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1. (14 points) Let f(z) = az+b

cz+d
be a fractional linear transformation where a, b, c, and

d are all real numbers with c 6= 0 and ad − bc = 1.

a. Find the image of the line {Re(z) = −d/c} ∪ {∞} under f .

b. The image of the line {Im(z) = 1} ∪ {∞} under f is a circle; find its diameter.



2. (18 points) Determine the set of all biholomorphic mappings from the standard sector
Sα = {z ∈ C : 0 < arg z < α}, where 0 < α < 2π, onto the interior of the unit disc
D2 = {z ∈ C : |z| < 1}.



3. (12 points) Find, with proof, the number of zeros of the following polynomials inside
the given sets:

a. 2z5 − z3 + 3z2 − 8z + 1, {|z| < 1}

b. z4 − 4z3 + 6z2 − 4z + 3, {|z − 1| < 1}

c. z4 − 80z + 81, {|z| < 3}



4. (10 points) Let U ⊂ C be a domain and F be a family of holomorphic functions
which is normal in U. Prove that the family G = {f ′ : f ∈ F} is normal in U .



5. (14 points) Find the power series expansion (i.e., find a general formula for the
coefficients) for the function f(z) = z−1

z2
−2z+2

around the point z = 1. What is the
radius of convergence of this power series?



6. (12 points) Assume that p: S → R is a covering map between compact Riemann
surfaces, and that the genus of S is seven. What are the possibilities for the genus
of R?



7. (20 points) Let S be a compact Riemann surface. A sequence of functions (fn) on S
is said to converge normally to a limit function f if the induced maps on coordinate
charts converge uniformly on compact subsets.

Let p: S → R be a covering map. Show that if ϕn: S → S is a sequence of covering
transformations which converges normally to the covering transformation ϕ: S → S,
then there is an index n0 such that ϕn = ϕ whenever n ≥ n0.


