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TOWARDS AN INTERSECTION HOMOLOGY THEORY
FOR REAL ALGEBRAIC VARIETIES

JOOST VAN HAMEL

ABSTRACT. This note considers equivariant intersection homology of stratified
spaces with an involution. Specialisation gives a good intersection homology
theory with 2-torsion coefficients of the set of fixed points, but no grading. To
get a degree filtration, we consider the equivariant cohomology sheaves on the
quotient space with respect to the corresponding perverse t-structure.

For algebraic varieties over the real numbers that admit a small resolution,
it is shown that this procedure indeed provides the desired middle intersection
homology theory, which even comes with a natural grading. In particular, it
follows that the 2-torsion homology of a small resolution of a real algebraic
variety is independent of the small resolution.

1. INTRODUCTION

In Borel’s 1984 seminar on intersection cohomology, Goresky and MacPherson
posed the problem whether there is a self-dualZ/2-generalisation of intersection
homology for real algebraic varieties. Apart from self-duality, the main criterion
should be that if a variety has a small resolution, then the intersection homology
should agree with the homology of the resolution.

They give an example of singular curves to show that this homology theory
would not be a purely topological invariant. An example of a Schubert
variety shows that even when the real algebraic variety is normal (hence a
pseudo-manifold), such an intersection homology cannot coincide with standard
intersection homology.

Since a real algebraic variety is the fixed point set of complex conjugation acting
on the complex points of an algebraic variety defined over the real numbers, the
natural thing to do is to try to define the intersection homology of the real points
in terms of the topology of the complex points with the involution. This will give
a topological invariant of the set of real points together with the action of complex
conjugation on a small neighbourhood of the real points inside the complex points.

In Section 3 of this note we will see that indeed the localisation techniques of
equivariant cohomology transform theZ/2-valued intersection homology of the
complex points into aZ/2-valued homology theory of the real part with the above
properties, except that this homology theory does not come with a natural grading.

In Section 4 we attempt to get a good grading by taking the filtration associated
to a spectral sequence that computes equivariant cohomology in terms of the
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cohomology of perverse equivariant cohomology sheaves on the quotient space.
Since the quotient space does not admit a good stratification with even-dimensional
strata, we geta priori two filtrations, one for the lower and one for the upper middle
perversity.

When our variety admits a small resolution, we get much better results. It should
be said that small resolutions only exist in special situations, and when they exist
they need not be unique; on the other hand, they do occur quite frequently in
practice (e.g., in threefold theory and in the theory of Schubert varieties). Having a
small resolution, it can be shown that both filtrations on our ungraded intersection
homology agree with the degree filtration on the homology of the resolution.
The construction then even gives an intrinsic grading, which coincides with the
grading on the homology of the resolution. Hence in this case we get the self-dual
graded homology theory we are after. In particular, this gives a proof of the fact
that theZ/2-valued homology of a small resolution of a real algebraic variety is
independent of the small resolution (Corollary 4.10).

Whether the degree filtrations associated to the upper middle and lower middle
perversity coincide for arbitrary real algebraic varieties remains an open question.

Acknowledgements.This paper would not have been written without Robert
MacPherson’s stimulating enthusiasm about the initial idea. I would like to thank
one of the referees for the detailed suggestions how to improve the exposition.

2. LOCALISATION AND SPECIALISATION OF EQUIVARIANT COHOMOLOGY

This section contains a brief review of the theory of localisation of equivariant
cohomology of spaces with an involution.

Let X be a reasonable finite-dimensional (but not necessarily compact)
topological space with an involutionσ : X→X . We will denote the transformation
group{1,σ} by G. The inclusion of the fixed point set is denoted by

ι : XG ↪→ X,

and the quotient map is denoted by

π : X → X/G.

We are interested inG-equivariant cohomology. For this we will work in
the derived categoryDb

G(X,Z/2) of bounded complexes ofG-sheaves ofZ/2-
modules. SinceG is finite, it is easiest to takeG-sheaves in the ‘naive’ sense,
as in [Gr, Ch. V] (but the more general construction of Bernstein and Lunts of
Db

G(X,Z/2) for an arbitrary compact Lie groupG action gives the same result).
In any case, for an equivariant continuous mapf : X → Y we have the usual

pairs of adjoint functors( f ∗, f∗) and ( f! , f !) . In Db
G(X,Z/2) we have the internal

tensor product⊗ , the internal homomorphismsHom(−,−) , the Verdier dualising
sheafDX := φ!Z/2, whereφ : X → pt is the constant map, and the dualising
functor

DX(−) := Hom(−,DX).
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All of these functors have the usual properties. We also have some specific
equivariant functors:

ΓG(X,−) : Db
G(X,Z/2)→ Db(Z/2) (derived global equivariant sections)

πG
∗ : Db

G(X,Z/2)→ Db(X/G,Z/2) (derived equivariant local sections)

π∗G : Db(X/G,Z/2)→ Db
G(X,Z/2) (left adjoint ofπG

∗ )

with the obvious relationsΓG(X,−) = ΓG ◦ Γ(X,−) = Γ(X/G,−) ◦ πG
∗ . For a

complexF of G-equivariant sheaves onX we write

H i(X;G,F ) := H i(ΓG(X,F )).

The relationΓG(X,−) = ΓG◦Γ(X,−) gives us a spectral sequence

Ep,q
2 = H p(G,Hq(X,F ))⇒ H p+q(X;G,F ),

which has many names in different context; here we will call it the Borel–
Hochschild–Serre spectral sequence. We also have the analogues for sections with
compact supports, denoted byΓc as usual.

On the complement of the fixed point set the groupG acts freely, so there the
functor πG

∗ induces an equivalence of categoriesDb
G(X −XG,Z/2) ' Db((X −

XG)/G,Z/2) with inverseπ∗G . Finiteness of the cohomological dimension ofX
andX−XG implies the following localisation theorem.

Theorem 2.1. For every F ∈ Db
G(X,Z/2) we have an N> 0 such that the

inclusion ι : XG → X induces isomorphisms

(i) Hk(X;G,F ) ∼→ Hk(XG;G, ι∗F ) for all k > N ,
(ii) Hk(XG;G, ι!F ) ∼→ Hk(X;G,F ) for all k > N .

Since the cohomology ringH∗(G,Z/2) of G is isomorphic to the polynomial
ring Z/2[η] , with η ∈ H1(G,Z/2) , we get the following Borel–Atiyah–Segal
localisation theorem.

Corollary 2.2. The inclusionι : XG → X induces isomorphisms

(i) H∗(X;G,F )⊗Z/2[η] Z/2[η,η−1] ∼→ H∗(XG;G, ι∗F )⊗Z/2[η] Z/2[η,η−1]
(ii) H∗(XG;G, ι!F )⊗Z/2[η] Z/2[η,η−1] ∼→ H∗(X;G,F )⊗Z/2[η] Z/2[η,η−1] .

If E is a complex of sheaves onXG with trivial G-action, we have an
isomorphism of gradedZ/2[η]-modules

H∗(XG;G,E )' H∗(XG;E ) ⊗
Z/2

Z/2[η],

so writing

H∗(XG;G,E )/(η−1) := H∗(XG;G,E ) ⊗
Z/2[η]

Z/2[η]/(η−1),

we get that
H∗(XG;G,E )/(η−1) = H∗(XG;E ),

and the the Localisation Theorem implies the following ‘specialisation’ result:
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Corollary 2.3. Let F ∈ Db
G(X,Z/2) be a complex of G sheaves.

(i) If ι∗F is quasi-isomorphic to a complex of sheaves on XG with a trivial
G-action, we have an isomorphism ofZ/2-modules

H∗(X;G,F )/(1−η)' H∗(XG, ι∗F ).

(ii) If ι!F is quasi-isomorphic to a complex of sheaves on XG with a trivial
G-action, we have an isomorphism ofZ/2-modules

H∗(X;G,F )/(1−η)' H∗(XG, ι!F ).

Corollary 2.4. We have natural isomorphisms ofZ/2-modules

H∗(X;G,Z/2)/(1−η)' H∗(XG,Z/2),

H∗(X;G,DX(Z/2))/(1−η)' H∗(XG,DXG(Z/2))' H∗(XG,Z/2)

Note that here we denote homology with closed supports (often called ‘Borel–
Moore’ homology) byH∗(−,Z/2) ; homology with compact supports (isomorphic
to the usual singular homology) will be denoted byHc

∗(−,Z/2) .
An important remark is that the grading onH∗(X;G,F ) does not induce a

grading onH∗(X;G,F )/(1− η) , since the ideal(1− η) is not homogeneous.
Indeed, the groupH∗(X;G,F )/(1−η) is canonically isomorphic to the group
Hk(X;G,F ) for any large enoughk. In particular, this means that in the above
circumstances we do not automatically recover the grading onH∗(XG, ι∗F ) from
the grading onH∗(X;G,F ) .

For example, ifX is a smooth manifold of pure dimensionn, then Corollary 2.3
gives two isomorphisms betweenH∗(X;G,Z/2)/(1− η) and H∗(XG,Z/2) ;
one via the equalityi∗Z/2X = Z/2XG , and one via the equalityι!Z/2X =
⊕V⊂XGZ/2V [−codim(V ⊂ X)] . In general, the corresponding automorphism of
H∗(XG,Z/2) is not the identity, nor does it preserve the grading: it can be shown
to be the cup product with the total Stiefel–Whitney class of the normal bundle of
XG in X (compare [DIKh,§ 2.4]).

Remark.Theorem 2.1 and its corollaries also hold with compact supports. In the
next sections we will use notation likeH∗

(c) to indicate results that are valid with
closed as well as compact supports.

3. INTERSECTION HOMOLOGY OF FIXED POINT SETS

In the previous section we saw that we could recover the homology and
cohomology of the fixed point set from the equivariant homology and cohomology
of the total space, although we lost the information about the grading. This suggests
that whenX is a pseudo-manifold with an involution, we can define an intersection
homology (with perversityp) for XG by specialising the equivariant cohomology
of the intersection sheaf complexICp(X,Z/2) at (1−η) .

In order to stress the fact that this construction doesnot give any grading, we
will use the notation

IHp
~(XG,Z/2) := H∗(X;G, ICp(X,Z/2))/(1−η).
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Similarly we define fixed point set intersection homology with compact supports
IHp,c

~ (XG,Z/2) by taking cohomology with compact supports on the right hand
side. In both cases the result will not just depend on the topological spaceXG , but
on a small neighbourhood ofXG insideX together with the involution.

Remark3.1. There are several conventions regarding the degrees in which the
intersection complexIC is placed. In this section I follow [GM] by adopting
the homological convention thatIC is isomorphic toDX whenX is a topological
manifold. In other words, for arbitraryX the intersection homology is defined by
IHp

k(X,Z/2) = H−k(X, ICp(X,Z/2)) .

By construction, the standard results on intersection homology forX get
transported to our specialised equivariant intersection homology ofXG ; in
particular, we get the desired properties for real algebraic varieties as mentioned in
the introduction.

3.1. Arbitrary perversities.

Theorem 3.2.Let X be an n-dimensional pseudomanifold with an involution. For
any perversitiesp≤ q we have natural maps

H~
(c)(X

G,Z/2)→ IH p,(c)
~ (XG,Z/2)→ IH q,(c)

~ (XG,Z/2)→ H(c)
~ (X,Z/2),

with the following properties:

(i) The composite map is cap product with the total fundamental class

µ~
XG ∈ H~(XG,Z/2)

which is by definition the congruence class modulo(1− η) of the equivariant
fundamental class µGX ∈ H−n(X;G,DX(Z/2)) .

(ii) All maps are isomorphisms when X is aZ/2-homology manifold.

Proof. The natural maps inDb(X,Z/2)

Z/2[n]→ ICp → ICq →DX(Z/2)

(see [GM, Prop. 5.1,§5.5]) areG-equivariant, and they are all quasi-isomorphisms
when X is a Z/2-homology manifold. The constructions and the last part of the
theorem follow immediately. �

For p , q , r such thatp+q≤ r , we have natural pairings

IHp
~(XG,Z/2) ⊗ IHq

~(XG,Z/2) → IH r
~(XG,Z/2)

IHp
~(XG,Z/2) ⊗ IHq,c

~ (XG,Z/2) → IH r ,c
~ (XG,Z/2)

Theorem 3.3. Let X be an n-dimensional pseudomanifold with an involution and
let p and q be complementary perversities. The above pairing and the trace map
Γc(X, IC t)→ Z/2 induce a perfect pairing

IHp
~(XG,Z/2)⊗ IHq,c

~ (XG,Z/2)→ Z/2.
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Proof. Since the composite map

ICp⊗ ICq → IC t [n]→DX[n]

is a Verdier dual pairing by [GM, Th. 5.3], we get that the induced map

Γ(X, ICp)→Hom(Γc(X, ICq),Z/2[n])

is an isomorphism, so the result follows from Lemma 3.4 below. �

Lemma 3.4. With notation as above, letM be a bounded complex of G-
equivariantZ/2-modules. Then the canonical pairing

H∗(G,M )⊗H∗(G,Hom(M ,Z/2))→ H∗(G,Z/2)

induces a perfect pairing

H∗(G,M )/(1−η)⊗H∗(G,Hom(M ,Z/2))/(1−η)→ Z/2.

Proof. This is the ‘hypercohomology’ version of the standard duality in the
cohomology ofG. �

3.2. Middle perversity. If X is a Z/2-Witt space (as in [GM,§5.6]) it admits a
middle intersection sheafIC(X,Z/2) , hence we get ungraded specialised middle
intersection homology groups forXG with closed and compact supports by putting

IH (c)
~ (XG,Z/2) := H∗

(c)(X;G, IC(X,Z/2))/(1−η).

Again, by construction it inherits all the usual properties from the intersection
homology ofX :

Theorem 3.5. With notation as above, the intersection pairing

IH~(XG,Z/2)⊗ IHc
~(XG,Z/2)→ Z/2.

is perfect.

Proof. Immediate from Theorem 3.3. �

Small maps and resolutions.Recall that in [GM] a proper surjective morphism
f : Y → X of (not necessarily complete) irreducibleN-dimensional complex
algebraic varieties is calledhomologically smallif for all q > 0 the locus of points

{x∈ X(C) : H q−2N( f∗ IC(Y(C),Z/2))x 6= 0}
has algebraic codimension> q. In particular f is finite over a Zariski-openU ⊂X
and we define the degree off as the degree off over U . A normalisation
map is homologically small, and so is asmall resolution: a proper surjective
morphism f : X → Y of irreducible varieties, such thatY is smooth, f is a
birational isomorphism, and for everyr > 0 the locus{x ∈ X : dim f−1(x) ≥ r}
has codimension> 2r .

We will be interested in the case whereX , Y and f are defined overR , so that
f is equivariant with respect toG acting via complex conjugation onX(C) and
Y(C) . More generally, we can consider any continuousG-action onX(C) and
Y(C) (with respect to the Euclidean topology). By slight abuse of terminology and
notation we will say thatG acts via acontinuousinvolution onX andY .
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Theorem 3.6. Let f : Y → X be a G-equivariant homologically small map of
degree1 between complex algebraic varieties with a continuous involution. Then

IH (c)
~ (Y(C)G,Z/2)' IH (c)

~ (X(C)G,Z/2)

Proof. We have thatf∗ IC(Y(C),Z/2)' IC(X(C),Z/2) by [GM, Th. 6.2]. �

Corollary 3.7. If f : Y → X is a G-equivariant small resolution of a complex
algebraic variety with a continuous involution, then

IH (c)
~ (X(C)G,Z/2)' H(c)

∗ (Y(C)G,Z/2).

Künneth formula.In view of [GM, Prop. 6.3], a K̈unneth formula for fixed point
set middle intersection homology follows from the fact that

H∗(G,M ⊗N )/(1−η)' H∗(G,M )/(1−η)⊗H∗(G,N )/(1−η)

for bounded complexesM , N of G-equivariantZ/2-vector spaces.

4. A DEGREE FILTRATION

In this section we will show that for any perversityp our specialised equivariant
intersection homology groupIHp

~(XG,Z/2) admits a filtration that can be
considered as a degree filtration.

This filtration comes from ap-perverse version of the Grothendieck spectral
sequence associated to the composition of derived functorsΓG

X = ΓX/G ◦πG
∗ . For

this we use thep-perverse t-structure on the derived category of sheaves onX/G.
Then we analyse the case of an algebraic varietyX over the real numbers that

admits a small resolution. There we see that the middle intersection complex
πG
∗ IC(X(C),Z/2) actually splits (up to a bounded mapping cone) into a direct

sum of shifted copies of a complex of sheavesIC(X(R),Z/2) on X(R) which is
(up to a shift) perverse for both the upper and the lower middle perversity. The
splitting provides a grading onIH~(X(R),Z/2) compatible (up to a shift) with
our degree filtrations for both the upper and the lower middle perversity.

4.1. Strictly G-equivariant stratifications and perverse t-structures.

Definition 4.1. Let X be a topological space with an action ofG = {1,σ} . A
stratification S of X will be a finite partition ofX in locally closed subspaces
with the following properties (cf. [BBD, 2.1.13]).

• Each stratumS∈ S is a topological manifold where every connected
component has the same (finite) dimension.

• The boundary of each stratum is a union of strata of smaller dimensions.
• For any iS: S↪→ X the functor(iS)∗ has finite cohomological dimension

and for any locally constant sheafF of Z/2-modules of finite rank, the
H n((iS)∗F ) are locally constant along anyS′ ∈S .

We say that a stratificationS is strictly G-equivariantif it also satisfies the
following properties.

• For eachS∈S we haveσ(S) = S and eitherSG = S or SG = /0 .
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A stratified G-spacewill be a topological space with an action ofG and
a strictly G-equivariant stratification. Clearly, for any strictlyG-equivariant
stratification ofX we have thatS /G := {S/G: S∈ S} gives a stratification of
X/G, andS G := {S∈S : SG = S} gives a stratification ofXG which both satisfy
the properties of [BBD, 2.1.13]. For anyS -constructible complex ofG-sheaves
C on X we have thatπ∗C is S /G constructible andi∗C is S G constructible.
Of course, neitherX/G nor XG will in general be a pseudomanifold in the sense
of [GM], but this does not matter here.

As usualp : S → Z will be a perversity such thatp(S) only depends on the
dimension ofS. Since we use the BBD-formalism in this section, our special
perversities are:

• The zero perversity0: S 7→ 0.
• The lower middle perversitybmc : S 7→ −bdimS/2c
• The upper middle perversitydme : S 7→−ddimS/2e=−b(dimS+1)/2c .
• The top perversityt : S 7→ −dimS.

Herebxc denotes the largest integer≤ x anddxe denotes the smallest integer≥ x.
Observe that after the usual reindexing, the lower middle perversitybmc actually
corresponds to the lower middle perversity ¯m of [GM] if X is odd dimensional and
to the upper middle perversity ¯n of loc. cit. if X is even dimensional. Thedual p∗

of a perversityp is defined byp∗ = t−p .
Recall that thep-perverse t-structure onD(X,Z/2) is given by

pD≤0(X,Z/2) = {C : H ni∗SC = 0 for S∈S , n > p(S)}
pD≥0(X,Z/2) = {C : H ni!SC = 0 for S∈S , n < p(S)}

and similarly onX/G and XG . The heart of this t-structure is the category ofp-
perverse sheaves (ofZ/2-modules) onX . The cohomology sheaves associated to
this t-structure will be denoted bypH ∗(C ) . For the perversities mentioned above,
the t-structure on the subcategory ofS -constructible sheaves does not change
when we refineS (see [BBD, Prop. 2.1.14]).

Observe thatι∗ : D(XG,Z/2)→D(X,Z/2) , ι∗ : D(XG,Z/2)→D(X/G,Z/2) ,
andπ∗ : D(X,Z/2)→ D(X/G,Z/2) are p-exact.

4.2. Specialisation and perverse t-structures.A key property of the cohomol-
ogy of G= Z/2 that is used in equivariant localisation is the fact that the nontrivial
cohomology classη ∈ H1(G,Z/2) = Z/2 induces for everyG-module M and
everyn > 0 an isomorphismHn(G,M)' Hn+1(G,M) .

In the context of derived categories,η gives for every bounded complex ofG-
sheavesC on X a morphism of unbounded complexesπG

∗ (C ) → πG
∗ (C )[1] of

sheaves onX/G such that the mapping cone is a bounded complex.

Lemma 4.2. For every bounded complex of G-sheavesC on X there is an
N ∈ Z such that the canonical mapπG

∗ (C ) → πG
∗ (C )[1] induces an isomorphism

pH n(πG
∗ C )' pH n+1(πG

∗ C ) for every n> N and any perversityp .

Proof. Applying the homological functorpH ∗ to the distinguished triangle
πG
∗ (C ) → πG

∗ (C )[1] → Cone, we see that this follows from the fact that the
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mapping cone is bounded and that for any bounded complex of sheavespH n

vanishes forn large enough. �

Hence for any bounded complex ofG-sheavesC on X we may define
pH ∞

G C := pH n(πG
∗ C )

for n large enough. The key result that will be used in this paper to prove things
about perverse sheaves of the formpH ∞

G C is the following observation.

Lemma 4.3. For any homomorphismC →C ′ of bounded complexes of G-sheaves
on X and any perversityp we have that

pH ∞
G C

∼→ pH ∞
G C ′

if and only if
H ∞

G C
∼→H ∞

G C ′

Proof. Either condition is equivalent to the fact that the mapping cone ofπG
∗ C →

πG
∗ C ′ is a bounded complex. �

Corollary 4.4. The perverse sheafpH ∞
G C has supports in XG and

pH ∞
G (ι!C ) = pH ∞

G C = pH ∞
G (ι∗C ).

Proof. Immediate from Lemma 4.3 and the sheaf-theoretic version of Theorem 2.1.
�

In other words,pH ∞
G C can be considered as an equivariant specialisation of the

sheafC , even though in generalH∗(X;G,C )/(1−η) will not be isomorphic to
H∗(XG,pH ∞

G C ) .

Corollary 4.5. Let C be a bounded complex of G-sheaves on X . If we
have a p-perverse sheafP supported on XG (with a trivial G-action) and a
morphismP → C or C → P such thatH ∞

G C ' H ∞
G P , then P ' pH ∞

G C
and H∗(XG,P)' H∗(XG,pH ∞

G C )' H∗(X;G,P)/(1−η) .

Proof. SinceG acts trivially onP , we have thatπG
∗ P = ⊕i≥0P[−i] . SinceP

is p-perverse,pH n of the right hand term isP for every n ≥ 0. Now apply
Lemma 4.3. �

Corollary 4.6. Let C be a complex of G-sheaves on X , thenpH ∞
G DX(C ) '

DXG(p∗H ∞
G C ) .

Proof. By Corollary 4.4 and the general properties of Verdier duality, it is sufficient
to prove thatpH ∞

G DXG(i∗C )'DXG(p∗H ∞
G i∗C ) .

Let Z/2[G] be the group ring ofG. Considering i∗C as a sheaf of
Z/2[G]-modules, we get thatpH ∞

G DXG(i∗C ) = pH ∞ HomZ/2[G](i∗C ,DXG) =
pH ∞DXG(i∗C ⊗Z/2[G] Z/2) On the other hand, by duality of perversity we get
DXG(p∗H ∞

G i∗C ) = pH −∞DXG(HomZ/2[G](Z/2, i∗C )) .
Hence the statement reduces to the claim that for very largeN we have

pH NDXG(i∗C ⊗Z/2[G] Z/2) = pH −NDXG(HomZ/2[G](Z/2, i∗C ))
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Since any bounded below (resp. above) complex of sheaves has bounded
below (resp. above)p-perverse t-structure, it is sufficient to prove that for
any r > 0 and any large enoughN we have τ[−N−r,−N+r]i

∗C ⊗Z/2[G] Z/2 =
τ[N−r,N+r] HomZ/2[G](Z/2, i∗C )[2N] , and this follows from the standard duality
and periodicity in the cohomology ofG = Z/2. �

4.3. Construction of the filtration on specialised equivariant intersection
homology. Let X be a stratifiedG-space, letC be a bounded complex of
G-sheaves ofZ/2-modules onX and let p be a perversity. Consider the
Grothendieck spectral sequence

pEr,s
2 (C ) = Hr(X/G,pH s

GC )⇒ Hr+s(X;G,C ).

associated to the isomorphism of derived functors

ΓG
X = ΓX/G◦πG

∗ .

The spectral sequence gives for everyn a finite filtration · · · ⊂ F r ⊂ F r−1 ⊂ . . . of
the cohomology groupHn(X;G,C ) , with r th graded piece equal topEr,n−r

∞ (C ) .
This filtration passes to the quotientH∗(X;G,C )/(1−σ) , since on the level of the
spectral sequence the mappHGC → pHGC [1] associated toη ∈H1(G,Z/2) gives
a mappEr,s(C )→ pEr,s+1(C ) . Observe that ther th graded piece of this filtration
on H∗(X;G,C )/(1−σ) is a subquotient ofHr(XG,pH ∞

G C ) .
If we apply this construction to the constant sheafZ/2 and the zero perversity,

we get the degree filtration

F r =
⊕
i≥r

H i(XG,Z/2)

on H∗(X;G,Z/2)/(1−σ) = H∗(XG,Z/2) . With C = DX and p = t we get the
degree filtration

F r =
⊕
i≥r

H i(XG,DXG) =
⊕
i≤−r

Hi(XG,Z/2).

By analogy we now apply this construction toC = ICp(X,Z/2) to definea
degree filtration onIHp

~(XG,Z/2) . We will see below that this gives the right result
in at least one nontrivial situation: the case of the middle intersection homology of
a real algebraic variety admitting a small resolution.

Remark4.7. Up to a bounded mapping cone, the complexπG
∗ (Z/2)X actually

decomposes into a direct sum of shifted cohomology sheaves
⊕

i≥0H ∞
G Z/2[−i] =⊕

i≥0Z/2XG[−i] , andπG
∗ DX decomposes into

⊕
i≥0

tH ∞
G DX[−i] =

⊕
i≥0DXG[−i]

up to a bounded mapping cone. A similar decomposition of theπG
∗ ICp into shifted

copies ofpH ∞
G ICp would provide a grading onIHp

~(XG,Z/2) rather than just a
degree filtration. We will see below that we have such a decomposition for the
middle intersection complex on a variety over the real numbers that admits a small
resolution, but I have no idea whether such a decomposition exists in general.
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4.4. Middle intersection homology. When X is a Z/2-Witt space, the upper
middle and lower middle perversities give rise to a single middle intersection
homology sheafIC(X,Z/2) and specialisation gives us a single ungraded middle
intersection homology groupIH~(XG,Z/2) . However, our filtration depends
again on a choice for the upper or the lower middle perversity. Of course, one
would hope that these two filtrations are essentially the same, but to me this seems
unlikely without extra conditions onX and the involution.

In the setting of real algebraic geometry, the situation looks better. We will
see below that thebmc- and thedme-filtration coincide (possibly up to a shift)
whenever there is a small resolution. For real algebraic varieties without small
resolutions this remains an open problem.

4.5. Small resolutions. Let X be a (not necessarily complete) algebraic variety
of pure dimensionN defined over the real numbers. Recall from Section 3.2 that a
small resolutionf : Y → X is a proper surjective morphism (defined over the real
numbers) such thatY is smooth,f is a birational isomorphism, and for everyr > 0
the locus{x∈ X : dim f−1(x)≥ r} has codimension> 2r .

Lemma 4.8. If f : Y → X is a small resolution of an algebraic variety of
dimension N defined over the real numbers, then f∗Z/2Y(R)[bN/2c] is an bmc-
perverse sheaf and f∗Z/2Y(R)[dN/2e] is an dme-perverse sheaf on X

Proof. Let S be a stratification ofX(R) , such that f∗Z/2 is S -constructible.
Let S∈ S be a stratum of dimensiond < N . By definition, for anyx ∈ S, the
fibre of Y(R)→ X(R) over x has dimension< (N−d)/2, hence

H n(i∗Sf∗Z/2) = 0 for n 6∈ [0,b(N−d−1)/2c]
H n(i!Sf∗Z/2) = 0 for n 6∈ [d(N−d+1)/2e,N−d]

For i∗Sf∗Z/2 this follows from the proper base change theorem. Fori!Sf∗Z/2
this follows from the fact thatS is smooth of dimensiond , Y(R) is smooth of
dimensionN and f is proper, so that

i!Sf∗Z/2 = i!Sf∗DY(R)[−N] = DS(i∗Sf!Z/2)[−N] = Hom(i∗Sf∗Z/2,Z/2)[d−N].

From the inequalityba/2c − bb/2c ≤ −b(b−a)/2c for a, b ∈ Z we deduce
that b(N−d−1)/2c−bN/2c ≤ −b(d+1)/2c ≤ −bd/2c andb(N−d−1)/2c−
b(N+1)/2c ≤ −b(d+2)/2c ≤ −b(d+1)/2c=−dd/2e . It follows that

H n(i∗Sf∗Z/2[bN/2c]) = 0 for n >−bd/2c
H n(i∗Sf∗Z/2[dN/2e]) = 0 for n >−dd/2e.

Similarly, the equality da/2e − bb/2c = −b(b−a)/2c gives us that
d(N−d+1)/2e − bN/2c = −b(d−1)/2c ≥ −bd/2c and d(N−d+1)/2e −
b(N+1)/2c=−bd/2c ≥ −dd/2e . It follows that

H n(i!Sf∗Z/2[bN/2c]) = 0 for n <−bd/2c
H n(i!Sf∗Z/2[dN/2e]) = 0 for n <−dd/2e.

�
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Corollary 4.9. Let f : Y → X be a small resolution of an algebraic variety over
the real numbers of dimension N . Then

(i) The quasi-isomorphismIC(X(C),Z/2)' f∗Z/2Y(C) induces isomorphisms

bmcH ∞
G IC(X(C),Z/2)' f∗Z/2Y(R)[bN/2c]

dmeH ∞
G IC(X(C),Z/2)' f∗Z/2Y(R)[dN/2e]

(ii) We have natural isomorphisms

IH (c)
~ (X(R),Z/2)' H∗

(c)(X
G, bmcH ∞

G IC(X(C),Z/2))

IH (c)
~ (X(R),Z/2)' H∗

(c)(X
G, dmeH ∞

G IC(X(C),Z/2))

compatible with the corresponding degree filtrations.

(iii) The degree filtrations on IH(c)~ (X(R),Z/2) corresponding to
bmcEr,s

(c)(IC(X(C),Z/2)) and dmeEr,s
(c)(IC(X(C),Z/2)) coincide (up to a shift in

degree by1 if N is odd).

Proof. Immediate from Lemma 4.8, the sheaf version of Corollary 3.7 and
Corollary 4.5. �

This means that whenX admits a small resolutionY → X , we have an intrinsic
definition of an intersection complex on the real part by writing

IC(X(R),Z/2) := bmcH ∞
G IC(X(C),Z/2)[dN/2e]

(= dmeH ∞
G IC(X(C),Z/2)[bN/2c]).

Putting

IH (c)
i (X(R),Z/2) := H−i

(c)(X(R), IC(X(R),Z/2)),

we get an isomorphismIH (c)
~ (X(R),Z/2) = IH (c)

∗ (X(R),Z/2) and a graded

isomorphismIH (c)
∗ (X(R),Z/2) ' H(c)

∗ (Y(R),Z/2) . Corollary 4.6 gives us the
required nondegenerate pairing of gradedZ/2-modules

IH∗(X(R),Z/2)× IHc
N−∗(X(R),Z/2)→ Z/2.

In particular, it follows that different small real algebraic resolutions have the
sameZ/2-homology.

Corollary 4.10. When Y→ X and Y′ → X are two small resolutions of
an algebraic variety defined over the real numbers, then H∗(Y(R),Z/2) and
H∗(Y′(R),Z/2) are isomorphic as gradedZ/2-vector spaces, and the same holds
for homology with compact supports.

Remark.After distributing the first version of this note, Parusinski kindly sent
me a manuscript of a work in progress in which he proposes an explicit chain
complex on any real algebraic variety which gives 2-torsion homology groups that
are isomorphic to the homology groups of any small resolution. In particular,
he obtains a different proof of Corollary 4.10. At this stage it is not clear
whether Parusinki’s ideas will lead to homology groups with a nondegenerate
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intersection product. A proof of Corollary 4.10 by completely different methods
was announced by Totaro in [T].

CONCLUSION

For a (not necessarily complete) algebraic varietyX defined over the
real numbers we have introduced ungraded middle intersection homology
IH~(X(R),Z/2) and IHc

~(X(R),Z/2) of the real part which statisfies the desired
properties. These groups only depend on the topology of complex conjugation
acting on a small neighbourhood ofX(R) insideX(C) .

The ungraded intersection homology comes with two natural degree filtrations,
corresponding to the upper and lower middle perversity. In particular, this allows
us to define upper and lower middle intersection Betti numbers ofX(R) .

WhenX admits a small resolution, the two degree filtrations (hence the two sets
of Betti numbers) coincide up to a shift. Moreover, in this case we actually get a
compatible grading onIH (c)

~ .
Questions that remain open for an algebraic varietyX over the real numbers that

does not admit a small resolution:
• Do we have that

IH (c)
~ (X(R),Z/2) = H∗

(c)(X(R),pH ∞
G IC(X(C),Z/2))

for p = bmc andp = dme?
• Do bmcH ∞

G IC(X(C),Z/2) and dmeH ∞
G IC(X(C),Z/2) coincide (up to a

shift)?
• Do the upper and lower middle intersection Betti numbers ofX(R)

coincide (up to a shift)?
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[DIKh] A. Degtyarev, I. Itenberg and V. Kharlamov,Real Enriques surfaces, Lect. Notes Math.1746

(2000) Springer-Verlag.
[GM] M. Goresky and R. MacPherson,Intersection homology II, Invent. Math.72 (1983), 77–129.
[Gr] A. Grothendieck,Sur quelques points d’algèbre homologique, Tôhoku Math. J. (2)9 (1957),
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