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Abstract. We investigate the stochastic Landau-Lifshitz-Gilbert (LLG)
equation on a periodic 2D domain, driven by infinite-dimensional Gauss-
ian noise in a Sobolev class. We establish strong local well-posedness
in the energy space and characterize blow-up at random times in terms
of energy concentration at small scales (bubbling). By iteration, we
construct pathwise global weak solutions, with energy evolving as a
càdlàg process, and prove uniqueness within this class. These results
offer a stochastic counterpart to the deterministic concept of Struwe
solutions. The approach relies on a transformation that leads to a mag-
netic Landau-Lifshitz-Gilbert equation with random gauge coefficients.
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1. Introduction

The formation and structure of singularities are among the key questions in
the theory of (dissipative) harmonic flows. An interesting prototype is the
Landau-Lifshitz-Gilbert equation (LLG)

∂tm = −m× (∆m+ αm×∆m)

which has its roots in the continuum theory of ferromagnetism. Mathemati-
cally it combines the heat and Schrödinger flow of harmonic maps m from a
domain D into the unit sphere S2 ⊂ R3. The governing energy is the Dirich-
let energy E(m) = 1

2

∫
D |∇m|2 dx. The damping constant α > 0 highlights

the dissipative term which is nothing but the tension field ∆m+ |∇m|2m,
known from the theory of harmonic maps. As a hallmark of precessional
spin dynamics, the Hamiltonian terms of LLG gives rise to a large number
of interesting oscillatory phenomena. These terms, however, make the equa-
tion quasilinear and mathematically more challenging than the semi-linear
harmonic map heat flow equation (HMHF).

Stochastic Landau-Lifshitz-Gilbert equation (SLLG)

∂tm = −m× (∆m+ ξ + αm×∆m) .

with a random field ξ and a suitable interpretation in the framework of
stochastic calculus are examined in the context of random fluctuations and
thermal activated processes in ferromagnetism. A particular focus is on the
switching between stable equilibrium states over energy barriers and related
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stochastic optimal control problems [17]. More recently, singularity medi-
ated processes such as the nucleation, annihilation and collapse of topolog-
ical field configurations such as magnetic vortices and skyrmions came into
focus. The singular nature of stochastic forcing terms in the spatially multi-
dimensional case and their effect on the blow-up behaviour of dissipative
harmonic flows is a widely unmapped area of research.

The theory of partial regularity in the energy-critical two-dimensional case
is largely based on the seminal work of Struwe on the harmonic map heat
flows from surfaces [35]. There is a canonical class of energy-decreasing weak
solutions for which the initial value problem is uniquely and globally solvable
[18, 35], nowadays known as Struwe solutions. In this class, the blow-up
scenario is described as the concentration and drop of a quantized amount of
energy accompanied by changes of the local topology of the solution. This so-
called bubbling occurs at a finite number of space-time points depending on
the initial energy [11]. In particular, there is a precise energy threshold below
which solutions remain globally regular. In a refined approach, the so-called
bubble-tree construction restores the energy identity at singular times [33].
Finally, the so-called reverse bubbling construction [6, 36] serves to construct
a weak solution to the initial value problem that are not in the class of
Struwe solutions. The theory has been extended to LLG [13, 24]. Recently,
a very general construction of blow-up solutions has been developed in [37].
Regularity and blow-up criteria are crucial to understand the stability and
dynamics of magnetic vortices and skyrmions [16, 23, 29, 30, 31]. However,
there is limited theory about their behaviour in the presence of noise [4, 14],
and we refer the reader to [2, Section 2.3.3] for numerical experiments on
pathwise (singular) dynamics under different noise intensities.

Passing to a stochastic framework for bubbling and Struwe type solutions
requires first of all a strong well-posedness concept of pathwise solutions
in energy space for small (stopping) times. This challenges existing math-
ematical strategies for the SLLG based on a Faedo-Galerkin scheme and
stochastic compactness arguments leading to weak martingale solutions as
developed in [8]. Improvements regarding pathwise uniqueness based on
Doss-Sussmann type transformations [9] and the concept of rough paths [22]
are typically restricted to the (subcritical) one-dimensional case. In com-
parison, the stochastic HMHF is a semilinear parabolic system that allows
a mild formulation using the underlying semigroup and the Duhamel prin-
ciple. Existence and uniqueness of local pathwise solutions in higher order
Sobolev spaces can then be derived from stochastic convolution estimates
and a fixed point argument. This is the starting point for a program to con-
struct Struwe-type solutions for the stochastic HMHF developed by Hocquet
in [25]. A following up work [26] shows that the comparison argument used
to construct blow-up solutions for the axially symmetric HMHF extends to
the case of random perturbations, proving that finite time blow-up happens
with positive probability.



4 BENIAMIN GOLDYS, CHUNXI JIAO, AND CHRISTOF MELCHER

In this work we develop a framework to extend the concept of Struwe-type
solutions to SLLG and allows for a precise bubbling analysis. More precisely,
we examine processes m of maps from the two-dimensional flat torus T2 to
the unit sphere S2 that satisfy

(1) dm = −m× (∆m+ αm×∆m) +m× ◦ dW.

Here, W is a Wiener process on a probability space (Ω,F ,P) taking values
in Hσ(T2;R3) for some σ > 0, which is formally defined in Section 1.1.
The equation is understood in the framework of Stratonovich calculus that
guarantees that the geometric constraint m(t, x, ω) ∈ S2 is preserved along
the flow.

Our main task is the construction of strong (in the PDE sense) solutions of
(4) for given initial conditions m0 ∈ H1(T2;S2). Our approach is based on
a Doss-Sussmann type transformation whose conceptual application in the
context of SLLG was developed by one of us in a series of work [19, 20].
The key idea is that the reduced problem ∂tm = ξ ×m gives rise to a pure
precession of m about the field ξ that can be captured by a parametrized
rotation Y which is a unique solution of a stochastic differential equation

taking values in C
1
2
−([0, T ];Hσ(T2;SO(3))), P-a.s. The random transfor-

mation u = Y −1m gives rise to a new process u and a random PDE in
form of a gauged LLG equation

(2) ∂tu+ u× (∆Au+ αu×∆Au) = 0,

with the covariant gradient and Laplacian ∇Au = ∇u + Au and ∆A =
∇A · (∇Au), respectively, where A = Y −1∇Y . This is the LLG equation
for the magnetic Dirichlet energy

E(u, A) :=
1

2

∫
T2

|∇Au|2 dx.

For σ ≥ 1 and ∇u ∈ L∞(0, T ;L2(T2)), the energies E(u, A) and E(u)
differ by an L2-estimate of A which is P-a.s. finite, so that the conventional
weak solution concept in the space H1((0, T )×T2; S2)∩L∞(0, T ;H1(T2; S2))
applies in a pathwise fashion. It is not difficult to obtain an equivalence
result between pathwise weak solutions of (2) and the SLLG (see Lemma
2.6), which allows us to focus on constructing solutions of (2) instead of (4).

The idea of using a gauge transformation to convert an SPDE into a random
PDE has also been applied in the context of stochastic nonlinear Schrödinger
equations [3, 7] where Y is unitary and A takes the form A = ia for a real
valued process a.

For local strong solutions u of (2) in the critical Sobolev space, which is
H1(T2;R3) in our case, it is customary to first construct solutions in higher
order Sobolev spaces where the equation behaves subcritical. We observe
that (2) can be considered as a perturbation of the ungauged LLG equation,



PATHWISE SOLVABILITY AND BUBBLING IN 2D SLLG 5

which is parabolic with an additional tangent field F (u) that is bounded by

|F (u)| ≲
(
|A|2 + |∇ ·A|+ |A||∇u|

)
,

motivating the regularity assumption σ ≥ 2 that also guarantees a pointwise
bound of A. The method of choice for quasilinear parabolic systems is based
on a linearization procedure and fixed point argument that uses maximal
regularity properties. Following Struwe’s program, extension to the critical
case by approximation requires an ε-regularity result arising from the spe-
cial analytic structure of the geometric nonlinearities in combination with a
localized version of Ladyzhenskaya’s interpolation inequality, and a covering
argument. The combination of small energy compactness, the removability
of singularities and energy gap featured by harmonic maps between S2 allows
one to describe the bubbling scenario. Finally, the merging of local solutions
leads to the Struwe solution. A key issue in the case of a random PDE is to
keep track of the dependence on the infinite-dimensional parameter arising
from stochasticity.

We remark that in [25], the stochastic HMHF features an H1 noise which
seems to be critical for the basic energy estimated. This, however, seems
to require a special symmetry assumption leading to a cancellation in order
to avoid L∞ properties. Our approach for SLLG requires higher regularity
assumptions on the noise but no structural conditions. Moreover, we provide
the precise energy threshold for bubbling (see Theorem 4.1).

Next, we provide a precise formulation of (1) and state our main result.

1.1. Wiener process. Let (Ω,F , (Ft)t≥0 ,P) be a probability space with
the filtration F = (Ft)t≥0. We assume that this probability space supports
a sequence (Wj) of independent, real-valued Brownian motions. Note that
W = (Wj) defines a cylindrical Wiener process on the Hilbert space ℓ2 of
square-summable sequences. We also assume that for each t ≥ 0, Ft is a
completion of the σ-algebra σ (Wj(s); j ≥ 1, s ≤ t). This implies

Ft− = Ft = Ft+ ,

a fact that we will need later.

For simplicity, let Hσ := Hσ(T2;R3) and Lp := Lp(T2;R3) for σ ≥ 0 and
p ∈ [1,∞]. Let (gj)j∈N ⊂ L2 be a sequence that satisfies

∑∞
j=1 |gj |2L2 < ∞.

Let P : ℓ2 → L2 be defined as

Pl =
∞∑
j=1

⟨l, hj⟩ gj , l ∈ ℓ2 ,

where (hj) is a complete orthonormal basis of ℓ2. Then the process

(PW )(t) =
∞∑
j=1

Wj(t)gj , t ≥ 0,
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defines an L2-valued Wiener process with the covariance operator Q =
P ⋆P =

∑∞
j=1 gj ⊗ gj , and we have E[|PW (t)|2L2 ] = tTrQ = t

∑∞
j=1 |gj |2L2 <

∞ for any t ≥ 0.

The main result (Theorem 1.1) will require a stronger condition that for a
certain σ ≥ 2,

(3) q2(σ) :=
∞∑
j=1

|gj |2Hσ <∞ .

Assume that (3) hold for some σ ≥ 2. For every j ≥ 1, we define a bounded
linear operator Gj : L2 → L2 by

Gjφ = φ× gj , φ ∈ L2.

Then, ∥Gj∥L (L2,L2) = |gj |L∞ ≲ |gj |H2 and Gj has adjoint G⋆
j = −Gj for ev-

ery j ≥ 1, and
∑∞

j=1 ∥Gj∥2L (Hσ ,Hσ) <∞, where L (X,Y ) denotes the space

of bounded linear operators mapping from X to Y . Similarly, we define
G : L2 → L (ℓ2,L2) (and G(φ) : ℓ2 → L2) by

G(φ)l = φ× Pl =
∞∑
j=1

⟨l, hj⟩Gjφ, φ ∈ L2, l ∈ ℓ2 .

In particular,

G(φ)W (t) =
∞∑
j=1

Gjφ Wj(t) .

Thus, if v is an F-progressively measurable process such that v ∈ L∞(0, T,L2),
P-a.s. then we can define the Stratonovich integral∫ t

0
G(v(s)) ◦ dW (s) =

∫ t

0
S(v(s)) ds+

∫ t

0
G(v(s)) dW (s) ,

where S is the Stratonovich correction term S(v) = 1
2

∑∞
j=1G

2
jv. We refer

the reader to [15] for details of the Itô integral
∫ t
0 G(v(s)) dW (s) on Hilbert

space.

1.2. Main result. Formally, the SLLG equation reads

(4)
dm(t) = −m(t)× [∆m(t) + α (m(t)×∆m(t))] dt

+G(m(t)) ◦ dW (t), t ≥ 0,

with initial condition m(0) = m0 ∈ H1(T2;S2).

Definition 1.1 (Weak martingale solution). For every T ∈ (0,∞), a system
(Ω,F , (Ft)t∈[0,T ],P,W,m) consisting of a filtered probability space support-
ing a Wiener process W as in Section 1.1 and a progressively measurable
process m : [0, T ]×Ω → L2, is said to be a weak martingale solution of (4)
on [0, T ] if P-a.s.

(a) |m(t, x)| = 1 for a.e.-(t, x) ∈ [0, T ]× T2,
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(b) m ∈ C([0, T ];L2) ∩ L∞(0, T ;H1) and m×∆m ∈ L2(0, T ;L2),

(c) for every t ∈ [0, T ] and ψ ∈ C∞
0 (T2;R3), the equality

⟨m(t)−m0, ψ⟩L2 =

∫ t

0
⟨m×∇m,∇ψ − α∇(m× ψ)⟩L2 ds(5)

+

∫ t

0
⟨ψ,G(m) ◦ dW (s)⟩L2 .

The nonlinear term m×∆m in Definition 1.1(b) is understood in the sense
of distribution

m×∆m := ∇ · (m×∇m),

consistent with the weak formulation (5), so L2-regularity of this term can
be seen as a form of finite dissipation property and will play a crucial role
in the question of uniqueness of suitable weak solutions.

Definition 1.2 (Local strong solution). Given T ∈ (0,∞) and a filtered
probability space supporting a Wiener process (Ω,F , (Ft)t∈[0,T ],P,W ) as in
Section 1.1. A pair (m, [τ0, τ)) defined on (Ω,F , (Ft)t∈[0,T ],P) is said to be
a local strong solution of (4) if m is a progressively measurable process and
τ0, τ ∈ (0, T ] are stopping times such that P-a.s. for every t ∈ (τ0, τ),

(a) m ∈ C([τ0, t];H
1(T2; S2)),

(b) ∆m ∈ L2(τ0, t;L2),

(c) the equality

m(t) = m(τ0)−
∫ t

τ0

[m× (∆m+ αm×∆m)] (s) ds

+

∫ t

τ0

G(m(s)) ◦ dW (s),

holds in L2.

Now we state the main result of this paper, where the energy concentration is
described by a lower bound for energies over balls Br(xn) ⊂ R2 of arbitrary
radii r centred at random locations xn ∈ T2. The result follows directly
from inverse transformation of the Struwe solution u of (2), for which we
postpone the details to Theorem 4.1 and 4.4 in Section 4.

Theorem 1.1. Assume that (3) holds for σ = 4. For every m0 ∈ H1(T2;S2),
there exists a weak martingale solution (Ω,F , (Ft)t∈[0,T ],P,W,m) of (4)
with m(0) = m0 in the sense of Definition 1.1 and an increasing sequence
of (Ft)t∈[0,T ]-stopping times (τk)k∈N, such that T ∈ (τM , τM+1) for some
M ≥ 0 with τ0 = 0, and that for all k ≤M ,

(a) m|[τk,τk+1∧T ) is a (local) strong solution in the sense of Definition 1.2,
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(b) limti↗τk m(t) = m(τk) weakly in H1, P-a.s. for any sequence of stopping
times (ti)i∈N with ti < τk for all i ∈ N and ti ↗ τk, P-a.s.

(c) there exist a random variable Nk ∈ [0,∞), P-a.s. and random points
x1, . . . , xNk

∈ T2 where for every r > 0,

lim sup
t↗τk

1

2

∫
Br(xn)

|∇m(t)|2 dx ≥ 4π n = 1, . . . , Nk, P-a.s.

Theorem 1.2. For i = 1, 2, let (Ω,F , (Ft)t∈[0,T ],P,W,mi) be a weak mar-

tingale solution to (4) with càdlàg energy process {|∇mi(t)|2L2 : t ∈ [0, T ]}.
Then, for every t ∈ [0, T ],

|m1(t)−m2(t)|L2 = 0, P-a.s.

Applying an infinite-dimensional Yamada-Watanabe theorem (for instance,
[32, Theorem 2]), we obtain a solution of (4) strong in the probabilistic
sense.

The rest of the paper is devoted to the proof of Theorem 1.1 and 1.2. In
Section 2, we introduce the transformation operator Y (and A) and an
equivalence result between the transformed equation and (4) (Lemma 2.6).
In Section 3, we show the existence of a maximal solution u of the gauged
LLG equation (2) in H2 and verify measurability of the local solutions and
the maximal time. To prepare for the approximations of the critical case,
we collect energy and higher order estimates of u in Sections 3.2 and 3.3.
We formally describe the Struwe solution of (2), or equivalently (13), in
Section 4 (Theorem 4.1 and 4.4), and leave the proofs to Sections 5 and 6.
We conclude with some remarks on the regularity of noise in Section 7.

2. Transformation

2.1. Transformation operator Y and A. We start with recalling some
facts about the equation

(6) dY (t) = S(Y (t)) dt+G(Y (t)) dW (t), t ≥ 0 ,

with initial condition Y (0) = y0 ∈ L2.

Lemma 2.1. Assume that y0 ∈ Hσ and (3) holds for some σ ≥ 2. There
exists a unique solution Y (·; y0) of (6) taking values in Hσ, P-a.s. Moreover,
for every T ∈ (0,∞) and p ∈ [1,∞),

E

[
sup

t∈[0,T ]
|Y (t; y0)|pHσ

]
<∞ ,

and Y (·; y0) ∈ Cγ([0, T ];Hσ), P-a.s. for γ ∈ (0, 12).
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Proof. By the assumption (3), the equation (6) has Lipschitz coefficients in
Hσ for σ ≥ 2. The result is then standard following from [15, Theorem 7.2]
and Kolmogorov’s continuity criterion. □

With an abuse of notation, we still write Hσ and Lp for matrix or tensor-
valued functions when the codomain is clear. Similar to Gj in Section 1.1,
for φ ∈ L2(T2;R3 ⊗ R3) and h ∈ R3, define

(Gjφ)h = (φh)× gj = Gj(φh), j ≥ 1 .

The operator Gj : L
2(T2;R3 ⊗ R3) → L2(T2;R3 ⊗ R3) is bounded with

∥Gj∥L2→L2 = |gj |L∞ ,

and adjoint G⋆
j = −Gj . Moreover,

∑∞
k=1 ∥Gk∥2Hσ→Hσ <∞ under the assump-

tion (3). Then we can define operators G and S in a similar manner to G
and S, respectively, with Gk in place of Gk. Consider the equation

(7) dY (t) = S(Y (t)) dt+ G(Y (t)) dW (t), t ≥ 0 ,

with initial condition Y (0) = IR3 .

Lemma 2.2. Assume that (3) holds for some σ ≥ 2. There exists a unique
solution Y of (7) taking values in Hσ(T2;R3⊗R3), P-a.s. with the following
properties.

(a) For every T ∈ (0,∞) and p ∈ [1,∞),

E

[
sup

t∈[0,T ]
|Y (t)|p

Hσ(T2;R3⊗R3)

]
<∞ ,

and Y ∈ Cγ
(
[0, T ];Hσ(T2;R3 ⊗ R3)

)
, P-a.s. for γ ∈

(
0, 12
)
.

(b) For every t ≥ 0, x ∈ T2, h ∈ R3 and a.e.-ω ∈ Ω,

|Y (t, x, ω)h|R3 = |h|R3 .

(c) For every t ≥ 0 and a.e.-ω ∈ Ω, the mapping Y (t, ω) ∈ Hσ(T2;R3⊗R3)
can be identified with a bounded linear operator Y (t, ω) : L2 → L2 by

(Y (t, ω)φ)(x) = Y (t, x, ω)φ(x), φ ∈ L2 ,

where Y (t, ω) defines an isometric isomorphism on L2 and an isomor-
phism on Hσ for σ ≥ 2, with Y −1(t, ω) = Y ⋆(t, ω) governed by the
equation

(8) dY ⋆(t) = −Y ⋆(t)G ◦ dW (t), t ≥ 0, Y ⋆(0) = IR3 .

(d) For every t ≥ 0 and a.e.-ω ∈ Ω,

Y (t, ω)(fv) = fY (t, ω)v,

Y (t, ω)(v × φ) = Y (t, ω)v × Y (t, ω)φ,

for any f : T2 → R and v : T2 → R3 such that fv ∈ L2, and φ ∈ L2.
The same equalities hold for Y ⋆(t, ω).
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Proof. Part (a) follows from Lemma 2.1. Part (b) and (c) are analogous
to the proof of [19, Lemma 3.3], noting that the matrix Y ⋆(t, x, ω) is the
transpose of Y (t, x, ω) for every (t, x) ∈ [0, T ]×T2 and a.e.-ω ∈ Ω. Part (d)
is similar to the proof of [19, Lemma 3.5]. □

We define the process A by

(9) A := Y ⋆(∇Y ) : [0, T ]× T2 × Ω → R2 ⊗ R3×3,

where its components Ai = Y ⋆(∇xiY ), i = 1, 2, take values in so(3) the
space of skew-symmetric 3× 3 matrices, for every (t, x) ∈ [0, T ]× T2, P-a.s.
By Lemma 2.2(a), we have

A ∈ Lp(Ω;L∞(0, T ;Hσ−1(T2;R2 ⊗ so(3)))),

A ∈ Cγ([0, T ];Hσ−1(T2;R2 ⊗ so(3))), P-a.s.

for every T ∈ (0,∞), p ∈ [1,∞) and γ ∈ (0, 12). Moreover, applying Itô’s
lemma,

A(t) =
1

2

∫ t

0

∞∑
k=1

Y ⋆(s) ((∇Gk)Gk − Gk(∇Gk))Y (s) ds

+

∫ t

0

∞∑
k=1

Y ⋆(s)(∇Gk)Y (s) dWk(s), t ≥ 0.

The relevance of the process A manifests itself in the behaviour of the spatial
gradient under transformation Y . Here, we have the covariant derivative

(10) ∇A := Y ⋆∇Y ,

and the covariant Laplacian

(11) ∆A := ∇A · ∇A = Y ⋆∆Y .

Taking into account (Y ⋆Y )(t, x) = IR3 , P-a.s. we have

∇A = ∇+A, ∆A = ∆+A · ∇+∇ ·A+A2, P-a.s.

where the dot product means contracting over the R2 components, and
A2 = A · A = A2

1 + A2
2 : [0, T ] × T2 × Ω → R3×3 mapping to a symmetric

matrix P-a.s. Hence, transformation by means of Y is only reflected in the
equation by means of the process A.

Remark 2.3. From a coordinate transformation on S2, A = A(ω) is a pure
gauge for a.e.-ω ∈ Ω, so that the curvature

∂1A2 − ∂2A1 + [A1, A2] = 0.

With ∇⊥ = (∂2,−∂1), this provides a pointwise control |∇⊥A| = |[A1, A2]|
so that Gagliardo-Nirenberg type interpolation estimates can be reduced to
divergence bounds. In fact, for any component b = (A

(j,k)
1 , A

(j,k)
2 ) : T2 → R2,

1 ≤ j, k ≤ 3, it holds that

|∇b|2 = |∇ · b|2 + |∇⊥ · b|2 +∇⊥ · (b1∇b2 − b2∇b1) ,
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and thus

(12) |∇A|2 = |∇ ·A|2 + |[A1, A2]|2 −∇⊥ · Tr (A1∇A2 −A2∇A1) .

A gauge transformation is a smooth map X : R × T2 → SO(3) acting on v
and A. Then for A′ = X⋆AX +X⋆∇X,

X⋆∇AX = ∇+A′, X⋆∂tX = ∂t +X⋆(∂tX).

The rough dependence of A on t limits the spectrum of possible gauge trans-
formations that bring A into a particularly convenient form.

Example 2.4. LetW be a real-valued Wiener process. The transformation
Y = eWG with Gu = u× g for some g ∈ H1(T2; S2) reduces to

Y (t) = IR3 + (sinW (t))G+ (1− (cosW (t)))G2.

A straightforward calculation shows that the corresponding gauge potential
reads

A = sinW (t)∇G+ (1− cosW (t))(∇GG−G∇G),
and ∇ ·A = (sinW (t))∆G+ (1− cosW (t))((∆G)G−G∆G).

2.2. Transformed equation. Fix T ∈ (0,∞) and γ ∈ (0, 12). Let Y be the
solution of (6) described in Lemma 2.2, and let A be given by (9). Consider
the following equation with random coefficients

(13) ∂tu(t) = α
(
∆Au+ |∇Au|2u

)
(t)− (u×∆Au) (t), t ∈ [0, T ].

The right-hand side can be reduced to the original Landau-Lifshitz terms
(precession and damping) with a lower-order perturbation

(14) ∂tu = α
(
∆u+ |∇u|2u

)
− u×∆u+ F (t, A,u),

where

F (t, a,v) = α
(
a(t) · ∇v + (∇ · a(t))v + a2(t)v

)
(15)

+ α
(
|a(t)v|2v + 2 ⟨∇v, a(t)v⟩v

)
− v ×

(
a(t) · ∇v + (∇ · a(t))v + a2(t)v

)
,

for t ∈ [0, T ], and sufficiently regular functions a : [0, T ]× T2 → R2 ⊗ so(3)
and v : T2 → R3. If v : T2 → S2, then there exists a universal constant
c > 0 such that

(16) |F (t, a,v)| ≤ c
(
|a(t)|2 + |∇ · a(t)|+ |a(t)||∇v|

)
,

and similarly,

(17)

|∇F (t, a,v)| ≤ c
[
|a(t)||∇a(t)|+ |∇(∇ · a(t))|

+ (|∇a(t)|+ |a(t)|2)|∇v|

+ |a(t)|
(
|∇2v|+ |∇v|2

) ]
,

for t ∈ [0, T ], provided that a and v have well-defined derivatives.
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Remark 2.5. Under the Coulomb gauge condition ∇ · A = 0, the highest
order A derivatives in F and ∇F are eliminated.

Given a suitable progressively measurable solution u of the transformed
equation (13), we can show that there exists a weak martingale solution to
the SLLG equation (4) by transformation. This equivalence has been shown
in [19, 20]. We adapt this result to our problem setting below.

Lemma 2.6. Assume that (3) holds for σ = 2. If a process u : [0, T ]×T2×
Ω → R3 defined on a filtered probability space (Ω,F , (Ft)t∈[0,T ],P) satisfies

u(0) = m0 ∈ H1(T2; S2) and the following properties:

(a) u is progressively measurable with respect to (Ft)t∈[0,T ],

(b) |u(t, x)| = 1 for a.e.-(t, x) ∈ [0, T ]× T2, P-a.s.

(c) u ∈ C([0, T ];L2) ∩ L∞(0, T ;H1) ∩H1(0, T ;L2), P-a.s. and it satisfies
(13), P-a.s.

then m = Y u is a weak martingale solution of (4) in the sense of Definition
1.1.

Proof. By Lemma 2.2(b), |m(t, x)| = |(Y u)(t, x)| = 1 and |∇m(t, x)| =
|∇Au(t, x)| for a.e.-(t, x) ∈ [0, T ] × T2, P-a.s. Recall that ∇A = ∇ + A,
P-a.s. and A ∈ Lp(Ω;L∞(0, T ;H1)) for p ∈ [1,∞). Then it is immediate
that m satisfies part (a) and (b) of Definition 1.1. For part (c), applying
the Itô formula to m = Y u,

dm = S(Y )u dt+ G(Y )u dW + Y du.

This implies that for any ψ ∈ C∞
0 (T2;R3),

⟨m(t)−m0, ψ⟩L2 =

∫ t

0
⟨Y (s)(∂su(s)), ψ⟩L2 ds+

∫ t

0
⟨S(m(s)), ψ⟩L2 ds

+

∫ t

0
⟨ψ,G(m(s)) dW (s)⟩L2 ,

where by (10), Lemma 2.2(c) and (d),∫ t

0
⟨Y (∂su), ψ⟩L2 ds =

∫ t

0
⟨∂su,Y ⋆ψ⟩L2 ds

= α

∫ t

0

(〈
|∇m|2m, ψ

〉
L2 − ⟨∇m,∇ψ⟩L2

)
ds

+

∫ t

0
⟨m×∇m,∇ψ⟩L2 ds.

Thus, m satisfies (5), P-a.s. □
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Therefore, we study the equation (13) instead of the original SLLG, where
PDE tools can be applied directly to the former when ω ∈ Ω is fixed.

3. Solution of transformed equation

3.1. Maximal solution in H2. Fix σ = 2. Let (Ω,F , (Ft)t∈[0,T ],P,W ) be
given as in Section 1.1. We follow the approach in [28, Chapter 8] to show
the existence and uniqueness of a maximally defined solution in H2 of the
transformed equation (13) at a.e.-ω ∈ Ω.

Let E := Cγ([0, T ];H1(T2;R2 ⊗ so(3))) be the parameter space. Consider a
family of nonlinear equations: for a.e.-ω ∈ Ω,

(18)
∂tφ(t, ω) = H(t, z(ω), φ(t, ω)), t ∈ [t0(ω), T ],

φ(t0, ω) = u0(ω),

where

(19) H(t, a,v) = α
(
∆v + |∇v|2v

)
− v ×∆v + F (t, a,v),

for t ∈ [0, T ], a ∈ E and v ∈ H1(T2;S2) or v ∈ H2.

Taking t0 ≡ 0 and z = A, then (18) reduces to (13). Fix ω, the equations
become deterministic, for which we can introduce the notion of a maximal
solution without the concept of stopping times.

Definition 3.1. For every ω ∈ Ω with z(ω) ∈ E and u0(ω) ∈ H2, the pair
(u, τ)(ω) depending on z and u0, is said to be an H2-maximal solution of
equation (18) at ω if either

(a) τ = T and u ∈ C([t0, T ];H2) satisfies (18) in [t0, T ], or

(b) τ ∈ (t0, T ] and u ∈ C([t0, τ);H2) satisfies (18) in [t0, τ) with no continu-
able extension in H2.

For clarity, we write (u, [t0, T ])(ω) in case (a), and (u, [t0, τ)) in case (b) or
when the case (a) is not known.

A maximal solution is well-defined if there exists a unique local solution. Lo-
cal existence and uniqueness is guaranteed if the function H has sufficiently
smooth derivatives and one of them can generate an analytic semigroup. We
collect properties of H below.

From the definitions (19) and (15), H : [0, T ]× E ×H2 → L2 is continuous.
For every t ∈ [0, T ] and v ∈ H2, H(t, ·,v) : E → L2 is Fréchet differentiable
with the derivative

(20) Ha(t, a,v)b = Fa(t, a,v)b, b ∈ E .

For every t ∈ [0, T ] and a ∈ E , H(t, a, ·) : H2 → L2 is Fréchet differentiable
with the derivative

Hv(t, a,v)φ = (α∆φ− v ×∆φ− φ×∆v)(21)
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+ α
(
|∇v|2φ+ 2 ⟨∇v,∇φ⟩R3 v

)
+ Fv(t, a,v)φ

for any φ ∈ H2. Let

Eλ1(a) := {b ∈ E ; |a− b|E < λ1},
Bλ2(v) := {φ ∈ H2; |φ− v|H2 < λ2},

denote the open balls in E and H2, centred at a ∈ E and v ∈ H2, with radii
λ1, λ2 > 0, respectively. For simplicity, let Eλ1 := Eλ1(0) and Bλ2 := Bλ2(0).

Lemma 3.1. For any a ∈ Eλ1 and v ∈ Bλ2, there exist constants c0 =
c0(λ1, λ2) > 0 and c1 = c1(T, λ1, λ2) > 0, such that for every t ∈ [0, T ] and
φ ∈ H2,

⟨Hv(t, a,v)φ,φ⟩L2 ≤ −c0|φ|2H1 + c1|φ|2L2 .

Proof. Recall the components of Hv(t, y,v) in (21). For v ∈ Bλ2 , we define
the operators f1(v) : H2 → L2 and f2(v) : H2 → L2 by

f1(v)φ = α∆φ− v ×∆φ− φ×∆v,(22)

f2(v)φ = α
(
|∇v|2φ+ 2 ⟨∇v,∇φ⟩R3 v

)
.(23)

Then for φ ∈ H2, we have

⟨f1(v)φ,φ⟩L2 = −α|∇φ|2L2 + ⟨φ×∇v,∇φ⟩L2 ,

where

| ⟨φ×∇v,∇φ⟩L2 | ≤ |∇v|L4 |∇φ|L2 |φ|L4

≲ λ2

(
|∇φ|

3
2

L2 |φ|
1
2

L2 + |∇φ|L2 |φ|L2

)
≤ δ|∇φ|2L2 + c(δ)(λ42 + λ22)|φ|2L2 .

Therefore, for v ∈ H2 and a certain small δ ∈ (0, 1),

⟨f1(v)φ,φ⟩L2 ≤ (−α+ δ)|∇φ|2L2 + c(λ2, δ)|φ|2L2 .

Similar arguments show that

| ⟨f2(v)φ,φ⟩L2 | ≤ δ|∇φ|2L2 + c(λ2, δ)|φ|2L2 .

For the last term in (21), it is easy to see that

(24)
|Fv(t, a,v)φ| ≲

(
|a(t)|+ |a(t)|2 + |∇ · a(t)|2

)
· f(|v|, |∇v|) (|φ|+ |∇φ|) ,

where f(ξ, η) is a linear combination of monomials of the form ξpηq with
p ≤ 2 and q ≤ 1. Since |a|E ≤ λ1 and |v|H2 ≤ λ2, there exists a constant
c(λ1, λ2) > 0 such that

| ⟨Fv(t, y,v)φ,φ⟩L2 | ≤ c(λ1, λ2)
(
δ|∇φ|2L2 + c(δ)|φ|2L2

)
.

Then we choose a sufficiently small δ ∈ (0, 1) such that c(λ1, λ2)δ + 2δ <
α. □
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Lemma 3.2. Fix λ1, λ2 > 0. There exists c = c(T, λ1, λ2) > 0 such that for
any s, t ∈ [0, T ], a ∈ Eλ1 and v, w ∈ Bλ2,

∥Ha(t, a,v)−Ha(s, a,w)∥E→L2 + ∥Hv(t, a,v)−Hv(s, a,w)∥H2→L2

≤ c (|t− s|γ + |v −w|H2) .

Proof. Recall the derivative Ha(t, a,v) in (20) and F in (15). We have

Ha(t, a,v)b = αh1(t, a, b,v)− v × h1(t, a, b,v) + 2αh2(t, a, b,v),

where

h1(t, a, b,v) = b(t) · ∇v + (∇ · b(t))v + 2(a(t) · b(t))v,
h2(t, a, b,v) = ⟨a(t)v, b(t)v⟩v + ⟨∇v, b(t)v⟩v,

for t ∈ [0, T ], a ∈ Eλ1 , v ∈ Bλ2 and any b ∈ E . Then for i = 1, 2, hi is
γ-Hölder continuous on [0, T ] for every v ∈ Bλ2 due to the time regularity
of a, b ∈ E . Also, hi is linear in ∇v and (at most) cubic in v, such that for
v,w ∈ Bλ2 ,

|hi(t, a, b,v)− hi(t, a, b,w)|L2

≲ (1 + |a(t)|H2)|b(t)|H2

(
1 + |v|2H2 + |w|2H2

)
|v −w|H2

≤ c(T, λ1, λ2)|b|E |v −w|H2 .

These imply that Ha(t, a,v) is γ-Hölder continuous in t and locally Lipschitz
in v. For the derivative Hv(t, y,v), its first two components f1 in (22) and
f2 in (23) do not depend on t explicitly and they consist of terms linear in
v and ∆v and quadratic in ∇v, which imply the local Lipschitz property:
for v,w ∈ Bλ2 ,

∥f1(v)− f1(w)∥H2→L2 + ∥f2(v)− f2(w)∥H2→L2 ≤ c(λ2)|v −w|H2 .

For the third component Fv(t, a,v), it is linear in ∇ · a(t), quadratic in
a(t), and by (24), linear in ∇v and quadratic in v. Then similarly, for any
a ∈ Eλ1 , Fv(t, a,v) is γ-Hölder continuous on [0, T ] for every v ∈ Bλ2 , and
Lipschitz on Bλ2 for every t ∈ [0, T ]. □

With the above properties of H, it follows immediately from [28, Theorem
8.1.1] that for a.e.-ω ∈ Ω, there exists a unique H2-local solution uζ of (18),
where

uζ = uζ(ω) ∈ C([t0(ω), ζ];H2) ∩ Cγ
γ ((t0(ω), ζ];H2)

for some ζ = ζ(ω) ∈ (t0(ω), T ] that depends on a(ω) and initial data u0(ω).
For any t1, t2 ∈ [0,∞), the space Cγ

γ ((t1, t2];H2) is consisted of bounded and
γ-Hölder continuous functions f : (t1, t2] → H2 with the map s 7→ sγf(s) in
Cγ((t1, t2];H2). Then the maximal solution (u, [t0, τ))(ω) is constructed as
follows:

• u(t, ω) = uζ(t)(ω) for t ∈ [t0(ω), ζ],
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• τ(ω) is the supremum of all ζ > t0 such that there exists a unique
H2-local solution in [0, ζ].

We summarise the result in the following theorem, where part (b) holds by
[28, Corollary 8.3.3].

Theorem 3.3. Fix ω ∈ Ω. Assume that z(ω) ∈ Eλ1 and u0(ω) ∈ Bλ2 with
|u0(x, ω)| = 1 for all x ∈ T2 for some λ1 = λ1(ω) > 0 and λ2 = λ2(ω) > 0.

(a) There exists a unique H2-maximal solution (u, [t0, τ)) (ω) of (18) in the
sense of Definition 3.1, where u and τ depend on (z, u0)(ω).

(b) Let Dλ1,λ2(ω) := {(t, z,u0)(ω) : (z,u0) ∈ Eλ1 × Bλ2 , t ∈ [t0, τ(z,u0))}.
Then the solution map Dλ,ρ(ω) ∋ (t, z,u0)(ω) 7→ u(t; z,u0)(ω) ∈ H2 is
continuous.

Taking a non-random initial data u0 ∈ H2 at t0 = 0 with λ2 = |u0|H2 and
an E -valued stochastic process z = A with λ1 = |A|E , by Theorem 3.3 the
equation (13) admits a unique H2-maximal solution. In the case τ < T , we
require an iteration scheme to construct a global solution (see Section 4).
To this end, we consider a more general setting: random initial data u0 at
a stopping time τ0.

Corollary 3.4. Assume that τ0 ∈ [0, T ), P-a.s. is an F-stopping time. Let
u0 : Ω → H2(T2;S2) be Fτ0-measurable, and z = A ∈ E , P-a.s. Then for
a.e-ω ∈ Ω, there exists a unique H2-maximal solution (u, [τ0, τ))(ω) of (18),
satisfying |u(t, x, ω)| = 1 for a.e.-(t, x) ∈ [τ0, τ)(ω)× T2.

Proof. Fix ω ∈ Ω such that A(ω) ∈ E . For simplicity, in this proof we write
f in place of f(ω) for any random variable f . Let ϕ(u(t)) = 1

4 |1− |u(t)|2|2L2

for t ∈ [τ0, τ). We have

ϕ(u) ≲ 1 + |u|2L2 + |u|4L4 <∞,

ϕ′(u)f = −
〈
(1− |u|2)u, f

〉
L2 , f ∈ L2.

Then by (10), (11) and integration-by-parts,

d

dt
ϕ(u) = −2α

∫
T2

⟨u,∇u⟩2 dx+ α

∫
T2

(1− |u|2)2|∇Au|2dx.

For the second integral, applying the interpolation inequality to |1−|u|2|L4 ,
we have ∫

T2

(1− |u|2)2|∇Au|2dx

≲ |∇Au|2L4

(
|1− |u|2|L2

∫
T2

⟨u,∇u⟩2 dx+ |1− |u|2|2L2

)
≤ δ

∫
T2

⟨u,∇u⟩2 dx+ c(δ)(1 + |∇Au|4L4)|1− |u|2|2L2 .
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Hence, for a sufficiently small δ > 0, by Gronwall’s inequality,

ϕ(u(t)) ≤ ϕ(u0)e
c
∫ τ
τ0

(
1+|∇Au(s)|4

L4

)
ds
, t ∈ [τ0, τ),

where |∇Au|L4 ≲ |A|H1+|∇u|
1
2

L2 |u|
1
2

H2 <∞ on [τ0, τ) by Sobolev embedding,
and ϕ(u0) = 0 yields the result. □

Next, we verify measurability of the maximal time and the solution process.
With an abuse of notation, we set u = 0 and τ = T on P-null sets. To
prepare for shifted processes, we define

θτ0(s) := (τ0 + s) ∧ T, s ≥ 0.

Remark 3.5. By the flow property of Y ,

Y (τ0 + s) = [Y (τ0 + s)Y −1(τ0)]Y (τ0)

= X (s)Y (τ0),

where X is an independent copy of Y , and

|A(τ0 + s)| = |∇Y (τ0 + s)| ≤ |∇X (s)||Y (τ0)|+ |X (s)||∇Y (τ0)|
≤ |∇X (s)|+ |∇Y (τ0)|.

Therefore, given sups∈[0,τ0] |A(s)|H2 ≤ λ, P-a.s. and an independent copy τ1
of τ0, we have

sup
s∈[0,τ1]

|A(θτ0(s))|H2 − |A(τ0)|H2 ≤ λ, P-a.s.

Corollary 3.6. Let τ0, u0 and (u, τ) be given as in Corollary 3.4 with
z = A. Then,

(i) τ is an F-stopping time,

(ii) u(θτ0(s)∧ ζ) is Fτ0+s-measurable, for any s ≥ 0 and F-stopping time
ζ such that ζ ∈ [τ0, τ), P-a.s.

Proof. For every n ≥ 1, let ψn : [0,∞] → [0, 1] be a smooth cut-off function,
with ψn(y) = 1 for y ∈ [0, n] and ψn(y) = 0 for y ≥ 2n. Then for a.e.-ω ∈ Ω,
consider the following approximating equation

(25)
∂tun(t, ω) = ψn(|un(t)|H2)H(t, A,un(t))(ω), t ∈ [τ0(ω), T ],

un(τ0, ω) = u0(ω),

where H(t, A,un(t)) is a function of A(t) and un(t). For every v ∈ H2, the
maps

v 7→ ψ(|v|H2) (α∆− v ×∆) ∈ L(H2,L2),

v 7→ f(t,v) = ψ(|v|H2)F (t, A(ω),v) ∈ H1,

are locally Lipschitz, and the operatorH2 ∋ φ 7→ ψn(|v|H2) (α∆φ− v ×∆φ) ∈
L2 is sectorial. By [1, Theorem 6.3], there exists a unique maximal solution
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(un, [τ0, τn)) with values in C([τ0, t];H2) for every t ∈ [τ0, τn). In fact, since
supt∈[τ0,τn) |un(t)|H2 ≤ 2n from construction, we have τn = T and a global

H2-solution (un, [τ0, T ]), see [1, Theorem 7.2].

For the solution un = un(A), varying the initial data and the parameter A
(e.g. A1 = A(ω) and A2 = A(ω′)), it is not difficult to deduce that

|un(t;A1,u0,1)− un(t;A2,u0,2)|2L2

≤ c(t, n)

(
|u0,1 − u0,2|2L2 +

∫ t

τ0

|A1 −A2|2L4(s) ds

)
,

where the constant c(t, n) depends on |A1|C([τ0,t];H2) and |A2|C([τ0,t];H2), for
any t ∈ [τ0, T ]. Thus, for a.e.-ω ∈ Ω and for any constant λ > 0, the map

[0, T ]× Eλ ×H2 ∋ (t, A,u0)(ω) 7→ un(θτ0(t);A,u0)(ω) ∈ L2

is continuous.

Let At(·) := A(· ∧ t) denote the stopped process at time t ∈ [0, T ], which is
still progressively measurable with At(s) ∈ Ft ∩ Fs for all s ∈ [0, T ]. Let

τA,λ := inf{t ∈ [τ0, T ] : |A(t)|H2 > λ}
for any constant λ > 0. Then τA,λ is an F-stopping time and

lim
λ→∞

τA,λ = T.

Since the evolution of un(ω) up to time t depends only on u0(ω) and A
t(ω),

we have

un(t;A,u0)(ω) = un(t;A
t,u0)(ω), t ∈ [τ0(ω), T ],

un(θτ0(s);A
τA,λ ,u0)(ω) = un(θτ0(s);A

θτ0 (s)∧τA,λ ,u0)(ω), s ≥ 0.

By the continuity of the solution map and the boundedness of A on [0, τλA],

{ω : un(θτ0(s);A
τA,λ(ω),u0(ω)) ∈ B} ∈ Fτ0+s, ∀B ∈ B(L2).

This implies that the H2-valued process {un(θτ0(s);A
τA,λ ,u0) : s ≥ 0} is

progressively measurable with respect to (Fτ0+s)s≥0. As a result, for any
constant ρ > 0,

τλn,ρ := (inf{s ≥ 0 : |un(θτ0(s);A
τA,λ ,u0)|H2 > ρ}+ τ0) ∧ τA,λ

= inf{t ∈ [τ0, T ] : |un(t;A
τA,λ ,u0)|H2 > ρ} ∧ τA,λ

is an F-stopping time.

By the uniqueness of the H2-maximal solution, u(t;A,u0) = un(t;A,u0) in
H2 for t ∈ [τ0, τ

λ
n,n], P-a.s. This implies that u(θτ0(s) ∧ τλn,n;A,u0) ∈ Fτ0+s

for s ≥ 0, and

τλn,n = inf{t ∈ [τ0, T ] : |u(t;AτA,λ ,u0)|H2 > n} ∧ τA,λ

= inf{t ∈ [τ0, τA,λ] : |u(t;A,u0)|H2 > n}
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=: τλn ≤ τ.

Then we have limn→∞ limλ→∞ τλn = τ , P-a.s. and thus τ is an F-stopping
time. □

The rest of this section is devoted to the (pathwise) regularity of the solution
u.

Heuristically, given a solution u = u(ω) of (13) in C([τ0, τ);H2), we have
u ∈ L2(τ0, t;H2), ∂tu ∈ C([τ0, t];L2) and ∇u ∈ C([τ0, t];Lp), leading to
F (t, A,u) ∈ Lp(τ0, t;Lp), for any t ∈ (τ0, τ) and p ∈ [1,∞). We can im-
prove the regularity of u in [τ0, t] by noticing that (13) is strongly parabolic
and applying classic regularity results in [27, Chapter VII] together with
bootstrapping. This argument is well-studied (see [21, 35]), and follows sim-
ilarly for our transformed equation provided that A = A(ω) and u0 are
sufficiently regular. In particular, if A ∈ C([τ0, T ];H2) ∩ L2(τ0, T ;Hσ+1)
and u(ρ) ∈ Hσ+1 for some ρ ∈ [τ0, τ) and σ ≥ 1, then we have u ∈
H1(ρ, t;Hσ) ∩ L2(ρ, t;Hσ+2) for any t ∈ (ρ, τ). Suppose that these high-
order estimates are uniform in t, then using the continuous embeddings such
as H1(ρ, t;Hσ) ↪→ Cγ([ρ, t];Hσ) for γ ∈ (0, 1), we can extend the uniform
continuity of u to the interval [ρ, τ) and thereby extending u continuously
to τ , violating the maximality of τ when σ = 2. This outlines the reason be-
hind possible singularities in the solution that we construct in Theorem 4.1,
namely, smallness of local energy that ensures uniform (in time) higher-order
bounds of u cannot hold at τ .

Next, we collect the aforementioned estimates of u: the case σ = 0 in Section
3.2 and the case σ = 1, 2 in Section 3.3.

3.2. Energy estimates. For a.e.-ω ∈ Ω, let (u, [τ0, τ))(ω) be the unique
H2-maximal solution in Corollary 3.4. Its covariant derivative defines a
gauged Dirichlet integral

E(u, A)(ω) =
1

2

∫
T2

|∇Au|2(ω) dx,

which is the governing energy depending on time through the process A.
Roughness in time, however, limits its relevance for an exact energy law
in the pathwise sense. On the other hand, m = Y u is (formally) a weak
pathwise solution to the stochastic LLG equation and by (10),

E(u, A)(ω) =
1

2

∫
T2

|∇m|2(ω) dx

has under appropriate conditions a mean energy bound from Itô calculus.

In the estimates below, we denote by Br(x) the open ball in R2 of radius r
centred at x, and let Br := Br(0).
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Lemma 3.7. Fix ω ∈ Ω such that A(ω) ∈ C([0, T ];H2). For every t ∈
[τ0, τ)(ω) and r = r(ω) ∈ (0, 1), there exists a constant c > 0 such that

(i) |∇u(t)|2L2 ≤
(
|∇u0|2L2 + c

∫ t
0 |∇ ·A+A2|2L2 ds

)
ec

∫ t
0 |A(s)|2L∞ds,

(ii) |∇u(t)|2L2(Br)
≤ |∇u0|2L2(B2r)

+ S(τ0, t, r, A,u), where

S(τ0, t, r, A,u)

= −α
∫ t

τ0

|∂su(s)|2L2(Br)
ds+ c

∫ t

τ0

|∇ ·A(s) +A2(s)|2L2(B2r)
ds

+ c sup
s∈[τ0,t]

|∇u(s)|2L2(B2r)

(
r−2t+

∫ t

τ0

|A(s)|2L∞(B2r)
ds

)
.

Proof. Applying Itô’s lemma and using (11),

1

2
∂s|∇u|2L2 = ⟨−∆u,u×∆Au− αu× (u×∆Au)⟩L2

≤ −α
2
|u×∆Au|2L2 + c(α)|A · ∇u+ (∇ ·A)u+A2u|2L2 .

Then part (i) follows from the fact |u(s, x, ω)| = 1 a.e. on [τ0, t] × T2, the
estimate |A · ∇u|L2 ≤ |A|L∞ |∇u|L2 and Gronwall’s lemma. Similarly, for
φ ∈ C∞

0 (B2r) with φ ≡ 1 on Br and |∇φ| ≲ r−1 on B2r,

1

2
∂s|φ∇u|2L2 ≤ −α

2
|φu×∆Au|2L2 + c(α)|A · ∇u+ (∇ ·A)u+A2u|2L2(B2r)

− 2 ⟨∇u, (φ∇φ)(∂tu)⟩L2 ,

where |φ∂su|L2 ≲ |φu × ∆Au|L2 on [τ0, t] thanks to the norm constraint.
Then part (ii) follows by noticing |f |L2(Br) ≤ |φf |L2 . □

Lemma 3.8. For any F-stopping time ζ ∈ [τ0, τ) and constant γ ∈ (0, 12 ]
and p ∈ [1,∞), there exists a constant c > 0 depending only on γ, p and T
such that

E

[
sup

t∈[0,T ]
|∇u(θτ0 ∧ ζ)|

2p
L2 +

(∫ ζ

τ0

|u×∆Au|2L2 ds

)p
]

+ E
[
|u(θτ0 ∧ ζ)|

2p
Cγ([0,T ];L2)

]
≤ c

(
E
[
|∇u(τ0)|2pL2 + |A|2p

C([0,T ];L2)

]
+ q4p(2) + 1

)
.

Proof. By Corollary 3.4 and 3.6, the process {u(θτ0(s) ∧ ζ) : s ≥ 0} is
progressively measurable with respect to (Fτ0+s)s≥0 =: Fτ0 and it takes
values in S2 for a.e.-(t, x, ω). Then we can apply Itô’s lemma: for any
t ∈ [τ0, τ),

1

2
d|∇Au|2L2(t) = −α|u×∆Au|2L2 dt
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+
1

2

∞∑
k=1

⟨∇Au, ((∇Gk)Gk −Gk∇Gk)Y u⟩L2 dt

+
1

2

∞∑
k=1

|(∇Gk)Y u|2L2 dt

+

∞∑
k=1

⟨∇Au, (∇Gk)Y u⟩L2 dWk.

Estimating the drift part,

⟨∇Au, (∇Gk)GkY u⟩L2 ≤ |∇Au|L2 |∇gk|L4 |gk|L4

≤ c(δ)|gk|2L4 |∇gk|2L4 + δ|∇Au|2L2 .

For the diffusion part, we shift the process before applying the Burkholder-
Davis-Gundy inequality. Note that {τ0 + s ≤ ζ} ∈ Fτ0+s for every s ≥ 0,
and thus ζ − τ0 is a stopping time with respect to (Fτ0+s)s≥0 =: Fτ0 . Since
for s ∈ [0, ζ − τ0),∫ τ0+s

τ0

⟨∇Au(r), (∇Gk)(Y u)(r)⟩L2 dWk(r)

=

∫ s

0
⟨∇Au(τ0 + r), (∇Gk)(Y u)(τ0 + r)⟩L2 dWk(τ0 + r)

and {Wk(τ0 + r) : r ≥ 0} is an Fτ0-martingale, we have for p ∈ [1,∞),

E

[
sup

s∈[0,ζ−τ0]

∣∣∣∣∣
∞∑
k=1

∫ s

0
⟨∇Au(τ0 + r), (∇Gk)(Y u)(τ0 + r)⟩L2 dWk(τ0 + r)

∣∣∣∣∣
p]

≤
∞∑
k=1

E

(∫ ζ−τ0

0

∞∑
k=1

⟨∇Au(τ0 + r), (∇Gk)(Y u)(τ0 + r)⟩2L2 dr

) p
2


≤ c

( ∞∑
k=1

|∇gk|2L2

)p

E [|ζ − τ0|p] + δE

[(∫ ζ

τ0

|∇Au|2L2(r) dr

)p
]
,

where |ζ − τ0| ≤ 2T , P-a.s. by construction. Therefore,

E

[
sup
s≥0

|∇Au(θτ0(s) ∧ ζ)|
2p
L2 +

(∫ ζ

τ0

|u×∆Au|2L2 ds

)p
]

≤ E
[
|∇Au(τ0)|2pL2

]
+ cq4p(2),

where q(σ) is given in (3).

As a result, together with the fact that u takes values in S2 a.e. (see
Corollary 3.4), we obtain the moment estimate in Cγ([0, T ];L2) and in
C([0, T ];H1). In more details, for any p ∈ [1,∞), we have for the Hölder
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seminorm

E

[
sup

0≤s1<s2≤T

|u(θτ0(s2) ∧ ζ)− u(θτ0(s1) ∧ ζ)|
2p
L2

|s2 − s1|p

]

≤ cE

 sup
0≤s1<s2≤T

∣∣∣∫ θτ0 (s2)∧ζ
θτ0 (s1)∧ζ

u×∆Au ds
∣∣∣2p
L2

|s2 − s1|p


≤ cE

[
sup

0≤s1<s2≤T

(∫ θτ0 (s2)∧ζ

θτ0 (s1)∧ζ
|u×∆Au|2L2 ds

)p]

≤ cE

[(∫ ζ

τ0

|u×∆Au|2L2 ds

)p
]

≤ c
(
E
[
|∇Au(τ0)|2pL2

]
+ q4p(2)

)
,

and for the L2-norm of the gradient,

E
[
sup
s≥0

|∇u(θτ0(s) ∧ ζ)|
2p
L2

]
≤ c(p)E

[
sup
s≥0

|∇Au(θτ0(s) ∧ ζ)|
2p
L2 + |A|2p

C([0,T ];L2)

]
≤ c(p)

(
E
[
|∇Au(τ0)|2pL2 + |A|2p

C([0,T ];L2)

]
+ q4p(2)

)
,

where |∇Au(τ0)|2L2 ≤ 1
2 |∇u(τ0)|2L2 +

1
2 |A(τ0)|L2 , and A is uniformly bounded

in L2p(Ω;C([0, T ];L2)) by Lemma 2.2. □

3.3. Regularity under small local energy.

Hypothesis 3.9. Let v ∈ L∞(0, t;H1), P-a.s. For a.e.-ω ∈ Ω, there exist
a radius r = r(ω) ∈ (0, 1), a non-empty interval I = I(ω) ⊆ [0, t(ω)], and a
constant ε ∈ (0, 1), such that for some x0 ∈ T2,

sup
s∈I

(
|∇v(s, ω)|2L2(B2r(x0))

+ |A(s, ω)|2L2(B2r(x0))

)
≤ ε2.

3.3.1. L4-estimates. The key ingredient is the local form of Ladyzhenskaya’s
interpolation inequality which follows from the Sobolev inequality |h|L2(R2) ≲
|∇h|L1(R2) applied to functions of the form h = φ|f |2 for φ ∈ C∞

0 (R2;R)
and f ∈ H1(R2), yielding

(26)

∫
Br

|f |4φ2 dx ≤ c0|f |2L2(Br)

∫
Br

(
|∇f |2φ2 + |f |2|∇φ|2

)
dx ,

for φ supported on Br, where r > 0 and the constant c0 is independent of r
and f .
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In the following, we collect L4 and subsequently H1 estimates of A, ∇A and
∇u using (26) under Hypothesis 3.9.

For estimates of A, we first observe that using (12), integration by parts and
Young’s inequality,

(27)
|φ∇A|2L2 ≲

∫
Br

φ2
(
|∇ ·A|2 + |A|4

)
+ φ|∇φ||A||∇A| dx

≤ c1

(
|φ(∇ ·A)|2L2 + |φ

1
2A|4L4 + r−2|A|2L2(B2r)

)
,

and
(28)

|φ∇2A|2L2 ≲
∫
Br

φ2
(
|∇(∇ ·A)|2 + |∇[A1, A2]|2

)
+ φ|∇φ||∇A||∇2A| dx

≤ c1

(
|φ∇(∇ ·A)|2L2 + |φ

1
2A|2L4 |φ

1
2∇A|2L4 + r−2|∇A|2L2(B2r)

)
,

for every non-negative φ ∈ C∞
0 (B2r;R) with |∇φ| ≲ r−1 on B2r, and some

constant c1 independent of r and A.

Lemma 3.10. Assume that A satisfies Hypothesis 3.9 for ε sufficiently small
such that c0c1ε

2 ≤ c2 < 1 for some constant c2 independent of ε. Then for
any s ∈ I and φ ∈ C∞

0 (B2r(x0);R) with 0 ≤ φ ≤ 1 and |∇φ| ≲ r−1 on
B2r(x0), A = A(s, ω) satisfies

(i) |φ
1
2A|4L4 ≲ ε2(|φ∇ ·A|2L2 + r−2ε2),

(ii) |φ∇A|2L2 ≲ |φ∇ ·A|2L2 + r−2ε2,

(iii) |φ
1
2∇A|4L4 ≲ Ψ(r,A, ε) + r−6ε4,

(iv) |φ∇2A|2L2 ≲ Ψ(r,A, ε) + r−2
(
1 + r−4ε4

)
,

where

Ψ(r,A, ε) := r2|∇(∇ ·A)|4L2(B2r(x0))

+ |∇ ·A|4L2(B4r(x0))

(
r−2 + ε2|∇ ·A|2L2(B2r(x0))

)
,

for a.e.-ω ∈ Ω.

Proof. For simplicity, let x0 = 0. For part (i), taking f = A in (26), the
term |φ∇A|2L2 appearing on the right-hand side can be estimated by applying
(27). As a result, the term |φ

1
2A|4L4 appears on the right-hand side, which

can be absorbed into the left provided that ε is sufficiently small such that
1 − c0c1ε

2 > 0, and then the smallness condition in Hypothesis 3.9 yields
the estimate. Part (ii) follows from part (i) and (27).

For part (iii), taking f = ∇A in (26) and applying the estimate in (28), we
have

|φ
1
2∇A|4L4 ≲ |∇A|2L2(B2r)

(
|φ∇(∇ ·A)|2L2 + r−2|∇A|2L2(B2r)

)
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+ |∇A|4L2(B2r)
|φ

1
2A|4L4 ,

where |∇A|L2(B2r) ≤ |ψ∇A|L2 for another cut-off function ψ ∈ C∞
0 (R2;R)

supported on B4r with ψ = 1 on B2r and |∇ψ| ≲ r−1 on B4r. Then using
part (ii) with ψ in place of φ, we obtain the estimate of |φ

1
2∇A|L4 . Part (iv)

follows from part (iii), (28) and Young’s inequality. □

Remark 3.11. If |∇ ·A| ≲ |A|2 (i.e. under the Coulomb gauge), then under
the smallness condition |A|2L2(B2r(x0))

< ε2, one even has a reverse Hölder
inequality

|φ
1
2A|4L4 ≲ ε4 sup

x∈B2r(x0)
|∇φ(x)|2,

for any smooth cut-off function φ supported on B2r(x0).

Given (u, [τ0, τ))(ω) the unique H2-maximal solution of (18), assume that u
satisfies Hypothesis 3.9. Similar results hold for∇u = ∇u(ω) for a.e.-ω ∈ Ω,
where

(29) |φ
1
2∇u(s)|4L4 ≤ c0ε

2
(
|φ∇2u(s)|2L2 + r−2ε2

)
, s ∈ I.

Then taking into account (16) and Lemma 3.10(i), we deduce below an
estimate for φ∇2u in L2(0, t;L2) and thereby refine the bound in (29) under
time integral.

Proposition 3.12. Assume that u and A satisfy Hypothesis 3.9 for ε suf-
ficiently small such that c0(1+ c1)ε

2 ≤ c2 < 1 for some constant c2 indepen-
dent of ε. Then for any φ ∈ C∞

0 (B2r(x0);R) with 0 ≤ φ ≤ 1 and |∇φ| ≲ r−1

on B2r(x0), the processes u = u(ω) and A = A(ω) satisfy∫
I

(
ε2|φ∆u|2L2 + |φ

1
2∇u|4L4

)
ds

≲ (1 + r−2|I|)ε4 + ε2
∫
I
|∇ ·A|2L2(B2r(x0))

ds,

for a.e.-ω ∈ Ω.

Proof. For simplicity, let x0 = 0 and I = [0, t]. Recall (14). We have

1

2
∂s|φ∇u(s)|2L2 = −α|φ∆u|2L2 −

〈
φ2∆u, α|∇u|2u+ F (s,A,u)

〉
L2

− 2 ⟨∇u, φ(∇φ)(∂su)⟩L2 ,

for s ∈ (0, t). Here, |(∇φ)(∇u)|L2(B2r) ≲ r−1ε by Hypothesis 3.9, and under
the norm constraint,

|φ∂su|L2 ≤ |φ∆u|2L2 + |φ
1
2∇u|4L4 + |φF (s,A,u)|2L2 ,

where by (16) and Lemma 3.10(i),

|φF (s,A,u)|2L2 ≤ c(δ)
(
|φ(∇ ·A)|2L2 + r−2ε4

)
+ δ|φ

1
2∇u|4L4
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Thus, for any small δ ∈ (0, 1),

∂s|φ∇u(t)|2L2 ≤ −(α− δ)|φ∆u|2L2 + (α+ δ)|φ
1
2∇u|4L4

+ c(δ)
(
|φ(∇ ·A)|2L2 + r−2ε2

)
,

where |φ
1
2∇u|4L4 is estimated in (29). Thus, for a sufficiently small δ (de-

pending only on c2 and α), we have∫ s

0
|φ∆u|2L2 ds ≲ |φ∇u0|2L2 + r−2ε2s+

∫ s

0
|∇ ·A|2L2(B2r)

ds,

for s ∈ (0, t). The estimates follow by noting |∇u0|L2(B2r) < ε, and then
applying (29). □

The estimate in Proposition 3.12 becomes particularly strong in the par-
abolic scaling t ∼ r2. For r > 0 and a time-space point z = (t, x), let
Pr(z) := [t− r2, t]× ¯Br(x) denote the closed parabolic cylinder and accord-
ingly Pr := Pr(0). Fix ω ∈ Ω. Given a point x0, the radius r = r(ω) and
the paths u = u(ω) and A = A(ω) in Proposition 3.12, for z0 = (t0, x0) ∈
[r2, t]× T2, we have

(30) |∇u|4L4(Pr(z0))
+ ε2|∆u|2L2(Pr(z0))

≲ ε2
(
ε2 + |∇ ·A|2L2(P2r(z0))

)
,

where the right-hand side is almost surely finite if A ∈ C([0, T ];H1), P-a.s.,
for example, under (3) with σ = 2.

3.3.2. Higher-order estimates.

Proposition 3.13. Assume that u and A satisfy Hypothesis 3.9 with I =
[t0 − (2r)2, t0] for some t0 ∈ ((2r)2, t], and ε as in Proposition 3.12. Let
z0 := (t0, x0) for a given x0 ∈ T2, and define

Λγ := L∞(t0 − γ2r2, t0;L
2(Bγr(x0))) ∩ L2(t0 − γ2r2, t0;H

1(Bγr(x0))),

for γ ∈ (0, 2). Then for u = u(ω) and A = A(ω),

(i) ∆u ∈ Λ 1
2
, with bound that only depends on r−1ε, r−2|∇ · A|2L2(P2r(z0))

and

ε2
∫ t0

t0−r2
Ψ
(r
2
, ε, A

)
ds,

(ii) ∇∆u ∈ Λ 1
4
, with bound that only depends on r−1ε, |∆(∇ ·A)|2L2(P r

2
(z0))

,

and∫ t0

t0− r2

4

(
|∇ ·A|4H1(Br(x0))

+Ψ
(r
2
, ε, A

)
+ ε2Ψ2

(r
4
, ε, A

))
ds,

for a.e.-ω ∈ Ω.
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Proof. For simplicity, we shift time to the left and assume (t0, x0) = 0. For
ρ > 0, let ϕρ ∈ (0, 1) be a cut-off function of the form

ϕρ(t, x) = ηρ(t)φρ(x),

where ηρ ∈ C∞(R) is non-decreasing with ηρ(t) = 0 for t ≤ −ρ2 and ηρ(t) =

1 for t ≥ −ρ2

4 , and φρ ∈ C∞
0 (Bρ) with φρ ≡ 1 on B ρ

2
, and 0 ≤ φρ ≤ 1 and

|∇φρ| ≲ ρ−1 on Bρ.

Part (i). Take ρ = r. For brevity, we write η, φ instead of ηr, φr for part
(i). We have

1

2
∂t|ϕ∆u|2L2 = −

〈
∇(ϕ2∆u),∇∂tu

〉
L2 + ⟨ϕ∆u, (∂tϕ)∆u⟩L2

= −α|ϕ∇∆u|2L2 − αI0 − (I1 + I2) + I3.

where

I0 =
〈
(∇ϕ2)∆u,∇∆u

〉
L2 ,

I1 =
〈
∇(ϕ2∆u), α∇(|∇u|2u)−∇(u×∆u)

〉
L2 ,

I2 =
〈
∇(ϕ2∆u),∇F (t, A,u))

〉
L2 ,

I3 = ⟨ϕ∆u, (∂tϕ)∆u⟩L2 .

Since |∂tϕ| ≤ |η′| ≲ r−2, we have

α|I0|+ |I3| ≲ r−1|ϕ∇∆u|L2 |∆u|L2(Br) + |∆u|2L2(Br)
|η′|

≤ δ|ϕ∇∆u|2L2 + c(δ)r−2|∆u|2L2(Br)
,

and (30) can be applied to bound |∆u|2L2(Pr)
. Then choosing a sufficiently

small δ > 0,

(31)
1

2
|ϕ∆u(t)|2L2 +

α

2
|ϕ∇∆u|2L2(Pr)

≤ cr−2|∆u|2L2(Pr)
−
∫ t

−r2
(I1 + I2) ds,

for any t ∈ (−r2, 0). We estimate the nonlinear terms I1 and I2 below.

I1 estimate

By the interpolation inequality

(32)
|ϕ∆u|L4 ≲ |ϕ∇∆u+ (∇ϕ)∆u|

1
2

L2(Br)
|ϕ∆u|

1
2

L2(Br)
+ |ϕ∆u|L2(Br)

≲ |ϕ∇∆u|
1
2

L2 |ϕ∆u|
1
2

L2 + r−
1
2 |∆u|

1
2

L2(Br)
|ϕ∆u|

1
2

L2 ,

and Young’s inequality, we have

(33)

(
|ϕ∇∆u|L2 + |∆u|L2(B2r)

)
|ϕ∆u|L4 |∇u|L4(Br)

≤ δ|ϕ∇∆u|2L2 + c
(
|∇u|4L4(Br)

|ϕ∆u|2L2 + r−2|∆u|2L2(Br)

)
,

for some small δ > 0. This inequality will help us to bound the quasilinear
precession (cross product) term and the quadratic gradient term in I1.
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Since |u(t, x)| = 1 in P2r as a result of its H2-regularity, we have

−
〈
∇(ϕ2∆u),∇(u×∆u)

〉
L2

= −
〈
ϕ2∇∆u,∇u×∆u

〉
L2 − ⟨ϕ(∇ϕ)∆u,u×∇∆u⟩L2

≲ |ϕ∇∆u|L2 |ϕ∆u|L4 |∇u|L4(Br) + r−1|ϕ∇∆u|L2 |∆u|L2(Br),

and similarly, with |∇u(t, x)|2 = −(u ·∆u)(t, x),〈
∇(ϕ2∆u),∇(|∇u|2u)

〉
L2

=
〈
ϕ2∇∆u+ 2(ϕ∇ϕ)∆u, (−∇u ·∆u− u · ∇∆u)u+ |∇u|2∇u

〉
L2

≲ |ϕ∇∆u|L2 |ϕ∆u|L4 |∇u|L4(Br) + r−1|ϕ∆u|L4 |∆u|L2(Br)|∇u|L4(Br)

+ r−1|ϕ∇∆u|L2 |∆u|L2(Br),

where the right-hand sides can be addressed by (33). Hence,

|I1| ≤ δ|ϕ∇∆u|2L2 + c|∇u|4L4(Br)
|ϕ∆u|2L2 + cr−2|∆u|2L2(Br)

.

I2 estimate〈
∇(ϕ2∆u),∇F

〉
L2 ≲

(
|ϕ∇∆u|L2 + r−1|∆u|L2(Br)

)
|ϕ∇F |L2 .

In view of (17),

|ϕ∇F |L2 ≲ |ϕ
1
2A|L4 |ϕ

1
2∇A|L4 + |ϕ∇(∇ ·A)|L2

+
(
|ϕ

1
2∇A|L4 + |ϕ

1
4A|2L8

)
|ϕ

1
2∇u|L4

+ |A|L4(Br)|ϕ∆u|L4 .

For the L8-term, we apply (26) to f = |A|2 and obtain

|ϕ
1
4A|4L8 ≲ |A|2L4(Br)

(
|ϕ

1
2A|L4 |ϕ

1
2∇A|L4 + r−1|A|2L4(Br)

)
,

which implies

|ϕ
1
4A|4L8 |ϕ

1
2∇u|2L4 ≲ |A|4L4(Br)

(
r−2 + |ϕ

1
2∇u|4L4

)
+ |ϕ

1
2A|2L4 |ϕ

1
2∇A|2L4 .

Thus,

|I2| ≤ δ|ϕ∇∆u|2L2 + c
(
1 + |A|4L4(Br)

)
|ϕ∆u|2L2

+ cr−2|∆u|2L2(Br)
+ c|ϕ∇(∇ ·A)|2L2

+ c
(
|ϕ

1
2A|2L4 + |ϕ

1
2∇u|2L4

)
|ϕ

1
2∇A|2L4

+ c|A|4L4(Br)

(
r−2 + |ϕ

1
2∇u|4L4

)
.

Under Hypothesis 3.9



28 BENIAMIN GOLDYS, CHUNXI JIAO, AND CHRISTOF MELCHER

Under the smallness condition, we can estimate the time integral of |I1|+|I2|
using Lemma 3.10, (29) and (30). In particular, for the last two terms in
the estimate of |I2|, we have∫ 0

−r2

(
|ϕ

1
2A|2L4 + |ϕ

1
2∇u|2L4

)
|ϕ

1
2∇A|2L4 ds

≲
∫ 0

−r2
|ϕ∆u|2L2 dt+ |∇ ·A|2L2(Pr)

+ ε2
∫ 0

−r2
Ψ
(r
2
, ε, A

)
ds+ ε2 + r−4ε6,

and ∫ 0

−r2
|A|4L4(Br)

(
r−2 + |ϕ

1
2∇u|4L4

)
ds

≲ ε2
∫ 0

−r2
|A|4L4(Br)

|ϕ∆u|2L2 ds+ r−2ε2|∇ ·A|2L2(P2r)
+ r−2ε4.

Then it holds by (31) that for a sufficiently small δ > 0 and t ∈ (−r2, 0),

|ϕ∆u(t)|2L2 +
α

2

∫ 0

−r2
|ϕ∇∆u|2L2 ds ≲ v0(r) +

∫ 0

−r2
v1(r)|ϕ∆u|2L2 ds,

where

v0(r) ≲ r−2|∇ ·A|2L2(P2r)
+ ε2

∫ 0

−r2
Ψ
(r
2
, ε, A

)
ds

+ ε2
(
1 + r−4ε4 + r−2ε2

)
,

v1(r) ≲
∫ 0

−r2

(
1 + |∇u|4L4(Br)

+ |A|4L4(Br)

)
ds

≲ ε2
(
|∇ ·A|2L2(P2r)

+ ε2
)
.

The estimate follows immediately from Gronwall’s inequality.

Part (ii). Take ρ = r̄ := r
2 . Similarly, we omit the subscript r̄ for ϕ, η and

φ below.

1

2
∂t|ϕ∇∆u(t)|2L2 = −

〈
∇
(
ϕ2∇∆u

)
,∆∂tu

〉
L2 + ⟨ϕ∇∆u, (∂tϕ)∇∆u⟩L2

= −α|ϕ∆2u|2L2 − αJ0 − (J1 + J2) + J3,

where

J0 =
〈
(∇ϕ2)∇∆u,∆2u

〉
L2 ,

J1 =
〈
∇
(
ϕ2∇∆u

)
, α∆(|∇u|2u) + ∆(u×∆u)

〉
L2 ,

J2 =
〈
∇
(
ϕ2∇∆u

)
,∆F (t, A,u)

〉
L2 ,

J3 = ⟨ϕ∇∆u, (∂tϕ)∇∆u⟩L2 .

Similarly, we have

α|J0|+ |J3| ≤ δ|ϕ∆2u|2L2 + c(δ)r−2|∇∆u|2L2(Br̄)
,
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where |∇∆u|2L2(Pr̄)
is bounded by part (i). Then choosing a sufficiently small

δ > 0,

(34)
1

2
|ϕ∇∆u(t)|2L2 +

α

2
|ϕ∆2u|2L2 ≤ cr−2|∇∆u|2L2(Pr̄)

−
∫ t

−r̄2
(J1 + J2) ds,

for any t ∈ (−r̄2, 0). We estimate the nonlinear terms J1 and J2 below.

J1 estimate

As in I1, we first observe that

|ϕ∇∆u|L4 ≲ |ϕ∆2u|
1
2

L2 |ϕ∇∆u|
1
2

L2 + r−
1
2 |∇∆u|

1
2

L2(Br̄)
|ϕ∇∆u|

1
2

L2 .

Then with |u(t, x)| = 1 in P2r, for the two terms of J1 we have〈
∇(ϕ2∇∆u),∆(u×∆u)

〉
L2

= 2
〈
ϕ2∆2u,∇u×∇∆u

〉
L2 + 2

〈
ϕ(∇ϕ)∇∆u,u×∆2u

〉
L2

≲ |ϕ∆2u|L2 |ϕ∇∆u|L4 |∇u|L4(Br̄) + r−1|ϕ∆2u|L2 |∇∆u|L2(Br̄),

and〈
∇(ϕ2∇∆u),∆(|∇u|2u)

〉
L2

=
〈
∇(ϕ2∇∆u), 2(∇u · ∇∆u+ |∇2u|2)u+ |∇u|2∆u+ 4(∇u · ∇2u)∇u

〉
L2

≲ |ϕ∆2u|L2

(
|ϕ∇∆u|L4 |∇u|L4(Br̄) + |ϕ

1
2∆u|2L4

)
+ r−1

(
|ϕ∇∆u|L4 |∇∆u|L2(Br̄)|∇u|L4(Br̄) + |ϕ∇∆u|L2 |∆u|2L4(Br̄)

)
.

Thus, using the L4-estimate of ϕ∇∆u, we obtain

|J1| ≤ δ|ϕ∆2u|2L2 + c(δ)|ϕ∇∆u|2L2

(
1 + |∇u|4L4(Br̄)

)
+ c(δ)

(
r−2|∇∆u|2L2(Br̄)

+ |∆u|4L4(Br̄)

)
,

where

|∆u|4L4(Pr̄)
≲ sup

t∈[−r̄2,0]

|∆u(t)|2L2(Br̄)

(
|∆u|2L2(Pr̄)

+ |∇∆u|2L2(Pr̄)

)
.

J2 estimate

For the gauge term,

|ϕ∆F |L2 ≲ |∆(∇ ·A)|L2(Br̄) + |∇A|2H1(Br̄)

+
(
|ϕ∆A|L2 + |ϕ∇(∇ ·A)|L2 + |ϕ

1
2A|L4 |ϕ

1
2∇A|L4

)
|∇u|L∞(Br̄)

+
(
|∇A|L4(Br̄) + |A|2L8(Br̄)

+ |∇u|L∞(Br̄)

)
|ϕ∆u|L4

+ |A|L4(Br̄)|ϕ∇∆u|L4
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Applying (32), the previous L4-estimate of ϕ∇∆u, the L8-estimate of A in
the proof of part (i), and the inequality

|∇u|2L∞(Br̄)
≲ |∇∆u|L2(Br̄)|∇u|L2(Br̄) + |∇u|2L2(Br̄)

,

we obtain

|J2| − δ|ϕ∆2u|2L2 ≲
(
1 + |A|4L4(Br̄)

+ |∆u|2L2(Br̄)

)
|ϕ∇∆u|2L2

+
(
r−2 + |∇u|2L2(Br̄)

)
|∇∆u|2L2(Br̄)

+
(
1 + |∇u|2L2(Br̄)

)
|∆u|4L2(Br̄)

+ |∆(∇ ·A)|2L2(Br̄)
+ |∇A|2H1(Br̄)

+ |∇A|4L4(Br̄)

+ |∇u|2L2(Br̄)
|ϕ∆A|4L2 + |ϕ∇(∇ ·A)|4L2

+ (1 + |A|4L4(Br̄)
)
(
1 + |∇A|4L4(Br̄)

)
+ r−2|A|8L4(Br̄)

.

Under Hypothesis 3.9

By the smallness assumption and Lemma 3.10,

|J2| − δ|ϕ∆2u|2L2 ≲
(
1 + |A|4L4(Br̄)

+ |∆u|2L2(Br̄)

)
|ϕ∇∆u|2L2

+ r−2|∇∆u|2L2(Br̄)
+ |∆u|4L2(Br̄)

+ |∆(∇ ·A)|2L2(Br̄)
+ |∇ ·A|4H1(B2r̄)

+Ψ(r̄) + ε2Ψ2
( r̄
2

)
+ r−4ε2

(
1 + r−4ε4

)
+ r−6ε4 + 1.

Similarly, we choose a sufficiently small δ > 0 and substitute the estimates
into (34). Then the result follows from estimates in part (i). □

Proposition 3.14. Assume Hypothesis 3.9 holds with I = [0, t] and ε as in
Proposition 3.12. Then for u = u(ω) and A = A(ω),

(i) ∆u ∈ L2(I;L2), with bound that only depends on r, ε, |A|L∞(I;H1) and
|∇u0|L2,

(ii) u ∈ L∞(ρ, t;H3) ∩ L2(ρ, t;H4) for arbitrary ρ ∈ (0, t), with bound that
only depends on r, ε and |A|L∞(I;H2)∩L2(I;H3),

(iii) u ∈ L∞(I;H3) ∩ L2(I;H4) provided that u0 ∈ H3, with bound that only
depends on r, ε, |A|L∞(I;H2)∩L2(I;H3) and |u0|H3.

Proof. Using a covering argument for T2 by balls, we easily obtain from (29)
that

|∇u|4L4 ≲ r−2ε2
(
|∇2u|2L2 + r−2|∇u|2L2

)
.

Taking φ ≡ 1 with ∇φ ≡ 0 in the proof of Proposition 3.12 and using the L4-
estimate above, we obtain a sharpened bound of ∇u in L4(I;L4)∩L2(I;H1)
depending only on r, ε, |A|H1 and |∇u0|L2 , proving part (i). This can then
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be used to deduce the high-order estimates in part (ii) for positive times
using Proposition 3.13, and part (iii) follows similarly by taking the cut-off
functions φρ = ηρ ≡ 1 in the proof of Proposition 3.13. □

4. Well-posedness in energy space

In this section, we state the existence and uniqueness result for a weak
solution of the transformed equation (13) taking values in C([0, T ];L2) ∩
L∞(0, T ;H1) a.s. For clarity, we outline the main steps of the proofs below
before stating the results.

For the proof of existence, first, for a.e. ω ∈ Ω, local well-posedness of (13)
in H1 can be achieved by means of an approximation procedure. Recall that
the approximability of H1 initial data by smooth fields is guaranteed by the
density result of Schoen and Uhlenbeck [34]. Then given smooth initial data,
the existence and uniqueness of maximal solutions in H2 with improved regu-
larity (time integrability in H4) under small energy assumptions follow from
Section 3.3.2. A compactness argument on a uniform interval is required for
the convergence of these approximating solutions. If we proceed directly by
using the bounds obtained in Proposition 3.14, then we obtain a different
convergent subsequence for each ω (in a subset of Ω of full measure), leaving
measurability of the limiting function and the underlying time interval in
doubt. In particular, the dependence of the limit on the stochastic process
A is unclear. To circumvent this issue, we first apply the Skorohod theorem
using the moment estimates in Lemma 3.8 to establish the existence of an
a.s.-convergent subsequence of the approximations and hence progressive-
ness of the limit. Then for each ω, a compactness argument can be applied
to obtain regularity of the limit in H1 starting from time 0, and beyond
H1 on a positive time interval defined by an energy-related stopping time.
This allows us to extend the limit to a progressively measurable maximal
H2-solution defined at positive times, and analyse weak H1 convergence and
the blow-up scenario at the maximal time. Finally, iteration of the above
steps leads us to a global H1 solution.

Theorem 4.1. Assume that (3) holds for σ = 4. For every u0 ∈ H1(T2;S2)
there exist a stopping time τ∗ > 0 and a progressively measurable process u
that takes values in the space

H1(0, τ∗;L2) ∩ L∞ (0, τ∗;H1(T2;S2)
)
∩ L2

loc

(
[0, τ∗);H2

)
P-a.s.

and satisfies (13) with u(0) = u0, P-a.s. Moreover, there exist random
variables N < ∞ (∈ N), x1, . . . , xN ∈ T2 and u∗ in the space H1(T2; S2),
P-a.s. such that

lim
i→∞

u(ti) = u∗ weakly in H1(T2;R3),

and strongly in H1(T2 \ {x1, . . . , xN}), for any sequence of stopping times
(ti)i with ti < τ∗ for all i ∈ N and ti ↗ τ∗, P-a.s. Moreover, for every r > 0
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and a.e.-ω ∈ Ω,

lim sup
t↗τ∗(ω)

1

2

∫
Br(xn(ω))

|∇u(t)|2(ω) dx ≥ 4π, n = 1, . . . , N(ω).

Taking u∗ as new random initial data, the construction in Theorem 4.1 can
be iterated. In contrast to the unperturbed case, the noise may bring energy
influx into the system. We rely on the energy bound

sup
ℓ∈N

sup
t∈[τℓ−1,τℓ]

|∇u(t)|2L2 + 8π
ℓ∑

j=1

Nj < c(|u0|H1 , |A|L2(0,T ;H2)), P-a.s.

to show that the blow-up times (when truncated at T ) yield limℓ→∞ τℓ = T .

Corollary 4.2. For every T > 0, there exists a progressively measurable
process

u ∈ H1(0, T ;L2) ∩ L∞(0, T ;H1(T2;S2)), P-a.s.

and an increasing sequence of stopping times (τℓ)ℓ∈N such that T ∈ (τM , τM+1)
for some M ≥ 0 with τ0 = 0, and that for all ℓ ≤M ,

(a) u|[τℓ,τℓ+1∧T ) is a local strong solution of (13) as in Theorem 4.1 with
u∗ = u(τℓ+1) and the number of singular points Nℓ+1 at τℓ+1,

(b) supℓ∈N
∑ℓ

j=1Nj <∞, P-a.s.

Remark 4.3. The effect of A becomes negligible at small scales. For z0 =
(t0, x0) and λ ∈ R, solutions u and connection forms A in Pλr(z0) (if exist)
obey the following scaling laws on Pr,

uλ(t, x) = u(t0 + λ2t, x0 + λx), Aλ(t, x) = λA(t0 + λ2t, x0 + λx).

Note that ∇u and A share the same scaling behaviour - invariant in the
L2(R2) norm. Moreover, the corresponding perturbation has a higher order
scaling behaviour Fλ(t, x) = λ2F (t0+λ

2t, x0+λx) and becomes negligible on
small scales λ ≪ 1. Thus, the existence and partial regularity result for the
free harmonic Landau-Lifshitz equation is essentially reproduced apart from
the fact that singularities are no longer controlled by the initial energy.

For the uniqueness of solution, it is well-known that weak solutions u :
(0,∞)× T2 → S2 to the LLG in the energy space

ET := {v : [0, T ]× T2 → S2 : ∂tu ∈ L2(0, T ;L2),∇u ∈ L∞(0, T ;L2)}
for arbitrary finite T > 0, are generally not unique, a phenomenon that is
attributed to bubbles that form backwards in time. Freire’s arguments for
the uniqueness of energy-decreasing solutions to the harmonic map heat flow
[18], extended to LLG in [13, 24], can be adapted to the magnetic case (13),
provided that the perturbation F enjoys sufficient integrability. Note that
if σ ≥ 2, then F ∈ L∞(0, T ;Lp) for all p < 2 which is more than sufficient.
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In this case, energy influx is possible, thus the uniqueness condition is to
be modified. Namely, we show that the solution u is unique in the class of
weak solutions with right-continuous Dirichlet energy.

Theorem 4.4. Assume that (3) holds for some σ ≥ 2. Fix ω ∈ Ω, unique-
ness of solution u(ω) to (13) holds in the class

{v ∈ ET : t 7→ |∇A(ω)v(t)|2L2 is right-continuous}.

Note that ET ⊂ C([0, T ];L2) so that the right-continuity condition can equiv-
alently be phrased in terms of ∇v rather than ∇Av. Due to weak lower
semi-continuity, the right continuity above is equivalent to

lim sup
s↘t

|∇v(s)|2L2 ≤ |∇v(t)|2L2 , ∀t < T.

Here, energy evaluation is meant in the sense of traces, see [36].

Applying the inverse transformation, we obtain the existence of weak mar-
tingale solutions to (4) from the equivalence result (Lemma 2.6). These so-
lutions are locally strong due to the interpolation embedding H1(0, t;L2) ∩
L2(0, t;H2) ↪→ C([0, t];H1). Moreover, they are pathwise unique thanks to
Theorem 4.4, yielding our main result Theorem 1.1 and 1.2.

5. Proof of existence

The proof of Theorem 4.1 is divided into several steps: Section 5.1 – 5.3 for
the construction of solution u, and Section 5.6 for an estimate of ε. The
proof of Corollary 4.2 is in Section 5.5.

5.1. Approximations in C([0, T ];H2). By the density result in [34], there
exists a sequence {u(k)

0 }k∈N in C∞(T2; S2) such that u
(k)
0 → u0 strongly in

H1(T2;S2) as k → ∞. Given ε > 0 as in Proposition 3.14, it is possible to
select r0 ∈ (0, 1) such that

(35) sup
k∈N

sup
x∈T2

∣∣∣∇u
(k)
0

∣∣∣2
L2(B4r0 (x))

≤ ε2

4
.

For every k ∈ N and a.e.-ω ∈ Ω, given initial data u
(k)
0 , by Corollary 3.4

there exists a unique H2-maximal solution (u(k), [0, τ (k)))(ω) of equation
(13).

Next, we show that the solutions u(k) and the parameter A satisfy Hypoth-
esis 3.9 on a uniform interval. Using Lemma 3.7 and (35), there exists a
constant c > 0 such that for a.e.-ω ∈ Ω,

(36) sup
x∈T2

|∇u(k)(t, ω)|2L2(B2r0 (x))
≤ ε2

4
+ ch(t, ω)t, t ∈ [0, τ (k)(ω)),
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where h : [0, T ]× Ω → (0,∞) is given by

(37)

h(t) = h(t;A,u0) :=

(
1 + sup

k∈N
|∇u

(k)
0 |2L2 +

∫ t

0
|A|4H1ds

)
× e

∫ t
0 |A|2

H2ds
(
r−2
0 + |A|2C([0,t];H2)

)
+ 1 + |A|4C([0,t];H1).

The process h is F-adapted and independent of k. For a.e.-ω ∈ Ω, h(·, ω) is
increasing and continuous, since A is progressively measurable with values
in C([0, T ];H2), P-a.s. Then we can define an F-stopping time

(38) τh := inf

{
t ∈ [0, T ] : h(t)t =

ε2

4c

}
,

where τh(ω) = T if supt∈[0,T ] h(t, ω)t <
ε2

4c . By definition, we have either
τh(ω) = T or h(T )τh > h(τh)τh = ε2

4c in the case τh(ω) < T , implying that

τh > 0, P-a.s. Coming back to (36), let I(k) = [0, τ (k))∩[0, τh] and r ∈ (0, r0],
then

(39) sup
k∈N

sup
t∈I(k)

sup
x∈T2

|∇u(k)(t)|2L2(B2r(x))
≤ ε2

4
+ ch(τh)τh ≤ ε2

2
, P-a.s.

Let N := {ω ∈ Ω : τh(ω) ≥ τ (k)(ω)}. If P(N ) > 0, then u(k)(ω) ∈
L∞(0, τ (k);H3) ∩ L2(0, τ (k);H4) for any ω ∈ N by Proposition 3.14(iii) and
(41). This implies that the H2-solution (u(k), τ (k))(ω) can be continuously

extended up to (including) τ (k), which contradicts with the maximality of

τ (k). Thus, P(N ) = 0, meaning τh < τ (k), P-a.s. for all k ∈ N. By the
regularity of A, there exists rA > 0, P-a.s. such that for any r ∈ (0, rA],

(40) sup
t∈[0,T ]

sup
x∈T2

|A(t)|2L2(B2r(x))
≲ r2|A|2C([0,T ];H2) <

ε2

2
, P-a.s.

where the first inequality holds by the Sobolev embedding H2 ↪→ L∞ and
the fact |B2r| ≲ r2.

Define u
(k)
h (t) := u(k)(t ∧ τh) for t ∈ [0, T ]. Then by (39) – (40),

(41) sup
t∈[0,T ]

sup
x∈T2

(
|∇u

(k)
h (t)|2L2(B2r0 (x))

+ |A(t)|2L2(B2rA
(x))

)
< ε2, P-a.s.

We will use H1-moment estimates of u
(k)
h and Skorohod theorem in Section

5.2 to secure adaptedness of the limiting process, and leave higher-order
regularity proof to Section 5.3 which require (a similar condition to) (41).

5.2. Convergence to an adapted process ũ. For β ∈ R, σ ≥ 2 and
γ ∈ (0, 12), we define the spaces

Uγ
0 := Cγ([0, T ];L2) ∩ C([0, T ];H1),

V β,σ
0 := C([0, T ];Hβ)× C([0, T ];R)× C([0, T ];Hσ)× C([0, T ]; ℓ2),
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where Uγ
0 is compactly embedded in C([0, T ];H−1) by Arzela-Ascoli’s the-

orem. Recall that τh ∈ (0, τ (k)), P-a.s. By Lemma 3.8, u
(k)
h is uniformly

bounded in L2(Ω;Uγ
0 ), Thus, the laws {L(u

(k)
h )}k∈N are tight on C([0, T ];H−1).

Applying Prokhorov theorem and two versions of Skorohod representation
theorem [10, Theorem C.1] and [5, Theorem 3.2], there exist V −1,σ

0 -valued
random variables, (ũ, h̃, Ỹ , W̃ ) and {(ũ(k), h̃(k), Ỹ (k), W̃ (k))}k, defined on
the same probability space (Ω,F ,P), such that

(i) L((ũ(k), h̃(k), Ỹ (k), W̃ (k))) = L((u(k)
h , h,Y ,W )) on V −1,σ

0 , for all k ∈
N,

(ii) (ũ(k), h̃(k), Ỹ (k), W̃ (k)) → (ũ, h̃, Ỹ , W̃ ) in V −1,σ
0 , P-a.s.

(iii) (h̃(k), Ỹ (k), W̃ (k)) = (h̃, Ỹ , W̃ ), P-a.s. for all k ∈ N.

By (i) and (iii), (ũ(k), h̃, Ỹ , W̃ ) and (u
(k)
h , h,Y ,W ) have same laws on V −1,σ

0
and any separable metric subspace of V −1,σ

0 by Kuratowski’s theorem.

Let F̃t be the completion of σ(ũ(k)(s), ũ(s), h̃(s), W̃ (s); k ∈ N, s ≤ t) and
F̃ := (F̃t)t∈[0,T ]. Then W̃ defines a cylindrical Wiener process on (Ω,F , F̃,P),
and Ỹ is the unique solution of (7) driven by W̃ satisfying Lemma 2.2. Let

Ã := (Ỹ )⋆
(
∇Ỹ

)
,

and rÃ be chosen as in (40). Then Ã ∈ C([0, T ];H2), P-a.s. and the laws

L((ũ(k), h̃, Ã, W̃ )) = L((u(k)
h , h, A,W )) on V 2,2

0 since C([0, T ];H2) is a sepa-
rable subspace of C([0, T ];H−1). Similar to (38), let

τh̃ := inf

{
t ∈ [0, T ] : h̃(t)t =

ε2

4c

}
,

which is a F̃-stopping time since h̃ is a continuous and F̃-adapted process
by construction (see the definitions of V 2,2

0 and F̃). The law of τh̃ depends

only on the law of h̃, where the map C([0, T ];R) ∋ h̃ 7→ τh̃ ∈ [0, T ] is

Borel measurable. Then using the fact L(h̃) = L(h) on C([0, T ];R), we have
P(τh̃ > 0) = P(τh > 0) = 1. As a result of the same (joint) laws, for any
t ∈ [0, T ], we have on L2,

ũ(k)(t)− u
(k)
0 −

∫ t∧τh̃

0
H(s, Ã, ũ(k)(s)) ds = 0, P-a.s.

In other words, ũ(k) on [0, τh̃] is a local solution of the equation (13) with

initial condition u
(k)
0 and parameter Ã, P-a.s. Moreover,

(42)

sup
t∈[0,T ]

sup
x∈T2

(
|∇ũ(k)(t ∧ τh̃)|

2
L2(B2r0 (x))

+ |Ã(t)|2L2(B2r
Ã
(x))

)
< ε2, P-a.s.

We shall use (42) for convergences in smaller spaces under fixed ω in Section
5.3. Before doing so, we collect some properties of the limit ũ which will be
used in Section 5.4.
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By construction, the processes ũ and ũ(· ∧ τh̃) are F̃-progressively measur-
able. The following map is lower semi-continuous

C([0, T ];H−1) ∋ f 7→ sup
t∈[0,T ]

|f(t)|H1 .

Thus, by (42) and the P-a.s. convergence of ũ(k) in C([0, T ];H−1) (see (ii)),
we have
(43)

sup
t∈[0,τh̃]

sup
x∈T2

(
|∇ũ(t)|2L2(B2r(x))

+ |Ã(t)|2L2(B2r
Ã
(x))

)
< ε2, ∀r ∈ (0, r0], P-a.s.

Similarly, using the uniform integrability of ũ(k) in C([0, T ];H1) under (i)
and Fatou’s lemma, we have for any p ∈ [1,∞),

(44)

E

[
sup

t∈[0,T ]

∣∣ũ(t ∧ τh̃)∣∣pH1

]
≤ lim inf

k→∞
E

[
sup

t∈[0,T ]

∣∣∣ũ(k)(t ∧ τh̃)
∣∣∣p
H1

]

= lim inf
k→∞

E

[
sup

t∈[0,T ]

∣∣∣u(k)
h (t ∧ τh̃)

∣∣∣p
H1

]
<∞.

5.3. H2-maximal solution. For ρ, γ ∈ (0, 1), define the intervals

Ih̃ := [0, τh̃], Ih̃,ρ := [ρτh̃, τh̃],

and let

U1 := L∞(Ih̃;H
1) ∩ L2(Ih̃;H

2) ∩H1(Ih̃;L
2),

V1 := C(Ih̃;H
γ) ∩ L2(Ih̃;H

1),

U2 := L∞(Ih̃,ρ;H
3) ∩ L2(Ih̃,ρ;H

4) ∩H1(Ih̃,ρ;H
2),

V2 := C(Ih̃,ρ;H
2+γ) ∩ L2(Ih̃,ρ;H

3).

For fixed ω ∈ Ω, we have the usual vector spaces and compact embeddings
U1(ω) ⋐ V1(ω) and U2(ω) ⋐ V2(ω). By Proposition 3.14, for a.e.-ω ∈ Ω,

sup
k∈N

∣∣∣ũ(k)(· ∧ τh̃)(ω)
∣∣∣
U1(ω)∩U2(ω)

< c

(
r0, ε, sup

k∈N
|u(k)

0 |H1 , |Ã(ω)|C([0,T ];H3)

)
<∞.

Then there exists a subsequence of {ũ(k)(· ∧ τh̃)(ω)}, denoted as {v(kj)}j ,
such that

(45) v(kj)
j→∞→ v


weak-* in L∞(Ih̃(ω);H

1) ∩ L∞(Ih̃,ρ(ω);H
3)

weakly in L2(Ih̃(ω);H
2) ∩ L2(Ih̃,ρ(ω);H

4)

strongly in V1(ω) ∩ V2(ω).
Recall (ii) in Section 5.2, we have

ũ(k)(· ∨ ρτh̃ ∧ τh̃) → ũ(· ∨ ρτh̃ ∧ τh̃) in C([0, T ];H−1), P-a.s.

(including the case ρ = 0.) Then by the uniqueness of limit in C(Ih̃(ω);H
−1),

ũ(t, ω) = v(t), ∀t ∈ Ih̃(ω),
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Using the convergences (45) above, ũ is an H1-solution of (13) on Ih̃ and an

H2-solution on Iρ,h̃, P-a.s., with regularity

ũ(· ∧ τh̃) ∈ C(0, T ;Hγ) ∩ L∞(0, T ;H1) ∩ L2(0, T ;H2), P-a.s.(46)

ũ(· ∨ ρτh̃ ∧ τh̃) ∈ C([0, T ];H2+γ) ∩ L2(0, T ;H4), P-a.s.(47)

For a.e.-ω ∈ Ω, thanks to the higher-order (particularly H2+γ) regularity
of ũ(ω) given in (47), this local solution can be extended to a unique H2-
maximal solution, still denoted as ũ(ω), of (13) in H2 on [ρτh̃, τ̃

∗
1 ) where

τh̃(ω) < τ̃∗1 (ω) ≤ T and

(48) |ũ(t, x, ω)| = 1, a.e-(t, x) ∈ [0, τ̃∗1 (ω))× T2.

Note that τh̃ is an F̃-stopping time. Then by Corollary 3.6 and Lemma

3.8, the maximal time τ̃∗1 is an F̃-stopping time, and for any F̃-stopping time

ζ̃ ∈ [τh̃, τ̃
∗
1 ), the (stopped) extended solution process ũ(·∧ζ̃) : [0, T ]×Ω → H1

is F̃-progressive, satisfying

(49)
E

[
sup

s∈[0,T ]

∣∣∣∇ũ(θτh̃(s) ∧ ζ̃)
∣∣∣2
L2

+

∫ ζ̃

τh̃

|ũ×∆Ãũ|
2
L2(s) ds

]
≤ c̃

(
E
[∣∣∇ũ(τh̃)

∣∣2
L2 + |Ã|2C([0,T ];L2)

]
+ q4(2)

)
<∞,

for some constant c̃ > 0.

5.4. Singularities at τ̃∗1 . If the smallness condition (43) is satisfied at τ̃∗(ω)
and a positive r(ω) ≤ r0 for some ω ∈ Ω, then ũ(ω) has improved regularity
with uniform (in time) bound on [τh̃(ω), τ̃

∗
1 (ω)) as in Proposition 3.14(ii),

which allows it be extended smoothly up to (including) τ̃∗1 (ω), contradicting
the maximality of τ̃∗1 (ω). Thus, (43) is not satisfied at τ̃∗(ω), for a.e.-ω ∈ Ω.
In other words, there must exist a singular set S∗

1(ω) given by

S∗
1(ω) =

{
xn ∈ T2 | lim sup

t↗τ̃∗1 (ω)

(
|∇ũ(t)|2L2(B2r(xn))

+ |Ã(t)|2L2(B2r
Ã
(xn))

)
(ω)

> ε2, ∀r ∈ (0, r0]
}
.

By (40) and the way that rÃ was chosen in Section 5.2,

(50) lim sup
t↗τ̃∗1 (ω)

|∇ũ(t, ω)|2L2(B2r(xn))
>
ε2

2
,

for any r(ω) ∈ (0, r0] and thus for any r > 0.

Now we identify the limit of ũ(t) as t → τ̃∗1 . Let {ti}i∈N be a sequence

of increasing positive F̃-stopping times such that 0 ≤ ti < τ̃∗1 for all i and
ti → τ̃∗1 , P-a.s. as i→ ∞. For instance, we can take

ti = inf{t ∈ [τ̃h, T ] : |ũ(t)|H2 > i}.
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By the on-sphere constraint (48) and the moment estimates (44) and (49),
we have

(51) sup
i∈N

E
[
|ũ(ti)|2H1

]
≤ E

[
sup
i∈N

|ũ(ti)|2H1

]
<∞.

This implies that there exists a subsequence of (ũ(ti))i that converges weakly
in L2(Ω;H1) to some ũ∗ ∈ L2(Ω;H1). Moreover, fix ω, there exists a subse-
quence of (ũ(ti))i(ω) that converges weakly in H1 to some ṽ∗ ∈ H1. In fact,
these weak convergences for the entire sequences (ũ(ti))i and (ũ(ti))i(ω),

where the limit ũ∗ is F̃τ̃∗1
-measurable and ũ∗(ω) = v∗. We start from veri-

fying that (ũ(ti))i is a Cauchy sequence in L2(Ω;L2):

E
[
|ũ(ti)− ũ(tj)|2L2

]
≤ c̃E

[∣∣∣∣∫ tj

ti

ũ×∆Ãũ ds

∣∣∣∣2
L2

]

≤ c̃E

[(∫ tj

ti

|ũ×∆Ãũ|
2
L2 ds

)2
] 1

2

(E [|tj − ti|])
1
2 ,

for any i, j ∈ N, where

lim
i→∞

E

[∫ ti

τh̃

|ũ×∆Ãũ|
2
L2 ds

]
= E

[∫ τ̃∗1

τh̃

|ũ×∆Ãũ|
2
L2 ds

]
<∞.

The inequalities above hold as in the proof of Lemma 3.8 using the equa-
tion (13). Therefore, ũ(ti) converges strongly in L2(Ω;L2) to some ũ′ ∈
L2(Ω;L2). Then we have the following consequences.

(i) ũ′ = ũ∗ by the uniqueness of weak limit in L2(Ω;L2). This applies
to every subsequence that is weakly convergent in L2(Ω;H1), leading
to weak convergence in L2(Ω,H1) of the entire sequence (u(ti))i.

(ii) There exists a further subsequence of (u(ti))i that converges in L2

to the unique limit ũ∗, P-a.s. The random variables ũ(ti), i ∈ N, are
F̃τ̃∗1

-measurable, and so does their P-a.s. limit ũ∗.

For fixed ω, (ũ(ti)(ω))i is similarly a Cauchy sequence in L2, since ũ(ti)(ω)

solves a deterministic equation,
∫ tj
ti

|ũ × ∆Ãũ|
2
L2 ds < ∞, P-a.s. and ti ↗

τ̃∗1 , P-a.s. Similar to consequence (i), we obtain that the entire sequence
(ũ(ti))i(ω) converges weakly in H1 to some ṽ∗ ∈ H1. Then by consequence
(ii), (ũ(ti))i(ω) converges to ũ∗(ω) = v∗ weakly in L2. Since this argument
applies for a.e.-ω, we obtain the a.s. weak convergence

ũ(ti)⇀ ũ∗ in H1, P-a.s.

for any sequence of stopping times ti ↗ τ̃∗1 , P-a.s.

By the weak lower semi-continuity of the H1-norm and the inequality (50),

E
[
|∇ũ∗

1|2L2

]
= E

[
lim
r→0

|∇ũ∗
1|2L2(T2\∪nB2r(xn))

]
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≤ lim inf
i→∞

E
[
lim
r→0

|∇ũ(ti)|2L2(T2\∪nB2r(xn))

]
= lim inf

i→∞
E

|∇ũ(ti)|2L2 − lim
r→0

∑
n≤|S∗

1 |

|∇ũ(ti)|2B2r(xn)


≤ lim inf

i→∞
E
[
|∇ũ(ti)|2L2

]
− ε2

2
E [|S∗

1 |] .(52)

Then by the fact ∇ũ∗
1 ∈ L2(Ω;H1) and (51), we have E[|S∗

1 |] <∞.

Alternatively, by Lemma 3.7(i), we can also show that the P-a.s. L2-
convergent sequence has a P-a.s. weak H1-convergent subsequence, and
similarly,

(53) |∇ũ∗
1|2L2 ≤ lim inf

j→∞
|∇ũ(tij )|2L2 −

ε2

2
|S∗

1 | ≤ sup
t∈[0,τ̃∗1 )

|∇ũ(t)|2L2 −
ε2

2
|S∗

1 |.

To improve the a.s. H1-weak convergence, we note that the condition
(43) is satisfied if the supremum is taken over x ∈ T2 \ S∗

1 instead of
x ∈ T2. This implies that away from the random singular locations, the
restriction ũ|T2\S∗

1
can be extended continuously up to τ̃∗1 , yielding ũ(ω) ∈

C([τh̃, τ̃
∗
1 ](ω);H

2(T2 \ S∗
1(ω))) for a.e.-ω ∈ Ω. From the continuity in time,

we have the following strong convergence

ũ(ti)(ω) → ũ∗(ω) in H1(T2 \ S∗
1(ω)),

for a.e.-ω ∈ Ω.

5.5. Iterate to construct solution in C([0, T ];L2) ∩ L∞(0, T ;H1). We
repeat Section 5.1 – 5.4 using the initial point ũ∗

1 to obtain a similar local H1-
solution. For clarity, we provide details of the second iteration, particularly
for the time shift, and the random radius associated with ũ∗

1.

As in Section 5.1, for a.e.-ω ∈ Ω, there is a sequence of smooth approxi-
mations {ũ(k)

1 (ω)} converging to ũ∗
1(ω) strongly in H1. The approximating

sequence is constructed from a (deterministic) mollification of ũ∗
1, thus for

every k ∈ N, ũ(k)
1 : Ω → C∞(T2;S2) is similarly F̃τ̃∗1

-measurable and the

convergence is P-a.s. Similar to (35), now we select a F̃τ̃∗1
-measurable ran-

dom radius r̃1 > 0 such that

sup
k∈N

sup
x∈T2

∣∣∣∇ũ
(k)
1

∣∣∣2
L2(B4r̃1(x)

)
≤ ε2

4
, P-a.s.

Let (ũ
(k)
∗ , [τ̃∗1 , τ̃

(k)
∗ )) denote the unique H2-maximal solution of (18) with the

parameter Ã and the initial data ũ∗
1 at τ̃∗1 . Recall h in (37). Let

h̃∗(s) := h
(
s; Ã(θτ̃∗1 ), ũ

∗
1

)
, s ≥ 0,

which depends only on (ũ
(k)
1 )k∈N, r̃1 and the restriction of Ã to the inter-

val [τ̃∗1 , θτ̃∗1 (s)]. Similarly, the process h̃∗ is independent of k, increasing,
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continuous and F̃τ̃∗1
-adapted, where F̃τ̃∗1

= (F̃τ̃∗1+s)s≥0. Then we have an

F̃τ̃∗1
-stopping time

τ̃h̃∗
:= inf

{
s ≥ 0 : h̃∗(s)s =

ε2

4c

}
,

where τ̃h̃∗
> 0, P̃-a.s. As a result, τ̃h̃∗

+ τ̃∗1 is an F̃-stopping time since it is
equivalent to

inf

{
t ∈ [τ̃∗1 , T ] : h̃∗(t− τ̃∗1 )(t− τ̃∗1 ) =

ε2

4c

}
.

Using again the maximality of τ̃
(k)
∗ and Proposition 3.14, we have τ̃h̃∗

+ τ̃∗1 <

τ̃
(k)
∗ , P̃-a.s. for every k ∈ N. Define

ũ
(k)

h̃∗
(s) := ũ

(k)
∗ (θτ̃∗1 (s ∧ τ̃h̃∗

)), s ≥ 0.

Then by Lemma 3.7, a similar condition to (41) holds for
(
ũ
(k)

h̃∗
, r̃1, Ã, rÃ

)
instead of (u

(k)
h , r0, A, rA).

As in Section 5.2, ũ
(k)

h̃∗
is uniformly bounded in L2(Ω̃;Uγ

0 ) for any γ ∈ (0, 12).
Also, let

W̃∗(s) := W̃ (τ̃∗1 + s)− W̃ (τ̃∗1 ), s ≥ 0.

Then W̃∗ is a new cylindrical Wiener process on (Ω,F ,P) independent of

F̃τ̃∗1
, and Ỹ∗(·) = Ỹ (τ̃∗1+·) is the unique solution of (7) driven by W̃∗ starting

from Ỹ∗(0) = Ỹ (τ̃∗1 ). Applying again the two versions of Skorohod theorem,
on the same probability space (Ω,F ,P), there exist V −1,σ

0 × [0, 1]-valued

random variables (û, ĥ, Ŷ , Ŵ , r̂1) and {(û(k), ĥ(k), Ŷ (k), Ŵ (k), r̂
(k)
1 )}k∈N such

that

L((û(k), ĥ(k), Ŷ (k), Ŵ (k), r̂
(k)
1 )) = L((ũ(k)

h̃∗
, h̃∗, Ỹ∗, W̃∗, r̃1)) on V

−1,σ
0 × [0, 1],

for all k ∈ N, and the a.s. convergence (ii) and a.s. equality (iii) hold

similarly. Let F̂t be the completion of σ(û(k)(s), û(s), ĥ(s), Ŵ (s), r̂1; k ∈
N, s ≤ t) and F̂ := (F̂t)t∈[0,T ]. In particular, r̂1 is F̂0-measurable, and Ŷ is

the unique solution of (7) driven by Ŵ with initial distribution L(Ŷ (0)) =

L(Ỹ∗(0)).

The rest of Section 5.2 – 5.4 can be repeated, giving a solution û and an
F̂-stopping time τ̂∗2 > 0, P̃-a.s. with the following properties:

• for any F̂-stopping time ζ̂ ∈ [0, τ̂∗2 ), û(· ∧ ζ̂) is F̂-progressively mea-

surable, bounded in L2(Ω̂, L∞(0, T ;H1)) with |û(t, x, ω̂)| = 1 a.e.
and takes values in C((0, T ];H2), P-a.s.
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• for a.e.-ω ∈ Ω, there exists a singular set S∗
2(ω) such that E[|S∗

2 |] <
∞, and for every x ∈ S∗

2(ω),

lim sup
t↗τ̃∗1 (ω)

|∇ũ(t, ω)|2L2(B2r(x))
>
ε2

2
, ∀r > 0,

• û(t) converges to an F̂τ̂∗2
-measurable random variable û∗

2 weakly in

L2(Ω;H1), as t↗ τ̂∗2 .

To concatenate the two solutions ũ and û, for every t ≥ 0, let F̄t be the
completion of the σ-algebra

σ
(
F̃t ∪

{
{τ̃1∗ ∈ [s, t]} ∩B : B ∈ F̂t−s, s ∈ [0, t)

})
By definition, F̃t ⊆ F̄t, thus τ̄

∗
1 := τ̃∗1 is also an F̄-stopping time where

F̄ := (F̄t)t≥0. Similarly, τ̄∗2 := τ̃∗1 + τ̂∗2 is an F̄-stopping time. Moreover, the

increments of Ŵ are all independent to F̄τ̃∗1
. Then the process W̄ given by

W̄ (t) := W̃ (t)1(τ̃∗1 > t) +
(
W̃ (τ̃∗1 ) + Ŵ (t)

)
1(τ̃∗1 ≤ t), t ∈ [0, T ],

is a cylindrical Wiener process adapted with respect to F̄. The processes
(Ỹ , Ŷ ) and (Ã, Â) can be similarly pasted together. As a result, we arrive at
a F̄-progressively measurable solution on (Ω̄, F̄ , P̄): (ū, [0, τ̃∗1 + τ̂∗2 )) defined
by

ū(t) =

{
ũ(t), t ∈ [0, τ̃∗1 ) = [0, τ̄∗1 ),

û(t− τ∗1 )− û(0) + ũ∗
1, t ∈ [τ̃∗1 , τ̃

∗
1 + τ̂∗2 ) = [τ̄∗1 , τ̄

∗
2 ).

For simplicity, let us omit all accents.

Continuing this procedure, we produce a weak solution u(t) in H1 on [0, τ∗ℓ )
by the end of the ℓ-th iteration. Then we only need to show that this solution
u is global. Let Nℓ := |S∗

ℓ | denote the (random) number of singular points
as t→ τ∗ℓ . Recall (51), (53) and Lemma 3.7 – 3.8. Inductively,

|∇u∗
ℓ |2L2 ≤

(
|∇u0|2L2 + c

∫ τ∗ℓ

0
|∇ ·A+A2|2L2 ds

)
e
c|A|2

L2(0,τ∗
ℓ
;L∞)

− ε2

2

ℓ∑
j=1

Nj , P-a.s.

E
[
|∇u∗

ℓ |2L2

]
≲ |∇u0|2L2 + E

[
|A|2C([0,T ];L2)

]
+ q4(2)− ε2

2
E

 ℓ∑
j=1

Nj

 .
By construction, we have τ∗ℓ ≤ T and thus

sup
ℓ∈N

|∇u∗
ℓ |2L2 +

ℓ∑
j=1

Nj

 <∞, P-a.s.
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The sequence (τ∗ℓ )ℓ is positive and increasing. Let τ∗ := limℓ→∞ τ∗ℓ , and
let u∗ denote the weak limit of u∗

ℓ in L2(Ω;H1). If τ∗ < T , then no more
iteration can be performed with |u∗

ℓ |H1 → ∞, leading to a contradiction.
Thus, τ∗ = T and we arrive at a global weak solution u in H1(0, T ;L2) ∩
L∞(0, T ;H1) of (13) with a finite number of time-space singular points,
P-a.s.

5.6. Value of ε. We now provide a geometric characterization of singulari-
ties and deduce a precise numerical value for ε. Again, for fixed ω ∈ Ω, after
translation and dilation we may u = u(ω) ∈ C([−4, 0);H2(B̄2 \ {0};S2)). If
(0, 0) is a singularity then by virtue of Proposition 3.13,

|∇u(tk)|2L2(Brk
(xk))

= sup
x∈B1

|∇u(tk)|2L2(Brk
(x)) =

ε2

4

for suitable sequences tk ↗ 0, xk → 0 and rk ↘ 0. Moreover, invoking
Lemma 3.7 we find 0 < δ0 ≤ 1/4 such that

sup
x∈B 1

2
(xk)

∫
B rk

2
(x)

|∇u(t)|2dx ≤ ε2

2
, ∀t ∈ [tk − r2kδ0, tk],

for sufficiently large k. The blow-up solutions uk given by

uk(t, x) = u(tk + r2kt, xk + rkx), (t, x) ∈ [−δ0, 0]× R2

admit for x ∈ B1/2rk and t ∈ [−δ0/2, 0] a uniform higher order bounds
according to Proposition 3.13. We consider uk as a solution of the perturbed
Landau-Lifshitz equation

∂tuk = uk × (α∂tuk −∆uk) + Fk

where |Fk(t)|L2 = O(rk) uniformly for all admissible t. It follows from the

energy inequality for u that
∫ 0
−δ0

∫
R2 |∂tuk|2 dxdt → 0 as k → ∞, hence

vk = (∂tuk)(τk) and wk = Fk(τk) converge to zero in L2(R2) for some
sequence τk ↗ 0. Note that ũk = uk(τk) is an almost harmonic map in the
sense that

ũk ×∆ũk = α ũk × vk − vk +wk

and subconvergence strongly in H1
loc(R2;R3) to a harmonic map ũ of finite

energy in R2. To show that ũ is non-constant we invoke Lemma 3.7 for uk∫
B1

|∇uk(0)|2 dx−
∫
B2

|∇uk(τk)|2 dx→ 0 as k → ∞,

so that by local strong convergence
∫
B2

|∇ũ|2 dx > 0. By virtue of the well-

known theory about harmonic maps 1
2

∫
R2 |∇ũ|2 dx is a positive multiple of

4π. Hence by letting sk = tk + r2kτk → 0 we have for arbitrary r0 > 0∫
B2(0)

|∇u(sk)| dx ≥
∫
B1(xk)

|∇u(sk)| dx =

∫
B1/rk

|∇ũk| dx ≥
∫
Br0

|∇ũk| dx
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for k > k0 depending on r0 which implies by strong L2(Br0) compactness of
∇ũk

lim inf
k→∞

1

2

∫
B2(0)

|∇u(sk)|2 ≥
1

2

∫
Br0

|∇ũ| dx = 4π|q|+ o(1).

This concludes the proof of Theorem 4.1 and Corollary 4.2.

Remark 5.1. If the noise is finite-dimensional with commuting Gj matrices
(e.g. gj(t) = f(x)h for a fixed constant vector h ∈ R3, ∀j ≤ N), then A can
be expressed in terms of sin(Wj) and cos(Wj) as in Example 2.4, so that for
a sufficiently smooth f . As a result, we can obtain a non-random bound for
|A(ω)|C([0,T ],Hσ) for a.e.-ω ∈ Ω. This could simplify the derivations above,
since an explicit expression of τh in terms of r0 would be available.

6. Proof of uniqueness

We sketch the proof of Theorem 4.4 in this section. For simplicity, we fix
ω ∈ Ω such that A(ω) is sufficiently regular, and write u = u(ω) (resp.,
t = t(ω)).

Right-continuity of Dirichlet energy of u is the key to control the most
singular nonlinear term by decomposing it into a smooth and small part.
Thereby it implies improved space-time regularity

∇u ∈ L4(0, t;L4)

on small forward in time intervals (0, t], which is sufficient to perform a
local Gronwall argument, cf. [12]. In fact, by L2-continuity and translation
properties of A, it is enough to establish local uniqueness near t = 0.

We present the crucial step towards regularity using right-continuity and
the decomposition argument, which is not properly described in the corre-
sponding literature on LLG as pointed out in [24].

Lemma 6.1. Under the assumption of Theorem 4.4, there exists (random)

t > 0 such that ∆u ∈ L2(0, t;L
4
3 ).

Sketch of proof of Lemma 6.1. The main idea is to interpret the magnetic
LLG (in Gilbert form) as an inhomogeneous magnetic heat equation

∂tu− α
(
∆u−∇⊥Bε : ∇u

)
= f .

where the magnetic term in Bε is arising from the geometric nonlinearity -
not the transformation. The key observation (cf. [18]) is that by virtue of
Wente’s inequality, the magnetic Laplacian above is uniformly elliptic in the
sense that

−⟨∆u+∇⊥Bε : ∇u,u⟩L2 ≥ 1

2
(1− c |∇Bε|L2) |∇u|2L2 ,
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where the operator −(∆u + ∇⊥Bε : ∇u)(s) is coercive for any s ∈ [0, t],
provided |∇Bε|L∞(0,t;L2) < ε and parabolic theory applies.

In the case of the our magnetic LLG equation, the source term f contains

(i) the Hamiltonian terms that in Gilbert form are given by u × ∂tu ∈
L2(0, T ;L2),

(ii) the pertubations arising from A that are bounded as follows

|∇A|+ |A||∇u|+ |A|2 ∈ L∞(0, T ;Lp), ∀p < 2,

(iii) and the terms arising from the so(3) valued Hodge decomposition

Ψ = ∇⊥B +Φ, ∇⊥ · Φ = 0,

or in the Hélein factorization of the geometric nonlinearity

|∇u|2u = Ψ : ∇u, Ψ = u⊗∇u−∇u⊗ u.

For terms in (iii), using the equation it follows that

|∇Φ|L2 = |∇ ·Ψ|L2

which is uniformly bounded in time. Hence, by Sobolev embedding, Φ ∈
L∞(0, t;Lp) for all p < ∞ and will be attributed to f . The final step is
a decomposition of B. According to our assumption Ψ and hence B is
right-continuous in time with values in H1. This implies by letting

Bε(t) = B(t)−ΠnB(0)

where Πn is a suitable spectral truncation so that B − Bε ∈ C∞ will con-
tribute to f , while

|∇Bε(t)|L2 ≤ |∇(B(t)−B(0))|L2 + |∇(B(0)−ΠnB(0))|L2

≤ |∇(B(t)−B(0))|L2 + ∥1−Πn∥|∇u(0)|L2 < ε

for n sufficiently large and t sufficiently small. Since

f ∈ L∞(0, t;Lp) ∩ L2(0, t;L2) ∩ L2(0, t;L
4
3 )

on finite time intervals, the claim follows from parabolic theory. □

In a second step based on the Landau-Lifshitz formulation, integrability in
time can be improved to the power 4, and the requisite gradient regularity
∇u ∈ L4(0, t;L4) follows by Sobolev embedding. To conclude the proof of
the theorem, it is routine to derive the following differential inequality for
the increment w = u− v of two weak solutions u and v in this class

∂t|w|2L2 + 2α|∇Aw|2L2 ≲
∫
T2

(
|∇AU ||∇Aw||w|+ |∇AU |2|w|2

)
dx

with U = (u,v). By Young’s and Ladyzhenskaya’s interpolation inequality,
we obtain

∂t|w|2L2 + α|∇w|2L2 ≲
(
|∇u|2L4 + |A|2L4

)
|w|2L4

≲
(
|∇u|2L4 + |∇A|L2 |A|L2

)
|∇w|L2 |w|L2 ,
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which can be recast into

∂t|w|2L2 +
α

2
|∇w|2L2 ≲

(
|∇u|4L4 + |∇A|2L2 |A|2L2

)
|w|2L2 .

As the first factor on the right is integrable in time, Gronwall implies w = 0
on a small time interval, concluding the proof of this lemma.

7. Concluding remarks

With Theorem 4.1 and 4.4, the inverse transformation yields our main result
on solutions m of the stochastic LLG equation (4).

Let us briefly comment on the regularity of noise required in the proofs
in Sections 5 and 6. For the existence proof, we set σ = 4 to ensure that
A ∈ C([0, T ];H2)∩L2(0, T ;H3), P-a.s. and thereby use Proposition 3.14. For
the uniqueness proof, σ = 2 is sufficient. As in Remark 2.5, an improved
control of ∇ · A would lower the regularity requirements. Considered as
time-space forms over R × T2, they satisfy the caloric gauge A0 = 0, but
roughness in time limits the class of admissible gauge transformations, which
is a crucial aspect from the point of view of PDE analysis. Although we
do not aim for an optimal regularity result here, it is worth mentioning
some heuristic limitations from the basic energy law and scaling property.
Starting from a strong (in PDE sense) solution m of (4) in the simplest case
of one-dimensional Wiener process,

dm = −m×∆m dt+ α(∆m+ |∇m|2m) dt+ (m× g) ◦ dW.
with g = fh for some f : T2 → R and constant h ∈ R3, it follows from Itô’s
lemma that

E(m(t))− E(m(0)) + α

∫ t

0

∣∣∆m+ |∇m|2m
∣∣2
L2 (s) ds

=

∫ t

0
⟨∇m,m×∇g⟩L2(s) dW (s) +

1

2

∫ t

0
|m×∇g|2L2(s) ds.

This suggests σ = 1 as borderline regularity for weak solutions based on
energy concepts. This situation has been considered in [25] in the case
of HMHF. On the other hand, for every λ > 0, the process Wλ given by
Wλ(t) = λ−1W (tλ2) is again a cylindrical Wiener process on ℓ2. Starting
from a strong (in PDE sense) solution of (4) on [t0, t0 + r2]×Br(x0), let

mλ(t, x) = m(t0 + λ2t, x0 + λx),

Gλ(φ)l =

∞∑
j=1

⟨l, hj⟩φ× gj,λ,

where gj,λ(x) = gj(x0 + λx), j ∈ N, for any λ > 0. Then

dmλ = −mλ ×∆mλ dt+ α(∆mλ + |∇mλ|2mλ) dt+ λGλ(mλ) ◦ dWλ.

Notably, in dimension 2, dilation is norm preserving in L∞∩H1. In the blow-
up regime λ < 1, the contributions from noise are uniformly controlled. This
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suggests a borderline regularity σ = 0 where the noise is equally active on
every scale.
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