
PD3-COMPLEXES BOUND

JONATHAN A. HILLMAN

Abstract. We show that every PD3-complex P bounds a PD4-
pair (Z,P ). If P is orientable we may assume that π1(Z) = 1. We
show also that if P has a manifold 1-skeleton then it is homotopy
equivalent to a closed 3-manifold.

It is well known that every closed connected 3-manifold bounds a
compact smooth 4-manifold (which may be assumed orientable if the 3-
manifold is orientable). This follows from the calculation of the bordism
rings, but there are also ad hoc low-dimensional proofs [14]. There is an
analogous notion of PD-bordism (as studied in [8]). Much of the pub-
lished work on this topic (and related notions, such as PD-surgery and
transversality) was driven by the needs and results of high-dimensional
manifold topology, and we have not found an explicit treatment of the
low-dimensional cases.

In the very lowest dimensions n = 1 or 2 every PDn-complex X is
homotopy equivalent to a closed n-manifold, and X bounds if and only
if the corresponding manifold bounds. Our interest is in the case n = 3.
In §1 we show that every PD3-complex P is the range of a homology
equivalence f : M → P with domain a closed 3-manifold. The union of
the mapping cylinder of this map with a suitable 4-manifold bounded
by M is the ambient space of a PD4-pair with boundary P . Some
argument is needed, since there are PD3-complexes which are not ho-
motopy equivalent to closed 3-manifolds. We use special features of the
low-dimensional case, and leave aside the general problem of Poincaré
duality bordism.

Every aspherical 3-manifold is the π1-injective boundary of an as-
pherical 4-manifold [4], and in §2 we introduce “injective bordism” of
PDn-groups, to put the corresponding question for PD3-groups in a
wider context. In §3 we consider another aspect of the structure of
PD3-complexes: we show that if a PD3-complex has a manifold 1-
skeleton then it is homotopy equivalent to a closed 3-manifold.
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We have demoted to an appendix a section on constructions of in-
jective null-bordisms for some 3-manifolds which fibre non-trivially.

I would like to thank I. Hambleton for pointing out a looseness in
my handling of framings in Theorem 1, and M.Land for his argument
for the 4-dimensional case.

1. PD3-complexes

If f : M → P is a degree-1 map from a 3-manifold M to a PD3-
complex P then surgery may be used to improve it to a Z[π]-homology
equivalence, provided an obstruction in L3(Z[π]) vanishes [11]. Here we
need only a Z-homology equivalence. The arguments of [2] probably
apply to this situation, since L3(Z) = 0, but we shall use naive, un-
obstructed surgery below the middle dimension, as in Theorem 5.1 of
[10]. (The issue of promoting a degree-1 map to a normal map does not
arise, as the orientation characters determine the normal fibrations.)

Theorem 1. Orientable PD3-complexes bound orientably.

Proof. Let P be a PD+
3 -complex. The fundamental class [P ] may be

represented by a 3-cycle Σψi, where each summand ψi is a singular
3-simplex. Since ∂Σψi = 0, the faces of the summands must match
in pairs. Choosing such a pairing gives a map f : E → P with do-
main a finite 3-complex which is an orientable 3-manifold away from
its vertices. The finitely many non-manifold points have links which are
aspherical orientable surfaces. After replacing conical neighbourhoods
of such vertices by handlebodies, we obtain a degree-1 map g : M → P
with domain a closed orientable 3-manifold. (The existence of such
a map also follows from the Atiyah-Hirzebruch spectral sequence for
oriented bordism.)

Since g is a degree-1 map, π1(G) is an epimorphism, and the Hurewicz
homomorphism maps Ker(π1(g) onto the “homology surgery kernel”
K1 = Ker(H1(g;Z)). Moreover, K1 is a direct summand of H1(M ;Z).
If K1 is infinite we may choose a knot L : S1 →M which represents an
infinite direct summand of K1, and such that g ◦L is null-homotopic in
P . Since the homology class of L generates an infinite direct summand
of H1(M ;Z) there is a closed orientable surface S in M which meets
the image of L transversely in one point, by Poincaré duality. Let
N ∼= S1 ×D2 be a regular neighbourhood of L. We may assume that
S ∩N ∼= D2, and so H1(∂N ;Z) has a longitude-meridian basis {λ, µ},
where λ is freely homotopic in M to L and µ = ∂S ∩ N bounds a
transverse disc. (This property characterizes the meridian, up to sign.
There is no canonical choice of longitude, but this shall not affect our
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argument here.) Hence µ is null-homologous in M \N , since it bounds

S \N . Let φ : ∂D2×S1 → ∂M \N be a homeomorphism which maps

∂D2 × 1 to λ, and let M ′ = M \N ∪φ D2 × S1. Since g ◦ L is null-
homotopic, so are g|N and g|∂N . Therefore g|M\N extends to a degree-1

map g′ : M ′ → P , and λ and µ are each null-homologous in M ′. Hence
H1(M ′;Z) ∼= H1(M ;Z)/〈λ〉. Proceeding in this way, we may arrange
that K1 is finite.

If L is a knot which represents a finite direct summand of K1 then
the image of the meridian µ in H1(M \N ;Z) has infinite order. (For if

the image of µ has finite order s in H1(M \N ;Z) then sµ would bound

a surface F ∈M \N , and so L would have non-zero intersection num-

ber ±s with the closed surface F̂ = F ∪ sD2. Hence the image of L
has infinite order in H1(M ;Z).) It is an easy consequence of Poincaré
duality that if X is an orientable (2k + 1)-manifold and F is a field
then the image of Hk(∂X;F ) in Hk(X;F ) has rank 1

2
βk(∂X;F ). Since

∂M \N = ∂N is a torus, the image of H1(∂N ;Q) in H1(M \N ;Q) has
rank 1, and so H1(∂N ;Z) has a longitude-meridian basis {λ, µ}, where

the image of λ in H1(M \N ;Z) has finite order. Surgery on L with
respect to this choice of framing replaces (M, g) by a pair (M ′′, g′′) such
that H1(M ′′;Z)/Im(〈µ〉) ∼= H1(M ;Z)/Im(〈λ〉). (Compare [10, Lemma
5.6].) This reduces the torsion subgroup of the homology surgery ker-
nel, at the cost of increasing the rank. We then apply the earlier
argument, to reduce the rank without further changing the torsion sub-
group. After several iterations of these steps, we reduce the homology
surgery kernel to 0.

Thus we may assume that H1(g;Z) is an isomorphism. Hence g
induces isomorphisms on homology in all degrees. Let W be a compact
orientable 4-manifold with boundary M . After elementary surgeries on
a basis for π1(W ), we may assume also that π1(W ) = 1. Let MCyl(g)
be the mapping cylinder of g and let Z = W ∪M MCyl(g). Then
π1(Z) = 1, since π1(g) is an epimorphism, and the inclusions j : W →
Z and J : (W,M) → (Z,MCyl(g)) ' (Z, P ) induce isomorphisms on
homology. Since J∗(j

∗ξ ∩ [W,M ]) = ξ ∩ J∗[W,M ] for all ξ ∈ H i(Z;Z)
and i ≥ 0 and since (W,M) is an orientable 4-manifold pair, it follows
that (Z, P ) is an orientable PD4-pair with boundary P . �

In general, (MCyl(g),M t P ) need not be a PD4-pair, even if g is
an integral homology equivalence. Let M be the flat 3-manifold with
holonomy of order 6. Then there is an integral homology equivalence
g : M → P = S2 × S1. The mapping cylinder MCyl(g) fibres over S1,
with fibre MCyl(g′) the mapping cylinder of the degree-1 collapse g′ :
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T → S2. If (MCyl(g),MtP ) were a PD4-pair then (MCyl(g′), TtS2)
would be a 1-connected PD3-pair. But this is clearly not the case.

We make no use of the fact that a PD3-complex is finitely dominated,
and much of the above argument extends to the non-orientable case.
Here we must first find a Z[Z×]-homology equivalence. (We note also
that L3(Z[Z×], w) = 0 if w is nontrivial, but we do not use this fact.)

Addendum. Every non-orientable PD3-complex bounds.

Proof. Let P be a PD3-complex such that w = w1(P ) 6= 0. We could
represent a generator of H3(P ;Zw) by a geometric cycle f : E → P
with singularities only at the vertices. However in this case it is not
obvious that the links of the vertices have even Euler characteristic.
Instead we appeal to the Atiyah-Hirzebruch spectral sequence for w-
twisted bordism. This gives a 3-manifold M and a map g : M → P
such that g∗w = w1(M) and H3(g;Zw) is an isomorphism. The surgery
kernel Ker(π1(g)) is represented by knots with product neighbour-
hoods. Let M+ be the orientable 2-fold covering space of M . Af-
ter elementary surgeries as in the theorem, we may assume that the
image of Ker(π1(g)) in H1(M+;Z) is trivial, and so g is a Z[Z×]-
homology equivalence. We may also assume that M = ∂W where
w1(W ) : π1(W )→ Z× is an isomorphism. The rest of the argument is
then as in the theorem. �

It is unlikely that such arguments extend much further. There are
non-orientable PDn-complexes and orientable PDn+1-complexes whose
Spivak normal bundle has no TOP reduction, for all n ≥ 4 [6, 12].
Such complexes admit no degree-1 normal maps with domain a closed
n-manifold.

However, M. Land has suggested the following argument for the case
n = 4. If P is a PDn-complex for some n ≥ 4 then P ' H∪Y , where H
is a 1-handlebody, (Y, ∂H) is a PDn-pair and the inclusion induces an
epimorphism from π1(H) onto π1(P ) [17, Lemma 2.8]. We may perform
elementary surgeries on a basis for π1(H) inside the manifold 1-skeleton
H, and the trace W of the surgeries is a PD-bordism from P to a 1-
connected PDn-complex. If P is orientable then W is orientable. Every
1-connected PD4-complex is homotopy equivalent to a TOP 4-manifold
[5, §11.4]. Now ΩSTOP

4
∼= Z⊕Z/2Z, where the first summand is detected

by the signature σ and the second by the Kirby-Siebenmann invariant
KS. Let ∗CP 2 be the fake projective plane, with KS(∗CP 2) 6= 0, and

let X = CP 2#∗CP 2. Then σ(X) = 0 and KS(X) 6= 0. The signature
is an invariant of PD bordism, but X bounds as a PD4-complex, since
∗CP 2 ' CP 2. Hence the signature defines an isomorphism ΩSPD

4
∼= Z.
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In the non-orientable case we find that ΩPD
4
∼= (Z/2Z)2, detected by

SW numbers.

2. asphericity and π1-injectivity

Relative hyperbolization may be used to show that every closed ori-
entable triangulable n-manifold is orientable cobordant to an aspher-
ical n-manifold [3], and that every aspherical n-manifold which is the
boundary of a triangulable (n + 1)-manifold is in fact the π1-injective
boundary of an aspherical (n+1)-manifold. Similarly, every pair of as-
pherical n-manifolds which are cobordant together bound an aspherical
(n+ 1)-manifold π1-injectively [4]; see also [7, Theorem 5.1].

In the lowest dimensions n = 1 or 2 we may avoid hyperbolization (at
least for the orientable cases). If n = 1 then S1 is the boundary of the
once-punctured torus To, and the inclusion of S1 into To is π1-injective.

If n = 2 then T = ∂To × S1, and the inclusion of T into To×S1 is π1-
injective. The Klein bottle bounds the mapping torus of an orientation-
reversing involution of To. The exterior of the Θ-graph in S3 depicted
in [16, Figure 3.10] has a hyperbolic structure for which the boundary is
totally geodesic (and hence incompressible) [16, Example 3.3.12]. The
boundary has genus 2, and suitable finite cyclic covers are orientable
hyperbolic 3-manifolds with connected totally geodesic boundary of
arbitrary genus g > 1.

Since every 3-manifold bounds, every aspherical 3-manifold is the
π1-injective boundary of an aspherical 4-manifold, by the result of [4].
On the other hand, for most values of n ≥ 4 there are aspherical n-
manifolds which do not bound at all (since ΩSO

n 6= 0 if n ≥ 8). In
particular, there are H2(C)-manifolds M with the rational cohomol-
ogy of CP2 [15]. No such M can bound (even as an unoriented PD4-
complex), since χ(M) = 3 is odd. Iterated products of such manifolds
give counterexamples in all dimensions for which ΩSO

n is infinite.

Definition. A PDn-group G bounds if it is a subgroup of a group π
such that (π,G) is a PDn+1-pair of groups.
Two PDn-groups G1 and G2 are injectively bordant if they are sub-

groups of a group π such that (π,G1, G2) is a PDn+1-pair of groups.

Injective bordism of PDn-groups is an equivalence relation. Reflexiv-
ity is displayed by the pair (G,G,G) with π = G1 = G2 = G, symmetry
is obvious and transitivity follows from [1, Theorem 8.1].

It remains an open question whether every finitely presentable PDn-
group is the fundamental group of an aspherical closed n-manifold.
However, we allow the possibility that G or the ambient group π of a
pair (π,G) is of type FP , but not finitely presentable. For every n ≥ 4
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there are uncountable many PDn-groups which are FP but not finitely
presentable [13]. (The case n = 3 remains open.)

These observations suggest the following questions.

(1) Does every PD3-group G bound?
(2) Is every PDn-group G injectively bordant to a finitely pre-

sentable PDn-group?

If every PD3-group is a 3-manifold group then (1) has a positive
answer. The second question is purely speculative.

3. manifold 1-skeleton

A PDn-complex X has a manifold 1-skeleton if X ' H ∪φ Y , where
H is obtained by attaching 1-handles to Dn, (Y,B) is a 1-connected
PDn-pair (i.e., the inclusion homomorphism from π1(B) to π1(Y ) is
onto) and φ : ∂H → B is a homotopy equivalence. When n = 3 we
shall call such a 3-manifold a cube with handles.

If n ≥ 4 then every PDn-complex has a manifold 1-skeleton [17,
Lemma 2.8]. Here we shall show that if a PD3-complex has a manifold
1-skeleton then it is essentially a 3-manifold.

Theorem 2. Let X be a PD3-complex with a manifold 1-skeleton.
Then X is homotopy equivalent to a closed 3-manifold.

Proof. We may assume that X ' H ∪φ Y , where H is a cube with
handles and (Y,B) is a 1-connected PD3-pair. We may clearly assume
that B is non-empty.

Let Γ = Z[π]. Since (Y,B) is 1-connected, Y may be obtained (up to
homotopy equivalence) by adding cells of dimension > 1 to B. There-
fore H i(Y,B; Γ) = Hi(Y,B; Γ) = 0, for i ≤ 1. Hence Hj(Y ; Γ) = 0 for
j > 1, by Poincaré duality, and so Y is aspherical. Similarly, if M is
any left Z[G]-module then Hj(Y ;M) = 0 for j > 1, and so c.d.π ≤ 1.
Thus π is a free group.

Since Y is aspherical and π1(Y ) is a free group, there is a homotopy
equivalence f : (Y,B) ' (H ′, ∂H ′), where H ′ is a second cube with
handles, by [9, Theorem 3.12] and its extension to the non-orientable
case [9, page 38]. Since ∂H and ∂H ′ are closed surfaces, the homotopy
equivalence f ◦φ : ∂H → ∂H ′ is homotopic to a homeomorphism Φ, by
the Dehn-Nielsen Theorem [18, Theorem 5.6.1], and so X is homotopy
equivalent to the 3-manifold H ∪Φ H

′. �

There are finite PD3-complexes which are not homotopy equivalent
to 3-manifolds. The first and simplest such example has fundamental
group S3. (See [9, Chapter 5], and the references there.)
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pairs, J. Pure Appl. Alg. 13 (1978), 277–319.

[2] Cappell, S. E. and Shaneson, J. L. The codimension two placement problem
and homology equivalent manifolds, Ann. Math. 99 (1974), 277–348.

[3] Davis, M. and Januskiewicz, T. Hyperbolization of polyhedra,
J. Diff. Geom. 34 (1991), 347-388.

[4] Davis, M., Januskiewicz, T. and Weinberger, S. Relative hyperbolization and
aspherical bordisms: an addendum to “Hyperbolization of polyhedra” [3],
J. Diff. Geom. 58 (2001), 535–541.

[5] Freedman, M. H. and Quinn, F. Topology of 4-Manifolds,
Princeton Mathematical Series 39,
Princeton University Press, Princeton, N.J. (1990).

[6] Hambleton, I. Orientable 4-dimensional Poincaré complexes have reducible
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appendix: injective null-bordisms for 3-manifolds

In this section we shall consider some further questions about explicit
π1-injective null-bordisms for aspherical 3-manifolds.

(3) if F is a non-orientable surface with χ(F ) = 2k < 0 is there a
simple construction of an aspherical 3-manifold with π1-injective
boundary F?

(4) If N is an aspherical closed 3-manifold is there a simple con-
struction of an aspherical 4-manifold with π1-injective boundary
N?

(5) If a self-homeomorphism θ of a closed orientable surface F is
null-cobordant does it extend to a self-homeomorphism Θ of an
aspherical 3-manifold N with π1-injective boundary F?

For (3) it would suffice to construct an example with boundary F =
#4RP 2 (with χ(F ) = −2), since suitable finite cyclic covers would then
realize the other non-orientable surfaces with χ = 2k < 0 in this way.
Does Example 3.3.12 of [16] have a 2-fold covering which admits an
orientation-reversing free involution?

There is a partial answer to (4). An aspherical 3-manifold is either
a graph manifold or is finitely covered by a mapping torus, by the
Virtual Fibration Theorem. IfN is the mapping torus of an orientation-
preserving self-homeomorphism θ of an orientable surface F of genus
g > 2 then the image of θ in the mapping class groupMg is a product
of (say) r commutators, since Mg is perfect [Powell, J. Two theorems
on the mapping class group of a surface, Proc. Amer. Math. Soc. 68
(1978), 347–350].

It follows easily that N bounds (π1-injectively) the total space of an
F -bundle over a once-punctured surface of genus 2r. If F has genus 1
or 2 thenMab

1 andMab
2 are cyclic, of orders 12 and 10 respectively, so

a similar argument applies to a finite cover of M(θ).
We do not know of such simple constructions for the case of graph

manifolds, even in the special case when N is the total spaces of a
non-trivial S1-bundle over an aspherical surface B. (Such S1-bundle
spaces bound the associated disc bundle spaces, but these boundaries
are never π1-injective.) If N = ∂W where W fibres over a 3-manifold
M with ∂M = B then N ∼= B×S1, since the restriction from H2(M ;Z)
to H2(∂M ;Z) is trivial. If N is not such a product, we may ask instead
whether it bounds the total space of an Fo-bundle over B, where Fo is a
once-punctured aspherical surface. (This is not possible when N = T ,
for any abelian subgroup of the mapping class group of Fo is generated
by the images of self-diffeomorphisms with disjoint support [Birman,
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J. S., Lubotzky, A. and McCarthy, J. Abelian and solvable subgroups
of the mapping class groups, Duke Math. J. 50 (1983), 1107–1120].

The construction for (4) shows that 3-dimensional mapping tori usu-
ally bound surface bundles with the same fibre. Question (5) asks
whether such mapping tori bound 4-dimensional mapping tori. This
is a more stringent condition, since the group of bordism classes of
self-diffeomorphisms of closed surfaces is a direct sum Z∞ ⊕ (Z/2Z)∞

[Bonahon, F. Cobordism of automorphisms of surfaces, Ann. Sc. Ec.
Norm. Sup. 16 (1983), 237–270], and so we must assume that θ is
null-cobordant.

Cusps of complete finite volume Riemannian 4-manifolds with one
of the geometries H4, H2(C) or H2 × H2 (and which are not virtually
products, in the latter case) have cusps which are respectively E3-, Nil3-
or Sol3-manifolds. However not every such 3-manifold can be realized
as the sole cusp of a geometric 4-manifold.

The flat 3-manifolds with holonomy of order 3 or 6 are a particular
challenge. They are total spaces of T -bundles over S1, but do not bound
T -bundles over once-punctured surfaces, since in each case the image
of θ in SL(2, 3)ab ∼= Z/3Z is non-trivial. Nor do they bound mapping
tori, for a self homeomorphism θ of T bounds if and only if its image
in θ ∈ SL(2,Z) has both eigenvalues ±1, by the one half lives–one half
dies principle. Finally they do not bound 4-manifolds whose interiors
are complete H4-manifolds of finite volume [Long, D. D. and Reid, A.
W. All flat 3-manifolds are cusps of hyperbolic orbifolds, Alg. Geom.
Top. 2 (2002), 285–296].
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