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Abstract. We sharpen earlier work on the pro-p completions of orientable PD3-groups. There are
four cases, and we give examples of aspherical 3-manifolds representing each case. In three of the
four cases the new results are best possible. We also consider the pro-p completion of some orientable
PDn groups for n ď 5, including surface-by-surface groups.

1. Introduction

There are two definitions of a profinite Poincaré duality group G of dimension n at a prime p
[21, 3.4.6], [30]. Both definitions differ on whether the profinite group G should be of type FP8
over Zp i.e. whether the trivial ZprrGss-module Zp has a projective resolution with all projectives
finitely generated ZprrGss-modules. The groups that satisfy the definition of [30] we call strong
profinite PDn groups at p and the groups that satisfy the original definition of Tate from [21], [27]
we call profinite PDn groups at p. By [30] every strong profinite PDn group at p is a profinite
PDn group at p. By definition a group G which is a strong PDn group at p has cohomological
p-dimension cdppGq “ n, has type FP8 over Zp and Exti

ZprrGss
pZp,ZprrGssq “ 0 for i , n and

Extn
ZprrGss

pG,ZprrGssq » Zp. If the action of G on Extn
ZprrGss

pG,ZprrGssq » Zp is trivial G is called
orientable. For pro-p groups the notions of strong profinite PDn group at p and profinite PDn group
at p coincide. We call such groups pro-p PDn groups.

We are interested in pro-p and profinite completions of orientable PDn groups. The cases n “ 1 or 2
are well understood. The pro-p completions of orientable PD2-groups are pro-p PD2-groups. These
are also known as Demuškin groups, and were completely classified in terms of pro-p generators
and relations in [5], [6], [19], [26]. (Not all such groups are pro-p completions of PD2-groups.)
Profinite and pro-p completions of PD3 groups were studied by Kochloukova and Zalesski in
[18] and by Weigel in [32]. Some results on pro-p completions for arbitrary n were obtained by
Hillman, Kochloukova and Lima in [12]. The notion of orientable profinite Poincaré duality pairs
(over Fp) was first suggested by Kochloukova in [16] and a more general notion of (in general
non-orientable) profinite Poincaré duality pairs was developed by Wilkes in [32].

Sections 2 and 3 contain some basic definitions, lemmas and results from earlier work. In Section
4 we build upon the results of [18], and prove the following theorem.

Theorem A. Let G be an orientable Poincaré duality group of dimension 3 and let pGp be the pro-p completion
of G. Then exactly one of the following conditions holds:

a) pGp is cyclic or quaternionic;

b) pGp is an orientable pro-p PD3-group;

c) there is no upper bound on the deficiency of the subgroups of finite index in pGp;
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d) pGp is Zp or yD82.

The statements of cases (a) and (d) sharpen the corresponding statements in [18, Thm B]. We
also give simple criteria for when they arise. Here our results are essentially complete (except for
p “ 2). Several equivalent criteria for case (b) were given in [18, Thm A]. We augment these criteria,
as a corollary of Theorem 4.4. This theorem also implies that pGp cannot have cohomological p-
dimension 2. However it is not yet clear what else might occur, and we do not have simple criteria
for recognizing case (c).

In §5 we give examples of geometric flavour for each of the four cases listed above. We give
an example of case (c) in which pGp is a free pro-p group of rank 2, for all primes p. (We do not
know whether there are examples of case (c) in which pGp has cohomological p-dimension at least
3.)

In [27] Serre called an abstract group G good if for every finite G-module M the map HippG,Mq Ñ
HipG,Mq, induced by the canonical map G Ñ pG, is an isomorphism, where pG denotes the profinite
completion of G. The group B is called p-good if for every finite pro-pZprrpBpss-module M we have
that the canonical map B Ñ pBp induces an isomorphism HippBp,Mq Ñ HipB,Mq, where pBp is the
pro-p completion of B. Groups that are p-good were previously studied in [14], [16], [18]. In [8]
the term p-good group was used with a different (but related) meaning.

For a set T of normal subgroups of p-power index in a discrete group B we say that T is directed
if for every U1,U2 P T we have that there is U Ď U1 XU2 such that U P T . In the next section we
give criteria for groups of type FP8 and with additional structure to be good, or p-good, and we
prove the following theorem.

Theorem B. Let 1 Ñ A Ñ B Ñ C Ñ 1 be a short exact sequence of groups such that A is an orientable
surface group and C is an orientable PDs group, where s “ 2 or s “ 3. Let T be a directed set of normal
subgroups of p-power index in B that defines the pro-p topology of B. Suppose that lim

ÐÝ
UPT

H1pUXA,Fpq “ 0

and furthermore if s “ 3, there is an upper bound on the deficiency of the subgroups of finite index in pCp.
Then

a) if s “ 2, then pBp is a pro-p PD4-group and B is p-good.

b) if s “ 3, then pBp is virtually a pro-p PDk-group for some k P t2, 3, 5u. If k “ 5 then B and C are
p-good.

If additionally B is orientable and p-good then pBp is an orientable pro-p PD2`s-group.

The case of profinite completions of orientable PD4-groups is easier and is considered in Proposition
6.6.

It is an open problem whether there is an orientable PDn-group G such that pGp is an orientable
pro-p PDn-group and G is not p-good.

The main result of Section 7 is the following theorem.

Theorem C. Let 1 Ñ A Ñ B Ñ C Ñ 1 be a short exact sequence of groups such that A » Z2, B is an
orientable PD4 group and C is an orientable surface group. Then one of the following holds:

a) pBp is an orientable pro-p PD4-group and B is p-good;
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b) pBp is an orientable pro-p PD2 group and the image of A in pBp is trivial.

Remark. If B is not orientable, p , 2, then there is a third option for the closure A of the image of A
in pBp to be virtually Zp.

We show also that if B is an orientable PD4 group and χpBq “ 0 then pBp cannot be a pro-p PD3-
group, and we give examples of orientable PD4-groups which are fundamental groups of bundles
with base and fibre aspherical closed surfaces, and for which the projection to the base induces an
isomorphism on pro-p completions, for all primes p.

In [12] it was shown that under some conditions the pro-p completion of an orientable PDn group
is virtually a pro-p PDr-group, for r ď n, r , n ´ 1. In the final Section 8 we give an example
of an aspherical 5-manifold with perfect fundamental group, which completes the discussion of
examples with “dimension drop” n´ r , 1 in [12]. We do not know of any orientable PDn-group
G whose pro-p completion pGp is virtually a pro-p PDn´1-group. Note that if pGp is virtually a pro-p
PDn´1-group then G has a subgroup of p-power index H such that pHp is a pro-p PDn´1-group and
by Theorem 4.4 this is impossible for n “ 3.

Acknowledgments The second named author was partially supported by Bolsa de produtividade
em pesquisa CNPq 305457/2021-7 and Projeto temático FAPESP 18/23690-6.

2. Preliminaries

Let G be a group, and let tγiGu be its lower central series, with γ1G “ G and γi`1G “ rG, γiGs for
all i ě 1. If p is a prime, let XppGq be the subgroup generated by all pth powers of members of G.
Let D8 “ Z o pZ{2Zq be the infinite dihedral group.

Let G be a profinite group. By definition ZprrGss “ lim
ÐÝ

Z
piZ
rrG{Uss, where the inverse limit is over

all i ě 1 and U open subgroups of G. And FprrGss “ ZprrGss{pZprrGss “ lim
ÐÝ
FprrG{Uss where the

inverse limit is over all open subgroups U of G.

When G is a group, HipG,Vq denotes the ith homology of G in the respective category. Thus if G is
an abstract group V is aZG-module, if G is a pro-p group V is a pro-pZprrGss-module and if G is a
profinite group V is a profinite pZrrGss-module. Furthermore HipG,Wq denotes the ith cohomology
of G in the respective category. If G is an abstract group W is a ZG-module, if G is a pro-p group
or more generally a profinite group W is a discrete G-module and so W “ YWU where the union
is over all open subgroups U of G. In our applications V and W will be finite.

Since the pro-P completions ofZ and of surface groups (PD2-groups) are well understood, the first
interesting case is in dimension 3.

Theorem 2.1. [18, Thm B] Let G be an orientable Poincaré duality group of dimension 3 and let pGp be the
pro-p completion of G. Then exactly one of the following conditions holds

a) pGp is finite;

b) pGp is an orientable pro-p PD3-group;

c) there is no upper bound on the deficiency of the subgroups of finite index in pGp;

d) pGp is virtually Zp.
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By the proof of Theorem 2.1 if lim
ÐÝ
UPT

H2pU,Fpq “ 0 then case b) from Theorem 2.1 holds. Furthermore

if a), b), c) do not hold ( and so d) holds) then lim
ÐÝ
UPT

H2pU,Fpq » Fp.

Theorem 2.2. [14, Thm. 4] Let G be an abstract Poincaré duality group of dimension m and let C be a
directed set of normal subgroups of finite index in G. Suppose further that there is a subgroup G0 of finite
index in G such that G0 is orientable, that there is some U0 P C such that U0 Ď G0 and that, for all i ě 1,

lim
ÐÝ
UPC

HipU,Fpq “ 0.

Then pGC is a strong profinite Poincaré duality group of dimension m at p, zpG0qC is a strong profinite
Poincaré duality group of dimension m at p and χpppGCq “ χpGq.

3. Some auxiliary results

We will need the following simple lemmas.

Lemma 3.1. Let S be an orientable PD2-group with a subnormal subgroup D of index pk, where p is prime,
and let j : D Ñ S be the inclusion. Then H2p j;Fpq “ 0 and H2p j;Fpq “ 0.

Proof. Since D is subnormal there is a chain D “ D1 ă ¨ ¨ ¨ ă Dm “ S, where Di is normal in Di`1
and rDi`1 : Dis “ p, for all i ă m. It shall suffice to show that H2pDi;Fpq Ñ H2pDi`1;Fpq is the zero
map. Thus we can assume that D is a normal subgroup of S of index p.

Let j˚ “ H˚p j;Fpq and j˚ “ H˚p j;Fpq, for simplicity of notation. Let x P H1pS;Fpq “ HompS,Z{pZq
be an epimorphism with kernel D. Since S is an orientable PD2-group and x , 0 there is a
y P H1pS;Fpq such that x Y y generates H2pS;Fpq. If we evaluate x Y y on the image of a class
δ P H2pD;Fpqwe get pxY yqp j2δq “ j˚pxY yqpδq “ p j˚xY j˚yqpδq “ 0, since j˚x “ 0 is the restriction
of x to D. Hence j2δ “ 0, for all δ, and so H2p j;Fpq “ 0. The dual result H2p j;Fpq “ 0 follows
immediately. �

For an abstract group U denote by pUp the pro-p completion of U.

Lemma 3.2. Let G be an abstract group,M be a directed set of normal subgroups of p-power index in G
that define the pro-p topology on G . Then lim

ÐÝ
MPM

H1pM,Fpq “ 0.

Proof. Let M be the closure of M PM in pGp. Then since M » pMp and
Ş

MPMM “ 1 we have

lim
ÐÝ

MPM
H1pM,Fpq » lim

ÐÝ
MPM

H1pM,Fpq » H1p lim
ÐÝ

MPM
M,Fpq “ H1p

č

MPM

M,Fpq “ 0.

�

Proposition 3.3. Let 1 Ñ A Ñ B Ñ C Ñ 1 be a short exact sequence of abstract groups. Let T be a
directed set of subgroups in B. Suppose that each H jpUXA,Fpq is finite and lim

ÐÝ
UPT

H jpUXA,Fpq “ 0. Then

lim
ÐÝ
UPT

HipU{pU X Aq,H jpU X A,Fpqq “ 0 for i ě 0.

4



Proof. Set MU “ H jpU X A,Fpq and VU “ U{pU X Aq a subgroup of C. Let

R : . . .Ñ Ri Ñ Ri´1 Ñ . . .Ñ R0 Ñ ZÑ 0

be a free resolution of the trivialZC-moduleZ. Then HipVU,MUq “ HipRUq, whereRU “ RbVU MU.
The maps of the inverse system tHipVU,MUq | U P T u can be described as follows: if U1,U2 P T ,
where U1 Ď U2 the map ϕU1,U2 : HipVU1 ,MU1q Ñ HipVU2 ,MU2q is induced by the map idRb dU1,U2 :
RbVU1

MU1 Ñ RbVU2
MU2 that sends ri bm to ri b dU1,U2pmq for ri P Ri and dU1,U2 : MU1 Ñ MU2 is

induced by the inclusion map U1 X A Ñ U2 X A.

Since lim
ÐÝ
UPT

MU “ 0 and each MU is finite, then for every U2 P T there is U1 as above such that dU1,U2

is the zero map. Then ϕU1,U2 is the zero map and hence lim
ÐÝ
UPT

HipVU,MUq “ 0. �

Lemma 3.4. Let A be an orientable surface group. Let S be a directed set of normal subgroups of p-power
index in A. Suppose that lim

ÐÝ
UPS

H1pU,Fpq “ 0. Then the completion A “ lim
ÐÝ
UPS

A{U of A with respect to S is

isomorphic to the pro-p completion pAp.

Proof. Consider the cellular chain complex associated to the standard Cayley complex of A, i.e.

R : 0 Ñ ZA Ñ pZAqd Ñ ZA Ñ ZÑ 0

Consider the complexes R “ FprrAss bZA R and pR “ Fprr pApss bZA R. By [18, Lemma 2.1]
HipRq “ lim

ÐÝ
UPS

HipU,Fpq. Thus H1pRq “ 0.

Note that pR is a free resolution of the trivial Fprr pApss-module Fp. Let T be the directed set of all
normal subgroups of p-power index in A. Let K “ Kerp pAp Ñ Aq and pAp “ lim

ÐÝ
UPT

A{U Ñ A “ lim
ÐÝ
UPS

A{U

is the epimorphism induced by the identity maps idA{U for U P S Ď T . Thus R » Fp bFprrKss
pR.

Then
H1pK,Fpq “ H1pFp bFprrKss

pRq » H1pRq “ 0

Hence K “ 1 and pAp » A. �

Lemma 3.5. Let G be a group with pro-p completion pGp. Denote µi : HippGp,Fpq Ñ HipG,Fpq the map
induced by the canonical map G Ñ pGp. Then we have a commutative diagram

HippGp,Fpq ˆH jppGp,Fpq Hi` jppGp,Fpq

HipG,Fpq ˆH jpG,Fpq Hi` jpG,Fpq

Y

µiˆµ j µi` j

Y

where the horizontal maps are the cup products in the categories of pro-p and abstract groups.

Proof. Following [27] consider the set CnppGp,Fpq of all continuous maps pGn
p Ñ Fp. Then there is a

mapY : CippGp,FpqˆC jppGp,Fpq Ñ Ci` jppGp,Fpqdefined by p fYhqp11, . . . , 1i` jq “ f p11, . . . , 1iqhp1i`1, . . . , 1i` jq

that induces the cup product Y : HippGp,Fpq ˆH jppGp,Fpq Ñ Hi` jppGp,Fpq.
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Similarly we can consider the set Cn
0pG,Fpq of all maps Gn Ñ Fp. Then there is a map Y :

Ci
0pG,Fpq ˆ C j

0pG,Fpq Ñ Ci` j
0 pG,Fpq defined by p f Y hqp11, . . . , 1i` jq “ f p11, . . . , 1iqhp1i`1, . . . , 1i` jq

that induces the cup product Y : HipG,Fpq ˆH jpG,Fpq Ñ Hi` jpG,Fpq.

The canonical map G Ñ pGp induces maps νi : CippGp,Fpq Ñ Ci
0pG,Fpq, that induce the maps µi.

Then by the definition of the cup product we have a commutative diagram

CippGp,Fpq ˆ C jppGp,Fpq Ci` jppGp,Fpq

Ci
0pG,Fpq ˆ C j

0pG,Fpq Ci` j
0 pG,Fpq

Y

νiˆν j νi` j

Y

and this commutative diagram induces the commutative diagram from the statement of the lemma.
�

4. pro-p completions of PD3-groups

In this section we shall sharpen some of the results of [18]. Cases (a), (b), (c) and (d) shall refer to
the four possibilities in the statement of Theorem 2.1.

We begin by refining the statements of cases (a) and (d). Theorem A of the introduction is then an
immediate consequence.

Lemma 4.1. Let G be a finitely generated group and p be a prime, and let K be the kernel of the natural
homomorphism from G to pGp. Suppose that pGp is virtually pZp. Then G{K has a finite normal subgroup F
which is a p-group, and such that G{K � F o Z if p is odd, while the quotient of G{K by F is Z or D8 if
p “ 2.

Proof. Since pGp is virtually pZp, there is a short exact sequence

0 Ñ pZp Ñ pGp Ñ T Ñ 0,

where T is a finite p-group. Hence there is a short exact sequence 1 Ñ A Ñ G{K Ñ T Ñ 1, where
A � Z. Therefore G{K has two ends, and so it has a maximal finite normal subgroup F with
quotient Z or D8. The subgroup F maps injectively to T, and so is a p-group. If p is odd then A is
central, since AutpAq “ t˘1u has order 2. Since rG{K : As is finite, pG{Kq1 is finite, by a lemma of
Schur. Hence G{K � F o Z, with F finite. �

Theorem 4.2. Let G be an orientable PD3-group and p be a prime. Then

(1) if pGp is finite then it is cyclic or quaternionic;

(2) if pGp is virtually pZp then either pGp � pZp or p “ 2 and pG2 � yD82.

Proof. Let K be the kernel of the natural homomorphism from G to pGp. Suppose first that pGp is finite.
Then P “ G{K � pGp is a finite p-group, and K has no quotient which is a finite p-group. Hence
H1pK;Zq is finite, of order prime to p, and H1pK;Zq “ 0. Consider the LHS spectral sequence

Ep,q
2 “ HppP; HqpK;Zqq ñ Hp`qpG;Zq
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for the cohomology of G. The group P acts trivially on H0pK;Zq and H3pK;Zq, since G is orientable,
while H1pK;Zq “ 0 and H2pK;Zq � H1pK;Zq. Therefore Ep,q

2 “ 0 if p ą 0 and q , 0 or 3, or if p “ 0
and q , 0, 2 or 3.

A slight extension of the argument of [1, Lemma IV.6.2] shows that P has periodic cohomology
(with period dividing 4). Since P is a p-group, it must be either cyclic (of prime power order) or
quaternionic (of order a power of 2). (Note that a finite group has periodic cohomology if and only
if every abelian subgroup is cyclic.)

Suppose now that pGp is virtually pZp. It follows from Lemma 4.1 that G has normal subgroups
K ă L such that G{L � Z or D8 and J “ L{K is a finite p-group, while K has no non-trivial quotient
which is a p-group. On passing to a subgroup of index 2 in G, if necessary, we may assume that
G{L � Z.

Let Λ “ FprG{Ks. Then HipK;Fpq “ HipG; Λq, for all i. Clearly H0pK;Fpq “ Fp and H1pK;Fpq “ 0,
while HipK;Fpq “ 0 for i ą 2, since K has infinite index in G and so cdpKq ă 3 [29]. We also have
H2pK;Fpq “ H2pG; Λq � H1pG; Λq, by Shapiro’s Lemma and Poincaré duality. Now H0pG; Λq “ Fp

and H1pG; Λq “ H1pK;Fpq “ 0. Hence H1pG; Λq � Ext1
Λ
pFp,Λq, by the Universal Coefficient spectral

sequence (or by an ad hoclow-degree argument). Since G{K has two ends, Ext1
Λ
pFp,Λq � Fp. Thus

we conclude that H2pK;Fpq � H1pG; Λq � Fp.

The LHS spectral sequence for the Fp-cohomology of L associated to the extension 1 Ñ K Ñ L Ñ
T Ñ 1 may be identified with the Leray-Serre spectral sequence for the fibration of KpL, 1q over
KpT, 1q. The fibre KpK, 1q is a Fp-homology 2-sphere. Since T is a p-group it acts trivially on Fp, and
therefore acts trivially on H˚pK;Fpq. Hence this spectral sequence reduces to a Gysin sequence

¨ ¨ ¨ Ñ Hk`2pL;Fpq Ñ HkpT;Fpq Ñ Hk`3pT;Fpq Ñ Hk`3pL;Fpq Ñ . . . ,

where the middle homomorphism is given by cup-product with a class z P H3pT;Fpq, as in [20,
Example 5.C]. Since HipL;Fpq “ 0 for i ě 3 it follows that these cup products induce isomorphisms
HipT;Fpq Ñ Hi`3pT;Fpq, for all i ě 0. Hence T has cohomological period (dividing) 3. But a non-
trivial finite group with periodic cohomology has even cohomological period [3, Exercise VI.9.1].
Hence T must be trivial. �

Theorem A now follows immediately from Theorems 2.1 and 4.2.

We may easily identify the orientable PD3-groups with pro-p completion of type (a) or (d), when
p is odd. (We do not yet have a comparably simple characterization when p “ 2.)

Corollary 4.3. If p is an odd prime then pGp is finite if and only if G{G1 is finite and has cyclic p-torsion,
while pGp � pZp if and only if G{G1 � Z‘ T, where T is finite and pp, |T|q “ 1. �

The criteria for recognizing when case (b) or (c) occurs are less complete.

Theorem 4.4. Let G be an orientable PD3-group. If the restriction from H3ppGp;Fpq to H3pG;Fpq is trivial
then pGp is a free pro-p group. In particular, cdpppGpq , 2, and so pGp cannot be a Demuškin group.

Proof. Let j : G Ñ pGp be the canonical homomorphism. Then H1p j;Fpq and H1p j;Fpq are isomor-
phisms, while H2p j;Fpq is an epimorphism and H2p j;Fpq is a monomorphism, for any group G If
γ P H2ppGp;Fpq is non-zero then there is an α P H1ppGp;Fpq such that j˚pαY γq “ j ˚ αY j˚γ , 0, by
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the non-degeneracy of Poincaré duality for G. Hence if H3p jq “ 0 then H2ppGp;Fpq “ 0, and so pGp
is a free pro-p group [27, Prop. 21]. �

Proofs of much of the following corollary can be found in [18], but the arguments here differ in
some respects. Condition (3) is closely related to one of the hypotheses in [18, Theorem 3.1], while
(2) and the implication p4q ñ p1q appear to be new. We recall that HippGp;Fpq � lim

ÝÑ
HipG{U;Fpq,

for all i, the limit being taken over the directed system of normal subgroups U of p-power index in
G.

Corollary 4.5. Let G be an orientable PD3-group and p be a prime. Then the following are equivalent.

(1) pGp is a pro-p PD3-group;

(2) G has a normal subgroup U of p-power index such that inflation from H2pG{U;Fpq to H2pG;Fpq

is an epimorphism, and each such U has a proper subgroup V ă U which is normal and of p-power
index in G and such that inflation from H3pG{U;Fpq to H3pG{V;Fpq has rank 1;

(3) every subgroup U ă G of p-power index has a proper subgroup V ă U of p-power index which is
normal in U and such that inflation from H2pU{V;Fpq to H2pU;Fpq is an epimorphism;

(4) pGp has cohomological p-dimension 3 and χppGpq “ 0.

Proof. Let j : G Ñ pGp be the canonical homomorphism. If pGp is a pro-p PD3-group then

β2ppGp;Fpq “ β1ppGp;Fpq “ β1pG;Fpq “ β2pG;Fpq,

and so H2p j;Fpq is an isomorphism. Therefore G has a normal subgroup U such that rG : Us is a
power of p, H1pG{U;Fpq � H1pG;Fpq and inflation from H2pG{U;Fpq to H2pG;Fpq is onto. Since
H1ppGp;Fpq , 0 it follows that inflation from H3pG{U;Fpq to H3pG;Fpq is an epimorphism, by the
non-degeneracy of Poincaré duality for G. Since lim

ÝÑ
H3pG{U;Fpq “ H3ppGp;Fpq � Fp, there is in

turn a subgroup V ă U which is normal and of p-power index in G and such that inflation from
H3pG{U;Fpq to H3pG{V;Fpq has rank 1, i.e, the image is Fp. Hence p1q ñ p2q.

Conversely, if these conditions hold then pGp is infinite, since G has subgroups of unbounded
p-power index, and H2p j;Fpq is an isomorphism. (In particular, pGp is not a free pro-p group.)
Moreover, there is a sequence Ui`1 ă Ui of normal subgroups of p-power index such that the
inflation from H2pG{Ui;Fpq to H2G;Fpq is an epimorphism and the inflation from H3pG{Ui;Fpq to
H3pG{Ui`1;Fpq has rank 1. This together with Theorem 4.4 implies that H2p j;Fpq is an isomorphism
and that H3ppGp;Fpq � Fp. Hence H3p j;Fpq is also an isomorphism, by the Theorem, and so
p2q ñ p1q, by [27, Sect. 4.5, Prop. 32], together with Lemma 3.5.

A similar argument applies for each subgroup of finite index in G, since such subgroups are also
orientable PD3-groups. Hence p1q ñ p3q.

If (3) holds and jU : U Ñ pUp is the canonical map then H2p jU;Fpq is an isomorphism, so β2ppGp;Fpq “

β2pG;Fpq. Hence H2p jU;Fpq is also an isomorphism, and so p3q ñ p4q, by [18, Theorem 3.1].

If (4) holds then H3p j;Fpq , 0, since pGp has cohomological p-dimensioną 1, by Theorem 4.4. Since
β3ppGp;Fpq ě 1 “ β3pG;Fpq and χppGpq “ χpGq “ 0, we have

β2ppGp;Fpq ě β1ppGp;Fpq “ β1pG;Fpq “ β2pG;Fpq.
8



On the other hand H2p j;Fpq is surjective, hence β2ppGp;Fpq ď β2pG;Fpq. Hence β2ppGp;Fpq “

β2pG;Fpq and β3ppGp;Fpq “ β3pG;Fpq “ 1, and so H˚p j;Fpq and H˚p j;Fpq are isomorphisms in all
degrees. It then follows from Lemma 3.5 that pGp is a pro-p PD3-group. (See also [31, Prop. 3.2].)
Thus p4q ñ p1q. �

We note that whether there is a PD3-group G with 3 ă cdpppGpq ă 8 remains open.

We remark finally that if G is finitely generated then the order of the torsion subgroup of G{G1 is
divisible by only finitely many primes. Hence if G is an orientable PD3-group then pGp is finite for
all primes p if and only if either G{G1 is finite cyclic or G{G1 is the direct sum of a finite cyclic group
with a cyclic 2-group, and the 2-lower central series of G terminates after finitely many steps. If pGp
is of type (b) or (c) for all primes p then β1pG;Qq ě 2. Every pro-p completion of G is of type (d) if
and only if G{G1 � Z.

5. examples illustrating theorem 2.1

In this section we shall gives examples of aspherical 3-manifolds whose fundamental groups
represent each of the four cases of Theorem 2.1.

Examples with pGp cyclic are easily found. If M is an aspherical Seifert fibred homology 3-sphere
then it admits a natural S1-action with finitely many exceptional orbits with nontrivial finite
isotropy subgroups. If n is prime to the orders of these isotropy subgroups then the subgroup of
nth roots of unity in S1 acts freely on M, with quotient M, say. Hence G “ π1pMq is an orientable
PD3-group with perfect commutator subgroup G1 “ G2 and G{G1 � Z{nZ. In particular, if n “ pk

for some prime p and k ě 1 then pGp � Z{pkZ. (For example, if q, r, s are pairwise relative prime
and 1

q `
1
r `

1
s ă 1 then the Brieskorn manifold Mpq, r, sq is an aspherical Z-homology 3-sphere,

and we may take p relatively prime to qrs.)

Since the quaternionic groups Qp2nq act freely on S3 (for all n ě 3), the Dehn surgery argument of
[4, Theorem 2.6] may be used to show that these groups act freely on hyperbolic Q-homology 3-
spheres. By taking the Dehn surgery slope to be a large enough odd number we may ensure
that H1pM;Zq has odd order, where M is the resulting Q-homology 3-sphere. The quotient
M “ M{pQp2nqq is then an aspherical orientable 3-manifold, and G “ π1pMq is an orientable
PD3-group with pG2 � Qp2nq. However we do not have explicit examples of this type.

The simplest example of case (b) of Theorem 2.1 is G “ Z3, the fundamental group of the 3-torus.
More generally, every finitely generated, torsion free nilpotent group is residually a finite p-group
for all p, by Theorem 4 of [25, Chapter 1]. Thus the pro-p completion of a nilpotent PD3-group is a
pro-p Poincaré duality group of dimension 3. (This does not extend to the virtually nilpotent case.
The group G “ π1pMp31qqmentioned below is virtually Z3, but pGp � pZp, for all primes p.)

Examples of aspherical 3-manifolds whose fundamental groups illustrate cases (c) and (d) may be
constructed by surgery on links. Let MpLqbe the closed orientable 3-manifold obtained by 0-framed
surgery on the components of an m-component link L in S3. The fundamental group π1pMpLqq is
the quotient of the link group πL by the normal subgroup generated by the longitudes of L. The
inclusion of a set of meridians determines a homomorphism from the free group Fpmq to the link
group πL which induces an isomorphism on abelianization. If L is a boundary link (in particular,
if m “ 1 and so L is a knot) this homomorphism is split by an epimorphism from πL to Fpmq, and
the longitudes of L are in the kernel of any such epimorphism. The induced homomorphisms
between the quotients of the lower central series πL{γkπL Ñ Fpmq{γkFpmq are isomorphisms, for
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all k ě 1 [28]. Hence J “ π1pMpLqq is an extension of Fpmq by γωJ “ XkPNγkJ, and pJp � zFpmqp, for
all primes p. In our first such example we shall show that MpLq is aspherical; in the second we
show that MpLqmust have an aspherical summand with the requisite properties.

For the first such example we shall let L be the link obtained by replacing each component of the
Hopf link 22

1 by an untwisted Whitehead double [10, Figure 1.6]. (There is a choice involved, but
that is irrelevant for our purposes.) This is a boundary link, since each component of L bounds
a punctured torus inside a tubular neighbourhood of the corresponding component of the Hopf
link.

The components of L are separated by a torus T Ă S3. Each component of S3zT is homeomorphic
to XpWhq, the exterior of the Whitehead link Wh “ 52

1. (The notation 52
1 refers to the tables of knots

and links in [24].) Then MpLq � N Y f N, where f is a homeomorphism between the boundaries of
the two copies of the 3-manifold N obtained by attaching a solid torus to the boundary of XpWhq
so that BD2 is a longitude. We shall show that N is aspherical and the inclusion of π1pBN into
ν “ π1pNq is injective. Hence MpLq is aspherical and so G “ π1pMpLqq is a PD3-group.

The link group πWh has a presentation

xa, b,w, x, y | axa´1 “ bwb´1 “ y, waw´1 “ xax´1 “ b, yxy´1 “ wy,

and the longitudes for a and x are represented by λa “ x´1w and λx “ a´1byx´1, respectively. We
may assume that N is obtained by attaching D2 ˆ S1 to the component with meridian x, so that
the image of λx in ν “ π1pNq is trivial. We have λx “ a´1bab´1, since y “ axa´1. Hence ν has the
presentation

xa, b, λ, x | axa´1 “ bxλb´1, aλ “ λa, xax´1 “ b,

axa´1xax´1a´1 “ xλ, ab “ bay.
(Here we have written λ for λa and replaced w by xλ and y by axa´1.) This presentation simplifies
to

xa, b, λ, x | aλ “ λa, ab “ ba, xax´1 “ b, xλb´1ax´1 “ b´1ay,
since the relation λ “ x´1axa´1xax´1a´1 follows from the others. Thus ν is an HNN extension with
base the group xa, b, λy � Z ˆ Fp2q, associated subgroups xa, λb´1y and xa, by, and stable letter x.
Hence ν has one end. The image ofπ1pBNq is the subgroup xa, λy � Z2, and so BN is incompressible
in N. It follows from the exact sequence of pN, BNqwith coefficientsZrνs, Poincaré-Lefshetz duality
and the facts that ν has one end and the components of BN are aspherical that N is aspherical. (See
[11, Lemma 3.1].)

In our second example the PD3-group G does not map onto a nonabelian free group, although
the pro-p completions of G are free pro-p groups. Let L “ L1 Y L2 be the 2-component link of
[10, Figure 8.1]. The homomorphism from Fp2q to πL determined by a pair of meridians induces
isomorphisms Fp2q{γnFp2q � πL{γqnπL, for all n ě 1, and the longitudes of L lie in Xně1γnπL.
Hence π1pMpLqq{γnπ1pMpLqq � πLq{γnπL, for all n ě 1. The link L is not an homology boundary
link: there is no epimorphism from πL to Fp2q, and so π1pMpLqq does not map onto Fp2q. Thus if
MpLq “ 7ri“1Mi is a factorization of MpLq as a connected sum of indecomposables all but one of the
summands must be homology 3-spheres. We may assume that M1 is not an homology 3-sphere,
and so H1pM1;Zq � Z2. Hence M1 is aspherical, since it is indecomposable, and π1pM1q is infinite
and not virtually Z. (It is likely that MpLq is itself aspherical, but we do not need to know this.)
Thus G “ π1pM1q is an orientable PD3-group. The natural epimorphism from π1pMq to G induces
isomorphisms π1pMpLqq{γnπ1pMpLqq � G{γnG, for all n ě 1, since the fundamental groups of the
other summands of MpLq are all perfect. Hence Fp2q{γnFp2q � G{γnG, for all n ě 1. On passing
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to the p-lower central series and pro-p completion, we conclude that yFp2qp � pGp, for all primes
p.

The fundamental groups of orientable closed 3-manifolds which fibre over non-orientable aspher-
ical surfaces give further examples of type (c). The simplest such are the semidirect products
G “ Z ow C, where C is a PD2-group with orientation character w : C Ñ Zˆ. Such groups G are
orientable PD3-groups. If C is orientable then pGp is a pro-p PD3-group, for all primes p. If C is
non-orientable then pG2 is again a pro-2 PD3-group, but if p is odd then pGp � pCp, by Lemma 6.9,
and this is a finitely generated free pro-p group, by Lemma 6.5.

We have not yet found any examples of case (c) for which the pro-p completion is not a free pro-p
group.

The simplest examples of case (d) of Theorem 2.1 are semidirect products G “ Z2 oA Z, where
A P SLp2,Zq. All such groups are solvable PD3-groups. If p is a prime such that pdetpA´ Iq, pq “ 1
then pGp � Zp, but if p divides detpA´ Iq then pGp is a pro-p PD3-group. (Note that if one eigenvalue
of A is congruent to 1 mod ppq then so is the other, since they are mutually inverse.)

We may construct further examples of case (d) by 0-framed surgery on knots. If K is a nontrivial
fibred knot then MpKq fibres over S1, with fibre F a closed orientable surface of genus ě 1. Taking
K to be the trefoil knot 31 or the figure-eight knot 41 gives examples with fibre the torus T, and
π1pMpKqq � Z2 oA Z, where A “

`

1 ´1
1 0

˘

or
`

2 1
1 1

˘

, respectively. The knots K “ 62 and 63 give
examples with fibre of genus 2. Thus if K is a non-trivial fibred knot then G “ π1pMpKqq is a
PD3-group which is an extension ofZ by the PD2-group φ “ π1pFq, and G1 “ φ. Hence G{G1 � Z,
and so the lower central series for G stabilizes at γnG “ γ2G “ φ. Therefore pGp � pZp, for all primes
p, and so G is in case (d).

Examples of dihedral type for case (d) may also be constructed in terms of knot theory, but require a
little more work. Let K be a knot which is carried onto itself by an orientation-reversing involution h
of S3 which also reverses the orientation of K. (Such knots are said to be “strongly -amphicheiral”.)
We may assume that hpXq “ X, where X is the exterior of K. Suppose also that h has just two fixed
points. Then Fixphq Ă K, and so h restricts to a fixed-point free involution of X which inverts the
generator of H1pX;Zq.

Let X1 and X2 be two copies of X, with a fixed homeomorphism j : X1 Ñ X2, and let DX “ X1YBXX2
be the double of X along its boundary, obtained by setting x “ jpxq for all x P BX1. Then
H3pDX;Zq � Z and so X is an orientable closed 3-manifold. We may define an involution φ by
φpxq “ jphpxqq for x P X1 and φp jpxqq “ hpxq for jpxq P X2. This involution clearly acts freely on
DX, and is orientation-preserving, so M “ DX{xφy is a closed orientable 3-manifold. However φ
inverts the generator of H1pDX;Zq � Z, and so G “ π1pMq maps onto D8, with kernel π1pDXq1.
The abelianization π1pDXq1{π1pDXq2 is annihilated by the Alexander polynomial ∆Kptq.

If K is the unknot then X � S1 ˆ D2, DX � S1 ˆ S2 and M � RP3#RP3, and so G � D8. If K
is non-trivial then X is aspherical and BX Ñ X is π1-injective, and so DX is aspherical. Hence
M is aspherical . If ∆Kptq ” 1 mod p2q then π1pDXq1{π1pDXq2 is a torsion abelian group of odd
exponent. It then follows easily that pG2 � yD82. The simplest example of such a knot is 83, which
has Alexander polynomial 4t2 ´ 9t` 4.

11



6. Goodness and Theorem B

In this section we shall consider the profinite completion, as well as pro-p completions. We call G
homologically good if for every finite G-module M the map HipG,Mq Ñ HippG,Mq, induced by the
canonical map G Ñ pG, is an isomorphism.

Lemma 6.1. Let G be an abstract group of type FP8 andT be a directed set of finite index normal subgroups
in G that defines the profinite topology of G. Then the following conditions are equivalent :

a) G is homologically good;

b) for every finite G-module M we have that lim
ÐÝ
UPT

HipU,Mq “ 0 for i ě 1;

c) for every prime p for the trivial G-module Fp we have that lim
ÐÝ
UPT

HipU,Fpq “ 0 for i ě 1;

d) G is good.

Proof. a) implies b) Suppose first that G is homologically good. Then

lim
ÐÝ
UPT

HipU,Mq » lim
ÐÝ
UPT

HippU,Mq » HiplimÐÝ
UPT

pU,Mq “ HipXUPT pU,Mq “ Hip1,Mq “ 0

b) implies c) is obvious.

c) implies a) and d) Let M be a finite G-module. By substituting U with a subgroup of finite index
we can assume that U acts trivially on M. Then by decomposing M as a direct sum of its p-primary
components we can assume that M is p-primary for p prime.

Let R be a projective resolution of the trivial ZG-module Z, where all projectives are finitely
generated and since by [18, Thm. 2.5] after moving from right to left modules TorZG

i pZprrpGss,Zq “
0 for i ě 1 , we obtain that pR “ ZprrpGss bZG R is exact, hence is a projective resolution of the
trivial pro-p ZprrpGss-module Zp. Note that for every finite p-primary G-module M we have that
HomZGpR

del,Mq » HomZprrpGss
ppRdel,Mq and M bZG R

del » M bZprrpGss
pR

del, where Rdel, pRdel denote

the deleted complexes obtained from R and pR i.e. we substitute the modules Z and Zp that are in
dimension ´1 with the zero module. Hence

HipG,Mq » HipHomZGpR
del,Mqq » HipHomZprrpGss

ppRdel,Mqq » HippG,Mq

and the composition of the above isomorphisms is the map HippG,Mq Ñ HipG,Mq induced by the
canonical map G Ñ pG. Thus G is good.

Similarly
HipG,Mq » HipMbZG R

delq » HipMbZprrpGss
pR

delq » HippG,Mq

and the composition of the above isomorphisms is the map HipG,Mq Ñ HippG,Mq induced by the
canonical map G Ñ pG. Thus G is homologically good.

d) implies c) Fix a prime p and consider the Pontrygin duality given by M˚ “ HomZppM,Qp{Zpq

that induces a functorial isomorphism HipG,M˚q » HipG,Mq˚ for a finite G-module M. Then

plim
ÐÝ
UPT

HipU,Fpqq
˚ » lim

ÝÑ
UPT

HipU,Fpq
˚ » lim

ÝÑ
UPT

HipU,F˚p q “ lim
ÝÑ
UPT

HipU,Fpq “ 0
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where the last equality follows from [27, Ch. 1, sec. 2, ex.1a)]. �

A group B is called homologically p-good if for every finite pro-pZprrpBpss-module M we have that
the canonical map B Ñ pBp induces an isomorphism HipB,Mq Ñ HippBp,Mq.

Lemma 6.2. Let G be a abstract group of type FP8, p be a fixed prime number and T be a directed set of
p-power index normal subgroups in G that defines the pro-p topology of G. Then the following conditions
are equivalent :

a) G is homologically p-good;

b) for every finite pro-p ZprrpGpss-module M we have that lim
ÐÝ
UPT

HipU,Mq “ 0 for i ě 1;

c) for the trivial G-module Fp we have that lim
ÐÝ
UPT

HipU,Fpq “ 0 for i ě 1;

d) G is p-good.

Proof. The proof is an obvious modification of the proof of Lemma 6.1. �

Lemma 6.3. Let 1 Ñ A Ñ B Ñ C Ñ 1 be a short exact sequence of abstract groups such that both A and
C are p-good, HipA,Mq is finite for any finite pro-p FprrpBpss-module M and 1 Ñ pAp Ñ pBp Ñ pCp Ñ 1 is
exact. Then B is p-good.

Proof. Consider the LHS spectral sequence pE2
i, j “ HippCp,H jp pAp,Mqq that converges to Hi` jppBp,Mq,

where M is a finite pro-pZprrpBpss-module. Consider the LHS spectral sequence E2
i, j “ HipC,H jpA,Mqq

that converges to Hi` jpB,Mq. By the p-goodness of A and C the map B Ñ pBp induces an isomor-
phism pE2

i, j Ñ E2
i, j. By the naturality of the spectral sequence we conclude by induction on k ě 2

that the map B Ñ pBp induces an isomorphism pEk
i, j Ñ Ek

i, j, hence an isomorphism pE8i, j Ñ E8i, j. Then

the convergence of the spectral sequence implies that the map B Ñ pBp induces an isomorphism
Hi` jppBp,Mq Ñ Hi` jpB,Mq. �

Lemma 6.4. Any orientable surface group is good and p-good.

Proof. The goodness is a particular case of [9, Thm. 1.3] and the p-goodness is a particular case
of [15, Thm. A]. Alternatively both statements have elementary proofs using the results from the
previous and this section. �

In particular, the pro-p completion of an orientable PD2-group is a pro-p PD2-group. The situation
is somewhat different in the non-orientable case.

Lemma 6.5. Let C be a non-orientable PD2-group. Then pC2 is a pro-2 PD2-group but pCp is a free pro-p
group, for every odd prime p.

Proof. Let C` be the kernel of the orientation character w : C Ñ Zˆ. Then rC : C`s “ 2, since C is
non-orientable, and so xC`2 has index 2 in pC2. Since C` is an orientable PD2-group it follows that
pC2 is a pro-2 Poincaré duality group of dimension 2.
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Assume now that p is an odd prime,. Then H1pC;Fpq � Fr
p, for some r ě 1, and H2pC;Fpq “ 0. Let F

be the free group of rank r and f : F Ñ C a homomorphism such that H1p f ;Fpq is an isomorphism.
Since H2p f ;Fpq is also an isomorphism, f induces isomorphisms on all corresponding quotients of
the p-lower central series of these groups [28]. Hence pFp � pCp. �

We return briefly to consider profinite completion, rather than pro-p completions.

Proposition 6.6. Let 1 Ñ A Ñ B Ñ C Ñ 1 be a short exact sequence of groups such that A is an orientable
surface group, B is an orientable PD2`m-group and C is a good PDm group. Then pB is a strong orientable
profinite PD2`m-group at p. In particular, if C is an orientable surface group (so m “ 2) then pB is a strong
orientable profinite PD4-group.

Proof. By Lemma 6.4 surface groups are good and by [27, Ch. 1, Sec. 2.6, Ex. 2c)] so are extensions
of good groups where the bottom group is FP8. In particular, B is good. Let T be a directed set of
normal subgroups of finite index in B that defines the profinite topology of B. Then by Lemma 6.1
lim
ÐÝ
UPT

HipU,Fpq “ 0 for i ě 1. Then we can apply Theorem 2.2. �

There is a subtle point here; a “good” group need not be p-good for any prime p. The simplest
example is perhaps the group π1pMp31qq of §4 mentioned above. There is an exact sequence
1 Ñ A Ñ B Ñ C Ñ 1 with A � Z, B “ π1pMp31qq and C � Z, and so B is good, by Proposition 6.6.
However, pBp � pCp “ pZp, and so B is not p-good, for any prime p.

We may now prove Theorem B.

Theorem 6.7. Let 1 Ñ A Ñ B Ñ C Ñ 1 be a short exact sequence of groups such that A is an orientable
surface group, B is an orientable PDs`2-group and C is an orientable PDs group, where s “ 2 or s “ 3. Let
T be a directed set of normal subgroups of p-power index in B that defines the pro-p topology of B. Suppose
that lim

ÐÝ
UPT

H1pU X A,Fpq “ 0 and furthermore if s “ 3, there is an upper bound on the deficiency of the

subgroups of finite index in pCp. Then

a) if s “ 2, then pBp is a pro-p PD4 group and B is p-good.

b) if s “ 3, then pBp is virtually a pro-p PDk-group for some k P t2, 3, 5u. If k “ 5 then B and C are p-good.

If additionally B is orientable and p-good then pBp is an orientable pro-p PD2`s group.

Proof. Note that B is a PDs`2-group. Let A be closure of the image of A in pBp i.e. A is the completion
of A with respect tU X A | U P T u. Then we have a short exact sequence of pro-p groups

1 Ñ A Ñ pBp Ñ pCp Ñ 1.

By Lemma 3.4 we see that A » pAp is an orientable pro-p PD2-group.

If s “ 2 then pCp is an orientable pro-p PD2-group. Hence pBp is a pro-p PD4-group.

If s “ 3 and pCp is infinite then by the remark after Theorem 2.1 we have two options : lim
ÐÝ
UPT

H2pVU,Fpq “

0 or lim
ÐÝ
UPT

H2pVU,Fpq “ Fp. In the former pCp is an orientable pro-p PD3-group and in the latter pCp is
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virtuallyZp. Since A “ pAp is a pro-p PD2-group we conclude that if pCp is infinite then pBp is a pro-p
PD5-group or virtually a pro-p PD3-group.

The p-goodness follows from Lemma 6.3. We need that in the case s “ 3, if pCp is an orientable
pro-p PD3-group then C is p-good, that follows from [18, Thm. A].

If B is p-good and B is orientable then by Theorem 2.2 pBp is orientable pro-p PD2`s group. �

Lemma 6.8. Let 1 Ñ K Ñ G Ñ D Ñ 1 be a short exact sequence of groups, where G is a PDn-group, D is
a PDn´1-group and K » Z. Then G is an orientable PDn-group if and only if K is the dualizing module of
D.

Proof. Consider the LHS spectral sequence E2
i, j “ HipD,H jpK,Zqq that converges to Hi` jpG,Zq.

Since E2
i, j “ 0 if i ě n or j ě 2, by the convergence we conclude that HnpG,Zq » Hn´1pD,H1pK,Zqq.

Let W be the dualizing module of D and V be the dualizing module of G. Both V and W are infinite
cyclic as abelian groups but in general the corresponding actions of D and G need not be trivial.
Then

H0pG,Vq » HnpG,Zq » Hn´1pD,H1pK,Zqq » Hn´1pD,Kq » H0pD,K bWq.

Since V and K bW are infinite cyclic as abelian groups, we have that G is orientable ðñ G acts
trivially on V ðñ H0pG,Vq , 0 ðñ H0pD,KbWq , 0 ðñ KbW is the trivial D-module (via
the diagonal action) ðñ K » W as D-module. �

Lemma 6.9. Suppose p , 2 and 1 Ñ K Ñ G Ñ C Ñ 1 is a short exact sequence of groups, where the
action of C via conjugation on K “ Z is non-trivial. Then pGp » pCp.

Proof. Suppose that U is a normal subgroup of p-power index in G. Then for some i we have that
K2i

“ rK,G, . . . ,Gs Ď γi`1pGq Ď U, hence K2i
Ď U X K Ď K. Since rK : U X Ks is a p-power that

divides 2i “ rK : K2i
s, we conclude that K “ U X K Ď U. Hence pGp » pCp. �

7. PD4-groups with Euler characteristic 0

In this section we shall prove Theorem C of the Introduction. (This is Theorem 7.2 below.)

Lemma 7.1. Let G be an orientable PD4-group. If the pro-p completion pGp is a pro-p PD3-group then
χpGq ě 2.

Proof. We have β1ppGp;Fpq “ β1pG;Fpq and β2ppGp;Fpq ď β2pG;Fpq, for any group G [27, §2.6]. Since
pGp is a pro-p PD3-group, β1ppGp;Fpq “ β2ppGp;Fpq, and since the image of H2ppGp;Fpq in H2pG;Fpq

is self-annihilating under cup product, β2pG;Fpq ě 2β1pG;Fpq, by the non-singularity of Poincaré
duality. Hence χpGq “

ř

0ďiď4p´1qiβipG;Fpq “ 2´ 2β1pG;Fpq ` β2pG;Fpq ě 2. �

Let G be a group with a normal subgroup A � Z2. If we fix a basis for A we may identify AutpAq
with GLp2,Zq, and conjugation in G then determines an action θ : G{A Ñ GLp2,Zq. We shall say
that the action is orientable if its image lies in SLp2,Zq. (Thus G acts orientably if and only if the
induced action by detθ on A^ A � Z is trivial.)
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Theorem 7.2. Let 1 Ñ A Ñ B Ñ C Ñ 1 be a short exact sequence of groups such that A » Z2, B is an
orientable PD4 group and C is an orientable PD2-group. Then one of the following holds:

a) pBp is an orientable pro-p PD4-group and B is p-good;

b) pBp � pCp, and the image of A in pBp is trivial.

Proof. Let rB,As be the normal subgroup generated by commutators 1a1´1a´1 for 1 P B and a P A.
Let Γ1A “ rB,As ` pA and Γk`1A “ rB,ΓkAs ` pk`1A, for all k ě 1. These subgroups have finite
index in A and are normal in B. The quotient A{Γ1A is central in B{Γ1A, and B acts on the finite
p-group A{ΓkA through a finite p-group, for all k ě 1. Hence B has a normal subgroup U of
p-power index such that A ă U and A{ΓkA is central in U{ΓkA. The quotient U{A is an orientable
PD2-group and A{ΓkA is a finite abelian group of exponent dividing pk. On applying Lemma 3.1
several times, we see that the class in H2pU{A; A{ΓkAq of the central extension

0 Ñ A{ΓkA Ñ U{ΓkA Ñ U{A Ñ 1

restricts to 0 in a normal subgroup V{A of p-power index. Hence V{ΓkA � pV{Aq ˆ pA{ΓkAq. An
argument by induction on nilpotency class shows that Xkě1ΓkA has trivial image in every finite
quotient of G which is a p-group. It follows that Xkě1ΓkA is the kernel of the pro-p completion
homomorphism from B to pBp.

Fix an isomorphism A � Z2, and let θ : B Ñ GLp2,Zq be the action of B an A induced by
conjugation in G. Let θp : B Ñ GLp2,Fpq be the mod-p reduction of θ.

If θpp1q ´ I is not invertible (for some 1 P B) then θpp1q has 1 as an eigenvalue. Since B and C are
orientable the action of B on A is orientable. Hence both eigenvalues of θpp1q are 1, since they are
mutually inverse, and so pθpp1q ´ Iq2 “ 0.

Suppose first that this holds for all 1 P B. Then we may assume that θppBq ď Up2,Fpq, the subgroup
of upper unitriangular matrices [23, 8.1.10]. Thus A has a basis te1, e2u such that rB, e1s ď pA and
rB, e2s ` pA ď Ze1 ` pA. Hence Γ1A ď Ze1 ` pA. Define subgroups rB,s , e1s inductively by
setting rB,1 e1s “ rB, e1s and rB,s`1 e1s “ rB, rB,s e1ss for s ě 1. Then by induction on k we have
ΓkA ď pkA ` Σh` j“k´1ZphrB, j e1s, rB,2k´1 e1s ď pkA and rB,2k e1s ď Zpke1 ` pk`1A ď pkA. Thus
Γ2kA ď pkA, for all k ě 1, and so Xkě1ΓkA “ 1. In this case A � pZ2

p and so pBp is a pro-p PD4-group.
Since β1ppBp;Fpq “ β1pB;Fpq and χppBpq “ 0 “ χpBq, it follows that β2ppB;Fpq “ β2pB;Fpq. It then
follows easily from Lemma 3.5 and the nonsingularity of Poincaré duality that B is p-good.

If θpp1q´I is invertible in GLp2,Fpq for some 1 P C then A “ rB,As`pA. Hence A “ rB,As`pkA for
all k ě 1, by the Burnside Basis theorem [23, 5.3.2] (equivalently, by Nakayama’s Lemma), applied
to the finite p-group A{pkA. Hence Xkě1ΓkA “ A, so A “ 1 and pBp � pCp is a pro-p PD2-group. �

If C is a non-orientable PD2-group then B is orientable if and only if the determinant of the action
is the orientation character of C). In this case the above argument goes through with little change
for p “ 2.

Remark Suppose p , 2 and 1 Ñ K Ñ G Ñ C Ñ 1 be a short exact sequence of groups, where C
is an orientable surface group and the action of C via conjugation on K “ Z is non-trivial. Thus
G is a non-orientable PD3-group. Consider B “ S ˆ G, where S “ Z. Then for A “ S ˆ K we
have the short exact sequence of groups 1 Ñ A Ñ B Ñ C Ñ 1 with A and C orientable surface
groups, but by Lemma 6.8 B is not orientable. Then by Lemma 6.9 pBp » pSp ˆ pGp “ Zp ˆ pCp is an
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orientable pro-p PD3-group and A » Zp. This is an example of a group that is not orientable and
does not satisfy the conclusions of Theorem C but the only assumption of Theorem C it fails is the
orientability one.

Taking products of aspherical 3-manifolds exemplifying case (d) of Theorem 2.1 with the circle
gives examples illustrating part (b) of Theorem C. Let M “ MpKq, where K is a non-trivial fibred
knot. Then E “ M ˆ S1 is an aspherical 4-manifold with fundamental group G ˆZ, and E fibres
over the torus T with fibre F. If B is a surface of genus h ą 1 and f : B Ñ T is a degree-1 map
then the total space E f “ N ˆT B of the pullback of the fibration N Ñ T over f is aspherical, and
π “ π1pE f q is an extension of ρ “ π1pBq by φ. It is easy to see that φ ď γkπ for all k, and so pπp � pρp,
for all primes p.

If L is the 2-component boundary link obtained by Whitehead doubling each component of the
Hopf link then MpLq ˆ S1 is an aspherical orientable 4-manifold, but does not fibre over a surface.
The pro-p completion of GˆZ is yFp2qp ˆ pZp, which has cohomological p-dimension 2, but is not a
Demuškin group.

Note that the hypothesis “lim
ÐÝ
UPT

H1pU X A,Fpq “ 0” of Theorem B does not hold for these exam-

ples.

8. Dimension drop

An orientable PDn-group G has dimension drop k on pro-p completion if pGp is a pro-p PDn´k-group.
There are aspherical closed orientable n-manifolds N such that π1pNq has dimension drop k (for
all primes p), for all n ě 2 and 2 ď k ď n, except when n “ k “ 5 [12]. This exception reflects the
fact that 5 is not in the additive semigroup generated by 3 and 4, dimensions in which aspherical
homology spheres are known. We shall fill this gap below. However, whether there are any
examples of dimension drop 1 remains an open question.

Let X be a compact 4-manifold whose boundary components are diffeomorphic to the 3-torus T3.
A Dehn filling of a component Y of BX is the adjunction of T2 ˆ D2 to X via a diffeomorphism
BpT2ˆD2q � Y. If the interior of X has a complete hyperbolic metric then “most” systems of Dehn
fillings on some or all of the boundary components give manifolds which admit metrics of non-
positive curvature, and the fundamental groups of the cores of the solid tori T2ˆD2 map injectively
to the fundamental group of the filling of X, by the Gromov-Thurston 2π-Theorem. (Here “most”
means “excluding finitely many fillings of each boundary component”. See [2].)

Theorem 8.1. There are aspherical closed 5-manifolds with perfect fundamental group.

Proof. Let M “ S4z5T2 be the complete hyperbolic 4-manifold with finite volume and five cusps
considered in [13] and [22], and let M be a compact core, with interior diffeomorphic to M. Then
H1pM;Zq � Z5, χpMq “ 2 and the boundary components of M are all diffeomorphic to the 3-torus
T3. There are infinitely many quintuples of Dehn fillings of the components of BM such that the
resulting closed 4-manifold is an aspherical homology 4-sphere [22]. Let pM be one such closed 4-
manifold, and let N Ă pM be the compact 4-manifold obtained by leaving one boundary component
of X unfilled. We may assume that the interior of N has a non-positively curved metric, and so N
is aspherical. The Mayer-Vietoris sequence for M “ N Y T2 ˆD2 gives an isomorphism

H1pT3;Zq � H1pN;Zq ‘H1pT2;Zq.
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Let tx, y, zu be a basis for H1pT3;Zq compatible with this splitting. Thus x represents a generator
of H1pN;Zq and maps to 0 in the second summand, while ty, zu has image 0 in H1pN;Zq but
generates the second summand. Since the subgroup generated by ty, zumaps injectively to π1p

xMq
[2], the inclusion of BN into N is π1-injective. Let φ be the automorphism of BN “ T3 which swaps
the generators x and y, and let P “ N Yφ N. Then P is aspherical and χpPq “ 2χpNq “ 4. A
Mayer-Vietoris calculation gives H1pP;Zq “ 0, and so π “ π1pPq is perfect and H2pP;Zq � Z2.

Let e generate a direct summand of H2pπ;Zq “ H2pP;Zq, and let E be the total space of the S1-
bundle over P with Euler class e. Then E is an aspherical 5-manifold, and G “ π1pEq is the central
extension of π1pPq by Z corresponding to e P H2pπ1pPq;Zq. The Gysin sequence for the bundle
(with coefficients in Fp) has a subsequence

0 Ñ H1pE;Fpq Ñ H0pP;Fpq Ñ H2pP;Fpq Ñ H2pE;Fpq Ñ . . .

in which the mod-p reduction of e generates the image of H0pP;Fpq. Since e is indivisible this image
is nonzero, for all primes p. Therefore H1pG;Fpq “ H1pE;Fpq “ 0, for all p, and so G is perfect. �

We may use such groups to complete the results of [12].

Theorem 8.2. For each r ě 0 and n ě maxtr ` 2, 3u there is an aspherical closed n-manifold with
fundamental group π such that π{π1 � Zr and π1 “ π2.

Proof. Let Σ be an aspherical homology 3-sphere (such as the Brieskorn 3-manifold Σp2, 3, 7q) and
let P and E be as in Theorem 8.1. Taking suitable products of copies of Σ, P, E and S1 with each
other realizes all the possibilities with n ě r` 3, for all r ě 0.

Let M “ MpKq be the 3-manifold obtained by 0-framed surgery on a nontrivial prime knot K with
Alexander polynomial ∆pKq “ 1 (such as the Kinoshita-Terasaka knot 11n42). Then M is aspherical,
since K is nontrivial [7], and if µ “ π1pMq then µ{µ1 � Z and µ1 is perfect, since ∆pKq “ 1. Hence
products Mˆ pS1qr´1 give examples with n “ r` 2, for all r ě 1. �

In particular, the dimension hypotheses in Theorem 6.3 of [12] may be simplified, so that it now
asserts:

Let m ě 3 and r ě 0. Then there is an aspherical closed pm ` rq-manifold M with fundamental group
G “ K ˆZr, where K “ K1. If m , 4 we may assume that χpMq “ 0, and if r ą 0 this must be so.

This is best possible, as no PD1- or PD2-group is perfect, and no perfect PD4-group H has χpHq “
0.

As observed above, there are no known examples of dimension drop 1. No PDn-group with n ď 3
has such a dimension drop on any p-profinite completion. (This is clear if n ď 2, and follows from
Theorem 4.4 if n “ 3.) Hence we may focus on the first undecided case, n “ 4.

In seeking possible examples of dimension drop 1 in the pro-p completion of a PDn-group, the most
convenient candidates are groups whose lower central series terminates after finitely many steps.
A finitely generated nilpotent group ν of Hirsch length h has a maximal finite normal subgroup
Tpνq, with quotient a PDh-group. Moreover, ν{Tpνq has nilpotency class ă h, and is residually a
finite p-group for all p, by Theorem 4 of [25, Chapter 1]. Thus the pro-p completion of ν is a pro-p
PDh-group. for all p prime to the order of Tpνq.

If γkG{γk`1G is finite, of exponent e, say, then so are all subsequent subquotients of the lower
central series, by Proposition 11 of Chapter 1 of [25]. Thus if G is a PD4-group such that G{γ3G
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has Hirsch length 3 and γ3G{γ4G is finite then, setting ν “ G{γ3G, the canonical projection to
ν{Tpνq induces isomorphisms on pro-p completions, for almost all primes p. Taking products of
one such group with copies ofZwould give similar examples with dimension drop 1 in all higher
dimensions.

Let G be the fundamental group of a closed orientable 4-manifold which is the total space of a bundle
with base and fibre aspherical closed orientable surfaces. Thus there is an epimorphism f : G Ñ C
with kernel A, where A and C are orientable PD2-groups. The projection f induces an epimorphism
f̂ : pGp Ñ pCp of pro-p completions. Let K be the kernel of the canonical homomorphism from G
to pGp. The kernel of pf is the closure of the image of A, and so is topologically finitely generated.
If pGp is a pro-p PD3-group then Kerp pf q � Zp [17, Cor. 4]. Hence A{K is finitely generated and
abelian of rank 1. An immediate consequence is that β1pG;Fpq “ β1pC;Fpq or β1pC;Fpq ` 1. This
condition is not satisfied by most such surface bundle groups G, as β1pG;Fpq may be as large as
β1pA;Fpq ` β1pC;Fpq. There are no such bundles with base or fibre the torus, by Lemma 7.1.

We make one further observation, related to Lemma 7.1. If G is an orientable PD4-group and pGp is
a pro-p Poincaré duality group of dimension 3 then the canonical homomorphism from H3ppGp;Fpq

to H3pG;Fpq is trivial. For H1ppGp;Fpq , 0 and so there are classes α P H1ppGp;Fpq “ H1pF;Fpq

and β P H2ppGp;Fpq ă H2pG;Fpq such that α Y β generates H3ppGp;Fpq, by Poincaré duality for
pGp. If this has nonzero image in H3pG;Fpq then there is a γ P H1ppGp;Fpq “ H1pF;Fpq such that
α Y β Y γ , 0 in H4pG;Fpq. But this cup product is in the image of H4ppGp;Fpq, which is 0. An
equivalent formulation of this condition is that inflation from H3pG{U;Fpq to H3pG;Fpq is trivial
for every normal subgroup U of p-power index in G. In particular, taking U “ G1XppGq (where
XppGq is the verbal subgroup generated by all pth powers) we see that the image of ^3H1pG;Fpq

in H3pG;Fpqmust be 0.

References

[1] A. Adem and R. J. Milgram, Cohomology of Finite Groups, 2nd ed., Grundlehren der Mathematischen Wissenschaften,
Vol. 309 Springer-Verlag, Berlin – Heidelberg – New York (2010).

[2] M. Anderson, Dehn fillings and Einstein metrics in higher dimensions, J. Diff. Geom. 73 (2006), 219–261.
[3] K. Brown, Cohomology of groups, Graduate Texts in Mathematics, 87, Springer-Verlag, New York (1994).
[4] D. Cooper, D. D. Long, Free actions of finite groups on rational homology 3-spheres, Top. Appl. 101 (2000), 143–148.
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