Problem Set 4

- Q27 Let X be a normed space and $x_0 \in X$. Show that $||x_0|| \leq C$ if and only if $|f(x_0)| \leq C$ for all $f \in S(X^*)$.
- Q28 Complete P2 Q15, showing that $||T|| = ||T^*||$, i.e. the map $T \to T^*$ is an isometry, using one of the consequences of the Hahn-Banach theorem.
- Q29 Show that if X is reflexive, then X^* is reflexive. What about the converse?
- Q30 Prove the following facts about the sequence spaces l_p .
 - (a) For $1 , <math>(l_p)^*$ is isometric with l_q , where q satisfies $\frac{1}{p} + \frac{1}{q} = 1$. Conclude that l_p is reflexive.
 - (b) The dual $(c_0)^*$ is isometric with l_1 .
 - (c) The dual $(l_1)^*$ is isometric with l_{∞} .
 - (d) The spaces c_0 , l_1 and l_{∞} are not reflexive.
- Q31 Let X be a normed space.
 - (a) What are X^{\perp} and $\{0\}^{\perp}$?
 - (b) If Y_1, Y_2 are closed subspaces of X such that $Y_1 \neq Y_2$, show that $Y_1^{\perp} \neq Y_2^{\perp}$. Is this also true if one or both subspaces are not closed?
- Q32 Let Y be a subspace of the normed space X. Suppose $\dim X = n$ and $\dim Y = m$. Show that $\dim Y^{\perp} = n - m$. Formulate this as a theorem about the solution set of a system of linear equations.
- Q33 Let $T \in \mathfrak{B}(X,Y)$. Show that:
 - (a) $(\overline{\operatorname{im}(T)})^{\perp} \subseteq \ker(T^*)$
 - (b) $\operatorname{im}(T) \subseteq \ker(T^*)_{\perp}$.

What does the second part imply for solving Tx = y?

Q34 Let X be a set and $\mathcal{F}_b(X)$ be the real vector space of all bounded, real-valued functions on X. For each $f \in \mathcal{F}_b(X)$, let

$$||f|| = \sup_{x \in X} |f(x)|.$$

You may assume that $(\mathcal{F}_b(X), ||\cdot||)$ is a normed space.

- (a) Show that $(\mathcal{F}_b(X), ||\cdot||)$ is complete.
- (b) Suppose that (X, d) is a metric space and fix $a \in X$. For $x \in X$, define the function $f_x \colon X \to \mathbb{R}$ by:

$$f_x(t) = d(x,t) - d(a,t).$$

Show that $f_x \in \mathcal{F}_b(X)$, and that the map $x \to f_x$ is an isometry onto its image (where $\mathcal{F}_b(X)$ is given the metric induced by the norm). Conclude that X is homeomorphic to a subset of $\mathcal{F}_b(X)$, where both spaces are given the induced topologies.

(c) Discuss differences and analogies of (b) with the result that every normed space is isometric to a subspace of its double-dual.