PD3;-COMPLEXES BOUND
JONATHAN A. HILLMAN

ABSTRACT. We show that every PDs-complex P bounds a PDy-
pair (Z, P). If P is orientable we may assume that m(Z) = 1. We
show also that if P has a manifold 1-skeleton then it is homotopy
equivalent to a closed 3-manifold.

It is well known that every closed connected 3-manifold bounds a
compact smooth 4-manifold (which may be assumed orientable if the 3-
manifold is orientable). This follows from the calculation of the bordism
rings, but there are also ad hoc low-dimensional proofs [14]. There is an
analogous notion of PD-bordism (as studied in [8]). Much of the pub-
lished work on this topic (and related notions, such as PD-surgery and
transversality) was driven by the needs and results of high-dimensional
manifold topology, and we have not found an explicit treatment of the
low-dimensional cases.

In the very lowest dimensions n = 1 or 2 every PD,-complex X is
homotopy equivalent to a closed n-manifold, and X bounds if and only
if the corresponding manifold bounds. Our interest is in the case n = 3.
In §1 we show that every PDs-complex P is the range of a homology
equivalence f : M — P with domain a closed 3-manifold. The union of
the mapping cylinder of this map with a suitable 4-manifold bounded
by M is the ambient space of a PD,-pair with boundary P. Some
argument is needed, since there are P Ds-complexes which are not ho-
motopy equivalent to closed 3-manifolds. We use special features of the
low-dimensional case, and leave aside the general problem of Poincaré
duality bordism.

Every aspherical 3-manifold is the m-injective boundary of an as-
pherical 4-manifold [4], and in §2 we introduce “injective bordism” of
PD,-groups, to put the corresponding question for PDs-groups in a
wider context. In §3 we consider another aspect of the structure of
PDs-complexes: we show that if a PDs-complex has a manifold 1-
skeleton then it is homotopy equivalent to a closed 3-manifold.
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We have demoted to an appendix a section on constructions of in-
jective null-bordisms for some 3-manifolds which fibre non-trivially.

I would like to thank I. Hambleton for pointing out a looseness in
my handling of framings in Theorem 1, and M.Land for his argument
for the 4-dimensional case.

1. PD3;-COMPLEXES

If f: M — P is a degree-1 map from a 3-manifold M to a PDs-
complex P then surgery may be used to improve it to a Z[r|-homology
equivalence, provided an obstruction in L3(Z[r]) vanishes [11]. Here we
need only a Z-homology equivalence. The arguments of [2] probably
apply to this situation, since L3(Z) = 0, but we shall use naive, un-
obstructed surgery below the middle dimension, as in Theorem 5.1 of
[10]. (The issue of promoting a degree-1 map to a normal map does not
arise, as the orientation characters determine the normal fibrations.)

Theorem 1. Orientable PDs-complexes bound orientably.

Proof. Let P be a PDy-complex. The fundamental class [P] may be
represented by a 3-cycle X1);, where each summand ; is a singular
3-simplex. Since 0%); = 0, the faces of the summands must match
in pairs. Choosing such a pairing gives a map f : £ — P with do-
main a finite 3-complex which is an orientable 3-manifold away from
its vertices. The finitely many non-manifold points have links which are
aspherical orientable surfaces. After replacing conical neighbourhoods
of such vertices by handlebodies, we obtain a degree-1 map g : M — P
with domain a closed orientable 3-manifold. (The existence of such
a map also follows from the Atiyah-Hirzebruch spectral sequence for
oriented bordism.)

Since g is a degree-1 map, 7 (G) is an epimorphism, and the Hurewicz
homomorphism maps Ker(m(g) onto the “homology surgery kernel”
K, = Ker(Hi(g;Z)). Moreover, K; is a direct summand of H;(M;Z).
If K, is infinite we may choose a knot L : S — M which represents an
infinite direct summand of K, and such that go L is null-homotopic in
P. Since the homology class of L generates an infinite direct summand
of Hi(M;Z) there is a closed orientable surface S in M which meets
the image of L transversely in one point, by Poincaré duality. Let
N = S x D? be a regular neighbourhood of L. We may assume that
SN N = D? and so H;(ON;Z) has a longitude-meridian basis {\, 1},
where A is freely homotopic in M to L and p = S N N bounds a
transverse disc. (This property characterizes the meridian, up to sign.
There is no canonical choice of longitude, but this shall not affect our
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argument here.) Hence p is null-homologous in M \ N, since it bounds
S\ N. Let ¢: 9D? x St — M \ N be a homeomorphism which maps
OD?* x 1 to A, and let M’ = M\ N Uy D* x S'. Since g o L is null-
homotopic, so are g|y and g|gy. Therefore g|m extends to a degree-1
map ¢’ : M’ — P, and X and u are each null-homologous in M’. Hence
H,(M";Z) = H,(M;Z)/()\). Proceeding in this way, we may arrange
that K is finite.

If L is a knot which represents a finite direct summand of K; then
the image of the meridian p in Hy(M \ N;Z) has infinite order. (For if
the image of 1 has finite order s in Hy(M \ N;Z) then su would bound
a surface F' € M \ N, and so L would have non-zero intersection num-

ber +s with the closed surface F = F U sD?. Hence the image of L
has infinite order in Hy(M;Z).) It is an easy consequence of Poincaré
duality that if X is an orientable (2k + 1)-manifold and F' is a field
then the image of H,(0X; F) in Hy(X; F) has rank 18,(0X; F). Since
OM \ N = ON is a torus, the image of H;(ON;Q) in H,(M \ N;Q) has
rank 1, and so H,(ON;Z) has a longitude-meridian basis {\, u}, where
the image of A in Hy(M \ N;Z) has finite order. Surgery on L with
respect to this choice of framing replaces (M, g) by a pair (M”, g”) such
that Hy(M";Z)/Im({(u)) = Hi(M;Z)/Im({))). (Compare [10, Lemma
5.6].) This reduces the torsion subgroup of the homology surgery ker-
nel, at the cost of increasing the rank. We then apply the earlier
argument, to reduce the rank without further changing the torsion sub-
group. After several iterations of these steps, we reduce the homology
surgery kernel to 0.

Thus we may assume that H;(g;Z) is an isomorphism. Hence g
induces isomorphisms on homology in all degrees. Let W be a compact
orientable 4-manifold with boundary M. After elementary surgeries on
a basis for w1 (W), we may assume also that m; (W) = 1. Let MCyl(g)
be the mapping cylinder of g and let Z = W Uy MCyl(g). Then
m(Z) = 1, since m(g) is an epimorphism, and the inclusions j : W —
Zand J: (W, M) — (Z,MCyl(g)) ~ (Z, P) induce isomorphisms on
homology. Since J,(5*¢ N [W, M]) = &N J.[W, M] for all £ € H(Z;Z)
and ¢ > 0 and since (W, M) is an orientable 4-manifold pair, it follows
that (Z, P) is an orientable PD,-pair with boundary P. O

In general, (M Cyl(g), M U P) need not be a PD,-pair, even if g is
an integral homology equivalence. Let M be the flat 3-manifold with
holonomy of order 6. Then there is an integral homology equivalence
g: M — P=5?x S The mapping cylinder MClyl(g) fibres over S,
with fibre M Cyl(g’) the mapping cylinder of the degree-1 collapse ¢’ :
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T — S2. If (MCyl(g), MUP) were a PD,-pair then (MCyl(g'), TLS?)
would be a 1-connected PDjs-pair. But this is clearly not the case.
We make no use of the fact that a P Ds-complex is finitely dominated,
and much of the above argument extends to the non-orientable case.
Here we must first find a Z[Z*]-homology equivalence. (We note also
that L3(Z[Z*],w) = 0 if w is nontrivial, but we do not use this fact.)

Addendum. FEvery non-orientable PDs-complex bounds.

Proof. Let P be a PDs-complex such that w = w;(P) # 0. We could
represent a generator of Hz(P;Z") by a geometric cycle f : E — P
with singularities only at the vertices. However in this case it is not
obvious that the links of the vertices have even Euler characteristic.
Instead we appeal to the Atiyah-Hirzebruch spectral sequence for w-
twisted bordism. This gives a 3-manifold M and a map g: M — P
such that ¢g*w = w; (M) and H3(g; Z") is an isomorphism. The surgery
kernel Ker(m(g)) is represented by knots with product neighbour-
hoods. Let M™ be the orientable 2-fold covering space of M. Af-
ter elementary surgeries as in the theorem, we may assume that the
image of Ker(m(g)) in Hi(M™;Z) is trivial, and so g is a Z[Z*]-
homology equivalence. We may also assume that M = OW where
wy (W) 1 m (W) — Z* is an isomorphism. The rest of the argument is
then as in the theorem. U

It is unlikely that such arguments extend much further. There are
non-orientable PD,-complexes and orientable PD,,,;-complexes whose
Spivak normal bundle has no TOP reduction, for all n > 4 [6, 12].
Such complexes admit no degree-1 normal maps with domain a closed
n-manifold.

However, M. Land has suggested the following argument for the case
n =4. If Pisa PD,-complex for some n > 4 then P ~ HUY , where H
is a 1-handlebody, (Y,0H) is a PD,-pair and the inclusion induces an
epimorphism from 7 (H) onto 7 (P) [17, Lemma 2.8]. We may perform
elementary surgeries on a basis for 7 (H ) inside the manifold 1-skeleton
H, and the trace W of the surgeries is a PD-bordism from P to a 1-
connected PD,-complex. If P is orientable then W is orientable. Every
1-connected P D,-complex is homotopy equivalent to a TOP 4-manifold
[5,§11.4]. Now QjTOF = Z®7Z /27, where the first summand is detected
by the signature o and the second by the Kirby-Siebenmann invariant
KS. Let xCP? be the fake projective plane, with KS(xC P?) # 0, and
let X = CP2#+CP? Then o(X) = 0and KS(X) # 0. The signature
is an invariant of PD bordism, but X bounds as a PD,-complex, since
*C' P? ~ C'P2. Hence the signature defines an isomorphism Q577 = 7.
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In the non-orientable case we find that QP = (Z/27)?, detected by
SW numbers.

2. ASPHERICITY AND 71-INJECTIVITY

Relative hyperbolization may be used to show that every closed ori-
entable triangulable n-manifold is orientable cobordant to an aspher-
ical n-manifold [3], and that every aspherical n-manifold which is the
boundary of a triangulable (n + 1)-manifold is in fact the m-injective
boundary of an aspherical (n+ 1)-manifold. Similarly, every pair of as-
pherical n-manifolds which are cobordant together bound an aspherical
(n 4+ 1)-manifold m-injectively [4]; see also [7, Theorem 5.1].

In the lowest dimensions n = 1 or 2 we may avoid hyperbolization (at
least for the orientable cases). If n = 1 then S* is the boundary of the
once-punctured torus 7, and the inclusion of S* into T}, is m-injective.

If n = 2then T = 0T, x S', and the inclusion of T  into T}, x S! is -
injective. The Klein bottle bounds the mapping torus of an orientation-
reversing involution of T,,. The exterior of the ©-graph in S depicted
in [16, Figure 3.10] has a hyperbolic structure for which the boundary is
totally geodesic (and hence incompressible) [16, Example 3.3.12]. The
boundary has genus 2, and suitable finite cyclic covers are orientable
hyperbolic 3-manifolds with connected totally geodesic boundary of
arbitrary genus g > 1.

Since every 3-manifold bounds, every aspherical 3-manifold is the
mi-injective boundary of an aspherical 4-manifold, by the result of [4].
On the other hand, for most values of n > 4 there are aspherical n-
manifolds which do not bound at all (since Q5¢ # 0 if n > 8). In
particular, there are H?(C)-manifolds M with the rational cohomol-
ogy of CP? [15]. No such M can bound (even as an unoriented P D,-
complex), since x(M) = 3 is odd. Iterated products of such manifolds
give counterexamples in all dimensions for which Q59 is infinite.

Definition. A PD,-group G bounds if it is a subgroup of a group m
such that (7, G) is a PD,1-pair of groups.

Two PD,-groups G, and Gy are injectively bordant if they are sub-
groups of a group 7 such that (w,G1,G3) is a PD,.1-pair of groups.

Injective bordism of PD,,-groups is an equivalence relation. Reflexiv-
ity is displayed by the pair (G, G, G) with m = G; = G5 = G, symmetry
is obvious and transitivity follows from [1, Theorem 8.1].

It remains an open question whether every finitely presentable PD,,-
group is the fundamental group of an aspherical closed n-manifold.
However, we allow the possibility that G or the ambient group « of a
pair (7, G) is of type F'P, but not finitely presentable. For every n > 4
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there are uncountable many PD,,-groups which are F'P but not finitely
presentable [13]. (The case n = 3 remains open.)
These observations suggest the following questions.

(1) Does every PDs-group G bound?
(2) Is every PD,-group G injectively bordant to a finitely pre-
sentable PD,,-group?

If every PDs-group is a 3-manifold group then (1) has a positive
answer. The second question is purely speculative.

3. MANIFOLD 1-SKELETON

A PD,-complex X has a manifold 1-skeleton it X ~ H U, Y, where
H is obtained by attaching 1-handles to D™, (Y, B) is a l-connected
PD,-pair (i.e., the inclusion homomorphism from m(B) to m(Y) is
onto) and ¢ : 0H — B is a homotopy equivalence. When n = 3 we
shall call such a 3-manifold a cube with handles.

If n > 4 then every PD,-complex has a manifold 1-skeleton [17,
Lemma 2.8]. Here we shall show that if a PDjs-complex has a manifold
1-skeleton then it is essentially a 3-manifold.

Theorem 2. Let X be a PDs-complex with a manifold 1-skeleton.
Then X is homotopy equivalent to a closed 3-manifold.

Proof. We may assume that X ~ H U, Y, where H is a cube with
handles and (Y, B) is a 1-connected P Ds-pair. We may clearly assume
that B is non-empty.

Let I' = Z[r]. Since (Y, B) is 1-connected, Y may be obtained (up to
homotopy equivalence) by adding cells of dimension > 1 to B. There-
fore H'(Y, B;T") = H;(Y,B;T") = 0, for i < 1. Hence H;(Y;I") = 0 for
j > 1, by Poincaré duality, and so Y is aspherical. Similarly, if M is
any left Z[G]-module then H/(Y; M) =0 for j > 1, and so c.d.7 < 1.
Thus 7 is a free group.

Since Y is aspherical and 71 (Y") is a free group, there is a homotopy
equivalence f : (Y,B) ~ (H',0H'), where H' is a second cube with
handles, by [9, Theorem 3.12] and its extension to the non-orientable
case [9, page 38]. Since 0H and OH' are closed surfaces, the homotopy
equivalence fo¢ : 0H — OH' is homotopic to a homeomorphism @, by
the Dehn-Nielsen Theorem [18, Theorem 5.6.1], and so X is homotopy
equivalent to the 3-manifold H Ugp H'. U

There are finite P Ds-complexes which are not homotopy equivalent
to 3-manifolds. The first and simplest such example has fundamental
group S3. (See [9, Chapter 5], and the references there.)
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APPENDIX: INJECTIVE NULL-BORDISMS FOR 3-MANIFOLDS

In this section we shall consider some further questions about explicit
mi-injective null-bordisms for aspherical 3-manifolds.

(3) if F' is a non-orientable surface with x(F) = 2k < 0 is there a
simple construction of an aspherical 3-manifold with 7{-injective
boundary F?

(4) If N is an aspherical closed 3-manifold is there a simple con-
struction of an aspherical 4-manifold with 7;-injective boundary
N?

(5) If a self-homeomorphism € of a closed orientable surface F' is
null-cobordant does it extend to a self-homeomorphism © of an
aspherical 3-manifold N with m-injective boundary F'?

For (3) it would suffice to construct an example with boundary F' =
#1RP? (with y(F) = —2), since suitable finite cyclic covers would then
realize the other non-orientable surfaces with x = 2k < 0 in this way.
Does Example 3.3.12 of [16] have a 2-fold covering which admits an
orientation-reversing free involution?

There is a partial answer to (4). An aspherical 3-manifold is either
a graph manifold or is finitely covered by a mapping torus, by the
Virtual Fibration Theorem. If N is the mapping torus of an orientation-
preserving self-homeomorphism 6 of an orientable surface F' of genus
g > 2 then the image of § in the mapping class group M, is a product
of (say) r commutators, since M, is perfect [Powell, J. Two theorems
on the mapping class group of a surface, Proc. Amer. Math. Soc. 68
(1978), 347-350].

It follows easily that N bounds (m;-injectively) the total space of an
F-bundle over a once-punctured surface of genus 2r. If F' has genus 1
or 2 then M% and M$%¥ are cyclic, of orders 12 and 10 respectively, so
a similar argument applies to a finite cover of M ().

We do not know of such simple constructions for the case of graph
manifolds, even in the special case when N is the total spaces of a
non-trivial S'-bundle over an aspherical surface B. (Such S'-bundle
spaces bound the associated disc bundle spaces, but these boundaries
are never mi-injective.) If N = 0W where W fibres over a 3-manifold
M with OM = B then N = Bx S, since the restriction from H?(M;Z)
to H*(OM; Z) is trivial. If N is not such a product, we may ask instead
whether it bounds the total space of an F,-bundle over B, where F), is a
once-punctured aspherical surface. (This is not possible when N = T,
for any abelian subgroup of the mapping class group of F} is generated
by the images of self-diffeomorphisms with disjoint support [Birman,



PD3-COMPLEXES BOUND 9

J. S., Lubotzky, A. and McCarthy, J. Abelian and solvable subgroups
of the mapping class groups, Duke Math. J. 50 (1983), 1107-1120).

The construction for (4) shows that 3-dimensional mapping tori usu-
ally bound surface bundles with the same fibre. Question (5) asks
whether such mapping tori bound 4-dimensional mapping tori. This
is a more stringent condition, since the group of bordism classes of
self-diffeomorphisms of closed surfaces is a direct sum Z* @ (Z/27)>°
[Bonahon, F. Cobordism of automorphisms of surfaces, Ann. Sc. Ec.
Norm. Sup. 16 (1983), 237-270], and so we must assume that 6 is
null-cobordant.

Cusps of complete finite volume Riemannian 4-manifolds with one
of the geometries H*, H?*(C) or H? x H? (and which are not virtually
products, in the latter case) have cusps which are respectively E3-, Nil3-
or Sol*-manifolds. However not every such 3-manifold can be realized
as the sole cusp of a geometric 4-manifold.

The flat 3-manifolds with holonomy of order 3 or 6 are a particular
challenge. They are total spaces of T-bundles over S*, but do not bound
T-bundles over once-punctured surfaces, since in each case the image
of 6 in SL(2,3)% = Z/37Z is non-trivial. Nor do they bound mapping
tori, for a self homeomorphism 6 of T" bounds if and only if its image
in # € SL(2,7Z) has both eigenvalues 1, by the one half lives—one half
dies principle. Finally they do not bound 4-manifolds whose interiors
are complete H*-manifolds of finite volume [Long, D. D. and Reid, A.
W. All flat 3-manifolds are cusps of hyperbolic orbifolds, Alg. Geom.
Top. 2 (2002), 285-296].
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