Problem Set 3

- Q1 Check the details in the proof of the "Completion Theorem 2.18" (\sim is an equivalence relation; the vector space structure and the norm on \hat{X} are well-defined).
- Q2 Let X be a normed space and $x_0 \in X$. Show that $||x_0|| \leq C$ if and only if $|f(x_0)| \leq C$ for all $f \in S(X^*)$.
- Q3 Let X and Y be normed spaces and $T \in \mathfrak{B}(X, Y)$. We know that $T^* \in \mathfrak{B}(Y^*, X^*)$. Show that $||T|| = ||T^*||$, i.e. the map $T \to T^*$ is an isometry. Hint: first show $||T^*|| \leq ||T||$, then use $||S|| = \sup\{ ||Sx|| \mid ||x|| = 1 \}$ for both operators and define an element in Y^* using one of the consequences of the Hahn-Banach theorem.
- Q4 Let X be a normed space and $f \in X'$. Show that $f \in X^*$ if and only if ker f is closed (in the norm topology).
- Q5 Let Y be a finite dimensional subspace of the normed space X. Show that Y is closed in X (in the norm topology).
- Q6 Show that if X is reflexive, then X^* is reflexive. What about the converse?
- Q7 Prove the following facts about the sequence spaces l_p .
 - (a) For $1 , <math>(l_p)^*$ is isometric with l_q , where q satisfies $\frac{1}{p} + \frac{1}{q} = 1$. Conclude that l_p is reflexive.
 - (b) The dual $(c_0)^*$ is isometric with l_1 .
 - (c) The dual $(l_1)^*$ is isometric with l_{∞} .
 - (d) The spaces c_0 , l_1 and l_{∞} are not reflexive.

Q8 Let X be the normed space with underlying vector space \mathbb{R}^2 and norm defined by

 $||(a,b)|| = \max\{|a|, |b|, |a+b|\}.$

- (a) Sketch the unit ball of this norm.
- (b) Find the dual norm on X^* .
- (c) Sketch the unit ball of the dual norm.
- (d) Is X isometric with X^* ?
- Q9 Let X be a normed space.
 - (a) What are X^{\perp} and $\{0\}^{\perp}$?
 - (b) If Y_1, Y_2 are closed subspaces of X such that $Y_1 \neq Y_2$, show that $Y_1^{\perp} \neq Y_2^{\perp}$. Is this also true if one or both subspaces are not closed?
- Q10 Let Y be a subspace of the normed space X. Suppose dim X = n and dim Y = m. Show that dim $Y^{\perp} = n - m$. Formulate this as a theorem about the solution set of a system of linear equations.
- Q11 Let $T \in \mathfrak{B}(X, Y)$. Show that:
 - (a) $(\overline{\operatorname{im}(T)})^{\perp} \subseteq \ker(T^*)$
 - (b) $\operatorname{im}(T) \subseteq \operatorname{ker}(T^*)_{\perp}$.

What does the second part imply for solving Tx = y?