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Abstract

We classify the finite-dimensional irreducible representations of the Yangians associated
with the orthosymplectic Lie superalgebras osp1|2n in terms of the Drinfeld polynomials.
The arguments rely on the description of the representations in the particular case n = 1
obtained in our previous work.

1 Introduction
The finite-dimensional irreducible representations of the Yangian Y(g) associated with a simple
Lie algebra g were classified by Drinfeld [5]. The arguments rely on the work of Tarasov [9] on
the particular case of Y(sl2), where the classification was carried over in the language of mon-
odromy matrices within the quantum inverse scattering method; see [7, Sec. 3.3] for a detailed
adapted exposition of these results. This description of the representations of the Yangian Y(sl2),
along with some other low rank cases, should also play an essential role in the classification of the
finite-dimensional irreducible representations of the Yangians associated with simple Lie super-
algebras. One of these cases was considered in our previous work [8], where the representations
of the Yangian Y(osp1|2) were described.

These two basic cases turn out to be sufficient to complete the classification in the case of
the Yangians associated with the orthosymplectic Lie superalgebras osp1|2n. We prove in this
paper that, similar to the classification results of [5], the finite-dimensional irreducible represen-
tations of the Yangian Y(osp1|2n) are in one-to-one correspondence with the n-tuples of monic
polynomials (P1(u), . . . , Pn(u)), and so we call them the Drinfeld polynomials.

To describe the results in more detail, recall that the Yangian Y(ospM |2n), as introduced
by Arnaudon et al. [1], can be considered as a quotient of the extended Yangian X(ospM |2n)
defined via an RTT relation. A standard argument shows that every finite-dimensional irre-
ducible representation of X(ospM |2n) is a highest weight representation. It is isomorphic to the
irreducible quotient L(λ(u)) of the Verma module M(λ(u)) associated with an (n + 1)-tuple
λ(u) = (λ1(u), . . . , λn+1(u)) of formal series λi(u) ∈ 1 + u−1C [[u−1]]. The tuple is called the
highest weight of the representation. The key step in the classification is to find the conditions
on the highest weight for the representation L(λ(u)) to be finite-dimensional. The required nec-
essary conditions are derived by induction from those for the associated actions of the Yangians
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Y(gl2) and X(osp1|2) on the respective cyclic spans of the highest vector of L(λ(u)). The suf-
ficiency of these conditions is verified by constructing the fundamental representations of the
Yangian X(ospM |2n); cf. [3], [4]. The following is our main result.

Main Theorem. Every finite-dimensional irreducible representation of the algebra X(osp1|2n)
is isomorphic to L(λ(u)) for a certain highest weight λ(u). The representation L(λ(u)) is finite-
dimensional if and only if

λi+1(u)
λi(u) = Pi(u+ 1)

Pi(u) , i = 1, . . . , n, (1.1)

for some monic polynomials Pi(u) in u. The finite-dimensional irreducible representations of the
Yangian Y(osp1|2n) are in a one-to-one correspondence with the n-tuples of monic polynomials
(P1(u), . . . , Pn(u)).

2 Definitions and preliminaries
For any integer n > 1 introduce the involution i 7→ i ′ = 2n− i+ 2 on the set {1, 2, . . . , 2n+ 1}.
Consider the Z2-graded vector space C1|2n over C with the basis e1, e2, . . . , e2n+1, where the
vectors ei and ei ′ with i = 1, . . . , n are odd and the vector en+1 is even. We set

ı̄ =

1 for i = 1, . . . , n, n′, . . . , 1′,
0 for i = n+ 1.

The endomorphism algebra EndC1|2n gets a Z2-gradation with the parity of the matrix unit eij
found by ı̄+ ̄ mod 2.

We will consider even square matrices with entries in Z2-graded algebras, their (i, j) entries
will have the parity ı̄ + ̄ mod 2. The algebra of even matrices over a superalgebra A will be
identified with the tensor product algebra EndC1|2n ⊗A, so that a matrix A = [aij] is regarded
as the element

A =
2n+1∑
i,j=1

eij ⊗ aij(−1)ı̄ ̄+̄ ∈ EndC1|2n ⊗A.

We will use the involutive matrix super-transposition t defined by (At)ij = Aj′i′(−1)ı̄̄+̄θiθj ,
where we set

θi =

 1 for i = 1, . . . , n+ 1,
−1 for i = n+ 2, . . . , 2n+ 1.

This super-transposition is associated with the bilinear form on the space C1|2n defined by the
anti-diagonal matrix G = [δij′ θi]. We will also regard t as the linear map

t : EndC1|2n → EndC1|2n, eij 7→ ej′i′(−1)ı̄̄+ı̄θiθj. (2.1)

In the case of multiple tensor products of the endomorphism algebras, we will indicate by ta the
map (2.1) acting on the a-th copy of EndC1|2n.
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A standard basis of the general linear Lie superalgebra gl1|2n is formed by elements Eij of
the parity ı̄+ ̄ mod 2 for 1 6 i, j 6 2n+ 1 with the commutation relations

[Eij, Ekl] = δkj Ei l − δi lEkj(−1)(ı̄+̄)(k̄+l̄).

We will regard the orthosymplectic Lie superalgebra osp1|2n associated with the bilinear from
defined by G as the subalgebra of gl1|2n spanned by the elements

Fij = Eij − Ej′i′(−1)ı̄ ̄+ı̄ θiθj.

Introduce the permutation operator P by

P =
2n+1∑
i,j=1

eij ⊗ eji(−1)̄ ∈ EndC1|2n ⊗ EndC1|2n

and set

Q = P t1 = P t2 =
2n+1∑
i,j=1

eij ⊗ ei′j′(−1)ı̄̄ θiθj ∈ EndC1|2n ⊗ EndC1|2n.

The R-matrix associated with osp1|2n is the rational function in u given by

R(u) = 1− P

u
+ Q

u− κ
, κ = −n− 1/2.

This is a super-version of the R-matrix originally found in [10]. Following [1], we define the
extended Yangian X(osp1|2n) as a Z2-graded algebra with generators t(r)ij of parity ı̄+ ̄ mod 2,
where 1 6 i, j 6 2n+1 and r = 1, 2, . . . , satisfying certain quadratic relations. In order to write
them down, introduce the formal series

tij(u) = δij +
∞∑
r=1

t
(r)
ij u

−r ∈ X(osp1|2n)[[u−1]] (2.2)

and combine them into the matrix T (u) = [tij(u)] so that

T (u) =
2n+1∑
i,j=1

eij ⊗ tij(u)(−1)ı̄ ̄+̄ ∈ EndC1|2n ⊗ X(osp1|2n)[[u−1]].

Consider the algebra EndC1|2n⊗EndC1|2n⊗X(osp1|2n)[[u−1]] and introduce its elements T1(u)
and T2(u) by

T1(u) =
2n+1∑
i,j=1

eij ⊗ 1⊗ tij(u)(−1)ı̄ ̄+̄, T2(u) =
2n+1∑
i,j=1

1⊗ eij ⊗ tij(u)(−1)ı̄ ̄+̄.

The defining relations for the algebra X(osp1|2n) take the form of the RTT -relation

R(u− v)T1(u)T2(v) = T2(v)T1(u)R(u− v). (2.3)
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As shown in [1], the product T (u)T t(u− κ) is a scalar matrix with

T (u− κ)T t(u) = c(u)1, (2.4)

where c(u) is a series in u−1. All its coefficients belong to the center ZX(osp1|2n) of X(osp1|2n)
and generate the center.

The Yangian Y(osp1|2n) is defined as the subalgebra of X(osp1|2n) which consists of the
elements stable under the automorphisms

tij(u) 7→ f(u) tij(u) (2.5)

for all series f(u) ∈ 1 + u−1C [[u−1]]. We have the tensor product decomposition

X(osp1|2n) = ZX(osp1|2n)⊗ Y(osp1|2n). (2.6)

The Yangian Y(osp1|2n) can be equivalently defined as the quotient of X(osp1|2n) by the relation

T (u− κ)T t(u) = 1.

We will also use a more explicit form of the defining relations (2.3) written in terms of the
series (2.2) as follows:

[tij(u), tkl(v)] = 1
u− v

(
tkj(u) til(v)− tkj(v) til(u)

)
(−1)ı̄ ̄+ı̄ k̄+̄ k̄

− 1
u− v − κ

(
δki ′

2n+1∑
p=1

tpj(u) tp′l(v)(−1)ı̄+ı̄ ̄+̄ p̄ θiθp (2.7)

− δlj ′
2n+1∑
p=1

tkp′(v) tip(u)(−1)̄+p̄+ı̄ k̄+̄ k̄+ı̄ p̄ θjθp

)
.

For any a ∈ C the mapping
tij(u) 7→ tij(u+ a) (2.8)

defines an automorphism of the algebra X(osp1|2n).
The universal enveloping algebra U(osp1|2n) can be regarded as a subalgebra of X(osp1|2n)

via the embedding

Fij 7→
1
2
(
t
(1)
ij − t

(1)
j′i′(−1)̄+ı̄̄ θiθj

)
(−1)ı̄. (2.9)

This fact relies on the Poincaré–Birkhoff–Witt theorem for the orthosymplectic Yangian which
was pointed out in [1] and [2]. It states that the associated graded algebra for Y(osp1|2n) is
isomorphic to U(osp1|2n[u]). A detailed proof of the theorem can be given by extending the
arguments of [3, Sec. 3] to the super case with the use of the vector representation recalled below
in (3.6).

The extended Yangian X(osp1|2n) is a Hopf algebra with the coproduct defined by

∆ : tij(u) 7→
2n+1∑
k=1

tik(u)⊗ tkj(u). (2.10)

For the image of the series c(u) we have ∆ : c(u) 7→ c(u)⊗ c(u) and so the Yangian Y(osp1|2n)
inherits the Hopf algebra structure from X(osp1|2n).
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3 Highest weight representations
We will start by deriving a general reduction property for representations of the extended Yan-
gians X(osp1|2n) analogous to [3, Lemma 5.13]. For an X(osp1|2n)-module V set

V + = {η ∈ V | t1j(u) η = 0 for j > 1 and ti1′(u) η = 0 for i < 1′}. (3.1)

Proposition 3.1. The subspace V + is stable under the action of the operators tij(u) subject to
2 6 i, j 6 2n. Moreover, the assignment t̄ij(u) 7→ ti+1,j+1(u) for 1 6 i, j 6 2n − 1 de-
fines a representation of the algebra X(osp1|2n−2) on V +, where the t̄ij(u) denote the respective
generating series for X(osp1|2n−2).

Proof. Suppose that 2 6 k, l 6 2n and j > 1. For any η ∈ V + apply (2.7) to get

t1j(u)tkl(u)η = 1
u− v − κ

δlj ′ (−1)̄+k̄+̄ k̄ θj tk1′(v) t11(u)η.

Another application of (2.7) yields

tk1′(v) t11(u)η = −[t11(u), tk1′(v)] η = 1
u− v − κ

tk1′(v) t11(u)η,

implying t1j(u)tkl(u)η = 0. A similar calculation shows that ti1′(u)tkl(u)η = 0 for i < 1′ thus
proving the first part of the proposition.

Now suppose that 2 6 i, j, k, l 6 2n. By (2.7) the super-commutator [tij(u), tkl(v)] of the
operators in V + equals

1
u− v

(
tkj(u) til(v)− tkj(v) til(u)

)
(−1)ı̄ ̄+ı̄ k̄+̄ k̄

− 1
u− v − κ

(
δki ′

2n∑
p=2

tpj(u) tp′l(v)(−1)ı̄+ı̄ ̄+̄ p̄ θiθp

− δlj ′
2n∑
p=2

tkp′(v) tip(u)(−1)̄+p̄+ı̄ k̄+̄ k̄+ı̄ p̄ θjθp

)

plus the additional terms

− 1
u− v − κ

(
δki ′ t1j(u) t1′l(v)(−1)ı̄+ı̄ ̄+̄ θi + δlj ′ tk1′(v) ti1(u)(−1)̄+ı̄ k̄+̄ k̄+ı̄ θj

)
.

To transform these terms, use (2.7) again to get the relations

t1j(u) t1′l(v) = 1
u− v − κ− 1

2n∑
p=2

tpj(u) tp′l(v)(−1)̄+̄ p̄ θp

− 1
u− v − κ− 1 δlj

′ t1′1′(v)t11(u) θj
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and

tk1′(v) ti1(u) = [ti1(u) tk1′(v)](−1)ı̄+k̄+ı̄ k̄ = 1
u− v − κ− 1 δki

′ t11(u) t1′1′(v)(−1)ı̄ θi

− 1
u− v − κ− 1

2n∑
p=2

tkp′(v) tip(u)(−1)ı̄+p̄+ı̄ p̄ θp.

Now combine the expressions together and observe that the actions of the operators t11(u) and
t1′1′(v) in V + commute. Taking into account the change of the value κ 7→ κ + 1 for the algebra
X(osp1|2n−2), we find that the formula for the super-commutator [tij(u), tkl(v)] agrees with the
defining relations of X(osp1|2n−2).

Remark 3.2. The reduction property of Proposition 3.1 should be related to a super-version of
the embedding theorem for the orthogonal and symplectic Yangians proven in [6, Thm 3.1]. The
arguments of that paper should apply to the super-case to lead to a Drinfeld-type presentation of
the Yangians Y(osp1|2n) extending the work [2].

A representation V of the algebra X(osp1|2n) is called a highest weight representation if there
exists a nonzero vector ξ ∈ V such that V is generated by ξ,

tij(u) ξ = 0 for 1 6 i < j 6 2n+ 1, and
tii(u) ξ = λi(u) ξ for i = 1, . . . , 2n+ 1, (3.2)

for some formal series
λi(u) ∈ 1 + u−1C [[u−1]]. (3.3)

The vector ξ is called the highest vector of V .

Proposition 3.3. The series λi(u) associated with a highest weight representation V satisfy the
consistency conditions

λi(u)λi ′(u+ n− i+ 1/2) = λi+1(u)λ(i+1)′(u+ n− i+ 1/2) (3.4)

for i = 1, . . . , n. Moreover, the coefficients of the series c(u) act in the representation V as the
multiplications by scalars determined by

c(u) 7→ λ1(u)λ1′(u+ n+ 1/2).

Proof. To derive the consistency conditions, we will use the induction on n with the base case
n = 1 already considered in [8]. Suppose that n > 2 and introduce the subspace V + by (3.1). The
vector ξ belongs to V +, and applying Proposition 3.1 we find that the cyclic span X(osp1|2n−2) ξ
is a highest weight submodule with the highest weight (λ2(u), . . . , λ2′(u)). By the induction
hypothesis, this implies conditions (3.4) with i = 2, . . . , n. Furthermore, using the defining
relations (2.7), we get

t12(u) t1′2′(v) ξ = 1
u− v − κ

(
t12(u) t1′2′(v)− λ1(u)λ1′(v) + λ2(u)λ2′(v)

)
ξ
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and so
(u− v − κ− 1) t12(u) t1′2′(v) ξ =

(
−λ1(u)λ1′(v) + λ2(u)λ2′(v)

)
ξ.

Setting v = u − κ − 1 = u + n − 1/2 we obtain (3.4) for i = 1. Finally, the last part of the
proposition is obtained by using the expression for c(u) implied by taking the (1′, 1′) entry in the
matrix relation (2.4).

As Proposition 3.3 shows, the series λi(u) in (3.2) with i > n + 1 are uniquely determined
by the first n+ 1 series. The corresponding (n+ 1)-tuple λ(u) = (λ1(u), . . . , λn+1(u)) is called
the highest weight of V .

Given an arbitrary (n + 1)-tuple λ(u) = (λ1(u), . . . , λn+1(u)) of formal series of the form
(3.3), introduce the series λi(u) with i = n+ 2, . . . , 2n+ 1 to satisfy the consistency conditions
(3.4). Define the Verma module M(λ(u)) as the quotient of the algebra X(osp1|2n) by the left
ideal generated by all coefficients of the series tij(u) with 1 6 i < j 6 2n+1, and tii(u)−λi(u)
for i = 1, . . . , 2n+ 1. As in [3, Prop. 5.14], the Poincaré–Birkhoff–Witt theorem for the algebra
X(osp1|2n) implies that the Verma module M(λ(u)) is nonzero, and we denote by L(λ(u)) its
irreducible quotient.

Proposition 3.4. Every finite-dimensional irreducible representation of the algebra X(osp1|2n)
is isomorphic to L(λ(u)) for a certain highest weight λ(u) = (λ1(u), . . . , λn+1(u)).

Proof. The argument is essentially the same as for the proof of the corresponding counterparts
of the property for the Yangians associated with Lie algebras; cf. [3, Thm 5.1], [7, Sec. 3.2]. We
online some key steps.

Suppose that V is a finite-dimensional irreducible representation of the algebra X(osp1|2n)
and introduce its subspace V 0 by

V 0 = {η ∈ V | tij(u) η = 0, 1 6 i < j 6 2n+ 1}.

First we note that V 0 is nonzero, which follows by considering the set of weights of V , regarded
as an osp1|2n-module defined via the embedding (2.9). This set is finite and hence contains a
maximal weight with respect to the standard partial ordering on the set of weights of V . A
weight vector with this weight belongs to V 0.

Furthermore, we show that V 0 is stable under the action of all operators tii(u). This follows
by straightforward calculations similar to those used in the proof of Proposition 3.1, relying
on the defining relations (2.7). In a similar way, we verify that all the operators tii(u) with
i = 1, . . . , 2n+1 form a commuting family of operators on V 0. Hence they have a simultaneous
eigenvector ξ ∈ V 0. Since the representation V is irreducible, the submodule X(osp1|2n)ξ must
coincide with V thus proving that V is a highest weight module.

By considering the osp1|2n-weights of V we can also conclude that the highest vector ξ of V
is determined uniquely, up to a constant factor.

Proposition 3.4 yields the first part of the Main Theorem. Our next step is to show that the
conditions in the theorem are necessary for the representation L(λ(u)) to be finite-dimensional.
So we now suppose that dimL(λ(u)) <∞ and argue by induction on n. The conditions (1.1) in
the base case n = 1 are implied by the main result of [8]. Suppose further that n > 2.
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Recall that the Yangian Y(gln) for the general linear Lie algebra gln is defined as a unital
associative algebra with countably many generators t(1)◦

ij , t
(2)◦
ij , . . . where 1 6 i, j 6 n, and the

defining relations

(u− v) [t◦ij(u), t◦kl(v)] = t◦kj(u) t◦il(v)− t◦kj(v) t◦il(u)

written in terms of the series

t◦ij(u) = δij + t
(1)◦
ij u−1 + t

(2)◦
ij u−2 + · · · ∈ Y(gln)[[u−1]];

see [7] for a detailed exposition of the algebraic structure and representation of the Yangians
associated with gln. The Yangian Y(gln) can be regarded as a subalgebra of X(osp1|2n) via the
embedding

Y(gln) ↪→ X(osp1|2n), t◦ij(u) 7→ tij(−u) for 1 6 i, j 6 n. (3.5)

The cyclic span Y(gln)ξ ⊂ L(λ(u)) is a highest weight module over Y(gln). Its highest weight
is the n-tuple (λ1(−u), . . . , λn(−u)). Since dimL(λ(u)) <∞, the corresponding conditions for
finite-dimensional highest weight representations of Y(gln) must be satisfied; see [7, Sec. 3.4].
This implies conditions (1.1) of the Main Theorem for i = 1, . . . , n− 1.

Furthermore, by Proposition 3.1, the subspace L(λ(u))+ is a module over the extended Yan-
gian X(osp1|2n−2). The vector ξ generates a highest weight X(osp1|2n−2)-module with the high-
est weight (λ2(u), . . . , λn+1(u)). Since this module is finite-dimensional, conditions (1.1) hold
for i = 2, . . . , n by the induction hypothesis. This completes the proof of the necessity of the
conditions.

Now suppose that conditions (1.1) hold and derive that the corresponding module L(λ(u))
is finite-dimensional. The n-tuple of Drinfeld polynomials (P1(u), . . . , Pn(u)) determines the
highest weight λ(u) up to a simultaneous multiplication of all components λi(u) by a series
f(u) ∈ 1 + u−1C [[u−1]]. This operation corresponds to twisting the action of the algebra
X(osp1|2n) on L(λ(u)) by the automorphism (2.5). Hence, it suffices to prove that a particu-
lar module L(λ(u)) corresponding to a given set of Drinfeld polynomials is finite-dimensional.

Suppose that L(λ(u)) and L(µ(u)) are the irreducible highest weight modules with the high-
est weights

λ(u) =
(
λ1(u), . . . , λn+1(u)

)
and µ(u) =

(
µ1(u), . . . , µn+1(u)

)
.

By the coproduct rule (2.10), the cyclic span X(osp1|2n)(ξ ⊗ ξ′) of the tensor product of the
respective highest vectors of L(λ(u)) and L(µ(u)) is a highest weight module with the highest
weight (

λ1(u)µ1(u), . . . , λn+1(u)µn+1(u)
)
.

This observation implies that the cyclic span corresponds to the set of Drinfeld polynomials
(P1(u)Q1(u), . . . , Pn(u)Qn(u)), where the Pi(u) and Qi(u) are the Drinfeld polynomials for
L(λ(u)) and L(µ(u)), respectively. Therefore, we only need to establish the sufficiency of con-
ditions (1.1) for the fundamental representations of X(osp1|2n) associated with the n-tuples of
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Drinfeld polynomials such that Pj(u) = 1 for all j 6= i and Pi(u) = u + b for a certain
i ∈ {1, . . . , n} and b ∈ C; cf. [4]. Moreover, it is sufficient to take one particular value of
b ∈ C; the general case will then follow by twisting the action of the algebra X(osp1|2n) in such
representations by automorphisms of the form (2.8).

Consider the vector representation of X(osp1|2n) on C1|2n defined by

tij(u) 7→ δij + u−1eij(−1)ı̄ − (u+ κ)−1ej′i′(−1)ı̄̄ θiθj. (3.6)

The homomorphism property follows from (2.3) by applying the standard transposition to one
copy of EndC1|2n in the Yang–Baxter equation satisfied by R(u). Now use the coproduct (2.10)
and suitable automorphisms (2.8) to equip the tensor product space (C1|2n)⊗k with the action of
X(osp1|2n) by setting

tij(u) 7→
2n+1∑

a1,...,ak−1=1
tia1(u)⊗ ta1a2(u− 1)⊗ . . .⊗ tak−1j(u− k + 1), (3.7)

where the generators act in the respective copies of the vector space C1|2n via the rule (3.6). For
the values k = 1, . . . , n introduce the vectors

ξk =
∑
σ∈Sk

sgn σ · eσ(1) ⊗ · · · ⊗ eσ(k) ∈ (C1|2n)⊗k.

Now verify that each vector ξk has the properties

tij(u) ξk = 0 for 1 6 i < j 6 n+ 1 (3.8)

and

tii(u) ξk =


u− k

u− k + 1 ξk for i = 1, . . . , k,

ξk for i = k + 1, . . . , n+ 1.
(3.9)

The expression for the vector ξk involves only tensor products of the basis vectors ei with i 6 n.
This implies that for the application of the operators tij(u) with 1 6 i 6 j 6 n to ξk we may
restrict the sum in formula (3.7) to the values ap ∈ {1, . . . , n}.

By using the embedding (3.5), we may regard the cyclic span Y(gln)ξk as a Y(gln)-module.
Moreover, this module is isomorphic to A(k)(Cn)⊗k, where A(k) is the anti-symmetrization
operator. It is well-known that this Y(gln)-module is isomorphic to the evaluation module
L(1, . . . , 1, 0, . . . , 0) (with k ones) twisted by a shift automorphism u 7→ u + k − 1; see e.g.
[7, Sec. 6.5]. This yields formulas (3.8) and (3.9) with 1 6 i 6 j 6 n. They are easily verified
directly for the remaining generators.

Formulas (3.9) show that the corresponding set of Drinfeld polynomials for the highest
weight module X(osp1|2n)ξk has the form Pi(u) = 1 for i 6= k, while Pk(u) = u − k. This
completes the proof of the second part of the Main Theorem concerning conditions (1.1). The
last part is immediate from the decomposition (2.6); cf. [3, Sec. 5.3].
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