives
of u on the whole manifold X. 10 The higher order derivative estimates for u

9Here a lot of constants Cε come up. Let’s emphasize again that they do not have to be
the same (and can’t be the same sometimes).

10See [Z] for more discussions about this.
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outside {σ = 0} follow from the standard theory on Monge-Ampere equations
or Calabi’s third order estimates as shown in [Y].

Now it’s routine to conclude that u(t, ·) converges in C∞-topology for any
compact subset out of {σ = 0} as t goes to T as following. First, by the
Ascoli-Arzela Theorem, any sequence u(ti, ·) (limi→∞ ti = T )has a convergent
subsequence in local C∞-topology in X\{σ = 0}. But u is essentially decreasing
since ∂u

∂t < Cte−t (for t > δ > 0) as shown in Section 1. Therefore, u(t, ·)
converges to a function uT in C0-norm along the Ricci flow as t tends to T 11.
Then the higher order derivative estimates of u imply that u converges to uT in
the C∞-topology locally outside {σ = 0} as t tends T 12. In particular, uT is
smooth outside {σ = 0}. Moreover, it follows from the flow equation

(ωT +
√−1∂∂̄uT )n = euT + ∂u

∂t |T Ω, on X \ {σ = 0}, (2.5)

where ∂u
∂t |T denotes the limit of ∂u

∂t . The positive limiting current ωT +
√−1∂∂̄uT

is actually a Kähler metric in X \ {σ = 0} by the above estimates for u.
If KX is also numerically effective, then T = ∞ and ∂u

∂t |T actually must
vanish 13. This implies that the limiting metric is actually Kähler- Einstein in
X \ {σ = 0}. 14

Remark 2.3. E may not be unique. We can choose different E’s to study
(0.2). However, the limit u(T, ·) is unique for this equation. This implies that
uT is smooth outside the intersection of all such E’s. Remember the E’s should
be for KX as we need the lower bound for ∂u

∂t . In the terminology of algebraic
geometry, such an intersection is called as the stable base locus of KX . When
T = ∞, it follows from the above that if this set is empty, then we actually have
a smooth Kähler metric as the limit, so KX is ample. So it can be taken as a
characterization for the failure of KX to be ample. In fact, the above discussion
is still valid for general holomorphic line bundles over a projective manifold as
shown later.

Now let us summarize the above discussion in the following.

Theorem 2.4. Suppose X is a projective manifold with big canonical bundle
KX and ω0 is a given Kähler metric. Let T be defined as in Proposition 1.1.
Then the Kähler-Ricci flow (0.1) has a unique solution with initial data ω0 on
[0, T ) which converges to a current as t → T satisfying: this limiting current
15 is a smooth Kähler metric outside the stable base locus set of KX and the
solution of (0.1) converges to this limiting metric in the local C∞-topology in this
open subset. Moreover, in a suitable sense, the flow can be extended to the time
T and we have the pointwise convergence of the flow on the level of potentials

11This would imply uT is plurisubharmonic with respect to ωT (see in [De] for example).
12Interpolation inequalities as in [GT] will be used.
13In fact, it is quite easy to get a degenerated exponential lower bound for ∂u

∂t
.

14The limiting metric is just the singular metric constructed in [S]. See [Z] for more detail
about different constructions.

15This current represents the cohomology class of KX .

10



16. If KX is also nef., then T = ∞ and the limiting current is Kähler-Einstein
in its regular part.

3 Uniqueness of Limit

In this section, assuming that KX is nef. and big, we will prove that (0.1) has a
unique Kähler-Einstein as its limit at infinity, that is, the limit is independent
of the choice of the initial metric 17.

If Ω2 = efΩ1 is another volume form, we have u2 = u1 − (1 − e−t)f where
u1 and u2 are the solutions for (0.2) corresponding to Ω1 and Ω2, respectively.
Then u2,∞ = u1,∞− f and consequently, the limiting metrics for Ω1 and Ω2 are
the same.

Now we fix Ω and check the dependence on different initial Kähler metrics.
Recall that for any ε ∈ (0, a), we have

−Cε + εlog|σ|2 < u < C, − Cε + εlog|σ|2 < ∂u

∂t
< C.

It follows that eu+ ∂u
∂t is bounded from above. Moreover, ∂u

∂t converges to zero
outside {σ = 0} as t tends to ∞. Hence, we have

∫

X

eu∞Ω = lim
t→∞

∫

X

eu+ ∂u
∂t Ω = lim

t→∞

∫

X

ω̃n
t = lim

t→∞

∫

X

ωt
n =

∫

X

ωn
∞. (3.1)

To prove the uniqueness, suppose that ω0 and ω are two initial Kähler met-
rics on X. Without loss of generality, we may assume that ω > ω0

18. The
correspondent equations for potentials are

∂u
∂t = log (ωt+

√−1∂∂̄u)n

Ω − u, u(0, ·) = 0,
∂v
∂t = log (ωt+e−t(ω−ω0)+

√−1∂∂̄v)n

Ω − v, v(0, ·) = 0,

where ωt = −Ric(Ω) + e−t(ω0 + Ric(Ω)). Taking their difference, we get

∂(u− v)
∂t

= log
(ωt +

√−1∂∂̄u)n

(ωt +
√−1∂∂̄u+ e−t(ω − ω0) +

√−1∂∂̄(v − u))n
− (u− v),

and (u− v)(0, ·) = 0.
At a maximum point of (u− v), we see u− v 6 0. Hence we have u∞ 6 v∞

over X. However, since
∫

X
eu∞Ω =

∫
X
ev∞Ω, we can conclude u∞ = v∞.

This proves the uniqueness of limiting solutions for (0.2) with a fixed Ω but
possibly different initial metrics. Then (4) in Theorem 0.1 follows.

16Though the limiting current may be singular along the stable base locus of KX , its Lelong
number vanishes everywhere from our estimates and the potential function for the limiting
current lies in any Lp-spaces for p < ∞ at this moment.

17When KX is not nef., generally speaking, the limit may depend on the initial metric even
if initial metrics stay in the same cohomology class.

18The comparison between any two metrics ω1 and ω2 can be seen by considering ω1 + ω2.
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4 Bounding Limiting Potentials

In this section, we’ll finish proving Theorem 0.1. What is left to show is that
u∞ is bounded. The proof is based on an extension of L∞-estimate in [Koj] for
complex Monge-Ampere equations in [Z]. We refer the readers to [Z] for detail.

Theorem 4.1. Let F : X → CPN be a holomorphic map such that its image
is a subvariety of the same dimension. Let ω be any Kähler form on CPN and
u is a weak solution in PSHF∗ω(X) ∩ L∞(X) of the equation

(F ∗ω +
√−1∂∂̄u)n = fΩ, (4.1)

where Ω is a fixed smooth volume form over X and f is a non-negative function
in Lp for some p > 1. We normalize u such that supX u = 0, then there is
a constant Cp such that ‖u‖L∞ ≤ Cp‖f‖n

Lp . Here Cp may depend on F , ω
and p. Moreover, there would always be such a bounded solution for the above
equation. And if F is locally blowing down with the image F (X) having an
orbifold structure, then any bounded solution is actually the unique continuous
solution.

If F is an embedding, this estimate was proved in [Koj]. The detailed proof
of this theorem will appear in [Z]. We only explain why it 19 implies (3) of
Theorem 0.1. Using a result in [Ka2], a nef. and big canonical divisor KX is
generated by global holomorphic sections. So we can have a holomorphic map
from X to CPN with the (singular in general) image having the same dimension
as that of X. Then we can take ω∞ to be F ∗ωF S , where ωF S is the Fubini-Study
metric CPn.

We can rewrite (0.2) as following:

(ωt +
√−1∂∂̄u)n = e

∂u
∂t +uΩ.

From the discussion before, we see the right-handed side has a uniform Lp-bound
for all t. The results in [Koj] gives a L∞-bound on u for each time t. However,
this bound may depend on t.

Recall ωt = ω∞ + e−t(ω0 − ω∞) which represents a Kähler class for each
finite t. For simplicity, assume ω∞ > 0 and ω0 − ω∞ > 0, where the first one is
possible by the semi-ampleness of KX . In order to have the limit u∞ bounded,
we only need to show that there is a uniform L∞ -bound on u for all t . For
this purpose, we need an extension of the result in [Koj] since the convexity of
ωt is not uniform in t. This will be done in [Z] by exploring properties of the
map from X to CPN . So we can have a solution of

(ω∞ +
√−1∂∂̄u)n = euΩ

in PSHω∞(X) ∩ L∞(X) 20 from the flow method.
19More precisely, it is the proof of this theorem.
20We actually have the uniqueness of such a solution for this equation. See [Z] for related

results.
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Likewise, we can also deal with the limit for the finite time blow-up case (i.e.,
T < ∞). In order to do similar arguments, we only need [ωT ] = η · A where
A is a semi-ample class and C > 0. Since [ωT ] = (1 − e−T )(KX + e−T

1−e−T [ω0]),

whenever KX + e−T

1−e−T [ω0] is rational, Kawamata’s result in [Ka2] can give us
the semi-ampleness.

In the case of complex dimension 2, clearly we should have

(
KX +

e−T

1− e−T
[ω0]

) · C = 0

where C is a complex curve. If [ω0] is a rational Kähler class, then the coefficient
e−T

1−e−T is rational and so is the whole class. Hence we have the boundedness of
the limit as t→ T <∞. For general dimension, we need proper assumption to
carry through the arguments above.

In fact, under the assumption above, we can have the boundedness of the
solution more directly. Recall the equation:

∂

∂t
(
∂u

∂t
+ u− et−T ∂u

∂t
) = ∆ω̃t(

∂u

∂t
+ u− et−T ∂u

∂t
)− n+ 〈ω̃t, ωT 〉.

The assumption above tells ωT +
√−1∂∂̄f > 0. Thus we can easily get:

∂

∂t

(∂u
∂t

+ u− et−T ∂u

∂t
+ nt− f

)
> ∆ω̃t

(∂u
∂t

+ u− et−T ∂u

∂t
+ nt− f

)
.

Then maximum principle gives ∂u
∂t +u−et−T ∂u

∂t +nt−f > −C. Since t ∈ [0, T )
where T <∞, this gives u > (et−T − 1)∂u

∂t − Ct− C > −C.
There is another interesting observation from the boundedness of limiting

potential for the case T = ∞. We have the essential decrease of volume form
along the flow. Now in this case we know the limiting volume is bounded away
from 0, so the volume form along the flow is uniformly bounded (also is ∂u

∂t ).
The situation is different when T <∞.

5 More in Complex Dimension Two

In this section, assume that X is a minimal complex surface of general type.
Then KX is nef. and big. It is well-known that a basis of sections of mKX

for some m > 0 gives rise to a holomorphic map P : X → CPN . The map
P will contract finitely many rational curves to points (see for example in the
appendix of [Za] by Mumford) and the image X = P (X) is a Kähler orbifold
(see for example in [Du]). Setmω∞ = P ?ωF S , where ωF S is the standard Fubini-
Study metric on CPN . From discussions in previous sections, the limiting metric
of the Kähler-Ricci flow we got before is smooth outside those rational curves
contracted by P . In the following, we’ll show that this limiting metric coincides
with the pull-back of the unique Kähler-Einstein orbifold metric on X with KX

as its Kähler class.
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Let ω = 1
mωF S |X . Since it represents KX , there is a volume form Ω on X

such that Ric(Ω) = −ω. Moreover, this form pulls back to a smooth volume form
Ω on X such that Ric(Ω) = −ω∞. Write the Kähler-Einstein orbifold metric as
ω+

√−1∂∂̄v, then v is a smooth function in the sense of orbifolds, particularly,
v is continuous on X. Furthermore, on X, we have the Monge-Ampere equation

(ω +
√−1∂∂̄v)2 = evΩ.

This equation pulls back to an equation on X:

(ω∞ +
√−1∂∂̄u)2 = euΩ,

where u = P ?v clearly belongs to PSHω∞(X) ∩ C0(X).
By the uniqueness of such a solution 21, we know this (singular) metric

ω∞ +
√−1∂∂̄u has to be the same one as the limiting metric coming from the

Kähler-Ricci flow. So we just prove that the Kähler-Ricci flow on X has a global
solution starting at any initial Kähler metric which converges to the pull-back
of the unique Kähler-Einstein orbifold metric on its canonical model.

Remark 5.1. Of course the consideration above also works for higher dimension
with similar picture. But it’s of course much more restrictive there.

6 A Final Remark

In this section, we discuss the extension of Theorem 0.1 to a generalized flow
introduced by Tsuji in [Ts2]. Consider the following evolution equation over a
closed Kähler manifold X:

∂ω̃t

∂t
= −Ric(ω̃t)− ω̃t + S, ω̃0 = ω0, (6.1)

where S is a fixed smooth real closed (1, 1)-form.
The cohomology class [ω̃t] varies according to the following formula:

et[ω̃t]− [ω0] = −(1− et)([S]− [Ric(Ω)]).

As before, we set ωt = (S−Ric(Ω))− e−t(S−Ric(Ω)−ω0). Then we can write
ω̃t = ωt +

√−1∂∂̄u. The same arguments as before reduce (6.1) to the following
scalar flow:

∂u

∂t
= log

ω̃n
t

Ω
− u, u(0, ·) = 0. (6.2)

The limiting equation (as t→∞) is

(L+
√−1∂∂̄u∞)n = eu∞Ω, (6.3)

21Indeed we know the solution from flow is also continuous here and then comparison
principle will tell us that these two solutions are the same. But in fact, we don’t even need
the boundedness of the solution from flow to conclude this. See [Z] for more detail.
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where L = S − Ric(Ω). Now we just observe that the arguments in previous
sections can be applied to this equation almost directly. Let us briefly describe
main outputs. Now [L] takes the place of KX before. First the arguments in
Sections 1, 2 and 3 are not affected. We can conclude all the results in the
following proposition.

Proposition 6.1. Let X be a closed Kähler manifold, then for any initial
Kähler metric ω0, the generalized flow (6.2) exists uniquely as long as [ωt] is a
Kähler class (t < T 6 ∞ where T is defined as before). In particular, if [L] is
numerically effective, the solution exists for all the time. Furthermore, assume
that X is projective and [L] is big, then as t → T , the flow converges locally
outside the stable base locus of [L] to a smooth metric in C∞-topology. This
metric extends to a positive (1, 1)-current over X which represents the coho-
mology class of [ωT ]. If [L] is also nef., then the limiting metric satisfies the
limiting equation (6.3) in the regular part.

Remark 6.2. It was proved in [N] that if [L] is nef. and big, then the stable
base locus is the union of the varieties V satisfying [V ] · [L]dimCV = 0. Notice
that the later set is the classic characteristic set for the ampleness of [L] (see
[Kl]). As mentioned before, the flow can provide a direct proof that the stable
base locus is a characteristic set for the ampleness of [L].

There is a big issue for the discussion in Section 4 from our application
of Kawamata’s result. Though the canonical class KX (or related ones as in
Section 4) would be semi-ample if it’s nef. and big, this is not the case for a
general line bundle [L] above. The result there makes heavy use of the map from
X to CPN which comes from the semi-ampleness of the class. So for a general
nef. and big class [L] 22, we have to assume for now that it is also semi-ample
in order to get the result in Section 4.

Furthermore, for the case of T <∞, the problem would become more serious
as the class [ωT ] may not even be rational for a general chosen ω0. Even if we
consider the surface case and take [ω0] to be rational as discussed before, the
semi-ampleness is not shown in [Ka2].

Moreover, when T < ∞, the limit of ∂u
∂t is not 0 in the limiting equation.

So it is favorable to continue the flow (to infinity). In order to get through this
time T , one may expect to construct some weak solution for the equation to
continue the flow and prove some kind of convergence as t→∞ (cf. [T]).
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