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LICHTENBAUM–TATE DUALITY FOR VARIETIES OVER P-ADIC FIELDS

JOOST VAN HAMEL

ABSTRACT. S. Lichtenbaum has proved in [L1] that there is a nondegenerate pairing

Pic(C)×Br(C)→ Br(K) = Q/Z

between the Picard group and the Brauer group of a nonsingular projective curve C over a
p -adic field K (a finite extension of the p -adic numbers Qp ). On the level of divisors the
pairing is induced by the norm map Br(K′)→ Br(K) for finite extensions K′/K . The non-
degeneracy is proven by a reduction to Tate duality for commutative group schemes over
p -adic fields. This reduction is achieved by explicit cocycle calculations in Galois coho-
mology. The present paper introduces a new homology theory, pseudo-motivic homology,
which allows us to reconstruct the above duality as a purely formal combination of a gen-
eralised form of Tate duality over p -adic fields and a form of Poincaré duality for curves
over arbitrary fields due to P. Deligne. This gives a more conceptual proof of Lichtenbaum’s
result and an analogue in higher dimensions.

Introduction

Let ϕ : X → SpecK be a variety over a p-adic field, and consider the Yoneda pairings

Ext2−i(Rϕ∗Gm,Gm)×H i(X ,Gm)→ Br(K) = Q/Z.

We will see that these pairings gives a good generalisation of Lichtenbaum’s pairing between
the Picard group and the Brauer group of a curve. Here the Ext-groups should be computed
on the smooth site; see Section 1.2 for a definition and a motivation of this choice of topol-
ogy. These groups give interesting homology groups for varieties over an arbitrary field k .
For technical reasons we will require that the ground field k has characteristic zero and that
ϕ : X→ Speck is proper and smooth (see Section 2.3). The analogy to étale homology with
coefficients in Z/n prompts for the notation

1Hi(X ,Z) := Ext−i
ksm

(Rϕ∗Gm,Gm),

with the ‘1’ added in the notation in order to avoid confusion with motivic homology. In-
deed, these groups can be regarded as intermediates between étale homology with coeffi-
cients in Ẑ and motivic homology with coefficients in Z . For example, when k is alge-
braically closed, we have for i > 2 that

1Hi(X ,Z) = Hi(X , Ẑ),

whereas 1H0(X ,Z) is canonically isomorphic to (the k -points of) the total Albanese variety
of X (see Sections 1.1, 2.2, and 3.2). On the other hand, the motivic homology group
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H0(X ,Z) is the Chow group of zero-cycles. Therefore I will refer to the homology theory
defined above as pseudo-motivic homology. The following result shows that for duality over
a p-adic field these pseudo-motivic homology groups are just right.

Theorem 1. Let X be a smooth proper variety over a finite extension K of Qp . For every
r ∈ Z the Yoneda pairing

(1) 1Hr(X ,Z)×Hr+2(X ,Gm)→ Br(K) = Q/Z

is nondegenerate, inducing perfect pairings
1Hr(X ,Z) ×Hr+2(X ,Gm)̂→Q/Z for r =−2,−1,

1Hr(X ,Z)̂×Hr+2(X ,Gm) →Q/Z for r = 0, 1,

and

1Hr(X ,Z)×Hr+2(X ,Gm)→Q/Z for r ≥ 2.

Here a pairing between topological groups A×B→ Q/Z is called nondegenerate if the
induced homomorphisms from A to the Pontryagin dual of B and from B to the Pontryagin
dual of A are monomorphisms and perfect if these induced maps are isomorphisms. The
topology we choose implicitly on our groups is the discrete topology for torsion groups and
the profinite topology on all other groups. The notation Â denotes the completion of A
with respect to the profinite topology.

PROOF. For X geometrically irreducible, this is a special case of Theorem 4.3; removing
the irreducibility condition is a straightforward generalisation. �

The following result, due to P. Deligne, relates Theorem 1 to Lichtenbaum–Tate duality
for curves.

Theorem (Poincaré duality for curves). Let C be a smooth projective curve over a field of
characteristic zero. For any i ∈ Z we have a natural isomorphism

H i(C,Gm) ∼→ 1H1−i(C,Z).

PROOF. This follows from [SGA4, XVIII.2]. See Section 3.3. �

Hence we obtain a new, more conceptual proof of Lichtenbaum’s result.

Corollary (Lichtenbaum–Tate duality [L1]). Let C be a smooth projective curve over a
p-adic field K . For every i ∈ Z we have a nondegenerate pairing

H i(C,Gm)×H3−i(C,Gm)→Q/Z.

These pairings satisfy the usual symmetry rules for cup products, and they induce perfect
pairings

H0(C,Gm)̂×H3(C,Gm)→Q/Z,

H1(C,Gm)̂×H2(C,Gm)→Q/Z.

PROOF. The existence, nondegeneracy and perfectness of the pairings follows immediately
from the theorems above. The symmetry follows from the construction (see Theorem 3.7).
The implicit claim that the pairings given here coincide with Lichtenbaum’s pairings is
justified by Lemma 3.1. �
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Note that the proof of the duality for curves by combining Tate duality in Galois coho-
mology and Poincaré duality in sheaf cohomology is analogous to the canonical way of
obtaining a perfect duality

H i(X ,µ⊗ j
n )×H2d+2−i(X ,µ⊗d+1− j

n )→ Z/n

in the étale cohomology with torsion coefficients of a nonsingular proper variety X of di-
mension d over a p-adic field (cf. [Sa], compare [M2, Th. II.1.16]).

Application to Roquette’s problem

One of Lichtenbaum’s original motivations for establishing his duality theorem was to
get a better understanding of Roquette’s result that for an irreducible curve C over a p-adic
field K the order of the kernel of the natural map

(2) Br(K)→ Br(K(C))

is equal to the index I(X) of C , which is by definition the index of the image of the degree
map Pic(X)→ Z ([Ro, Th. 1], see also [L1, p. 120]). Theorem 1 allows us to give a dual
description to the kernel of the analogue of (2) for higher dimensional varieties.

Theorem 2. Let ϕ : X → SpecK be a smooth projective irreducible variety over a p-adic
field. The kernel of the canonical map

(3) Br(K)→ Br(K(X))

is a finite cyclic group dual to the cokernel of the degree map

ϕ∗ : 1H0(X ,Z)→ 1H0(SpecK,Z) = Z,

PROOF. The map (3) factorises via the cohomological Brauer group Br(X) := H2(X ,Gm) ,
which injects into Br(K(X)) . The projection formula (12) gives us a compatible diagram of
nondegenerate pairings

1H0(X ,Z)
ϕ∗

��

⊗ Br(X) // Q/Z

1H0(SpecK,Z) ⊗ Br(K)

ϕ∗
OO

// Q/Z

Both pairings are nondegenerate by Theorem 1. �

Of course this result is not quite as attractive as Roquette’s result for curves. It would
have been nicer to get the index I(X) of X (the index of the image of the degree map
CH0(X)→Z), rather than the index of the map 1H(X ,Z)→Z , which I will call the pseudo-
index PsI(X) of X . In general it can be expected that I(X) 6= PsI(X) (see [CTS], see also
below).

A third invariant, related to I(X) and PsI(X) is the period P(X) of X . When X is a
principal homogeneous space for an abelian variety A over a field K , this is the order of the
class of X in the group H1(K,A) . For arbitrary smooth and proper X over a field K , the
period of X is defined to be the period of the Albanese torsor Alb1(X) associated to zero-
cycles of degree 1, which is a a principal homogeneous space over the Albanese variety
Alb(X) . In other words, P(X) is the order of the cokernel of the degree map

Alb∗(X)(k)→ Z
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where Alb∗(X) is the total Albanese variety (see Section 1.1 for more details on the Al-
banese variety).

Lemma. Let X be a smooth projective irreducible variety over an arbitrary field. We have

P(X)|PsI(X)| I(X).

PROOF. The existence of a cycle map compatible with push-forward (see Section 3.1) im-
plies that PsI(X) divides I(X) . The results of Section 3.2 imply that we have a natural map
1H0(X ,Z)→ Alb∗(X)(k) , compatible with push-forward, so P(X) divides PsI(X) . �

Corollary. Let X be a principal homogeneous space for an abelian variety over a p-adic
field K . The natural map

Br(K)→ Br(K(X))

from the Brauer group of K to the Brauer group of the function field of X is injective if and
only if X is a trivial principal homogeneous space.

PROOF. Since X is isomorphic to its Albanese torsor Alb1(X) , we have that X is trivial
if and only if P(X) = 1. Hence, by Theorem 2 we want to show that PsI(X) = 1 if and
only if P(X) = 1. The ‘only if’ follows from the lemma, and the ‘if’ is obvious, since
when X is trivial, we have that X(K) 6= /0 , so PsI(X) = 1 by the covariant functoriality of
pseudo-motivic homology. �

Remarks.
(i) When X is a principal homogeneous space for an abelian variety A of dimension d

over an arbitrary field K we also have an upper bound on I(X) in terms of P(X) :

I(X)|P(X)2d ,

as we can see from the map

X ' Alb1(X)
×P(X)−−→ AlbP(X)(X)' A

which has degree P(X)2d .
(ii) For a smooth, proper variety X over a p-adic field K we actually have that P(X)

equals the order of the image of the map Pic0(X)→ Br(K) induced by the map Pic(X)→
Br(K) that appears in the Hochschild–Serre spectral sequence. In other words, P(X) is
equal to the order of the cokernel of the map from the group Pic0(X) to the K -points of
the Picard variety Pic0(X/K)(K) . This was already observed in [vH1, Rem. 5.4]. There I
have given a sketch of a proof that follows Lichtenbaum’s approach by using direct cocycle
calculations. Section 4.3 contains a proof in the present framework.

Zero-cycles and pseudo-motivic homology

A different, less technical way to generalise Lichtenbaum’s pairing to a higher dimen-
sional smooth proper variety X over a p-adic field K is by a pairing

(4) CH0(X)×Br(X)→ Br(K).

On the level of zero-cycles it is defined in exactly the same way as Lichtenbaum’s original
pairing (see for example [CTS]). It can be checked from the definitions that this pairing is
compatible with our pairing 1H0(X ,Z)×Br(X)→ Br(K) via the cycle map

(5) cl : CH0(X)→ 1H0(X ,Z)
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defined in Section 3.1. Generalised Lichtenbaum–Tate duality then implies that questions
about the left and the right kernel of the pairing (4) are equivalent to questions about injec-
tivity and surjectivity of the cycle map (5).

Since a p-adic field has infinite transcendence degree over Q , the kernel of the cycle
map (5) should in general contain a huge uniquely divisible subgroup, like it is the case
over the complex numbers (D. Mumford’s result, later extended by S. Bloch, see [Bl]).
Moreover, the examples of Parimala and Suresh in [PS] show that even for a conic bundle
over a curve the kernel of the cycle map can contain torsion. This is unlike the situation over
an algebraically closed field, where the kernel of the Albanese map is uniquely divisible by
A. Rojtman’s theorem (see [Ro]).

On the other hand, in [CTS] J.-L. Colliot-Thélène and S. Saito made the observation that
CH0(X) is orthogonal to the image of the Brauer group of a proper model X over the ring
of integers of K , which implies that the cycle map is not surjective if Br(X)→ Br(X) is
nonzero. Moreover, when X is a regular proper model of X over the integers of K , then the
right kernel of (4) is exactly the image of Br(X)→ Br(X) . In particular, the index I(X) of
X appears as the order of the kernel of the map Br(K)→Br(X)/Br(X) . See [CTS, Th. 3.1]
for the proof up to powers of p .

This suggests that a better approximation to CH0(X) would be given by pseudo-motivic
homology of a proper model ψ : X→ OK over the ring of integers SpecOK . Roughly
speaking, this homology should be defined as

1H∗(X/OK ,Z) := Ext−∗(Rψ∗Gm,Gm).

However, to get groups with good properties, one should deal with the problems in charac-
teristic p , even when X has good reduction (compare Section 2.3). Moreover, to prove any
kind of duality would be much harder, especially when X has bad reduction.

Pseudo-motivic homology over global fields

We have seen that pseudo-motivic homology allows us to reinterpret pairings between
zero-cycles and étale cohomology in terms of a cycles map. This makes pseudo-motivic ho-
mology a very convenient formalism to understand such pairings. A good example outside
the topic of the present paper is the problem to understand the so-called reciprocity obstruc-
tions to the local–global principle for zero-cycles and rational points of varieties over global
fields. In [vH2] pseudo-motivic homology and global duality have been used to reinterpret
and refine results by E. Frossard concerning the Brauer–Manin obstruction to the local–
global principle for zero cycles on Severi–Brauer fibrations over curves over number fields.
In [vH3] pseudo-motivic homology and global duality have been used to obtain results on
the reciprocity obstruction to the Hasse principle for compactifications of torsors under tori
over generalised global fields (such as function fields of curves over p-adic fields).

1. Preliminaries

In this section we will fix some notation and terminology and we will briefly consider the
cohomology of sheaves on the smooth site over a scheme. The notation and terminology
in this paper concerning derived categories is all standard, except maybe the choice not to
make a distinction in terminology or notation between cohomology and ‘hypercohomology’
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(the classical term for the result of applying a higher derived functor to a complex, rather
than a single object). A sheaf will be a sheaf of abelian groups, unless mentioned otherwise.

A variety over a field k will be a separated geometrically reduced (but not necessarily
irreducible) scheme over k , and it will be of finite type unless mentioned otherwise (the
group varieties we encounter will in general only be locally of finite type). When there is
no danger of confusion, we will denote the scheme Speck by k . The base change of a
variety X over k to an extension field k′ will be denoted by Xk′ , and the base change to the
separable closure k̄ of k will be denoted by X . A curve over k will be a variety over k of
pure dimension 1.

1.1. Picard and Albanese variety

We will start by recalling some well-known results; the main reason for repeating them
is to fix the notation and terminology, since there does not seem to be a well-established
standard.

For a proper variety ϕ : X → k over a field k , the higher direct image sheaf R1ϕ∗Gm on
the fpqc-site over k is represented by a group scheme locally of finite type over k (see [Mur,
II.15]), hence by a group variety locally of finite type if k is of characteristic zero. In that
case we will denote the group variety representing R1ϕ∗Gm by Pic(X/k) and call it the total
Picard variety of X . In general the Picard group Pic(X) = H1(X ,Gm) (= H1

fpqc(X ,Gm))
does not coincide with the group of k -points of Pic(X/k) : we have the well-known exact
sequence

(6) 0→ Pic(X)→ Pic(X/k)(k)→ Br(k)→ Br(X),

where Br(X) denotes the cohomological Brauer group of X .
From now on we will assume that X is smooth and proper over a field k of characteristic

zero. Then the connected component of Pic(X/k) containing zero is an abelian variety over
k which we denote by Pic0(X/k) and which we call the Picard variety of X . We have an
exact sequence

0→ Pic0(X/k)→ Pic(X/k)→ NS(X/k)→ 0,

where NS(X/k) is the finitely generated group variety corresponding to the Néron–Severi
group of X , equipped with its natural Galois action. We denote by Pic0(X) the inverse
image of Pic0(X/k) under the canonical injection Pic(X) ↪→ Pic(X/k)(k) and we put

NS(X) := Pic(X)/Pic0(X).

As is the case for Pic, we have that NS(X) 6= NS(X/k)(k) in general.
In order to define the (total) Albanese variety, we consider the fpqc-sheaf ZX on k asso-

ciated to the presheaf that sends a scheme U to the free abelian group generated by the set
X(U) of maps from U to X . Still assuming X to be smooth and proper over a field k of
characteristic zero, we have that the sheaf ZX admits a homomorphism

α : ZX → Alb∗(X)

into a sheaf represented by a group variety locally of finite type over k of which the con-
nected component Alb(X) containing zero is an abelian variety. The map α is the universal
homomorphism of ZX to sheaves represented by group varieties of which the connected
component containing zero is a (semi-)abelian variety (see for example [Ra, §1]). We will
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call Alb∗(X) the total Albanese variety of X . The abelian variety Alb(X) is the (classi-
cal) Albanese variety of X . When X is geometrically irreducible, we have a short exact
sequence

(7) 0→ Alb(X)→ Alb∗(X)→ Z→ 0,

where the map to Z corresponds, via α , to the degree map ZX → Z . The connected
component of Alb∗(X) mapping to n ∈ Z will be denoted by Albn(X) . In particular,
Alb0(X) = Alb(X) , and α induces a morphism from X to Alb1(X) the Albanese torsor
of X , which is a principal homogeneous space over Alb(X) . Of course, any k -valued point
x ∈ X(k) induces, by subtraction, an isomorphism Alb1(X)→ Alb0(X) of principal homo-
geneous spaces over Alb(X) , hence a morphism αx : X → Alb(X) . This is the classical
Albanese map for the pair (X ,x) , which is universal for maps of X into abelian varieties
that send x to zero. It is well-known that the Albanese variety and the Picard variety are
each other’s duals as abelian varieties. It is also an easy consequence of Theorem 3.6 below.
Remark 1.1. The terms ‘Picard group’, ‘Picard variety’ and ‘Albanese variety’ are tradi-
tional, and so is the notation Pic(X) for the Picard group and Alb(X) for the Albanese
variety. The notation Pic(X/k) and Alb1(X) is a variation on notation introduced by
Grothendieck in [Gr1]. What I call here the ‘total Picard variety’ is often called the Pi-
card scheme. By analogy, the term ‘Albanese scheme’ is used in [Ra] for what I call the
‘total Albanese variety’. Indeed, when a variety is defined to be irreducible and/or of finite
type, a distinguishing feature of the ‘Picard scheme’ and the ‘Albanese scheme’ is that they
are not varieties. However, when varieties are not required to be irreducible, and when group
varieties are allowed to be only locally of finite type, like in the present paper, this termi-
nology does not make sense. Therefore, the adjective ‘total’ seems a better way to make the
distinction.

1.2. Smooth cohomology

For a scheme X the site Xsm has as underlying category the category of smooth schemes
locally of finite type over X . The coverings are the smooth surjective morphisms. For us it
will be more useful than more popular sites, like the (small) étale site Xét or the (big) flat
site Xfl , for which the underlying category consists of schemes that are étale and of finite
type over X (resp. locally of finite type over X ) and the coverings are the surjective étale
(resp. flat) morphisms. The reason is that, as we will see below, the underlying category is
big enough to give reasonable Hom- and Ext-groups between smooth group schemes, but
on the other hand small enough to compute the higher direct image sheaves Rϕ∗Gm we are
interested in. The properties we use do not depend so much on the topology chosen. For
example, everything in this paper would remain valid if we would replace every smooth site
Xsm by the ‘smooth-étale’ site XSmEt , where the underlying category is still the category of
smooth schemes locally of finite type over X , but the coverings are now the étale surjective
morphisms.

Comparison of topologies

The cohomology of a sheaf G represented by a smooth commutative group scheme over
X is not very sensitive to the choice of sites: we have equalities

(8) H i(Xfl,G ) = H i(Xsm,G ) = H i(Xét,G )
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for any i . This follows from the vanishing of higher direct images of the sheaf G for the
mappings between the various topologies (see [Gr2, III, Th. 11.7], or [M1, Th. III.3.9]).
Formula (8) also holds when G is a direct limit of sheaves represented by smooth group
schemes, or when G is a complex of sheaves for which all cohomology sheaves H ∗(G )
are of the above form.

In the above situation we will often omit the reference to the topology and write H i(X ,G )
for any of the above groups. We will not make any distinction in notation between commuta-
tive group schemes and the sheaves they represent. Also, we will freely use the equivalence
of categories between étale sheaves on k and Galois modules. With these conventions, we
have for example

H i(ksm,Gm) = H i(két,Gm) = H1(k,Gm) = H i(k, k̄∗) = H i(Gal(k̄/k), k̄∗).

With appropriate base change theorems we can also compare derived direct images. We
will only use the first part of the following lemma. Part (ii) is included to show that for our
purposes the only problem with the flat site is that we do not know whether the higher direct
images Rqϕ∗Gm are torsion for q > 1 (see Section 2.2).

Lemma 1.2. Let ϕ : X → S be a morphism of finite type between schemes.

(i) Let F be an n-torsion sheaf on Xét , where n is invertible on S. Let αX : Xsm→ Xét

and αS : Ssm→ Sét be the canonical morphisms of sites. Then the natural morphism

α
∗
SRϕ∗F → Rϕ∗α

∗
XF

is a quasi-isomorphism.
(ii) For α′X : Xfl → Xét and α′S : Sfl → Sét we also have an isomorphism α′∗SRϕ∗F →

Rϕ∗α
′∗
XF if either:
(a) ϕ is proper and F is a torsion sheaf on Xét , or
(b) S = Speck and F is a constructible n-torsion sheaf on Xét for n prime to the

characteristic of k ,

PROOF. (i) This follows from the smooth base change theorem (see [SGA4, Cor. XVI.1.2]
or [M1, Th. VI.4.1]) combined with the comparison between the smooth topology and the
étale topology (8).

(ii) This follows from the proper base change theorem (see [SGA4, Th. XII.5.1] or [M1,
Cor. VI.2.3]) in case (a), resp. Deligne’s base change theorem [SGA4.5, Th. finitude, 1.9] in
case (b), combined with the comparison between the flat topology and the étale topology (8).

�

Comparison of Hom- and Ext- groups

For our purposes here, the difference between the étale site and the smooth site lies in the
internal and external Hom- and Ext-groups between sheaves represented by group schemes
that are not locally constant. The étale site turns out to be too small to give good results;
consider for example Homkét(Gm,Gm) = Hom(k̄∗, k̄∗) , which is not Z as it should be.
Thanks to its bigger underlying category, the smooth site remembers the scheme structure
of a smooth group scheme when we pass to the sheaf that it represents. The analogue is well-
known for the (big) flat site (see the references in the proof of Corollary 1.4 below), so here
we only need to prove the following comparison result for internal derived homomorphisms.
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Lemma 1.3. Let G1 , G2 be smooth group schemes locally of finite type over a scheme X .
Let α : Xfl → Xsm be the canonical morphism of sites. Then we have a canonical isomor-
phism

Rα∗RHomXfl(G1,G2) = RHomXsm(G1,G2).

PROOF. We have that α∗ is exact (on the level of underlying categories α is a full em-
bedding), so its right adjoint α∗ sends injectives to injectives, and adjunction gives us an
isomorphism

Rα∗RHomXfl(α
∗G1,G2) = RHomXsm(G1,Rα∗G2).

Now α∗G1 is represented by G1 on Xfl , since G1 is a smooth group scheme. The complex
Rα∗G2 is quasi-isomorphic to the sheaf represented by G2 , since the higher direct images of
G2 under α vanish, as we saw above. �

Corollary 1.4. For M a finitely generated group scheme, T a torus, and A an abelian
variety over a field k of characteristic zero we have

RHomksm(M,Gm) = HomG/k(M,Gm),

RHomksm(T,Gm) = HomG/k(T,Gm),

RHomksm(A,Gm) = Ext1
G/k(A,Gm)[−1] = At [−1],

where HomG/k and Ext1
G/k are the internal Hom and Ext in the category G/k of commu-

tative group schemes over k and At is the dual abelian variety of A.

Recall that the notation [i] is used to indicate a shift by i in the indexing of a complex.
In particular, we have in the above corollary that At [−1] denotes the complex consisting of
the single object At in degree 1.

PROOF. By Lemma 1.3 this follows from [O, Th. 17.4, Th. 18.1], [Br2, §§7, 8, 10], and the
vanishing of the higher direct images under α : kfl→ ksm of sheaves represented by smooth
group schemes. �

1.3. Motivic homology

Apart from inspiring some terminology and notation, motivic (co)homology does not ap-
pear in the present paper. My grasp of that material would probably not have been sufficient
to keep me out of trouble, and the results I wanted to prove here could all be obtained by
classical techniques. For further applications of pseudo-motivic homology it might be de-
sirable to extend the cycle map of Section 3.1 to a map Hi(X ,Z)→ 1Hi(X ,Z) for all i , and
also to a similar map from étale motivic homology. B. Kahn kindly explained to me that in
the Suslin–Voevodsky framework this should be a more or less formal exercise, but I will
not do it here.

2. Pseudo-motivic homology

Throughout this section, ϕ : X → k will be a smooth proper scheme over a field k of
characteristic zero. We will establish the basic properties of the pseudo-motivic homology
groups

1H∗(X ,Z) = Ext−∗ksm
(Rϕ∗Gm,Gm)

and do some calculations.
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Observe that the definition of the pseudo-motivic homology groups 1H∗(X ,Z) is com-
pletely analogous to the definitions à la Verdier of homology of locally compact spaces and
of étale homology with finite coefficients:

(9) H∗(X ,Z/n) := Ext−∗két,Z/n(Rϕ∗Z/n,Z/n) = Ext−∗két,Z/n(Rϕ∗µn,µn) = Ext−∗két
(Rϕ∗µn,Gm)

(see for example [La], and recall that X is proper over k ). See Section 2.3 for further
remarks on the definition and notation.

2.1. Basic properties

Kummer sequence

Applying the right derived functors of Homksm(Rϕ∗−,Gm) to the Kummer sequence

0→ µn→Gm→Gm→ 0

gives a long exact sequence

(10) · · · → 1Hi(X ,Z) ×n−−→ 1Hi(X ,Z)→ Hi(X ,Z/n)→ ···

All basic constructions that follow below also exist for coefficients modulo n , and they are
compatible with the Kummer exact sequences.

Functoriality

For a map f : Y → X of proper smooth schemes over k the adjunction morphism Gm→
R f∗Gm induces the push-forward homomorphism f∗ : 1H∗(Y,Z)→ 1H∗(X ,Z). If π : Y →
X is finite étale, then the norm map π∗Gm → Gm (cf. [M1, Lemma V.1.12]) induces the
étale pull-back π∗ : 1H∗(X ,Z)→ 1H∗(Y,Z). If π is of constant degree d , then π∗ ◦ π∗ is
multiplication by d . If Y is Galois over X with Galois group G , then then π∗ ◦π∗ sends a
class β to the class ∑g∈G g ·β .

Note that if k′/k is a finite extension and we have a base change diagram

Xk′
π

//

ϕ′

��

Xk

ϕ

��

Speck′
π

// Speck

then the norm map induces an adjunction formula

Ext∗k′sm
(Rϕ

′
∗Gm,Gm) = Ext∗ksm

(R(π◦ϕ
′)∗Gm,Gm)

(see [M1, Lemma V.1.12]). Therefore, the group 1H∗(Xk′ ,Z) does not depend on the ques-
tion whether we consider Xk′ as variety over k or over k′ . In particular, we have a push-
forward map π∗ and a pull-back map π∗ between the homology of Xk and Xk′ .

Product with cohomology

The pairing (1) is a special case of the Yoneda pairing

(11)
1Hi(X ,Z) × H j(X ,Gm) → H j−i(k,Gm)

γ × ω 7→ γ ·ω
which is defined for arbitrary i, j via the canonical map

Ext−i
ksm

(Rϕ∗Gm,Gm) = Ext0ksm
(Rϕ∗Gm,Gm[−i])→ Hom(H j(k,Rϕ∗Gm),H j−i(k,Gm)).
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From the definitions it is easy to check that for a morphism f : Y→X we have the projection
formula

(12) f∗γ ·ω = γ · f ∗ω.

Homology of a point

For any finite field extension k′ of k , we have a canonical isomorphism

(13) 1Hi(Speck′,Z) = H−i(k′,Z).

Under this isomorphism the push-forward morphism

π∗ : 1Hi(Speck′,Z)→ 1Hi(Speck,Z)

corresponds to the norm map (i.e., the corestriction map in Galois cohomology). Moreover,
the Yoneda product defined above corresponds for X = Speck′ to the cup product

H−i(k′,Z)×H j(k′,Gm)→ H j−i(k′,Gm)

followed by the norm map

H j−i(k′,Gm)→ H j−i(k,Gm).

Remark 2.1. The above connection to Galois cohomology shows that the pseudo-motivic
homology of Speck is in general not equal to the Galois homology group Hi(Gal(k̄/k),Z) ,
so we will avoid the notation 1Hi(k,Z) , which might lead to misunderstandings.

2.2. Calculations

In this section ϕ : X → k will be a proper smooth geometrically irreducible variety of
dimension d over a field of characteristic zero. The condition of geometric irreducibility is
merely for ease of exposition.

A filtration on the derived direct image of Gm

In order to compute the pseudo-motivic homology groups, we will first define a con-
venient filtration on Rϕ∗Gm . Since we work in a derived category, where the notion of
‘subcomplex’ does not make sense, this filtration will simply be a sequence of morphisms

0 = F−1→F0→ ··· →F2d+1 = F2d+2 = · · ·= F∞ = Rϕ∗Gm.

For every i ≥ 0 we define the i th graded piece Gi to be the mapping cone of the map
Fi−1→Fi , giving a triangle

(14) Fi−1→Fi→ Gi→Fi[1].

Our filtration will have the property that each graded piece consists of a nice sheaf concen-
trated in a single degree. Here a nice sheaf is either a torsion sheaf, or a locally constant
finitely generated sheaf, or a sheaf represented by a connected group scheme. We con-
struct it by taking the canonical filtration F can

• = τ≤iRϕ∗Gm , and put a further filtration on
the graded piece of degree one, R1ϕ∗Gm = Pic(X/k) , which is an extension of the finitely
generated NS(X/k) by the abelian variety Pic0(X/k) . To be precise, we take

F0 := τ≤0Rϕ∗G = ϕ∗Gm = Gm,
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for F1 we take the mapping cone of the canonical map τ≤1Rϕ∗Gm→ NS(X/k) , with the
degree shifted by one, so that we have a triangle

F1→ τ≤1Rϕ∗Gm→ NS(X/k)→F1[1],

and for i≥ 2 we put
Fi := τ≤i−1Rϕ∗Gm.

Using the standard notation of G [n] for a complex that consists of a sheaf concentrated
in degree −n , we get

(15) Gi =


Gm if i = 0,

Pic0(X/k)[−1] if i = 1,

NS(X/k)[−1] if i = 2,

Ri−1ϕ∗Gm[1− i] if i≥ 3.

The sheaves Rqϕ∗Gm are torsion for q ≥ 2, since Hq(X ×U,Gm) is torsion for q ≥ 2 and
U smooth over over k by [Gr2, II, Prop. 1,4]. In other words, we have for i≥ 3 that

Gi = lim−→
n

(nGi)

where nGi is the complex consisting of the n-torsion of the sheaf Ri−1ϕ∗Gm in degree
i−1. It now follows from the Kummer sequence and Lemma 1.2 that the sheaf Rqϕ∗Gm

is isomorphic to the locally constant sheaf associated to the Galois module Hq(X ,Gm) for
q≥ 2 and in fact to Hq(X ,Q/Z(1)) for q > 2, where Q/Z(1) = lim−→n

µn . In other words,

Gi =

{
Br(X)[−2] if i = 3,

H i−1(X ,Q/Z(1))[i−1] if i≥ 4.

In particular, we have by [SGA4, Exp. X, Cor. 4.3] (see also [M1, Th. VI.1.1]) that Gi = 0
for i > 2d + 1, hence that F2d+1 = F∞ , as we claimed in the beginning. Below, we will
also use the fact that by [SGA4.5, Th. finitude] (see also [M1, Th. VI.2.1]) we have that nG i
is finite for any i > 2 and any n ∈ N .
Remark 2.2. I do not know whether Rqϕ∗Gm is torsion for q ≥ 2 when taken on sites for
which the underlying category contains singular schemes, like the flat site.

The dual cofiltration

For any complex C of sheaves on ksm we define the Cartier dual of C to be the complex

C D := RHomksm(C ,Gm).

In particular, 1Hi(X ,Z) = H−1(ksm,(Rϕ∗Gm)D) . Dualising the ascending filtration F• on
Rϕ∗Gm we get a descending cofiltration

(Rϕ∗Gm)D = F D
∞ = · · ·= F D

2d+2 = F D
2d+1→F D

2d → ··· →F D
0 →F−1 = · · ·= 0,

and for every i ∈ Z we have a triangle

(16) G D
i →F D

i →F D
i−1→ G D

i [1].

In order give explicit descriptions of the G D
i we will first consider the case i ≥ 3 in

greater detail. Since the Gi are torsion for i≥ 3, we have that

G D
i = RHomksm(lim−→

n
(nGi),Gm) = R lim←−

n
RHomksm(nGi,Gm).
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For i ≥ 4 the surjections H i−1(X ,µn)→ nGi[i− 1] and the isomorphisms Hi−1(X ,Z/n) =
RHom(H i−1(X ,µn),Gm) induce an isomorphism

R lim←−
n

RHomksm(nGi,Gm) = R lim←−
n

Hi−1(X ,Z/n)[i−1].

By [J, Th. 2.2] we have that

Hs(k,R lim←−
n

Ht(X ,Z/n)) = Hs
cont(k,Ht(X , Ẑ)),

where Hs
cont(k,−) denotes continuous Galois cohomology. Therefore we will write

H cont
t (X/k, Ẑ) := R lim←−

n
Ht(X ,Z/n).

Here we keep k in the notation, since it is important that the inverse limit is taken in the
derived category of sheaves on Speck . For example, taking inverse limits does not com-
mute with infinite field extensions (compare [K, §2]). In particular, when k is not alge-
braically closed, the complexes H cont

t (X/k, Ẑ) will in general not be concentrated in degree
0, whereas

H cont
t (X/k̄, Ẑ) = R lim←−

n
Ht(X ,Z/n) = Ht(X , Ẑ).

In the case i = 3 we have that G D
3 equals the complex RHomksm(Br(X),Q/Z(1))[2] . As

above, we have that

Hs(ksm,G D
3 ) = Hs

cont(k,Hom(Br(X),Q/Z(1)).

Combined with the above calculations of the Gi for i = 0, 1, 2 and the results of Section 1,
we get that

(17) G D
i =



0 if i < 0

Z if i = 0

Alb(X) if i = 1

Hom(NS(X/k),Gm)[1] if i = 2

RHomksm(Br(X),Q/Z(1))[2] if i = 3

H cont
i−1 (X/k, Ẑ)[i−1] if i≥ 4.

The modified Hochschild–Serre spectral sequence

Since the complexes H cont
i−1 (X/k, Ẑ) are in general not concentrated in degree 0, the

E2 -terms of the ‘standard’ Hochschild–Serre spectral sequence

Es,t
2 = Hs(ksm,Rt Homksm(Rϕ∗Gm,Gm))⇒ 1H−s−t(X ,Z)

do not admit a nice description in general. Therefore it makes sense to modify this spectral
sequence a little, replacing the degree filtration on Homksm(Rϕ∗Gm,Gm) , by the filtration

0 = F HS
−2d−1→F HS

−2d → ··· →F HS
0 = RHomksm(Rϕ∗Gm,Gm)

defined by

F HS
i := (τ≥−iRϕ∗Gm)D if i 6=−1,

F HS
−1 := mapping cone of (Rϕ∗Gm)D→F D

1 .
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Here (Rϕ∗Gm)D → F D
1 is the canonical map associated to the cofiltration F D

• of
(Rϕ∗Gm)D defined above. Note that when k is algebraically closed F HS

• coincides with
the degree filtration.

As above, we obtain for every i the associated i th graded piece G HS
i , and we put

1Hi(X ,Z) := G HS
−i [−i].

The filtration F HS
• gives rise to the modified Hochschild–Serre spectral sequence

(18) Es,t
2 = Hs(ksm, 1H−t(X ,Z))⇒ 1H−s−t(X ,Z).

In this modified spectral sequence the E2 -terms are easy to interpret, thanks to the calcula-
tions above. For i > 0 we have that

1Hi(X ,Z) = G D
i+1[−i].

On the other hand, 1H0(X ,Z) fits into an exact sequence

0→ Alb(X)→ 1H0(X ,Z)→ Z→ 0.

This suggests that 1H0(X ,Z) is represented by the total Albanese variety Alb∗(X) defined in
Section 1.1. We will see in Section 3.2 that this is indeed the case. To simplify the notation,
we will already use this fact below, but we will not allow ourselves to use the Albanese
property of 1H0(X ,Z) in an essential way before Section 3.3.

In terms of Galois cohomology, we get the following expression for the E2 -terms of the
modified Hochschild–Serre spectral sequence.

Hs(ksm, 1H−t(X ,Z)) =



0 if t > 0,

Hs(k,Alb∗(X)(k̄)) if t = 0,

Hs(k,Hom(NS(X), k̄∗)) if t =−1,

Hs
cont(k,Hom(Br(X),Q/Z(1))) if t =−2,

Hs
cont(k,H−q(X , Ẑ)) if t <−2.

Remark 2.3. If all Galois cohomology groups of k with finite coefficient modules are finite,
then

Hs
cont(k,Hom(Br(X),Q/Z(1))) = lim←−

n
Hs(k,Hom(n Br(X),Q/Z(1)))

and

Hs
cont(k,Ht(X , Ẑ)) = lim←−

n
Hs(k,Ht(X ,Z/n))

for any s, t ∈ Z (see [J, Rem. 3.5]). The finiteness condition is fulfilled when k is a p-adic
field.

Calculations over an algebraically closed field

For X over the algebraic closure k̄ of k the above gives us:

1Hi(X ,Z) =



0 if i < 0,

Alb∗(X)(k̄) if i = 0,

Hom(NS(X), k̄∗) if i = 1,

Hom(Br(X),Q/Z(1)) if i = 2,

Hi(X , Ẑ) if i > 2.
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High degree homology

Over an arbitrary field k of characteristic 0, we see from the modified Hochschild–Serre
spectral sequence that the canonical map Rϕ∗Q/Z(1)→ Rϕ∗Gm induces for i > 2 an iso-
morphism

1Hi(X ,Z) = R−iHomkét(Rϕ∗Q/Z(1),Gm).

The right hand side of this equation is canonically isomorphic to the i th continuous étale
homology group Hcont

i (X , Ẑ) as defined in [K, §3.2] (recall that X is proper over k ).

Calculations in degree 0 over a p-adic field

Now let us assume k has cohomological dimension ≤ 2, which is the case when X is a
p-adic field (see [Se, Prop. II.15]). Then the Es,t

2 -terms of the modified Hochschild–Serre
spectral sequence vanish for s > 2. We get an exact sequence

1H0(X ,Z)→ Alb∗(X)(k)→ H2(k,Hom(NS(X), k̄∗)).

The kernel 1H0(X ,Z)Alb of the Albanese map 1H0(X ,Z)→ Alb∗(X)(k) fits into an exact
sequence

H2
cont(k,Hom(Br(X),Q/Z(1)))→ 1H0(X ,Z)Alb→ H1(k,Hom(NS(X), k̄∗))→ 0

When k is a p-adic field, we actually have

H2(k,Hom(NS(X), k̄∗)) = Hom(NS(X)Gal(k̄/k),Q/Z)

and

H2
cont(k,Hom(Br(X),Q/Z(1))) = Hom(Br(X)Gal(k̄/k),Q/Z)

as we easily deduce from Tate duality for finitely generated groups (compare Proposi-
tion 4.1.

2.3. Further remarks on the definition

Notation

As was mentioned in the introduction, I have chosen the notation 1H∗(X ,Z) to distinguish
pseudo-motivic homology from motivic homology. The ‘1’ in the notation is to indicate that
it is defined using the sheaf Gm , which in the motivic setting is denoted by Z(1)[1] . In fact,
we can also define

0Hi(X ,Z) := Ext−i
ksm

(Rϕ∗Z,Z),
0Hi(X ,Z(1)) := Ext−i

ksm
(Rϕ∗Z,Gm[−1]).

These groups are almost to close to étale homology Hi(X , Ẑ( j)) to be interesting. Still, they
are a little bit nicer. At least we have 0Hi(Speck,Z) = Z , rather than Ẑ , and for any smooth
proper X over a finite field we have that CH0(X)' 0H0(X ,Z) .

I do not know whether there are complexes of sheaves Z(n) on ksm that give reasonable
groups nHi(X ,Z( j)) := Ext−i

ksm
(Rϕ∗Z(n),Z(n + j)) for n > 1, j > −n . In any case one

would want nHi(Speck,Z( j)) = Z( j) for any j >−n , and this already seems quite a strong
condition.
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More general varieties or ground fields

Of course, we can consider the groups

Ext−i
ksm

(Rϕ∗Gm,Gm),

for arbitrary ϕ : X → k over an arbitrary field k (or even over an arbitrary base scheme).
When ϕ is smooth but not necessarily proper, and k is a field of characteristic zero, this
gives a nice homology theory with compact supports (see for example [vH2]).

In other cases these groups still have the same basic properties but as groups they might
not be nice enough to deserve the name ‘pseudo-motivic homology’. I should say that I do
not know exactly what I mean by ‘nice enough’, but I would hope that at least we would
have that the complex RHomksm(Rϕ∗Gm,Gm) is concentrated in nonpositive degree, and
that it admits a filtration for which the graded pieces are either complexes of group schemes,
or profinite étale (compare Section 2.2). It is possible that even for singular varieties in
characteristic zero the above definition is nice enough, but in general it will be hard to
compute.

In characteristic p > 0 the groups under consideration need not even be nice in the above
sense when X is smooth and proper, due to the ‘pathological’ behaviour of the Extksm -
functor (see for example [Br1]). It is not clear to me whether this means that my notion of
‘nice enough’ is too restrictive, or that the definition should be adapted (by working over a
different site, for example).

3. The cycle map, the Albanese property and Poincaré duality

In this section we will construct a cycle map for zero-cycles into the homology of degree
zero, and check that this map satisfies the Albanese property. Then we discuss Deligne’s
result that implies Poincaré duality for curves.

3.1. The cycle map for zero-cycles

Let k′ be a finite extension of a field k of characteristic 0. The canonical isomor-
phism (13) gives in degree zero a canonical isomorphism

1H0(Speck′,Z) = Z.

The canonical generator of 1H0(Speck′,Z) can be called the fundamental class of Speck′ .
We will denote it by [Speck′] ∈ 1H0(Speck′,Z) .

For a variety X over k we now define the cycle map

(19) cl : Z0(X)→ 1H0(X ,Z)

from the group of zero-cycles into homology by sending a closed point x ∈ X to the image
of [x] under the mapping i∗ : 1H0(x,Z)→ 1H0(X ,Z) , where i is the inclusion. By construc-
tion the cycle map commutes with the push-forward associated to a morphism of varieties
f : X → Y .

The following lemma implies that Lichtenbaum’s pairing of Z0(X) with Br(X) , as de-
fined in [L1, §3], factorises via the cycle map and the Yoneda pairing.
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Lemma 3.1. With notation as above, we have that for any r ≥ 0 and any ω ∈ Hr(X ,Gm)
the image of cl(x)×ω ∈ Hr(k,Gm) under the pairing (11) coincides with the image of ω

under the composite mapping

Hr(X ,Gm) i∗−−→ Hr(x,Gm) tr−−→ Hr(k,Gm),

where the mapping tr is induced by the norm map.

PROOF. Immediate from the definitions. �

For the next result, it will be important that the cycle map for zero-cycles is already
defined on the sheaf level. Let ZX be the free sheaf on ksm of abelian groups over X , i.e.,
the sheaf associated to the presheaf U 7→ Z[X(U)] . For every U smooth over k we have
that a morphism s : U → X induces via pull-back a homomorphism from the complex of
sheaves Rϕ∗Gm to the sheaf Gm , both restricted to U . Thus we get a homomorphism

(20) c` : ZX → R0 Hom(Rϕ∗Gm,Gm) = 1H0(X ,Z)

of sheaves on ksm . It follows from the definitions that the map

Z0(X) = ZX(k) c`−−→ 1H0(X ,Z)(k)

obtained by taking sections over k coincides with the composite map

Z0(X) cl−−→ 1H0(X ,Z)→ 1H0(X ,Z)(k).

In the next section we will see that c` is actually the Albanese map into the total Albanese
variety. In the result below it will be sufficient to know that 1H0(X ,Z) is represented by a
commutative group variety locally of finite type, of which the connected component is an
abelian variety. This implies that the cycle map c` factorises via the total Albanese variety.

Proposition 3.2. Let X be a proper smooth variety over a field of characteristic zero. The
cycle map factorises via rational equivalence, giving a homomorphism

cl : CH0(X)→ 1H0(X ,Z)

PROOF. Without loss of generality we may and will assume X to be geometrically irre-
ducible. The group Z

rat
0 (X) of zero-cycles rationally equivalent to 0 is generated by zero-

cycles of the form π∗( f ) , where π : C→ X is a morphism of a nonsingular projective curve
C to X , and ( f ) is the divisor of a rational function f on C . Since cl(π∗( f )) = π∗ cl(( f )) ,
it is sufficient to check the proposition for a nonsingular projective curve C .

The universal property of the total Albanese variety implies that the sheafified cycle
map (20) factorises via the Albanese map α : ZX → Alb∗(X) . Taking sections over k we
get a commutative diagram

Z0(C) α
//

c`

''NNNNNNNNNNN

cl
��

Alb∗(C)(k)

��

1H0(C,Z) // 1H0(C,Z)(k)

Since the map 1H0(C,Z)→ 1H0(C,Z)(k) is injective by Hilbert’s Theorem 90, the kernel
of the cycle map cl contains the kernel of the map α , which is equal to Z

rat
0 (C) by the

Abel–Jacobi theorem. �
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3.2. The Albanese map

In this section we will prove that the map

c` : ZX → 1H0(X ,Z)

defined above satisfies the Albanese property. In particular, 1H0(X ,Z) is represented by the
total Albanese variety Alb∗(X) , as was claimed in Section 2.2.

The covariant functoriality of 1H0(−,Z) , will enable us to reduce the proof to the case
where X is a principal homogeneous space for an Abelian variety, and then the statement
follows from the following result.

Proposition 3.3. Let A be an abelian variety over a field k of characteristic zero. The map

a : A → 1H0(A,Z)0

x 7→ c`([x]− [0])

is an isomorphism of (sheaves represented by) abelian varieties.

Remark 3.4. Since 1H0(A,Z)0 is the dual of Pic0(A/k) , as we saw in Section 2.2, it is
well-known that A is isomorphic to 1H0(A,Z)0 . There should be a way to compare the
map a directly with an existing construction of this isomorphism. However, I have not been
able to find a suitable description in the literature that allowed me to make such a direct
comparison, so I will make a detour via torsion coefficients. This is not quite satisfactory
from a conceptual point of view, but we do get a very explicit relation to the Weil pairing as
a bonus.

PROOF OF PROPOSITION 3.3. The map a is a priori only a morphism of varieties, but since
1H0(A,Z)0 is (represented by) an abelian variety, and 0 is mapped to 0, it is a homomor-
phism of abelian varieties. In order to prove that a is an isomorphism, it is sufficient to
check that the induced map on n-torsion

nA→ n
1H0(A,Z)0

is an isomorphism for all n ∈N . This is equivalent to proving that the induced map of finite
n-torsion groups

an : nA(k̄)→ n
1H0(Ā,Z)0

is an isomorphism. As we will see below, this follows from the nondegeneracy of the
Weil pairing. We have that n

1H0(Ā,Z)0 = n
1H0(Ā,Z) = H1(Ā,Z/n) = Hom(H1(Ā,µn), k̄∗) =

Hom(n Pic0(Ā), k̄∗) . Therefore we only have to check that the pairing between the n-torsion
of A(k̄) and Pic0(Ā) induced by the map an coincides up to sign with the Weil pairing. In
the rest of the proof we will carefully deduce an explicit presentation of the pairing induced
by an in terms of functions and divisors. This presentation then turns out to coincide up to
sign with a well-known presentation of the Weil pairing.

Let ϕ : A→ k be the structure map, and let n : A→ A be multiplication by n . We define
Rϕ∗Gm/n∗ to be the cone of the induced map

Rϕ∗Gm
n∗−−→ Rϕ∗Gm,

and we put

H i(Ā,Gm,n∗) := H i(k̄,Rϕ∗Gm/n∗)
1Hi(Ā,Z,n∗) := R−iHomk̄sm

(Rϕ∗Gm/n∗,Gm).
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We get long exact sequences

H0(Ā,Gm) n∗−−→ H0(Ā,Gm)→ H0(Ā,Gm,n∗)→ H1(Ā,Gm) n∗−−→ H1(Ā,Gm)→ ···

and

· · · → 1H1(Ā,Z) n∗−−→ 1H1(Ā,Z)→ 1H0(Ā,Z,n∗)→ 1H0(Ā,Z) n∗−−→ 1H0(Ā,Z)

Recall that the pull-back n∗ is the identity on ϕ∗Gm , multiplication by n on Pic0(A/k) and
multiplication by n2 on NS(Ā) . Also, recall that NS(Ā) is torsion free (see [Mum, §8] for
all these facts). This implies that

H0(Ā,Gm,n∗) = n Pic(Ā)

and

1H0(Ā,Z,n∗) = n
1H0(Ā,Z)

It follows from the definition that a induces a map

an∗ : nA(k̄)→ 1H0(Ā,Z,n∗)

that fits into the following commutative diagram.

nA(k̄)
an

~~~~
~~

~~
~ an∗

!!CC
CC

CC
CC

n
1H0(Ā,Z) 1H0(Ā,Z,n∗)

Hence it suffices to show that an∗ is an isomorphism.
The cohomology sheaves H i(Rϕ∗Gm/n∗) are torsion for every i ∈ Z , as we see from

the above expression of the endomorphism n∗ as multiplication by powers of n . Therefore
the comparison between smooth and étale cohomology gives us that the group 1H0(Ā,Z,n∗)
is canonically isomorphic to the group Hom(Rϕ∗Gm/n∗, k̄∗) computed in the derived cat-
egory of étale sheaves on k̄ . We will now define a suitable complex of abelian groups
that represents the complex of étale sheaves Rϕ∗Gm/n∗ , in order to be able to compute
Hom(Rϕ∗Gm/n∗, k̄∗) explicitly.

Let C be the complex of abelian groups

O∗
nĀ,Ā

div−−→ Div(Ā, nĀ)

where O∗
nĀ,Ā is the multiplicative group of invertible functions on Ā having no poles or

zeroes on the n-torsion points, and Div(Ā, nĀ) is the group of divisors on Ā with sup-
ports outside the n-torsion points. The moving lemma for divisors implies that C is quasi-
isomorphic to the complex

K (Ā)∗ div−−→ Div(Ā),

hence we have a canonical map of complexes

C → Rϕ∗Gm,

that induces an isomorphism in cohomology of degree ≤ 1.
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Defining O∗
nĀ,Ā/n∗ to be the cokernel of the injective map

O∗
nĀ,Ā → O∗

nĀ,Ā
f 7→ f ◦n

and Div(Ā, nĀ)/n∗ to be the cokernel of the injective map

Div(Ā, nĀ) → Div(Ā, nĀ)
D 7→ n−1(D),

we see that the corresponding complex C /n∗ maps canonically to Rϕ∗Gm/n∗ , inducing an
isomorphism

H0(C /n∗) ∼→ H0(Ā,Gm,n∗) = n Pic(Ā)

([ f ] : div( f ) = n−1D) 7→ [D]

that sends the class of a function f on Ā with div( f ) = n−1(D) for some divisor D to the
n-torsion divisor class [D] ∈ Pic(Ā) . Since k̄∗ is a divisible group, hence injective, we also
see that

1H0(Ā,Z,n∗) = Hom(H0(Rϕ∗Gm/n∗), k̄∗) = Hom(H0(C /n∗), k̄∗).

In particular, we obtain a perfect pairing between 1H0(Ā,Z,n∗) and n Pic(Ā) into k̄∗ , and
the map an∗ induces a pairing

nA(k̄)× n Pic(Ā)→ k̄∗.

From the above discussion and the definition of the cycle map we see that this pairing is
given by the formula

(x, [D]) 7→ f (x)/ f (0),
where D is a divisor with support outside the n-torsion points of Ā and f is a function
with div( f ) = n−1(D) . In other words, this pairing coincides up to sign with the Weil
pairing, which is nondegenerate (see for example [Mum, §20]). We conclude that an∗ is an
isomorphism for every n ∈ N . �

Corollary 3.5. Let A• be an extension of Z by an abelian variety A0 over a field k of
characteristic zero. Let A1 be the connected component of A• mapping to 1 ∈ Z . We have
an isomorphism of sheaves on ksm represented by group varieties

a• : A• ∼→ 1H0(A1,Z)

such that a• restricted to A1 is the canonical map

A1→ 1H0(A1,Z)

of sheaves of sets induced by the cycle map c` .

PROOF. When A• splits (i.e., A• is isomorphic to A0×Z), we extend the isomorphism
a : A0 ∼→ 1H (A0,Z)0 defined above to an isomorphism A• ∼→ 1H0(A1,Z) by sending (x, i) ∈
A0×Z to c`([(x,1)] + (i− 1)[(0,1)]) . For any (y,1) ∈ A1(k) we have that c`([(x− (i−
1)y,1)]+(i−1)[(y,1)]) = c`([(x,1)]+ i[(0,1)]) , so a different splitting Z→ A• , mapping 1
to (y,1) , induces the same isomorphism.

We now generalise this to arbitrary A• . For T smooth over k with x1 ∈ A1(T ) 6= /0 we
send x ∈ Ai(T ) to

c`([x− (i−1)x1]+ (i−1)[x1]) ∈ 1H0(A1,Z)(T ),
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As above, we have that this map is independent of the choice of x1 . Since the extension

0→ A0→ A•→ Z→ 0

is locally trivial on the smooth site over k , the above construction gives us an isomorphism
a• : A• ∼→ 1H0(A1,Z). �

Theorem 3.6. Let X be a proper smooth geometrically irreducible variety over a field k of
characteristic zero. The homomorphism of sheaves

c` : ZX → 1H0(X ,Z)

is the universal homomorphism of ZX into sheaves on ksm represented by group varieties
locally of finite type of which the connected component containing zero is an abelian variety.
In particular, 1H0(X ,Z) is represented by the total Albanese variety of X .

PROOF. Let A be a commutative group variety locally of finite type of which the connected
component containing zero is an abelian variety. Let

f : ZX → A

be a homomorphism of sheaves. We will show that f factorises via the cycle map c` .
Let A0 be the connected component of A containing zero. In order to be able to use

Corollary 3.5, we need to replace A by an extension A• of Z by A0 . Let ZX
0 be the subsheaf

of ZX of elements of degree zero. Since X is geometrically connected, we have that ZX
0

maps to A0 , so ZX/ZX
0 (= Z) maps to A/A0 . We take the fibre product A• = A×A/A0 Z ,

and we have a homomorphism

f • : ZX → A•

defined by f •(z) = ( f (z),deg(z)) . We denote by π : A• → A the canonical projection. In
order to prove the theorem, it is sufficient to show that f • factorises via the cycle map c`
and a homomorphism from 1H0(X ,Z) to A• , since f = f • ◦π .

Let A1 ⊂ A• be the connected component mapping to 1 ∈ Z , and let

f 1 : X → A1

be the morphism of varieties induced by f • . By Corollary 3.5 we have the following com-
mutative diagram.

ZX

c`
��

f •
// A•

a•
��

1H0(X ,Z)
f 1
∗

// 1H0(A1,Z)

Since a• is an isomorphism, the diagram gives the desired factorisation of f • via 1H0(X ,Z) .
�

3.3. Poincaré duality for curves

In [SGA4, XVIII.1] P. Deligne (inspired by A. Grothendieck and J.-P. Serre) has con-
structed an isomorphism of fppf -sheaves

(21) τ≤0Rϕ∗ϕ
∗G[1] ∼→ τ≤0RHomSfppf(τ≤0Rϕ∗Gm[1],G[1])
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for any smooth projective curve ϕ : C → S over a base scheme S , and any suitable (see
[SGA4, XVIII.1.3.1.1]) fppf -sheaf G on S . The sheaf G can for example be a sheaf repre-
sented by a smooth group scheme of finite presentation. For G = Gm we get an isomorphism

(22) τ≤1Rϕ∗Gm
∼→ τ≤1RHomSfppf(τ≤1Rϕ∗Gm,Gm[−1])

if we shift the degrees by 1.
From Section 1.2 and the calculations in Section 2.2 we see that the isomorphism (22)

induces an analogous isomorphism on the smooth site over S , and that for that isomorphism
all truncations τ≤1 are superfluous if S is the spectrum of a field of characteristic zero.
Hence for a curve ϕ : C→ k over a field of characteristic zero we have that

(23) Rϕ∗Gm
∼→ RHomksm(Rϕ∗Gm,Gm[−1]).

By taking cohomology H i(k,−) , we get for every i ∈ Z the Poincaré duality isomorphism

(24) H i(C,Gm)' 1H1−i(C,Z)

given in the introduction.

The Poincaré duality pairing

Note that the map (23) induces a pairing in the derived category of sheaves on ksm

(25) Rϕ∗Gm
L
⊗τ≤0Rϕ∗Gm→Gm[−1].

This gives for any s, t ∈ Z a pairing

Hs(C,Gm)⊗Ht(C,Gm)→ Hs+t−1(k,Gm)

which is compatible with the Yoneda pairing (11) and the Poincaré duality isomor-
phism (24).

We get more information on this pairing by looking at the results of [SGA4,
XVIII.1.3.11–16], where the construction underlying the isomorphism (21) is studied in
greater detail for G = Gm . The following theorem summarises these results. In order to pre-
serve the original generality, they are stated in terms of the pairing on the fppf -site induced
by the map (22), rather than the pairing (25) on the smooth site.

Theorem 3.7 (P. Deligne (A. Grothendieck, J.-P. Serre), [SGA4, XVIII.1]). Let ϕ : C→ S
be a smooth projective curve over a scheme S. We have a symmetric pairing in the in the
derived category of sheaves on Sfppf

τ≤1Rϕ∗Gm
L
⊗τ≤1Rϕ∗Gm→Gm[−1].

inducing an isomorphism

τ≤1Rϕ∗Gm ' τ≤1RHomSfppf(τ≤1Rϕ∗Gm,Gm[−1])

such that

(i) The composite mapping

ZC c`−−→ R0 HomSfppf(τ≤1Rϕ∗Gm,Gm[−1])' R1
ϕ∗Gm = Pic(C/S)

(obtained from the above isomorphism and the cycle map (20)) coincides with the mapping
ZC→ Pic(C/S) given on the presheaf level by sending a local section s to the isomorphism
class of the invertible coherent sheaf O(s) associated to the image of s.
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(ii) We have a diagram of compatible pairings

τ≤1Rϕ∗Gm

deg
��

L
⊗τ≤1Rϕ∗Gm // Gm[−1]

Z[−1] L
⊗ Gm

OO

// Gm[−1]

Here the arrow Z[−1]⊗L Gm → Gm[−1] is the canonical isomorphism, and Gm →
Rϕ∗Gm = Rϕ∗ϕ

∗Gm is the adjunction map (which induces the pull-back ϕ∗ : H i(S,Gm)→
H i(C,Gm)).

(iii) For a finite flat morphism of smooth projective curves over S

C′
π

//

ψ
��

66
66

66
C

ϕ
��		

		
		

S

we have a diagram of compatible pairings

τ≤1Rϕ∗Gm

π∗
��

L
⊗ τ≤1Rϕ∗Gm // Gm[−1]

τ≤1Rψ∗Gm

L
⊗τ≤1Rψ∗Gm

NC′/C

OO

// Gm[−1]

Here NC′/C is the map induced by the norm map π∗Gm→Gm .

PROOF. We already saw that the perfectness of the pairing is a special case of [SGA4,
XVIII.1.5.1], which is a reinterpretation of [SGA4, XVIII.1.3.10]. The other statements are
reinterpretations of 1.3.16.2 (symmetry), 1.3.16.1 (compatibility (i)), 1.3.16.3 (compatibility
(ii)), and 1.3.16.5 (compatibility (iii)) in loc. cit. �

Remark. In view of the calculations of the pseudo-motivic homology groups in high de-
gree (see Section 2.2), I do not expect that the above Poincaré duality generalises to higher
dimensions. To be precise, I do not think that for d > 1 there are (complexes of) sheaves
‘Z(d) on the smooth site over Q such that for each proper smooth purely d -dimensional
variety X over a field of characteristic zero we have H i(X , ‘Z(d)) = 1H2d−i(X ,Z) .

4. Generalised Tate duality

In this section we will prove that the complexes Fi defined in Section 2.2 satisfy Tate
duality when X is smooth and proper over a p-adic field. In particular, taking i = ∞ gives
us Theorem 1. We derive Tate duality for the Fi from the classical Tate duality for the
graded pieces Gi which are (direct limits of) étale finitely generated groups, tori or abelian
varieties concentrated in a single degree (see Section 4.1).

A crucial role in the proof of Theorem 4.3 below will be played by the following collec-
tion (indexed by i≥ 0) of pairings of long exact sequences into H2(K,Gm) = Q/Z :

(26) · · · Hr+1(K,G D
i )oo Hr(K,F D

i−1)oo Hr(K,F D
i )oo Hr(K,G D

i )oo · · ·oo

× × × ×
·· · // H1−r(K,Gi) // H2−r(K,Fi−1) // H2−r(K,Fi) // H2−r(K,Gi) // · · ·
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For i ≥ 0 this system is constructed from the triangles (14) and (16) using the Yoneda
pairing. It will allow us to glue the Tate duality for the Gi (see Proposition 4.1) in order to
obtain duality for the Fi . This is done in Section 4.2. In the gluing process some caution
is necessary, since some of the duality pairings for the Gi are only perfect after taking
suitable completions. This means that we need to complete some of the groups in the long
exact sequences (26), but without destroying the exactness. To identify these trouble spots
we need the explicit calculations of Section 2.2. Then Lemma 4.2 provides the essential
arguments that will allow us to proceed. Finally, Section 4.3 contains an application of
Theorem 4.3 already announced in the introduction.

Throughout this section X is a smooth, proper and geometrically irreducible variety over
a p-adic field K .

4.1. Classical Tate duality

Recall from Section 2.2 that the graded pieces of the filtration Fi and its dual are as
follows.

i Gi G D
i

0 Gm Z

1 Pic0(X/K)[−1] Alb0(X)

2 NS(X/K)[−1] Homksm(NS(X/K),Gm)[1]

3 Br(X)[−2] RHomksm(Br(X),Gm)[2]

4 H3(X ,Q/Z(1))[−3] H cont
3 (X/k, Ẑ)[3]

5 H4(X ,Q/Z(1))[−4] H cont
4 (X/k, Ẑ)[4]

...
...

...

Proposition 4.1. Let X be a smooth and proper geometrically irreducible variety over a
p-adic field K . Consider for i≥ 0 , r ∈ Z the Yoneda pairing

Hr(K,G D
i )×H2−r(K,Gi)→ H2(K,Gm) = Q/Z.

(i) For every i≥ 0 , r ∈ Z the pairing is nondegenerate.
(ii) For i > 2 , r ∈ Z the pairing is a perfect pairing between a profinite group and a

torsion group.
(iii) For i > 2 the groups in the pairing vanish if r is not in the range {i−1, i+1} .
(iv) The pairing induces perfect pairings

H2(K,G D
0 ) ×H0(K,G0)̂→Q/Z,

H1(K,G D
1 ) ×H1(K,G1) →Q/Z,

H1(K,G D
2 ) ×H1(K,G2)̂→Q/Z,

between a torsion group and a profinite group, perfect pairings

H0(K,G D
0 )̂×H2(K,G0) →Q/Z,

H0(K,G D
1 ) ×H2(K,G0) →Q/Z,

H−1(K,G D
2 )̂×H3(K,G2) →Q/Z
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between a profinite group and a torsion group, and a perfect pairing

H0(K,G D
2 ) ×H2(K,G2) →Q/Z,

between finite groups.
(v) For i = 0 or 1 , r ∈ Z the groups Hr(K,G D

i ) and H2−r(K,Gi) vanish if the pair
(i,r) is not in the set {(0,0), (0,2), (1,0), (1,1)}. For i > 1 the groups Hr(K,G D

i ) and
H2−r(K,Gi) vanish if r is not in the range 1− i, . . . ,3− i .

PROOF. For i = 0,2 the proposition follows from Hilbert’s Theorem 90 and Tate duality
for finitely generated groups (see [M2, Thm. I.2.1]). For i = 1 the proposition follows from
Tate duality for abelian varieties (see [M2, Cor. 3.4]).

For i > 2 the proposition follows from Tate duality for finite groups, since

Gi = lim−→
n

nG i,

where the complex nG i consists of the (finite) n-torsion subgroup nH
i−1(Gi) of the Galois

module H i−1(Gi) = H i−1(X ,Gm) placed in degree i−1. Hence for all r ∈ Z we have

H2−r(K,Gi) = lim−→
n

H2−r(K, nG i),

and

Hr(K,G D
i ) = Hr(K,R lim←−

n
(nG i)D) = R lim←−

n
Hr(K,(nG i)D) = lim←−

n
Hr(K,(nG i)D),

since the groups Hr(K,(nG i)D) are finite (see [M2, Th. I.2.1]). �

4.2. Gluing dualities

As was mentioned in the introduction of this section, we will need the following technical
result to ensure that the completions of Proposition 4.1.iv. do not disturb the exact rows of
the diagram (26) in any essential way. Then the proof of Theorem 4.3 is a matter of diagram
chasing.

Lemma 4.2. Let X be a smooth and proper geometrically irreducible variety over a p-adic
field K . Consider the compatible system of pairings (26).

(i) The boundary map H1(K,Gi)→H2(K,Fi−1) has finite image for i = 1, 2 and is zero
for i 6= 1, 2 .

(ii) The boundary map H0(K,F D
i−1)→ H1(K,G D

i ) has finite image for i = 1, 2 and is
zero for i 6= 1, 2 .

(iii) The boundary map H−1(K,F D
i−1)→ H0(K,G D

i ) has finite image for i = 3 and is
zero for i 6= 3 .

PROOF. We will only treat the finiteness statements since the vanishing always happens for
trivial reasons (i.e., either the source or the target of the map is zero).

(i) In the case i = 2 we have the finitely generated group H1(K,G2) = H0(K,NS(X))
mapping to the torsion group H2(K,F1) , so the image is finite. For i = 1 the target is
H2(K,F0) = BrK , and the image under consideration is contained in the kernel of Br(K)→
Br(X) , which is well-known to be finite.
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(ii) In the case i = 1 we have H0(K,F D
0 ) = Z mapping to the torsion group H1(K,G D

i ) =
H1(K,Pic0(X/K)) , so the image is finite. For i = 2 we consider the commutative diagram

Alb∗(X)(K)
LLLLL
LLLLL H2(K,H2(k,Hom(NS(X),K∗))

rrrrr
rrrrr

H0(K,F D
1 ) //

��

H1(K,G D
2 )

��

Hom(H2(K,F1),Q/Z) // Hom(H1(K,G2),Q/Z)

Hom(H0(K,NS(X)),Q/Z)

LLLLL
LLLLL

obtained from the system of pairings (26). The right hand vertical arrow is an isomorphism
by Proposition 4.1, and the image of the bottom arrow is finite by case i = 2 of part (i) of
this lemma.

(iii) Observe that we consider the map

H0(K,Hom(NS(X),K∗))→ H2
cont(K,Hom(Br(X),Q/Z)).

Since the target is a profinite group, it is sufficient to show that the image is torsion. Hence
it is sufficient to show that the cokernel of the natural map

1H1(X ,Z) = H−1(K,F∞)→ H−1(K,F D
2 ) = H0(K,Hom(NS(X),K∗)).

is torsion. We will finish the proof by showing that this is a rather straightforward con-
sequence of the fact that for divisors algebraic equivalence modulo torsion coincides with
numerical equivalence.

By a trace argument it is sufficient to prove that the cokernel of the map

ε : 1H1(XL,Z)→ H0(L,Hom(NS(X),K∗))

is torsion for some finite extension L of K in K . We choose L large enough such that
NS(XL) = NS(X) and such that we have a finite collection

fi : Ci→ XL

of smooth, projective, geometrically irreducible curves Ci over L mapping to XL , that gen-
erates a subgroup of finite index in Hom(NS(XL),Z) via the intersection product. To be
precise, taking Z1(

S
Ci) to be the group of 1-dimensional cycles on the disjoint union of

the Ci we have that the right kernel of the pairing

Z1(
S

Ci) × NS(XL) → Z
∑ai[Ci] × [D] 7→ ∑ai( fi)∗[Ci] · [D]

.

is precisely the (finite) torsion subgroup of NS(XL) .
After tensoring with L∗ we obtain a map

Z1(
[

Ci)⊗L∗→ Hom(NS(XL),L∗)

of which the cokernel is torsion. By Section 2.2 we have a canonical isomorphism

Z1(
[

Ci)⊗L∗ = 1H1(
[

Ci,Z),
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which fits into the following commutative diagram by the projection formula.

Zi(
S

Ci)⊗L∗ // Hom(NS(XL),Z)⊗L∗

1H1(
S

Ci,Z)
( fi)∗

��

Hom(NS(XL),L∗)

1H1(XL,Z)
ε

// H0(L,Hom(NS(X),K∗))

Hence the cokernel of the bottom arrow is torsion. �

Theorem 4.3. Let X be a nonsingular complete variety over a p-adic field K For i ≥ 0 ,
let Fi be the complex defined in Section 2.2, and consider the Yoneda pairing

Hr(K,F D
i )×H2−r(K,Fi)→ H2(K,Gm) = Q/Z.

(i) For every i≥ 0 and r ∈ Z the above pairing is nondegenerate.
(ii) For every i ≥ 0 , r ≤ −2 the pairing is a perfect pairing between a profinite group

and a torsion group.
(iii) For every i≥ 0 the induced pairings

H2(K,F D
i ) ×H0(K,Fi)̂→Q/Z,

H1(K,F D
i ) ×H1(K,Fi)̂→Q/Z,

are perfect pairings between a torsion group and a profinite group, and the pairings

H0(K,F D
i )̂×H2(K,Fi) →Q/Z,

H−1(K,F D
i )̂×H3(K,Fi) →Q/Z.

are perfect pairings between a profinite group and a torsion group.
(iv) For every i≥ 0 , r > 2 , the cohomology groups in the pairing are zero.

PROOF. In all four cases the proof will proceed by induction on the the level i of the ‘fil-
tration’ Fi , using Proposition 4.1 and Lemma 4.2 and the following commutative diagrams
with exact rows that are obtained from the system of pairings (26).

(27)

Hr−1(F D
i−1) //

��

Hr(G D
i ) //

��

Hr(F D
i ) //

��

Hr(F D
i−1) //

��

Hr+1(G D
i )

��

H3−r(Fi−1)∗ // H2−r(Gi)∗ // H2−r(Fi)∗ // H2−r(Fi−1)∗ // H1−r(Gi)∗

and

(28)

H1−r(Gi) //

��

H2−r(Fi−1) //

��

H2−r(Fi) //

��

H2−r(Gi) //

��

H3−r(Fi−1)

��

Hr+1(G D
i )∗ // Hr(F D

i−1)
∗ // Hr(F D

i )∗ // Hr(G D
i )∗ // Hr−1(F D

i−1)
∗

Here Hq(−) is short for Hq(K,−) , and −∗ denotes the Pontryagin dual Homcont(−,Q/Z) .
The exactness of the bottom rows is clear at the duals of torsion groups (which are equipped
with the discrete topology); at the duals of groups which are not torsion (hence equipped
with the profinite topology), the exactness follows from [M2, Prop. 0.20] and Lemma 4.2.
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(i) In order to show that Hr(F D
i )→ H2−r(Fi)∗ is injective, consider diagram (27). By

the induction hypothesis and Proposition 4.1, we know that all vertical arrows but the mid-
dle one are injective. In the leftmost column, we have for r 6= 0,1 that the vertical map
Hr−1(F D

i−1) → H3−r(Fi−1)∗ is an isomorphism. For r ∈ {0,1} we have that the im-
age of the horizontal map Hr−1(F D

i−1)→ Hr(G D
i ) is a finite (possibly trivial) group I by

Lemma 4.2, so then we may replace the left column of diagram (27) by the isomorphism
I→ I∗ . The injectivity now follows by a diagram chase. The map H2−r(Fi)→ Hr(F D

i )∗

is treated similarly.
(ii) For r ≤ −2 the surjectivity of the maps Hr(F D

i )→ H2−r(Fi)∗ and H2−r(Fi)→
Hr(F D

i )∗ follows by a similar diagram chase, using Proposition 4.1 and the induction hy-
pothesis, which give the surjectivity of the second and the fourth vertical arrows and the
injectivity of the rightmost vertical arrow in diagrams (27) and (28).

(iii) The injectivity and surjectivity of the map

H0(Fi)̂→ H2(F D
i )∗

follows immediately from Proposition 4.1, since H0(Fi) = H0(G0) and H2(F D
i ) =

H2(G D
0 ) for all i≥ 0. The injectivity and surjectivity of

H1(Fi)̂→ H2(F D
i )∗

follows by induction from diagram (28) with r = 1, Proposition 4.1, and Lemma 4.2, since
we may replace the right hand column H2(Fi−1)→ H0(F D

i−1)
∗ of the diagram by finite

groups, and then the upper row remains exact after taking profinite completions. For the
isomorphisms H0(F D

i )̂→ H2(Fi)∗ and H−1(F D
i )̂→ H3(Fi)∗ we use similar argu-

ments.
For the arrows in the other direction, like

H2(F D
i )→ (H0(Fi)̂)∗ = H0(Fi)∗

we have injectivity by part (i) of this theorem, and the surjectivity follows by diagram chas-
ing in (27) and (28) and induction on i from Proposition 4.1.

(iv) This follows from Proposition 4.1.iv by induction on i . �

4.3. The period of X and the Picard group

Using Theorem 4.3 we will now prove the result mentioned in introduction relating the
period P(X) of a smooth, proper variety X over a p-adic field K to the cokernel of the map
Pic0(X)→ Pic0(X/K)(K) .

Proposition 4.4. Let X be a smooth proper irreducible variety over a p-adic field K . The
cokernel of the natural map

Pic0(X)→ Pic0(X/K)(K)

is a finite cyclic group of order equal to the period P(X) of X.

PROOF. With notations as before, consider the following triangle in the derived category of
sheaves on ksm :

F0→F1→ G1→F0[1]
Recall from Section 2.2 that F0 = Gm , and G1 = Pic0(X/K)[−1] . It can be checked that
Pic0(X) = H1(K,F 1) . Taking Cartier duals, we get the triangle

Alb(X)→ Alb∗(X)→ Z→ Alb(X)[1]
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(See Section 2.2 and Theorem 3.6).
We will show that the cokernel of

Pic0(X) = H1(K,F1)→ H1(K,G1) = Pic0(X/K)(K)

is dual to the cokernel of
Alb∗(X)(K)→ Z.

The cokernel of H1(K,F1) → H1(K,G1) coincides with the kernel of Br(K) =
H2(K,F0)→ H2(K,F1) , so we consider the following diagram of compatible pairings
that we obtain from the Yoneda pairing:

Alb∗(X)(K)

��

⊗ H2(K,F1) // Q/Z

Z ⊗ Br(K)

OO

// Q/Z

The pairings are nondegenerate by Theorem 4.3. �

References

[SGA4] M. Artin, A. Grothendieck, and J.-L. Verdier (eds.), Théorie des topos et cohomologie étale des
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Advanced Studies in Pure Math. 3, North-Holland, Masson, 1968, pp. 46–188.
[J] U. Jannsen, Continuous étale cohomology, Math. Ann. 280 (1988), 207–245.
[K] B. Kahn, A sheaf-theoretic reformulation of the Tate conjecture, electronic preprint http://arxiv.org/

abs/math.AG/9801017, 1998.
[La] G. Laumon, Homologie étale, Exp. VIII in: Séminaire de Géometrie Analytique (A. Douady and
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