Problem Set 3

- Q20 Let (X, d) be a metric space, and $(x_n)_{n \in \mathbb{N}}$ be a sequence that satisfies $d(x_n, x_{n+1}) \leq 2^{-n}$ for all $n \in \mathbb{N}$. Show that $(x_n)_{n \in \mathbb{N}}$ is a Cauchy sequence.
- Q21 Let (X, d_X) and (Y, d_Y) be metric spaces. Show that $f: X \to Y$ is continuous if and only if for each open $V \subseteq Y$, we have that $f^{-1}(V)$ is an open subset of X.
- Q22 Let (X, d) be a metric space. Show that finite unions of closed sets are closed, and that arbitrary intersections of closed sets are closed.
- Q23 Let (X, \mathcal{O}) be a topological space, and I be a finite index set. Show that if $U_{\alpha} \in \mathcal{O}$ for each $\alpha \in I$, then $\bigcup_{\alpha \in I} U_{\alpha}$ is open.
- Q24 (a) Verify that the trivial, discrete and co-finite topologies are indeed topologies.
 - (b) Show that the discrete topology is generated by the discrete metric.
 - (c) Show that the co-finite topology equals the discrete topology if the underlying set is finite.
- Q25 Prove parts (3)–(7) of Lemma 2.14.
- Q26 Let (X, \mathcal{O}) be a topological space, and $(x_n)_{n \in \mathbb{N}}$ be a sequence in X. We say that $(x_n)_{n \in \mathbb{N}}$ converges to $x \in X$ with respect to \mathcal{O} , written $x_n \to x$, if for each neighbourhood N of x, there is $m \in \mathbb{N}$ such that $x_n \in N$ for all n > m.
 - (a) Suppose \mathcal{O} is induced by the metric d on X. Show that $x_n \to x$ with respect to \mathcal{O} if and only if $x_n \to x$ with respect to d.
 - (b) Suppose X is an infinite set and \mathcal{O} is the co-finite topology on X. Let $(x_n)_{n \in \mathbb{N}}$ be a sequence of pairwise distinct points in X. Show that $x_n \to x$ for each $x \in X$.
- Q27 Let $X = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq \frac{1}{2} \text{ or } x^2 + y^2 = 1\}$, and give X the subspace topology induced from \mathbb{R}^2 with the Euclidean topology. Determine the closure, boundary and interior of $B_1((0, 0)) \subseteq X$ with respect to the subspace topology.
- Q28 Show that every metrizable space is normal.
- Q29 Let $\mathcal{O} = \{E \subseteq \mathbb{R} \mid 0 \notin A \text{ or } A = \mathbb{R}\}$. Show that \mathcal{O} is a topology on \mathbb{R} . What are the closed sets in $(\mathbb{R}, \mathcal{O})$? What is the closure of the set $\{1\}$? Is this topology Hausdorff?
- Q30 Let $\mathcal{B} = \{ [a, b) \mid a, b \in \mathbb{R} \}.$
 - (a) Show that \mathcal{B} is the basis for a topology on \mathbb{R} . This is the *lower-limit topology* on \mathbb{R} .
 - (b) Show that the lower limit topology is finer than the Euclidean topology on IR.
 - (c) Decide whether the sets [a, b), (a, b), (a, b], [a, b], where $a, b \in \mathbb{R}$, are closed with respect to the lower limit topology.
 - (d) For each set in the previous part, find its closure with respect to the lower limit topology.
 - (e) Is the lower limit topology Hausdorff, regular, normal?
 - (f) Is \mathbb{Q} is dense in \mathbb{R} with respect to the lower limit topology?
 - (g) Is the lower limit topology second countable?
 - (h) Is the lower limit topology metrizable?