## Cowan's Identity

My website would not be complete without special advertisement of my 2007 research on convex hulls. There are some original identities arising in that research — and I regard them as potentially-useful contributions to the mathematical literature. One identity, in particular, has been named after me (as *Cowan's Identity* in the 2008 book by Schneider and Weil [1] and *Cowan's Formula* in [2]).

Whether the identity/formula is important remains to be seen, but it is quite stunning and deserving better publicity than has occurred to date (with my almost-total neglect of it).

I describe, in Theorem 1 below, a simple planar version of the identity. Some pictures to illustrate the identity follow. Later, in Theorem 2, the identity is discussed in d dimensions.

## The identity in $\mathbb{R}^2$

**Theorem 1:** For  $n \geq 3$ , place n points  $P_1, P_2, ..., P_n$  in the plane, positioned so that  $H_n$ , the convex hull of the points, has dimension 2. In other words, we require that there is no line in  $\mathbb{R}^2$  which contains all n points. Nor can it be that all points coincide. Now, add a point P at any position in  $\overset{\circ}{H}_n$ , the interior of  $H_n$ . Define  $c_j(P)$ , for  $1 \leq j \leq n$ , as the number of sub-collections of j points from  $\{P_1, P_2, ..., P_n\}$  whose convex-hull contains the point P. Then

$$\Psi(P) := c_1(P) - c_2(P) + \dots (-1)^{n-1} c_n(P) = 1 \qquad \text{for all } P \in \overset{\circ}{H}_n. \quad \Box$$

**Example 1:** See Figure 1, which has three cases (a), (b) and (c), each with n = 6 and the same six points  $P_1, P_2, \dots, P_6$ . Consider cases (a) and (b), which show the six points in black. All 2-hulls are shown, these being line-segments joining pairs of points. The reference point P (coloured red) is also shown. In case (b), P lies on two of the 2-hulls. Case (c) also shows the six points and the 2-hulls, but it has the additional feature that P is positioned on one of the  $P_j$  (see the black dot with a red centre). Theorem 1 allows this feature.



Figure 1: Here n = 6. As described in Example 1, points  $P_1, P_2, P_3, P_4, P_5$  and  $P_6$  are in the same general position in all three drawings.  $\Psi(P) = 1$  as shown under each case. So Theorem 1 holds in the three cases.

Theorem 1 holds even when the points  $P_1, P_2, ..., P_n$  are not all distinct. We show an example where  $P_7$  coincides with  $P_6$ .

**Example 1 (continued):** Let n = 7. The first six of the points are the black dots of Figure 1(a). The seventh,  $P_7$ , coincides with  $P_6$ , which is the black point furthest to the right of Figure 1(a). Clearly  $c_1(P) = c_2(P) = 0$  and  $c_7 = 1$ . With considerably more effort, if working with just a pencil and paper, the following results emerge:  $c_3(P) = 13$ ;  $c_4(P) = 26$ ;  $c_5(P) = 20$ ;  $c_6(P) = 7$ . Therefore  $\Psi(P) = 1$ .

**Example 2:** One point (black with red centre) lies on P. The red arrows indicate a multiplicity at the indicated black dot. Each 0f the six remaining black dots accommodates one point. So we see that n = 12. The  $c_j(P)$  counts and the resulting value of  $\Psi(P)$  are displayed below Figure 2. Thus, for this quite complicated example (with large numbers involved in the calculation of  $\Psi$ ), Theorem 1 is validated.



 $\Psi = 1 - 16 + 118 - 373 + 701 - 883 + 782 - 494 + 220 - 66 + 12 - 1 = 1$ 

Figure 2: Note here a few colinearities: of three points, and also one of four points. Theorem 1 handles these complications. See Example 2.

These examples do not prove Theorem 1, of course. The proof can be found in my paper [3]. That paper also contains the trivial one-dimensional case. We now deal with the remaining situation: the *d*-dimensional case (with  $d \ge 3$ ).

## The identity in $\mathbb{R}^d, d \geq 3$

**Theorem 2:** With  $n \ge d + 1$ , we place *n* points  $P_1, P_2, ..., P_n$  in  $\mathbb{R}^d, d \ge 3$ , positioned so that  $H_n$ , the convex hull of the points, has dimension *d*. Add the point *P* at any position in  $\overset{\circ}{H}_n$ , the interior of  $H_n$ . Define  $c_j(P)$ , for  $1 \le j \le n$ , as before: the number of sub-collections of *j* points from  $\{P_1, P_2, ..., P_n\}$  whose convex-hull contains the point *P*. Then, there exists a set  $\mathcal{E} \subset \mathbb{R}^d$  of dimension at most (d-2), such that

$$\Psi(P) := c_1(P) - c_2(P) + \dots (-1)^{n-1} c_n(P) = (-1)^d \quad \text{for all } P \in H_n \setminus \mathcal{E}.$$
(1)

Theorem 2 was proved in [3]-[4] and (by a more streamlined approach) in [1].

**Remark 1:** Formula (1) has been proved with a different exceptional set  $\mathcal{E}$ , namely " $\mathcal{E}$  is a set of d-dimensional Lebesgue measure zero" instead of " $\mathcal{E}$  is a set of dimension  $\leq (d-2)$ ". Which version gives the stronger mathematical result? This question is now unimportant, because Kabluchko et al [2] have proved formula (1) for  $\mathcal{E} = \emptyset$ : that is, for all positions of  $P \in \overset{\circ}{H}_n$ .

I was very pleased to find the Euler-like alternating sum, to prove it for  $d \leq 2$ and also prove it (albeit with a small exceptional set of P positions) when  $d \geq 3$ . I am also pleased that others ([2], [5]) have removed the exceptional set and extended the scope of the Identity.

## **References:**

[1] Schneider, R. and Weil, W. *Stochastic and Integral Geometry*. Springer, Berlin Heidelberg. 2008.

[2] Kabluchko, Z. et al. Inclusion-exclusion principles for convex hulls and the Euler relation. *Discrete and Computational Geometry*, **58**, 417-434 (2017)

[3] Cowan, R. Identities linking volumes of convex hulls. *Advances in Applied Probability.* **39**, 630–644 (2007).

[4] Cowan, R. Recurrence relationships for the mean number of faces and vertices for random convex hulls. *Discrete and Computational Geometry* 43(2), 209-220 (2010)

[5] Hug, D. and Kabluchko, Z. An inclusion-exclusion identity for normal cones of polyhedral sets. *Mathematika* 64(1) 124–136 (2018).

**Note:** Personal-archive versions of [3] and [4] are available on this website. See papers 77 and 78 on

www.maths.usyd.edu.au/u/richardc/randomgeom.html