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Abstract. For every summable function f , we prove the existence of a weak solution
for a general class of Dirichlet anisotropic elliptic problems in a bounded open subset
Ω of RN . The principal part is a divergence-form nonlinear anisotropic operator A, the
prototype of which is Au = −

∑N
j=1 ∂j(|∂ju|pj−2∂ju) with pj > 1 for all 1 ≤ j ≤ N

and
∑N

j=1(1/pj) > 1. As a novelty in this paper, our lower order terms involve a
new class of operators B such that A−B is bounded, coercive and pseudo-monotone

from W 1,−→p
0 (Ω) into its dual, as well as a gradient-dependent nonlinearity with an

“anisotropic natural growth” in the gradient and a good sign condition.

1. Introduction and main results

1.1. Setting of the problem. A series of papers, such as [10, 11, 13, 15, 16], deal
with nonlinear elliptic problems in a bounded open subset Ω of RN involving coercive,
bounded, continuous and pseudo-monotone Leray–Lions type operators from W 1,p

0 (Ω)

into its dual W−1,p′(Ω), where 1 < p <∞ and 1/p+ 1/p′ = 1. The prototype model for
such an operator is the p-Laplacian ∆pu = div (|∇u|p−2∇u). The techniques developed
in the above-mentioned papers accommodate for a lower-order term g(x, u,∇u) with a
“natural growth” in the gradient |∇u| and without any restriction of its growth in |u|.
Because of the “sign-condition” on g (that is, g(x, t, ξ) t ≥ 0 for a.e. x ∈ Ω and all

(t, ξ) ∈ R× RN ), either f ∈ L1(Ω) or h ∈W−1,p′(Ω) could be included.
We continue and extend the above research program by studying general anisotropic

elliptic problems in a bounded and open subset Ω of RN (N ≥ 2), subject to a homo-
geneous boundary condition, see (1.1). We impose no smoothness assumption on the
boundary of Ω. Under suitable hypotheses, we prove in Theorem 1.1 that, for every
f ∈ L1(Ω), the problem{

Au+ Φ(x, u,∇u) + Θ(x, u,∇u) = Bu+ f in Ω,

u ∈W 1,−→p
0 (Ω), Φ(x, u,∇u) ∈ L1(Ω)

(1.1)

admits solutions in an appropriate weak sense (see Section 1.2).
As a novelty in this paper, besides any f ∈ L1(Ω), we can handle in (1.1) a new class

of operators B from W 1,−→p
0 (Ω) into W−1,−→p ′(Ω), which we introduce in Section 1.3, as

well as a gradient-dependent lower-order term Φ(x, u,∇u) with an “anisotropic natural
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growth” in the gradient (see (1.12) and (1.13)). We have no restriction on the growth
of Φ with respect to |u|. This means that m > 1 is arbitrary in the example of (1.2).

A toy model for our results is the following

Au = −
N∑
j=1

∂j(|∂ju|pj−2∂ju), Φ(u,∇u) = |u|m−2u

 N∑
j=1

|∂ju|pj + 1

 , (1.2)

where m > 1 and we always assume that

1 < pj ≤ pj+1 <∞ for every 1 ≤ j ≤ N − 1 and p < N. (1.3)

Here, p := N/
∑N

j=1(1/pj) is the harmonic mean of p1, . . . , pN . We can take Bu = h ∈
W−1,−→p ′(Ω). (For other models of B, see Example 1.7.)

For every r > 1, let r′ = r/(r − 1) be the conjugate exponent of r. We set −→p =

(p1, p2, . . . , pN ) and −→p ′ = (p′1, p
′
2, . . . , p

′
N ). The anisotropic space W 1,−→p

0 (Ω) to which our
solutions of (1.1) belong is defined as the closure of C∞c (Ω) (the set of smooth functions
with compact support in Ω) with respect to the norm

‖u‖
W 1,−→p

0 (Ω)
=

N∑
j=1

‖∂ju‖Lpj (Ω).

Here, ∇u = (∂1u, . . . , ∂Nu) is the gradient of u. Since we have no smoothness assumption

on ∂Ω, the critical exponent p∗ for the embedding W 1,−→p
0 (Ω) ↪→ Lr(Ω) is the usual critical

exponent corresponding to the harmonic mean p of the pj ’s, namely,

p∗ :=
Np

N − p
.

Thanks to the last condition in (1.3), the critical exponent p∗ is well-defined (see Re-
mark 1.6 for the anisotropic embedding theorems). We mention that if Ω ⊂ RN is an
open bounded domain with Lipschitz boundary and (1.3) holds, then the “true” critical
exponent is p∞, defined as the maximum between p∗ and pN . Indeed, Fragalà, Gazzola

and Kawohl [28] showed that the embedding W 1,−→p
0 (Ω) ↪→ Lr(Ω) is continuous for every

r ∈ [1, p∞] and compact if r ∈ [1, p∞).
Our problem (1.1) features a Leray–Lions operator A of the form

Au = −div A(x, u,∇u) = −
N∑
j=1

∂j(Aj(x, u,∇u)),

which is a divergence-form nonlinear anisotropic operator fromW 1,−→p
0 (Ω) intoW−1,−→p ′(Ω).

Under the coercivity, monotonicity and growth conditions in (1.10), the operator A :

W 1,−→p
0 (Ω)→W−1,−→p ′(Ω) is coercive, bounded, continuous and pseudo-monotone.
Unless otherwise stated, we understand that B in (1.1) satisfies two properties (P1)

and (P2) given in Section 1.3. But, unlike A, the operator −B is not coercive in general.
The growth condition in the assumption (P1) implies that A − B is a coercive and

bounded operator from W 1,−→p
0 (Ω) into W−1,−→p ′(Ω). The assumption (P2) is, in some

sense, in the spirit of (iii) in the Hypothesis (II) of Theorem 1 in the celebrated paper
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[33] by Leray and Lions. Every operator satisfying (P2) is strongly continuous (see
Lemma 3.7) and thus pseudo-monotone (cf. [39, p. 586]).

For every u ∈W 1,−→p
0 (Ω) and for a.e. x ∈ Ω, we define

Φ̂(u)(x) := Φ(x, u(x),∇u(x)), Θ̂(u)(x) := Θ(x, u(x),∇u(x)),

Âj(u)(x) = Aj(x, u(x),∇u(x)) for every 1 ≤ j ≤ N.

1.2. Main results. The precise assumptions that appear in our main results are pre-
sented in Section 1.3. Let f ∈ L1(Ω). By a solution of (1.1), we mean a function

u ∈W 1,−→p
0 (Ω) such that Φ̂(u) ∈ L1(Ω) and for every v ∈W 1,−→p

0 (Ω) ∩ L∞(Ω), we have

N∑
j=1

∫
Ω
Âj(u) ∂jv dx+

∫
Ω

Φ̂(u) v dx+

∫
Ω

Θ̂(u) v dx = 〈Bu, v〉+

∫
Ω
f v dx.

The brackets 〈·, ·〉 indicate the duality between W−1,−→p ′(Ω) and W 1,−→p
0 (Ω).

In all our main results and unless otherwise stated, we understand that B satisfies
(P1) and (P2) given in Section 1.3. The main advance in this paper is the following.

Theorem 1.1. Let (1.3), (1.10), (1.11), (1.12) and (1.13) hold. Then, (1.1) has at least
a solution for every f ∈ L1(Ω).

Assuming (1.3), we remark that without the term Φ, one cannot expect to find solu-

tions of (1.1) in W 1,−→p
0 (Ω) for every f ∈ L1(Ω). For the isotropic case, this observation

has been made, for example, in [16]. So, in our general setting, we could ask: What

makes the existence of solutions to (1.1) possible in W 1,−→p
0 (Ω)? The other assumptions

on Φ: a “sign-condition” as in (1.12), and (1.13). We stress that were f not to appear
in (1.1), we would not need (1.13) (see Theorem 1.2, where f = 0).

For Theorem 1.1 we encounter two obstacles: a low summability for f and, on the
other hand, the unrestricted growth of Φ with respect to |u|. Previously mentioned
works in the isotropic case provide ways to surmount one problem at a time. The
function f ∈ L1(Ω) can surely be approximated by L∞(Ω)-functions fε in the sense that
|fε| ≤ |f | and fε → f a.e in Ω as ε→ 0. Also Φ could be replaced by a “nice” function
Φε, preserving the properties of Φ, but gaining boundedness, namely,

Φε(x, t, ξ) :=
Φ(x, t, ξ)

1 + ε |Φ(x, t, ξ)|
for a.e. x ∈ Ω and all (t, ξ) ∈ R× RN .

However, we cannot deal with both approximations for f and Φ simultaneously. This
limitation has already been pointed out by Bensoussan and Boccardo [10] in the isotropic
case. For the approximate problems involving both Φε and fε, we would not be able to

obtain that the solutions uε are uniformly bounded in W 1,−→p
0 (Ω) with respect to ε.

For the above reason, we need to consider f = 0 first and prove Theorem 1.2, which is
a crucial step in establishing Theorem 1.1, but at the same time of independent interest.
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Theorem 1.2. Let f = 0 and (1.3) hold. If (1.10), (1.11) and (1.12) are satisfied, then

(1.1) has a solution U , which satisfies Φ̂(U)U ∈ L1(Ω) and

N∑
j=1

∫
Ω
Âj(U) ∂jU dx+

∫
Ω

Φ̂(U)U dx+

∫
Ω

Θ̂(U)U dx = 〈BU,U〉.

By taking f = 0 in (1.1), we obtain a solution with better properties and under weaker
assumptions than those in Theorem 1.1. We point out that because of Φ, we cannot
directly apply the theory of pseudo-monotone operators to prove the existence claim in
Theorem 1.2. We overcome this difficulty by considering the approximate problem{

Auε + Φ̂ε(uε) + Θ̂(uε) = Buε in Ω,

uε ∈W 1,−→p
0 (Ω)

(1.4)

for which we obtain the existence of a solution uε.
Since Φε + Θ satisfies the same type of assumption as Θ in (1.11), that is, there

exists a constant Cε > 0 such that |(Φε + Θ)(x, t, ξ)| ≤ Cε for a.e. x ∈ Ω and for all
(t, ξ) ∈ R× RN , the existence of uε follows from our next result.

Theorem 1.3. Let (1.3), (1.10) and (1.11) hold. Then, the problem{
Au+ Θ̂(u) = Bu in Ω,

u ∈W 1,−→p
0 (Ω),

(1.5)

admits a solution, meaning that there exists a function u ∈W 1,−→p
0 (Ω) such that

N∑
j=1

∫
Ω
Âj(u) ∂jv dx+

∫
Ω

Θ̂(u) v dx− 〈Bu, v〉 = 0 for every v ∈W 1,−→p
0 (Ω). (1.6)

We establish Theorem 1.3 in Section 3 via the theory of pseudo-monotone operators.
We show that A+ PΘ −B is a coercive, bounded and pseudo-monotone operator from

W 1,−→p
0 (Ω) into W−1,−→p ′(Ω), where the left-hand side of (1.6) gives 〈Au+PΘ(u)−Bu, v〉

for every u, v ∈W 1,−→p
0 (Ω). Hence, the existence of a solution u of (1.5) follows (see [39, p.

589]) since W 1,−→p
0 (Ω) is a real, reflexive, and separable Banach space.

Thus, for every ε > 0, the approximate problem (1.4) admits a solution uε ∈W 1,−→p
0 (Ω).

In Lemma 4.1 we prove a priori estimates in W 1,−→p
0 (Ω) for the solutions uε, which then

(up to a subsequence) converge weakly to some U in W 1,−→p
0 (Ω) and a.e. in Ω as ε→ 0.

We point out that in Section 6, we will be able to show that, up to a subsequence,

uε → U (strongly) in W 1,−→p
0 (Ω) as ε→ 0. (1.7)

Indeed, one could adapt the approach in [11] (where an isotropic version of (1.1) was

treated with B = h ∈ W−1,−→p ′(Ω), Θ = f = 0). This technique will be used in a
forthcoming paper [17] to prove the existence of solutions for related anisotropic problems
exhibiting singular anisotropic terms. However, for our purpose of including L1 data in
(1.1), we prefer to give a unified treatment of the case f = 0 in Theorem 1.2 and the



ANISOTROPIC ELLIPTIC EQUATIONS WITH L1 DATA 5

case f ∈ L1(Ω) in Theorem 1.1. We achieve this by combining and extending techniques
from [10] and [13] to establish in Lemma 4.2 that, up to a subsequence of uε, we have

∇uε → ∇U a.e. in Ω and Tk(uε)→ Tk(U) (strongly) in W 1,−→p
0 (Ω) as ε→ 0 (1.8)

for every integer k ≥ 1, where Tk(·) is given in (2.11). Then, we can pass to the limit
as ε → 0 in the weak formulation of the solution uε and obtain that U is a solution of
(1.1) with f = 0 (see Section 4.2). In Section 6, we improve (1.8) in the form of (1.7).

Generally speaking, the proof of Theorem 1.1, which we give in Section 5, follows a
similar course to that of Theorem 1.2 in Section 4. But there are some modifications
that we outline below. We approximate f ∈ L1(Ω) by L∞(Ω)-functions fε and in view
of Example 1.7, we can apply Theorem 1.2 to obtain a solution Uε for the problem{

AUε + Φ̂(Uε) + Θ̂(Uε) = BUε + fε in Ω,

Uε ∈W 1,−→p
0 (Ω), Φ̂(Uε) := Φ(x, Uε,∇Uε) ∈ L1(Ω).

(1.9)

We emphasize that unlike in (1.4), we have Φ̂ (and not Φ̂ε) in (1.9). Because of
this reason, coupled with the introduction of fε, we need an additional assumption in

the form of (1.13) below to obtain that {Uε}ε is uniformly bounded in W 1,−→p
0 (Ω) with

respect to ε (see Lemma 5.1 for details). Then, extracting a subsequence, Uε tends to

some U0 weakly in W 1,−→p
0 (Ω) and a.e. in Ω. With an almost identical argument, we

gain the counterpart of (1.8), namely, up to a subsequence, ∇Uε → ∇U0 a.e. in Ω and

Tk(Uε) → Tk(U0) (strongly) in W 1,−→p
0 (Ω) as ε → 0 for every integer k ≥ 1. To conclude

the proof of Theorem 1.1, it remains to pass to the limit in the weak formulation of Uε.
The change appearing here compared with the corresponding argument in Section 4.2 is

the strong convergence of Φ̂(Uε) to Φ̂(U0) in L1(Ω). For the latter, we adapt an argument
from [13]. For details, we refer to Lemma 5.3 in Section 5.3.

Recently, anisotropic elliptic and parabolic problems have been widely investigated
in literature. The increasing interest in nonlinear anisotropic problems is justified by
their applications in many areas from image recovery and the mathematical modeling
of non-Newtonian fluids to biology, where they serve as models for the propagation of
epidemic diseases in heterogeneous domains (see, for example, [6] and [9]). Unfortu-
nately, some fundamental tools available for the isotropic case cannot be extended to
the anisotropic setting (such as the strong maximum principle, see [38]). Nevertheless,
with a rapidly growing literature on anisotropic problems, many questions concerning
existence, uniqueness and regularity of weak solutions have been solved with different
techniques (see, for instance, [1, 2, 5, 7, 8, 14,20,21,23–25,28–30,34]).

1.3. Assumptions. We return to problem (1.1), where Ω ⊂ RN is an open, bounded
set. We have assumed (1.3). For every 1 ≤ j ≤ N , the functions Aj(x, t, ξ),Θ(x, t, ξ)
and Φ(x, t, ξ) from Ω × R × RN into R are Carathéodory (that is, they are measurable
on Ω for every (t, ξ) ∈ R× RN and continuous in t, ξ for a.e. x ∈ Ω).
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Assume that there exist constants ν0, ν > 0, nonnegative functions ηj(·) ∈ Lp
′
j (Ω) for

1 ≤ j ≤ N such that for a.e. x ∈ Ω, for all (t, ξ) ∈ R× RN and ξ̂ ∈ RN :

N∑
j=1

Aj(x, t, ξ) ξj ≥ ν0

N∑
j=1

|ξj |pj [coercivity],

N∑
j=1

(
Aj(x, t, ξ)−Aj(x, t, ξ̂)

)(
ξj − ξ̂j

)
> 0 if ξ 6= ξ̂ [monotonicity],

|Aj(x, t, ξ)| ≤ ν

ηj(x) + |t|p
∗/p′j +

(
N∑
i=1

|ξi|pi
)1/p′j

 [growth condition]


(1.10)

for every 1 ≤ j ≤ N .
We stress that in our growth condition on Aj in (1.10), we take the greatest exponent

for |t| from the viewpoint of the anisotropic Sobolev inequalities. With respect to the
existent literature, this attracts some modifications in the proof of pseudo-monotonicity

of A : W 1,−→p
0 (Ω)→W−1,−→p ′(Ω) (see Lemma 3.6).

Suppose there exist a constant CΘ > 0, a nonnegative function c(·) ∈ L1(Ω) and a
continuous nondecreasing function φ : R→ R+ such that

|Θ(x, t, ξ)| ≤ CΘ (1.11)

Φ(x, t, ξ) t ≥ 0 [sign-condition], |Φ(x, t, ξ)| ≤ φ(|t|)

 N∑
j=1

|ξj |pj + c(x)

(1.12)

for a.e. x ∈ Ω and for all (t, ξ) ∈ R× RN .
For Theorem 1.1 only, we further assume that there exist constants τ, γ > 0 such that

|Φ(x, t, ξ)| ≥ γ
N∑
j=1

|ξj |pj for all |t| ≥ τ (1.13)

for a.e. x ∈ Ω and every ξ ∈ RN .

Assumptions on B. Let B : W 1,−→p
0 (Ω)→W−1,−→p ′(Ω) satisfy two properties:

(P1) There exist constants C > 0, s ∈ [1, p∗), a0 ≥ 0, b ∈ (0, p1 − 1) if a0 > 0 and

b ∈ (0, p1/p
′) if a0 = 0 such that for all u, v ∈W 1,−→p

0 (Ω), it holds

|〈Bu, v〉| ≤ C

(
1 + ‖u‖b

W 1,−→p
0 (Ω)

)(
a0‖v‖W 1,−→p

0 (Ω)
+ ‖v‖Ls(Ω)

)
. (1.14)

(P2) If u` ⇀ u and v` ⇀ v (weakly) in W 1,−→p
0 (Ω) as `→∞, then

lim
`→∞
〈Bu`, v`〉 = 〈Bu, v〉.

Remark 1.4. The case a0 > 0 in (1.14) allows for Bu = h ∈ W−1,−→p ′(Ω) in (1.1) (see
Example 1.7). As noted in [11] for the isotropic case, we cannot in general expect a
solution of (1.1) to be bounded. There is a nice trade-off for taking a0 = 0 in (1.14):
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the range of b in (1.14) can be extended to (0, p1/p
′) (compared to b ∈ (0, p1 − 1) for

a0 > 0).

Example of operators B. We first recall an anisotropic Sobolev inequality corre-
sponding to the case p < N , see [37].

Lemma 1.5. Let N ≥ 2 be an integer. If (1.3) holds, then there exists a positive
constant S = S(N,−→p ) such that

‖u‖Lp∗ (RN ) ≤ S
N∏
j=1

‖∂ju‖1/NLpj (RN )
for all u ∈ C∞c (RN ).

Remark 1.6. Let Ω be a bounded, open subset of RN (N ≥ 2). If (1.3) holds, then
using a density argument and the arithmetic-geometric mean inequality, we find that

‖u‖Lp∗ (Ω) ≤ S
N∏
j=1

‖∂ju‖1/NLpj (Ω)
≤ S
N
‖u‖

W 1,−→p
0 (Ω)

for all u ∈W 1,−→p
0 (Ω). (1.15)

Moreover, by Hölder’s inequality, the embedding W 1,−→p
0 (Ω) ↪→ Ls(Ω) is continuous for

every s ∈ [1, p∗] and compact for every s ∈ [1, p∗).

We next give a simple example of an operator B : W 1,−→p
0 (Ω)→W−1,−→p ′(Ω) satisfying

(P1) and (P2).

Example 1.7. For every u, v ∈W 1,−→p
0 (Ω), we define

〈Bu, v〉 =

∫
Ω
F v dx+ 〈h, v〉,

where F ∈ L(p∗)′(Ω) and h ∈W−1,−→p ′(Ω). Then, B satisfies (P1) and (P2).

Structure of this paper. In Section 2 we include some convergence results to be used
later in the paper. In Section 3 we prove Theorem 1.3. We dedicate Section 4 to the
proof of Theorem 1.2 and Section 5 to the proof of Theorem 1.1. We conclude the paper
with Section 6, where we make further comments on Theorem 1.2 by proving the strong
convergence in (1.7).

2. Auxiliary results

In this section, we assume (1.3) and (1.10).

2.1. Preliminaries. For v, w and {uε}ε in W 1,−→p
0 (Ω), we define

Duε(v, w)(x) :=

N∑
j=1

[Aj(x, uε(x),∇v(x))−Aj(x, uε(x),∇w(x))] ∂j(v − w)(x),

Huε(v, w)(x) :=
N∑
j=1

Aj(x, uε(x),∇v(x)) ∂jw(x)

(2.1)

for a.e. x ∈ Ω. Hence, we can write Duε(v, w) as follows

Duε(v, w) = Huε(v, v)−Huε(v, w)−Huε(w, v) +Huε(w,w).
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The monotonicity assumption in (1.10) gives that

Duε(v, w) ≥ 0 a.e. in Ω,

whereas the coercivity condition in (1.10) yields that

Huε(v, v) ≥ ν0

N∑
j=1

|∂jv|pj ,

where ν0 > 0 is a constant. We thus find that

Duε(v, w) ≥ ν0

N∑
j=1

|∂jv|pj − |Huε(v, w)| − |Huε(w, v)|. (2.2)

2.2. Some convergence results. Here, we establish Lemma 2.1, which will be used
in the proof of Lemma 3.6. Further, in Section 2.3 we prove Lemma 2.2, which will be
invoked in the proof of Theorem 1.2 in Section 4. To prove Lemmas 2.1 and 2.2, we
adapt an argument from [15, Lemma 5], the proof of which goes back to Browder [19].

By Remark 1.6, whenever

uε ⇀ u (weakly) in W 1,−→p
0 (Ω) as ε→ 0, (2.3)

we can pass to a subsequence (always relabeled {uε}) such that

uε → u strongly in Lr(Ω) if r ∈ [1, p∗) and uε → u a.e. in Ω. (2.4)

Lemma 2.1. Let u and {uε}ε be in W 1,−→p
0 (Ω) such that (2.3) holds. Suppose that

Duε(uε, u)→ 0 a.e. in Ω as ε→ 0.

Then, up to a subsequence, we have

∇uε → ∇u a.e. in Ω as ε→ 0. (2.5)

Proof. Let Z be a subset of Ω with meas (Z) = 0 such that for every x ∈ Ω \Z, we have
|u(x)| <∞, |∇u(x)| <∞, |ηj(x)| <∞ for all 1 ≤ j ≤ N , as well as

uε(x)→ u(x), Duε(uε, u)(x)→ 0 as ε→ 0. (2.6)

For every x ∈ Ω \ Z, we claim that

{|∇uε(x)|}ε is uniformly bounded with respect to ε. (2.7)

Proof of (2.7). We fix x ∈ Ω \ Z. In view of (2.2), we have

Duε(uε, u)(x) ≥ ν0

N∑
j=1

|∂juε(x)|pj − |Huε(uε, u)(x)| − |Huε(u, uε)(x)|. (2.8)

By Young’s inequality, for every δ > 0, there exists Cδ > 0 such that

|Huε(uε, u)(x)| ≤
N∑
j=1

(
δ |Aj(x, uε,∇uε)|p

′
j + Cδ|∂ju(x)|pj

)
,

|Huε(u, uε)(x)| ≤
N∑
j=1

(
δ |∂juε(x)|pj + Cδ|Aj(x, uε,∇u)|p

′
j

)
.

(2.9)
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We use the growth condition in (1.10) to bound from above the right-hand side of each

inequality in (2.9). Then, in view of (2.8), there exist positive constants C and Ĉδ, both

independent of ε (and only Ĉδ depending on δ), such that

Duε(uε, u)(x) ≥ (ν0 − C δ)
N∑
j=1

|∂juε(x)|pj − Ĉδ guε(u)(x), (2.10)

where guε(u)(x) is given by

guε(u)(x) =
N∑
j=1

η
p′j
j (x) + |uε(x)|p∗ +

N∑
j=1

|∂ju(x)|pj .

Using (2.6) and choosing δ ∈ (0, ν0/C), from (2.10) we conclude (2.7). �

Proof of (2.5) concluded.

Let x ∈ Ω \ Z be arbitrary. Define

ξε = ∇uε(x) and ξ = ∇u(x).

To show that ξε → ξ as ε→ 0, it is enough to prove that any accumulation point of ξε,
say ξ∗, coincides with ξ. From (2.7), we have |ξ∗| < ∞. Using (2.6) and the continuity
of Aj(x, ·, ·) with respect to the last two variables for every 1 ≤ j ≤ N , we find that

Duε(uε, u)(x)→
N∑
j=1

[Aj(x, u(x), ξ∗)−Aj(x, u(x), ξ)] (ξ∗j − ξj) as ε→ 0.

This, jointly with (2.6) and the monotonicity condition in (1.10), gives that ξ∗ = ξ. The
proof of Lemma 2.1 is complete since x ∈ Ω \ Z is arbitrary and meas (Z) = 0. �

2.3. Strong convergence of Tk(uε). The main aim of this section is to prove Lemma 2.2,
which will be used later to establish Lemma 4.2.

For every k > 0, let Tk : R→ R be the truncation at height k, that is,

Tk(s) = s if |s| ≤ k, Tk(s) = k
s

|s|
if |s| > k. (2.11)

Lemma 2.2. Let k ≥ 1 be a fixed integer. Let u and {uε}ε be in W 1,−→p
0 (Ω) such that

uε ⇀ u (weakly) in W 1,−→p
0 (Ω) as ε→ 0. (2.12)

Suppose that, up to a subsequence of {uε}, (depending on k, but relabeled {uε})

Duε(Tk(uε), Tk(u))→ 0 in L1(Ω) as ε→ 0, (2.13)

where Duε(·, ·) is defined in (2.1). Then, up to a subsequence of {uε}, as ε→ 0, we have

∇Tk(uε)→ ∇Tk(u) a.e. in Ω, (2.14)

Tk(uε)→ Tk(u) (strongly) in W 1,−→p
0 (Ω). (2.15)
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Proof. By (2.12) and (2.13), up to a subsequence of {uε}, we have (2.4) and

Duε(Tk(uε), Tk(u))→ 0 a.e. in Ω as ε→ 0.

Let Z be a subset of Ω as in the proof of Lemma 2.1, where Duε(Tk(uε), Tk(u)))
replaces Duε(uε, u). We follow the same argument as in Lemma 2.1 with the obvious
modifications suggested by the above replacement. Then, for every x ∈ Ω\Z, we obtain

Duε(Tk(uε), Tk(u))(x) ≥ν0

N∑
j=1

|∂jTk(uε)(x)|pj

− |Huε(Tk(uε), Tk(u))(x)| − |Huε(Tk(u), Tk(uε))(x)|

(2.16)

for every x ∈ Ω\Z. This leads to {|∇Tk(uε)(x)|}ε being uniformly bounded with respect
to ε and also (2.14).

We conclude the proof of Lemma 2.2 by showing (2.15). From (2.14), we see that
{|∂jTk(uε) − ∂jTk(u)|pj}ε is a sequence of nonnegative integrable functions, converging
to 0 a.e. on Ω. Thus, by Vitali’s Theorem, we obtain that ∂jTk(uε)→ ∂jTk(u) in Lpj (Ω)
as ε→ 0 for every 1 ≤ j ≤ N by proving that

N∑
j=1

|∂jTk(uε)|pj


ε

is uniformly integrable over Ω. (2.17)

The claim of (2.17) follows from (2.13) and (2.16) whenever {Huε(Tk(uε), Tk(u))}ε
and {Huε(Tk(u), Tk(uε))}ε converge in L1(Ω) as ε→ 0. We next establish that

Huε(Tk(uε), Tk(u))→
N∑
j=1

Aj(x, u,∇Tk(u)) ∂jTk(u) in L1(Ω) as ε→ 0. (2.18)

Then, using Vitali’s Theorem, we show that

Huε(Tk(u), Tk(uε))→
N∑
j=1

Aj(x, u,∇Tk(u)) ∂jTk(u) in L1(Ω) as ε→ 0. (2.19)

For the definition of Huε(·, ·), see (2.1).

Proof of (2.18). Let 1 ≤ j ≤ N be arbitrary. We see that {Aj(x, uε,∇Tk(uε))}ε is

bounded in Lp
′
j (Ω) from the growth condition in (1.10) and the boundedness of {uε}ε in

W 1,−→p
0 (Ω) and, hence, in Lp

∗
(Ω). Moreover, the sequence {Aj(x, uε,∇Tk(uε))}ε converges

to Aj(x, u,∇Tk(u)) a.e. in Ω as ε → 0 using (2.14), the convergence uε → u a.e. in
Ω (from (2.4)) and the continuity of Aj(x, ·, ·) in the last two variables. Thus, up to a
subsequence of {uε}, we infer that

Aj(x, uε,∇Tk(uε)) ⇀ Aj(x, u,∇Tk(u)) (weakly) in Lp
′
j (Ω) as ε→ 0.

This proves (2.18).

Proof of (2.19). Using (2.14) and the continuity properties of Aj , as ε→ 0,

Aj(x, uε,∇Tk(u)) ∂jTk(uε)→ Aj(x, u,∇Tk(u)) ∂jTk(u) a.e. in Ω (2.20)
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for each 1 ≤ j ≤ N . Observe that {χ{|uε|<k}|Aj(x, uε,∇Tk(u))|p
′
j}ε is uniformly inte-

grable over Ω (from the growth condition of Aj in (1.10)) and

∂jTk(uε) = χ{|uε|<k} ∂juε.

Thus, since {∂juε}ε is bounded in Lpj (Ω), it follows from Hölder’s inequality that

{Aj(x, uε,∇Tk(u)) ∂jTk(uε)}ε is uniformly integrable over Ω (2.21)

for each 1 ≤ j ≤ N . From (2.20), (2.21) and Vitali’s Theorem, we reach (2.19).

Having established (2.18) and (2.19), we need only recall (2.13) and (2.16) to conclude
the proof of (2.17) and thus of (2.15). This completes the proof of Lemma 2.2. �

From Lemma 2.2 and a standard diagonal argument, we obtain the following.

Corollary 2.3. Let (2.12) and (2.13) hold. Then, there exists a subsequence of {uε}ε,
relabeled {uε}ε, such that

∇uε → ∇u a.e. in Ω and Tk(uε)→ Tk(u) (strongly) in W 1,−→p
0 (Ω) as ε→ 0

for every integer k ≥ 1.

3. Proof of Theorem 1.3

Throughout this section, we assume (1.3), (1.10) and (1.11).

From (1.11), the operator PΘ : W 1,−→p
0 (Ω)→W−1,−→p ′(Ω) is bounded, where we define

〈PΘ(u), v〉 :=

∫
Ω

Θ̂(u) v dx for every u, v ∈W 1,−→p
0 (Ω). (3.1)

In this section, we establish Theorem 1.3, which we recall below.

Theorem 3.1. Let (1.3), (1.10) and (1.11) hold. Let B : W 1,−→p
0 (Ω) → W−1,−→p ′(Ω)

satisfy (P1) and (P2). Then, the problem{
Au+ Θ(x, u,∇u) = Bu in Ω,

u ∈W 1,−→p
0 (Ω),

(3.2)

admits at least a solution, namely, there exists a function u ∈W 1,−→p
0 (Ω) such that

N∑
j=1

∫
Ω
Âj(u) ∂jv dx+

∫
Ω

Θ̂(u) v dx− 〈Bu, v〉 = 0 for every v ∈W 1,−→p
0 (Ω). (3.3)

For the reader’s convenience and to make our presentation self-contained, we give all

the details about the pseudo-monotonicity of A + PΘ − B : W 1,−→p
0 (Ω) → W−1,−→p ′(Ω).

These computations could be of interest also in the corresponding isotropic case for
which the details are usually scattered in the literature.

Before giving the proof of Theorem 3.1, we recall a few concepts that we need in the
sequel (see, for example, [18] and [39, p. 586]).
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Definition 3.2. An operator P : W 1,−→p
0 (Ω)→W−1,−→p ′(Ω) is called

(a1) monotone (strictly monotone) if 〈Pu− Pv, u− v〉 ≥ 0 for every u, v ∈ W 1,−→p
0 (Ω)

(with equality if and only if u = v);

(a2) pseudo-monotone if the convergence u` ⇀ u (weakly) in W 1,−→p
0 (Ω) as `→∞ and

lim sup`→∞〈Pu`, u` − u〉 ≤ 0 imply that

〈Pu, u− w〉 ≤ lim inf
`→∞

〈Pu`, u` − w〉 for all w ∈W 1,−→p
0 (Ω);

(a3) strongly continuous1 if u` ⇀ u (weakly) in W 1,−→p
0 (Ω) as ` → ∞ implies that

Pu` → Pu in W−1,−→p ′(Ω) as `→∞;
(a4) coercive if 〈Pu, u〉/‖u‖

W 1,−→p
0 (Ω)

→∞ as ‖u‖
W 1,−→p

0 (Ω)
→∞;

(a5) of M type2 if u` ⇀ u (weakly) in W 1,−→p
0 (Ω) as ` → ∞, together with Pu` ⇀ g

(weakly) in W−1,−→p ′(Ω) as `→∞ and lim sup`→∞〈Pu`, u`〉 ≤ 〈g, u〉, imply that

g = Pu and 〈Pu`, u`〉 → 〈g, u〉 as `→∞.

Proposition 3.3. Every strongly continuous operator P : W 1,−→p
0 (Ω) → W−1,−→p ′(Ω) is

pseudo-monotone. Every bounded operator P : W 1,−→p
0 (Ω) → W−1,−→p ′(Ω) of M type is

pseudo-monotone. The sum of two pseudo-monotone operators is pseudo-monotone.

3.1. Proof of Theorem 3.1. We outline the main ideas in the proof of Theorem 3.1.
Let PΘ be defined by (3.1). In view of (3.3), the existence of a solution to (3.2) follows

when the operator A+PΘ−B : W 1,−→p
0 (Ω)→W−1,−→p ′(Ω) is surjective. Since W 1,−→p

0 (Ω) is
a real, reflexive, and separable Banach space, it is known (see, for instance, [39, p. 589])

that A+PΘ−B : W 1,−→p
0 (Ω)→W−1,−→p ′(Ω) is surjective whenever it is bounded, coercive

and pseudo-monotone. In Lemma 3.9, we establish all these properties for A+PΘ−B.
The most difficult property to prove is the pseudo-monotonicity for A + PΘ − B :

W 1,−→p
0 (Ω) → W−1,−→p ′(Ω). We next indicate the main steps in the proof. In Lemma 3.6,

we show that A+PΘ : W 1,−→p
0 (Ω)→W−1,−→p ′(Ω) is pseudo-monotone. Since the latter is a

bounded operator, we conclude that it is pseudo-monotone by showing that it is of M type

(see Proposition 3.3). Now, the properties (P1) and (P2) for B : W 1,−→p
0 (Ω)→W−1,−→p ′(Ω)

ensure that it is strongly continuous (see Lemma 3.7) and, hence, pseudo-monotone
by Proposition 3.3. Then, as a sum of pseudo-monotone operators, we obtain that

A+PΘ−B : W 1,−→p
0 (Ω)→W−1,−→p ′(Ω) is pseudo-monotone. We proceed with the details.

Lemma 3.4. Let (1.3), (1.10) and (1.11) hold. The mappings Θ̂ : W 1,−→p
0 (Ω)→ L(p∗)′(Ω)

and Âj : W 1,−→p
0 (Ω)→ Lp

′
j (Ω) are continuous for each 1 ≤ j ≤ N .

1 Some authors (see, for instance, Showalter [36, p. 36]) use the terminology completely continuous
instead of strongly continuous.

2 Some authors (see, for example, Le Dret [32, p. 232]) use the terminology sense 1 pseudomonotone
instead of M type.
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Proof. Let 1 ≤ j ≤ N be arbitrary. By the growth condition of Aj in (1.10), there exist

a constant C > 0 and a nonnegative function ηj ∈ Lp
′
j (Ω) such that for all u ∈W 1,−→p

0 (Ω),

|Âj(u)|p
′
j ≤ C

(
η
p′j
j + |u|p∗ +

N∑
i=1

|∂iu|pi
)
∈ L1(Ω). (3.4)

Since the embeddings W 1,−→p
0 (Ω) ↪→ Lp

∗
(Ω) and L∞(Ω) ↪→ L(p∗)′(Ω) are continuous, from

(3.4) and (1.11), we infer that Âj : W 1,−→p
0 (Ω) → Lp

′
j (Ω) and Θ̂ : W 1,−→p

0 (Ω) → L(p∗)′(Ω)
are well-defined. To prove the continuity of these mappings, we let un → u (strongly)

in W 1,−→p
0 (Ω) as n→∞. Hence, un → u (strongly) in Lp

∗
(Ω) and ∂iun → ∂iu (strongly)

in Lpi(Ω) as n → ∞ for every 1 ≤ i ≤ N . Now, using (3.4) with un instead of u, we

obtain that {|Âj(un)|p
′
j}n≥1 is uniformly integrable over Ω. By passing to a subsequence

{unk
}k≥1 of {un}, we have unk

→ u and ∇unk
→ ∇u a.e. in Ω as k → ∞. Since Aj

and Θ are Carathéodory functions, we have Θ̂(unk
) → Θ̂(u) and Âj(unk

) → Âj(u) a.e.
in Ω as k → ∞. Then, by (1.11) and the Dominated Convergence Theorem, we find

that Θ̂(unk
)→ Θ̂(u) in L(p∗)′(Ω). By Vitali’s Theorem, we see that Âj(unk

)→ Âj(u) in

Lp
′
j (Ω) as k →∞. Since the limits Θ̂(u) and Âj(u) are independent of the subsequence

{unk
}k≥1, we conclude that Θ̂(un)→ Θ̂(u) in L(p∗)′(Ω) and Âj(un)→ Âj(u) in Lp

′
j (Ω) as

n→∞. Hence, Âj : W 1,−→p
0 (Ω)→ Lp

′
j (Ω) and Θ̂ : W 1,−→p

0 (Ω)→ L(p∗)′(Ω) are continuous.
This completes the proof. �

Lemma 3.5. Let (1.3), (1.10) and (1.11) hold. Then, A+PΘ : W 1,−→p
0 (Ω)→W−1,−→p ′(Ω)

is a bounded, coercive and continuous operator.

Proof. The boundedness of the operator A + PΘ : W 1,−→p
0 (Ω) → W−1,−→p ′(Ω) is a conse-

quence of the growth condition of Aj in (1.10), coupled with (1.11). The coercivity of
A + PΘ follows readily from (1.11) and the coercivity assumption in (1.10). Moreover,

by Hölder’s inequality and the continuity of the embedding W 1,−→p
0 (Ω) ↪→ Lp

∗
(Ω), we find

a positive constant C such that, for every u1, u2 ∈W 1,−→p
0 (Ω),

‖(A+ PΘ)(u1)− (A+ PΘ)(u2)‖W−1,−→p ′ (Ω)

≤ sup
v∈W 1,−→p

0 (Ω),
‖v‖

W
1,−→p
0 (Ω)

≤1

( N∑
j=1

∫
Ω
|Âj(u1)− Âj(u2)||∂jv| dx+

∫
Ω
|Θ̂(u1)− Θ̂(u2)||v| dx

)

≤
N∑
j=1

‖Âj(u1)− Âj(u2)‖
L
p′
j (Ω)

+ C ||Θ̂(u1)− Θ̂(u2)||L(p∗)′ (Ω).

Hence, using Lemma 3.4, we conclude the continuity ofA+PΘ : W 1,−→p
0 (Ω)→W−1,−→p ′(Ω).

This finishes the proof of Lemma 3.5. �

Lemma 3.6. Let (1.3), (1.10) and (1.11) hold. Then, A+PΘ : W 1,−→p
0 (Ω)→W−1,−→p ′(Ω)

is a pseudo-monotone operator.
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Proof. Since we have already remarked the boundedness of the operator A + PΘ, it is
enough to show that it is of M type (see Proposition 3.3). To this end, suppose that

there exist u, {u`}`≥1 in W 1,−→p
0 (Ω) and g ∈W−1,−→p ′(Ω) such that

u` ⇀ u (weakly) in W 1,−→p
0 (Ω) as `→∞, (3.5)

(A+ PΘ)(u`) ⇀ g (weakly) in W−1,−→p ′(Ω) as `→∞, (3.6)

lim sup
`→∞

〈(A+ PΘ)(u`), u`〉 ≤ 〈g, u〉. (3.7)

We prove that

g = (A+ PΘ)(u), (3.8)

〈(A+ PΘ)(u`), u`〉 → 〈g, u〉 as `→∞. (3.9)

From (3.5) and the compactness of the embedding W 1,−→p
0 (Ω) ↪→ Lp(Ω), we obtain that,

up to a subsequence,

u` → u strongly in Lp(Ω) and a.e. in Ω. (3.10)

Moreover, using (3.4) with u replaced by u`, we get that Âj(u`) is bounded in Lp
′
j (Ω)

for every 1 ≤ j ≤ N . Hence, in view of (1.11), there exist µ ∈ Lp′(Ω) and gj ∈ Lp
′
j (Ω)

for 1 ≤ j ≤ N so that, up to a further subsequence of {u`} (denoted by {u`}), we have

Θ̂(u`) ⇀ µ (weakly) in Lp
′
(Ω) as `→∞,

Âj(u`) ⇀ gj (weakly) in Lp
′
j (Ω) as `→∞

(3.11)

for every 1 ≤ j ≤ N . Thus, using the reflexivity of W 1,−→p
0 (Ω) and (3.6), we find that

〈g, v〉 = lim
`→∞
〈(A+ PΘ)(u`), v〉 =

N∑
j=1

∫
Ω
gj ∂jv dx+

∫
Ω
µ v dx (3.12)

for every v ∈W 1,−→p
0 (Ω). From (3.10) and (3.11), we infer that

lim
`→∞

∫
Ω

Θ̂(u`)u` dx =

∫
Ω
µudx. (3.13)

From (3.7), (3.12) and (3.13), we obtain that

lim sup
`→∞

〈(A+ PΘ)(u`), u`〉 = lim sup
`→∞

 N∑
j=1

∫
Ω
Âj(u`) ∂ju` dx+

∫
Ω

Θ̂(u`)u` dx


= lim sup

`→∞

N∑
j=1

∫
Ω
Âj(u`) ∂ju` dx+

∫
Ω
µudx

≤ 〈g, u〉 =
N∑
j=1

∫
Ω
gj ∂ju dx+

∫
Ω
µudx,

(3.14)
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that is,

lim sup
`→∞

N∑
j=1

∫
Ω
Âj(u`) ∂ju` dx ≤

N∑
j=1

∫
Ω
gj ∂ju dx. (3.15)

Our next aim is to show that

lim inf
`→∞

N∑
j=1

∫
Ω
Âj(u`) ∂ju` dx ≥

N∑
j=1

∫
Ω
gj ∂ju dx. (3.16)

The proof of (3.16) is a bit different from the classical one in the isotropic case since
in our growth condition on Aj in (1.10), we have taken the greatest exponent for |t|
from the viewpoint of the anisotropic Sobolev inequalities. Let us emphasize what is
new compared with the classical proof. Let 1 ≤ j ≤ N be arbitrary. Since u` → u a.e.
in Ω and Aj is a Carathéodory function, we see that

Aj(x, u`,∇u)→ Aj(x, u,∇u) a.e. in Ω. (3.17)

The growth condition in (1.10) gives a constant C > 0 and a nonnegative function

ηj ∈ Lp
′
j (Ω) such that

|Aj(x, u`,∇u)|p
′
j ≤ C

(
η
p′j
j + |u`|p

∗
+

N∑
i=1

|∂iu|pi
)

(3.18)

for every ` ≥ 1. Because the power of |u`| in the right-hand side of (3.18) is p∗, the

critical exponent, the compactness of the embedding W 1,−→p
0 (Ω) ↪→ Lp

∗
(Ω) fails, in gen-

eral. Hence, we cannot claim anymore that {|Aj(x, u`,∇u)|p
′
j}`≥1 is uniformly integrable

over Ω. Thus, we cannot apply Vitali’s theorem to deduce the strong convergence of

Aj(x, u`,∇u) to Aj(x, u,∇u) in Lp
′
j (Ω) as `→∞. However, if we fix k ≥ 1, then by the

growth condition in (1.10), we infer that

{|Aj(x, u`,∇u`)|p
′
j χ{|u`|≤k}}`≥1 is uniformly integrable over Ω.

Then, since χ{|u`|≤k} → χ{|u|≤k} as `→∞, from (3.17) and Vitali’s theorem, we get

Aj(x, u`,∇u)χ{|u`|≤k} → Aj(x, u,∇u)χ{|u|≤k} strongly in Lp
′
j (Ω) as `→∞ (3.19)

We now return to the proof of (3.16) with modifications suggested by (3.19). To prove
(3.16), it suffices to show that for every integer k ≥ 1, we have

lim inf
`→∞

N∑
j=1

∫
Ω
Âj(u`) ∂ju` dx ≥

N∑
j=1

∫
Ω
gj (∂ju)χ{|u|≤k}dx. (3.20)

Indeed, by letting k →∞ in (3.20) and applying the Dominated Convergence Theorem,
we arrive at (3.16).

Proof of (3.20). Fix an integer k ≥ 1. The coercivity condition in (1.10) yields that

N∑
j=1

Âj(u`) ∂ju` ≥
N∑
j=1

Âj(u`) (∂ju`)χ{|u`|≤k}. (3.21)
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For the right-hand side of (3.21), we use the monotonicity condition in (1.10), that is,

N∑
j=1

Âj(u`) (∂ju`)χ{|u`|≤k} ≥
N∑
j=1

Âj(u`) (∂ju)χ{|u`|≤k}

+

N∑
j=1

Aj(x, u`,∇u) (∂ju` − ∂ju)χ{|u`|≤k}.

(3.22)

Let 1 ≤ j ≤ N be arbitrary. By the Dominated Convergence Theorem, we have
(∂ju)χ{|u`|≤k} → (∂ju)χ{|u|≤k} strongly in Lpj (Ω) as ` → ∞. Recall from (3.11) that

Âj(u`) ⇀ gj (weakly) in Lp
′
j (Ω) as `→∞. Hence, as `→∞, we have

Âj(u`) (∂ju`)χ{|u`|≤k} → gj (∂ju)χ{|u|≤k} strongly in L1(Ω). (3.23)

Since ∂ju` ⇀ ∂ju (weakly) in Lpj (Ω) as `→∞, using (3.19), we gain the following

Aj(x, u`,∇u) (∂ju` − ∂ju)χ{|u`|≤k} → 0 strongly in L1(Ω) as `→∞. (3.24)

In light of (3.23) and (3.24), we see that

N∑
j=1

∫
Ω
Âj(u`) (∂ju)χ{|u`|≤k} +

N∑
j=1

∫
Ω
Aj(x, u`,∇u) (∂ju` − ∂ju)χ{|u`|≤k}

converges as ` → ∞ to the right-hand side of (3.20). Using this convergence, jointly
with the inequalities in (3.21) and (3.22), we conclude the proof of (3.20).

As mentioned above, from (3.20) we obtain (3.16).
Inequalities (3.15) and (3.16) ensure that

lim
`→∞

N∑
j=1

∫
Ω
Âj(u`) ∂ju` dx =

N∑
j=1

∫
Ω
gj ∂ju dx. (3.25)

Using this fact into (3.14), we conclude the proof of (3.9).

It remains to establish (3.8). From (3.25), we also see that

N∑
j=1

∫
Ω

[Aj(x, u`,∇u`)−Aj(x, u`,∇u)] (∂ju`− ∂ju)χ{|u`|≤k} dx→ 0 as `→∞. (3.26)

By (3.26) and the monotonicity condition in (1.10), we infer that

N∑
j=1

[Aj(x, u`,∇u`)−Aj(x, u`,∇u)] (∂ju` − ∂ju)→ 0 a.e in {|u`| ≤ k} as `→∞.

By a standard diagonal argument, we can find a subsequence of {u`} (still denoted by
{u`}) such that the above convergence holds for every k ≥ 1. This implies that

N∑
j=1

[Aj(x, u`,∇u`)−Aj(x, u`,∇u)] (∂ju` − ∂ju)→ 0 a.e. in Ω as `→∞.
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In the notation of Section 2.1, this means that

Du`(u`, u)→ 0 a.e. in Ω as `→∞.
Thus, by Lemma 2.1, we infer that, up to a subsequence,

∇u` → ∇u a.e. in Ω as `→∞. (3.27)

Since Φ and Aj (with 1 ≤ j ≤ N) are Carathéodory functions, from (3.27), we find that

Θ̂(u`)→ Θ̂(u) and Âj(u`)→ Âj(u) a.e. in Ω as `→∞.
Using this fact, jointly with (3.11), we obtain that

µ = Θ̂(u) and gj = Âj(u) for every 1 ≤ j ≤ N. (3.28)

From (3.12) and (3.28), we conclude that

〈g, v〉 =
N∑
j=1

∫
Ω
Âj(u) ∂jv dx+

∫
Ω

Θ̂(u) v dx = 〈Au, v〉+ 〈PΘ, v〉

for every v ∈W 1,−→p
0 (Ω). This proves that g = (A+ PΘ)u, namely, (3.8) holds.

In conclusion, by satisfying the M type condition in Definition 3.2, the operator A+PΘ

turns out to be pseudo-monotone. The proof of Lemma 3.6 is now complete. �

Lemma 3.7. Every operator B : W 1,−→p
0 (Ω) → W−1,−→p ′(Ω) satisfying (P1) and (P2) is

bounded and strongly continuous.

Proof. The boundedness of B is an easy consequence of our assumption (P1). Indeed, by

(P1), we have 1 ≤ s < (p∗)′, giving the compactness of the embedding W 1,−→p
0 (Ω) ↪→ Ls(Ω)

(see Remark 1.6). Moreover, there exists a positive constant C1, depending only on a0,
C, N , −→p and meas (Ω), such that

|〈Bu, v〉| ≤ C1

(
1 + ‖u‖b

W 1,−→p
0 (Ω)

)
‖v‖

W 1,−→p
0 (Ω)

for every u, v ∈W 1,−→p
0 (Ω). Thus, B : W 1,−→p

0 (Ω)→W−1,−→p ′(Ω) is a bounded operator.

To go on, we show that every operator B : W 1,−→p
0 (Ω)→W−1,−→p ′(Ω) satisfying (P2) is

strongly continuous. This means that if u` ⇀ u (weakly) in W 1,−→p
0 (Ω) as ` → ∞, then

Bu` → Bu in W−1,−→p ′(Ω) as ` → ∞. Assume by contradiction that there exist ε0 > 0
and a subsequence of {u`} (relabeled {u`}) such that

sup
v∈W 1,−→p

0 (Ω),
‖v‖

W
1,−→p
0 (Ω)

≤1

|〈Bu` −Bu, v〉| > ε0 for every ` ≥ 1.

Hence, there also exists {v`} in W 1,−→p
0 (Ω) with ‖v`‖W 1,−→p

0 (Ω)
≤ 1 such that

|〈Bu` −Bu, v`〉| > ε0 for all ` ≥ 1. (3.29)

By the boundedness of {v`} in W 1,−→p
0 (Ω), up to a subsequence, we have

v` ⇀ v (weakly) in W 1,−→p
0 (Ω) as `→∞. (3.30)
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Since Bu ∈W−1,−→p ′(Ω), from (3.30) we infer that

〈Bu, v`〉 → 〈Bu, v〉 as `→∞. (3.31)

From (P2) and (3.31), we obtain that |〈Bu` −Bu, v`〉| → 0 as ` → ∞, which is in
contradiction with (3.29). Thus, B is strongly continuous, completing the proof. �

To prove Lemma 3.9 below, we need an iterated version of Young’s inequality.

Lemma 3.8 (Young’s inequality). Let N ≥ 2 be an integer. Assume that β1, . . . , βN
are positive numbers and 1 < Rk < ∞ for each 1 ≤ k ≤ N − 1. If

∑N−1
k=1 (1/Rk) < 1,

then for every δ > 0, there exists a positive constant Cδ (depending on δ) such that

N∏
k=1

βk ≤ δ
N−1∑
k=1

βRk
k + Cδ β

RN
N ,

where we define RN =
[
1−

∑N−1
k=1 (1/Rk)

]−1
.

Lemma 3.9. Let (1.3), (1.10) and (1.11) hold. Assume that B : W 1,−→p
0 (Ω)→W−1,−→p ′(Ω)

satisfies (P1) and (P2). Then, A+PΘ−B is a bounded, coercive and pseudo-monotone

operator from W 1,−→p
0 into W−1,−→p ′(Ω).

Proof. From Lemmas 3.5 and 3.7, we find that A+PΘ−B is a bounded operator from

W 1,−→p
0 (Ω) into W−1,−→p ′(Ω). We now show that it is also coercive, namely,

〈Au+ PΘ(u)−Bu, u〉
‖u‖

W 1,−→p
0 (Ω)

→∞ as ‖u‖
W 1,−→p

0 (Ω)
→∞.

For every u, v ∈W 1,−→p
0 (Ω), by the coercivity condition in (1.10) and (1.11), we have

〈Au+ PΘ(u)−Bu, u〉 ≥ ν0

N∑
j=1

‖∂ju‖
pj
Lpj (Ω)

− CΘ‖u‖L1(Ω) − |〈Bu, u〉|. (3.32)

We claim that for every δ > 0, there exists a constant Cδ > 0 such that

〈Au+ PΘ(u)−Bu, u〉 ≥ (ν0 −Nδ)
N∑
j=1

‖∂ju‖
pj
Lpj (Ω)

− Cδ (3.33)

for every u ∈W 1,−→p
0 (Ω).

Proof of (3.33). From (1.14), we have

|〈Bu, u〉| ≤ C

(
1 + ‖u‖b

W 1,−→p
0 (Ω)

)(
a0‖u‖W 1,−→p

0 (Ω)
+ ‖u‖Ls(Ω)

)
for all u ∈ W 1,−→p

0 (Ω), where C > 0, s ∈ [1, p∗), a0 ≥ 0, b ∈ (0, p1 − 1) if a0 > 0 and

b ∈ (0, p1/p
′) if a0 = 0. We will use the continuity of the embedding W 1,−→p

0 (Ω) ↪→ Lr(Ω)
with r ∈ [1, p∗]. We distinguish two cases, depending on whether or not a0 is positive.

I) If a0 > 0, then for positive constants C1 and C2, we find that

CΘ‖u‖L1(Ω) + |〈Bu, u〉| ≤ C1‖u‖W 1,−→p
0 (Ω)

+ C2‖u‖b+1

W 1,−→p
0 (Ω)

(3.34)
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for every u ∈W 1,−→p
0 (Ω). Recall the assumption b + 1 < p1 = min1≤j≤N pj . Hence, using

(3.34) into (3.32), jointly with Young’s inequality, we conclude (3.33).

II) We now assume a0 = 0. Then, from the anisotropic Sobolev inequality in (1.15),
there exists a positive constant C such that

CΘ‖u‖L1(Ω) + |〈Bu, u〉| ≤ C

‖u‖
W 1,−→p

0 (Ω)
+

N∑
j=1

‖∂ju‖bLpj (Ω)

N∏
k=1

‖∂ku‖
1
N

Lpk (Ω)

 (3.35)

for all u ∈W 1,−→p
0 (Ω). For every δ > 0 and 1 ≤ j ≤ N , by Lemma 3.8, we find a positive

constant Cδ,j , depending on δ, such that

C ‖∂ju‖bLpj (Ω)

N∏
k=1

‖∂ku‖
1
N

Lpk (Ω) ≤ δ
∑

k∈{1,...,N}\{j}

‖∂ku‖pkLpk (Ω) + Cδ,j‖∂ju‖
αj

Lpj (Ω)
, (3.36)

for all u ∈W 1,−→p
0 (Ω), where αj is given by

αj =
p′pj(Nb + 1)

Npj + p′
.

Since a0 = 0, the hypothesis b < p1/p
′ yields that αj < pj for every 1 ≤ j ≤ N . Thus,

by Young’s inequality, for every ε > 0, there exists a constant Cε,δ > 0 such that

C‖u‖
W 1,−→p

0 (Ω)
+

N∑
j=1

Cδ,j‖∂ju‖
αj

Lpj (Ω)
≤ ε

N∑
j=1

‖∂ju‖
pj
Lpj (Ω)

+ Cε,δ (3.37)

for all u ∈ W 1,−→p
0 (Ω). Hence, from (3.36) and (3.37), we see that the left-hand side of

(3.35) is bounded above by [(N − 1) δ + ε]
∑N

j=1 ‖∂ju‖
pj
Lpj (Ω)

+ Cε,δ. Using this fact in

the right-hand side of (3.32), we conclude the proof of (3.33).

It is now clear that by choosing δ > 0 small enough, the inequality in (3.33) yields

the coercivity of the operator A+ PΘ −B : W 1,−→p
0 (Ω)→W−1,−→p ′(Ω).

Finally, Proposition 3.3 ensures that A+PΘ−B : W 1,−→p
0 (Ω)→W−1,−→p ′(Ω) is pseudo-

monotone as a sum of pseudo-monotone operators (see Lemmas 3.6 and 3.7). �

4. Proof of Theorem 1.2

Here, we assume (1.3), (1.10), (1.11) and (1.12), whereas B : W 1,−→p
0 (Ω)→W−1,−→p ′(Ω)

satisfies (P1) and (P2). For every ε > 0, we define Φε(x, t, ξ) : Ω×R×RN → R as follows

Φε(x, t, ξ) :=
Φ(x, t, ξ)

1 + ε |Φ(x, t, ξ)|

for a.e. x ∈ Ω and all (t, ξ) ∈ R×RN . For ε > 0 fixed, Φε satisfies the same properties as
Φ, that is, the sign-condition and the growth condition in (1.12). Moreover, Φε becomes
a bounded function, namely, for a.e. x ∈ Ω and every (t, ξ) ∈ R× RN ,

Φε(x, t, ξ) t ≥ 0, |Φε(x, t, ξ)| ≤ min {|Φ(x, t, ξ)|, 1/ε}. (4.1)
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We consider approximate problems to (1.1) with f = 0 and Φ replaced by Φε, that is,{
Auε + Φε(x, uε,∇uε) + Θ(x, uε,∇uε) = Buε in Ω,

uε ∈W 1,−→p
0 (Ω).

(4.2)

As in Theorem 3.1, by a solution of (4.2), we mean a function uε ∈ W 1,−→p
0 (Ω) such

that
N∑
j=1

∫
Ω
Âj(uε) ∂jv dx+

∫
Ω

Φ̂ε(uε) v dx+

∫
Ω

Θ̂(uε) v dx = 〈Buε, v〉 (4.3)

for every v ∈W 1,−→p
0 (Ω), where for convenience we define

Φ̂ε(uε)(x) := Φε(x, uε(x),∇uε(x)) for a.e. x ∈ Ω.

Lemma 4.1. For every ε > 0, there exists a solution uε for (4.2). Moreover, we have
(a) For a positive constant C, independent of ε, it holds

‖uε‖W 1,−→p
0 (Ω)

+

∫
Ω

Φ̂ε(uε)uε dx ≤ C. (4.4)

(b) There exists U ∈W 1,−→p
0 (Ω) such that, up to a subsequence of {uε},

uε ⇀ U (weakly) in W 1,−→p
0 (Ω) and uε → U a.e. in Ω as ε→ 0. (4.5)

Proof. Let ε > 0 be arbitrary. From (4.1), we see that Φε+Θ satisfies the same assump-
tions as Θ in Section 3. So, Theorem 3.1 applies with PΘ replaced by PΘ,ε, where

〈PΘ,ε(u), v〉 :=

∫
Ω

(
Θ̂(u) + Φ̂ε(u)

)
v dx for every u, v ∈W 1,−→p

0 (Ω).

This means that (4.2) admits at least a solution uε ∈W 1,−→p
0 (Ω) for every ε > 0.

(a) Recall from (3.33) that for every δ > 0, there exists a constant Cδ > 0 such that

〈Au+ PΘ(u)−Bu, u〉 ≥ (ν0 −Nδ)
N∑
j=1

‖∂ju‖
pj
Lpj (Ω)

− Cδ (4.6)

for every u ∈W 1,−→p
0 (Ω). Now, by taking v = uε in (4.3), we derive that

〈Auε + PΘ(uε)−Buε, uε〉+

∫
Ω

Φ̂ε(uε)uε dx = 0. (4.7)

Thus, letting u = uε in (4.6) and using (4.7), jointly with (4.1), we arrive at

(ν0 −Nδ)
N∑
j=1

‖∂juε‖
pj
Lpj (Ω)

≤ (ν0 −Nδ)
N∑
j=1

‖∂juε‖
pj
Lpj (Ω)

+

∫
Ω

Φ̂ε(uε)uε dx ≤ Cδ.

By choosing δ ∈ (0, ν0/N), we readily conclude the assertion of (4.4).

(b) From (4.4) and the reflexivity of W 1,−→p
0 (Ω), we infer that, up to a subsequence, uε

converges weakly to some U in W 1,−→p
0 (Ω). Then, we conclude (4.5) by using Remark 1.6,

which implies that, up to a subsequence, uε → U (strongly) in Lκ(Ω) if κ ∈ [1, p∗) and
uε → U a.e. in Ω. This completes the proof of Lemma 4.1. �
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For the remainder of this section, uε and U have the meaning in Lemma 4.1. For
every k > 0, the truncation Tk at height k is defined by (2.11). Moreover, we define

Gk(s) = s− Tk(s) for every s ∈ R. (4.8)

In particular, we have Gk = 0 on [−k, k] and tGk(t) ≥ 0 for every t ∈ R.

4.1. Strong convergence of Tk(uε). For v, w ∈ W 1,−→p
0 (Ω) and a.e. x ∈ Ω, we define

Duε(v, w)(x) as in (2.1), namely,

Duε(v, w)(x) :=

N∑
j=1

[Aj(x, uε(x),∇v(x))−Aj(x, uε(x),∇w(x))] ∂j(v − w)(x). (4.9)

For any fixed integer k ≥ 1, we obtain Duε(Tk(uε), Tk(U)) by replacing v and w in
(4.9) by Tk(uε) and Tk(U), respectively. For simplicity, we write Dε,k(x) instead of
Duε(Tk(uε), Tk(U))(x), that is,

Dε,k(x) :=
N∑
j=1

[Aj(x, uε,∇Tk(uε))−Aj(x, uε,∇Tk(U))] ∂j(Tk(uε)− Tk(U)). (4.10)

Lemma 4.2. There exists a subsequence of {uε}, relabeled {uε}, such that

∇uε → ∇U a.e. in Ω and Tk(uε)→ Tk(U) (strongly) in W 1,−→p
0 (Ω) as ε→ 0 (4.11)

for every integer k ≥ 1.

Proof. Recall that {uε} satisfies (4.5) in Lemma 4.1. By a standard diagonal argument, it
suffices to show that for every integer k ≥ 1, there exists a subsequence {uε} (depending
on k and relabeled {uε}) satisfying

∇Tk(uε)→ ∇Tk(u) a.e. in Ω and Tk(uε)→ Tk(u) (strongly) in W 1,−→p
0 (Ω). (4.12)

Moreover, in light of Lemma 2.2, we conclude (4.12) by showing that, for every integer
k ≥ 1, there exists a subsequence of {uε} (depending on k and relabeled {uε}) such that

Dε,k → 0 in L1(Ω) as ε→ 0. (4.13)

Let k ≥ 1 be fixed. As noted in Section 2.1, the monotonicity assumption in (1.10)
yields that Dε,k ≥ 0 a.e. in Ω. Hence, to prove (4.13), it suffices to show that (up to a
subsequence of {uε}), we have

lim sup
ε→0

∫
Ω
Dε,k(x) dx ≤ 0. (4.14)

We define zε,k as follows

zε,k := Tk(uε)− Tk(U).

We observe that

∂jzε,k χ{|uε|≥k} = −∂jTk(U)χ{|uε|≥k} = −∂jU χ{|uε|≥k} χ{|U |<k}.

Moreover, we see that

χ{|uε|≥k} χ{|U |<k} → 0 a.e. in Ω as ε→ 0. (4.15)
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By the Dominated Convergence Theorem, for every 1 ≤ j ≤ N , we have

∂jU χ{|uε|≥k} χ{|U |<k} → 0 (strongly) in Lpj (Ω) as ε→ 0. (4.16)

On the other hand, from the growth condition on Aj in (1.10) and the a priori estimates
in Lemma 4.1, we infer that {Aj(x, uε,∇Tk(uε))}ε and {Aj(x, uε,∇Tk(U))}ε are bounded

in Lp
′
j (Ω) and, hence, up to a subsequence of {uε}, they converge weakly in Lp

′
j (Ω) for

each 1 ≤ j ≤ N . This, jointly with (4.16), gives that

Ξj,ε,k(x) := [Aj(x, uε,∇Tk(uε))−Aj(x, uε,∇Tk(U))] ∂jUχ{|uε|≥k} χ{|U |<k}

converges to 0 in L1(Ω) as ε→ 0 for every 1 ≤ j ≤ N . It follows that∫
Ω
Dε,k(x)χ{|uε|≥k} dx = −

N∑
j=1

∫
Ω

Ξj,ε,k(x) dx→ 0 as ε→ 0.

Thus, to conclude (4.14), it remains to show that

lim sup
ε→0

∫
Ω
Dε,k(x)χ{|uε|<k} dx ≤ 0. (4.17)

Proof of (4.17). We define ϕλ : R→ R as follows

ϕλ(t) = t exp (λt2) for every t ∈ R.

We choose λ = λ(k) > 0 large such that 4ν2
0 λ > φ2(k), where φ appears in the growth

assumption on Φ, see (1.12). This choice of λ ensures that

λt2 − φ(k)

2ν0
|t|+ 1

4
> 0 for every t ∈ R. (4.18)

Then, in view of (4.18), we have

ϕ′λ(t)− φ(k)

ν0
|ϕλ(t)| > 1

2
for all t ∈ R. (4.19)

For v ∈W 1,−→p
0 (Ω), we define

Eε,k(v) =
N∑
j=1

∫
Ω
Aj(x, uε,∇v)∂jzε,k

[
ϕ′λ(zε,k)−

φ(k)

ν0
|ϕλ(zε,k)|

]
χ{|uε|<k} dx.

Returning to the definition of Dε,k in (4.10) and using (4.19), we arrive at

1

2

∫
Ω
Dε,k(x)χ{|uε|<k} dx ≤ Eε,k(Tk(uε))− Eε,k(Tk(U)). (4.20)

Since Tk(uε) = uε on the set {|uε| < k}, in light of (4.20), we complete the proof of
(4.17) by showing that

limε→0 Eε,k(Tk(U)) = 0, (4.21)

lim supε→0 Eε,k(uε) ≤ 0. (4.22)

Proof of (4.21). Indeed, for each 1 ≤ j ≤ N , the growth condition on Aj in (1.10)

gives a nonnegative function Fj ∈ Lp
′
j (Ω) such that on the set {|uε| < k}, we have
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|Aj(x, uε,∇Tk(U))| ≤ Fj for every ε > 0. Since |zε,k| ≤ 2k, it follows that there exists a
constant Ck > 0 such that ∣∣∣∣ϕ′λ(zε,k)−

φ(k)

ν0
|ϕλ(zε,k)|

∣∣∣∣ ≤ Ck.
On the other hand, for each 1 ≤ j ≤ N , we have

∂jzε,k χ{|uε|<k} = ∂jzε,k + ∂jU χ{|U |<k}χ{|uε|≥k}.

This, together with (4.16) and the weak convergence of ∂jzε,k to 0 in Lpj (Ω) as ε → 0,
implies that ∂jzε,k χ{|uε|<k} converges weakly to 0 in Lpj (Ω) as ε→ 0. Hence, we have

|Eε,k(Tk(U))| ≤ Ck
N∑
j=1

∫
Ω
Fj |∂jzε,k|χ{|uε|<k} dx→ 0 as ε→ 0,

which proves (4.21).

Proof of (4.22). From (4.5), we have

zε,k → 0 a.e. in Ω and zε,k ⇀ 0 (weakly) in W 1,−→p
0 (Ω) as ε→ 0.

Since |zε,k| ≤ 2k a.e. in Ω, we get ϕλ(zε,k) ∈W 1,−→p
0 (Ω) ∩ L∞(Ω). Moreover,

ϕλ(zε,k)→ 0 a.e. in Ω and ϕλ(zε,k) ⇀ 0 (weakly) in W 1,−→p
0 (Ω) as ε→ 0. (4.23)

Observe that uε zε,k ≥ 0 on the set {|uε| ≥ k}, which gives that

Φ̂ε(uε)ϕλ(zε,k)χ{|uε|≥k} ≥ 0.

Thus, by testing (4.3) with v = ϕλ(zε,k), we obtain that

〈Auε, ϕλ(zε,k)〉+

∫
Ω

Φ̂ε(uε)ϕλ(zε,k)χ{|uε|<k} dx ≤〈Buε, ϕλ(zε,k)〉

−
∫

Ω
Θ̂(uε)ϕλ(zε,k) dx.

(4.24)

To simplify exposition, we now introduce some notation:

Xk(ε) := φ(k)

∫
Ω

 1

ν0

N∑
j=1

Âj(uε) ∂j(TkU) + c(x)

 |ϕλ(zε,k)|χ{|uε|<k} dx,

Yk(ε) :=
N∑
j=1

∫
Ω
Âj(uε) ∂jU ϕ

′
λ(zε,k)χ{|U |<k} χ{|uε|≥k} dx.

(4.25)

We rewrite the first term in the left-hand side of (4.24) as follows

〈Auε, ϕλ(zε,k)〉 =

N∑
j=1

∫
Ω
Â(uε)∂jzε,k ϕ

′
λ(zε,k)χ{|uε|<k} dx− Yk(ε). (4.26)
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The coercivity condition in (1.10) and the growth condition of Φ in (1.12) imply that

|Φ̂ε(uε)|χ{|uε|<k} ≤ φ(k)

 1

ν0

N∑
j=1

Âj(uε)∂juε + c(x)

 χ{|uε|<k}. (4.27)

In the right-hand side of (4.27) we replace ∂juε by ∂jzε,k + ∂jTk(U), then we multiply
the inequality by |ϕλ(zε,k)| and integrate over Ω with respect to x. It follows that the
second term in the left-hand side of (4.24) is at least

−φ(k)

ν0

N∑
j=1

∫
Ω
Âj(uε)∂jzε,k |ϕλ(zε,k)|χ{|uε|<k} dx−Xk(ε).

Using this fact, as well as (4.26), in (4.24), we see that Eε,k(uε) satisfies the estimate

Eε,k(uε) ≤ Xk(ε) + Yk(ε) + 〈Buε, ϕλ(zε,k)〉 −
∫

Ω
Θ̂(uε)ϕλ(zε,k) dx, (4.28)

where Xk(ε) and Yk(ε) are defined in (4.25).

To conclude the proof of (4.22), it suffices to show that each term in the right-hand

side of (4.28) converges to 0 as ε→ 0. Recall that ϕλ(zε,k) ∈W 1,−→p
0 (Ω)∩L∞(Ω) satisfies

(4.23). Thus, using (1.11) and the property (P2) of B, we get that the third, as well as
the fourth, term in the right-hand side of (4.28) converges to zero as ε→ 0.

We next look at Xk(ε). In view of the pointwise convergence in (4.23), we infer from
the Dominated Convergence Theorem that

c(x)|ϕλ(zε,k)|χ{|uε|<k} → 0 in L1(Ω) as ε→ 0. (4.29)

Next, up to a subsequence of {uε}, we find that Âj(uε) converges weakly in Lp
′
j (Ω) as

ε → 0 for every 1 ≤ j ≤ N using the boundedness of Âj : W 1,−→p
0 (Ω) → Lp

′
j (Ω) (see

Lemma 3.5). Hence,
∑N

j=1 Âj(uε) ∂jU converges in L1(Ω) as ε → 0. Then, there exists

a nonnegative function F ∈ L1(Ω) (independent of ε) such that, up to a subsequence of
{uε}, we have ∣∣∣∣∣∣

N∑
j=1

Âj(uε) ∂jU

∣∣∣∣∣∣ ≤ F a.e. in Ω for every ε > 0. (4.30)

We can now again use the Dominated Convergence Theorem to conclude that

N∑
j=1

Âj(uε) ∂jTk(U) |ϕλ(zε,k)|χ{|uε|<k} → 0 in L1(Ω) as ε→ 0. (4.31)

From (4.29) and (4.31), we find that limε→0Xk(ε) = 0. Since |ϕ′λ(zε,k)| is bounded above
by a constant independent of ε (but dependent on k), we can use a similar argument,
based on (4.15) and (4.30), to conclude that, up to a subsequence of {uε}, we have
limε→0 Yk(ε) = 0. This finishes the proof of the convergence to zero of the right-hand
side of (4.28) as ε→ 0. Consequently, the proof of (4.22), and thus of (4.17), is complete.
This ends the proof of Lemma 4.2. �
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4.2. Passing to the limit. From now on, the meaning of {uε}ε is given by Lemma 4.2.
Using Lemma 4.1, we prove in Lemma 4.4 that U is a solution of (1.1) with f = 0 and,
moreover, U satisfies all the properties stated in Theorem 1.2. Besides (4.11), the other
fundamental property that allows us to pass to the limit as ε → 0 in (4.3) for every

v ∈W 1,−→p
0 (Ω) ∩ L∞(Ω) is the following convergence

Φ̂ε(uε)→ Φ̂(U) (strongly) in L1(Ω) as ε→ 0. (4.32)

The proof of (4.32) is the main objective of our next result.

Lemma 4.3. We have Φ̂(U)U j ∈ L1(Ω) for j = 0, 1 and (4.32) holds.

Proof. We show using Fatou’s Lemma that Φ̂(U)U ∈ L1(Ω), which we then use to derive

that also Φ̂(U) ∈ L1(Ω). Indeed, from the pointwise convergence

uε → U and ∇uε → ∇U a.e. in Ω as ε→ 0,

jointly with the fact that Φ(x, t, ξ) : Ω × R × RN → R is a Carathéodory function, we

infer that Φ̂(uε) converges to Φ̂(U) a.e. in Ω as ε→ 0. Then, we have

Φ̂ε(uε)uε → Φ̂(U)U a.e. in Ω as ε→ 0. (4.33)

Using (4.33) and that {Φ̂ε(uε)uε}ε is a sequence of nonnegative functions that is uni-
formly bounded in L1(Ω) with respect to ε (from Lemma 4.1), by Fatou’s Lemma we
conclude that

Φ̂(U)U ∈ L1(Ω).

This, together with the growth condition in (1.12), yields that Φ̂(U) ∈ L1(Ω). Indeed,
for any M > 0, on the set Ω ∩ {|U | ≤M}, we have

|Φ̂(U)| ≤ φ(M)

 N∑
j=1

|∂jU |pj + c(x)

 ∈ L1(Ω).

In turn, on the set Ω ∩ {|U | > M}, it holds

|Φ̂(U)| ≤M−1 Φ̂(U)U ∈ L1(Ω).

Hence, it follows that Φ̂(U) ∈ L1(Ω).

To finish the proof of Lemma 4.3, it remains to establish (4.32).

Proof of (4.32). Since Φ̂ε(uε) → Φ̂(U) a.e. in Ω as ε → 0 and Φ̂(U) ∈ L1(Ω), by

Vitali’s Theorem, it suffices to show that {Φ̂ε(uε)}ε is uniformly integrable over Ω. We
next check this fact. For every M > 0, we define

Dε,M := {|uε| ≤M} and Eε,M := {|uε| > M}.

For every x ∈ Dε,M , using the growth condition of Φ in (1.12), we find that

|Φ̂ε(uε)(x)| ≤ |Φ̂(uε)(x)| ≤ φ(M)

 N∑
j=1

|∂jTM (uε)|pj + c(x)

 .
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Let ω be any measurable subset of Ω. It follows that∫
ω∩Dε,M

|Φ̂ε(uε)| dx ≤ φ(M)

 N∑
j=1

‖∂j(TMuε)‖
pj
Lpj (ω)

+

∫
ω
c(x) dx

 .

On the other hand, using (4.4) in Lemma 4.1, we see that∫
ω∩Eε,M

|Φ̂ε(uε)| dx ≤
1

M

∫
ω∩Eε,M

Φ̂ε(uε)uε dx ≤
C

M
,

where C > 0 is a constant independent of ε and ω. Consequently, we find that∫
ω
|Φ̂ε(uε)| dx ≤ φ(M)

 N∑
j=1

‖∂j(TMuε)‖
pj
Lpj (ω)

+

∫
ω
c(x) dx

+
C

M
. (4.34)

Lemma 4.2 yields that ∂jTM (uε) → ∂jTM (U) (strongly) in Lpj (Ω) as ε → 0 for every
1 ≤ j ≤ N . Since c(·) ∈ L1(Ω) (see our assumption (1.12)), from (4.34) we deduce the

uniform integrability of {Φ̂ε(uε)}ε over Ω. Then, we conclude the proof of (4.32) by
Vitali’s Theorem. This ends the proof of Lemma 4.3. �

By Lemma 4.3, to finish the proof of Theorem 1.2, we need to show the following.

Lemma 4.4. The function U is a solution of (1.1) with f = 0 and, moreover,

N∑
j=1

∫
Ω
Âj(U) ∂jU dx+

∫
Ω

Φ̂(U)U dx+

∫
Ω

Θ̂(U)U dx = 〈BU,U〉. (4.35)

Proof. Fix v ∈W 1,−→p
0 (Ω) ∩ L∞(Ω) arbitrary. Since uε is a solution of (4.2), we have

N∑
j=1

∫
Ω
Âj(uε) ∂jv dx+

∫
Ω

Φ̂ε(uε) v dx+

∫
Ω

Θ̂(uε) v dx = 〈Buε, v〉. (4.36)

By Lemma 4.3, the second term in the left-hand side of (4.36) converges to
∫

Ω Φ̂(U) v
as ε → 0, whereas the right-hand side of (4.36) converges to 〈BU, v〉 based on the

weak convergence of uε to U in W 1,−→p
0 (Ω) as ε → 0. Using (4.5) in Lemma 4.1 and the

convergence of ∇uε to ∇U a.e. in Ω as ε→ 0, we find that

Θ̂(uε)→ Θ̂(U) and Âj(uε)→ Âj(U) a.e. in Ω for 1 ≤ j ≤ N. (4.37)

Thus, in light of (1.11), and the Dominated Convergence Theorem, we obtain that∫
Ω

Θ̂(uε) v dx→
∫

Ω
Θ̂(U) v dx as ε→ 0.

Since {Âj(uε)}ε is uniformly bounded in Lp
′
j (Ω) with respect to ε, we observe from (4.37)

that (up to a subsequence)

Âj(uε) ⇀ Âj(U) (weakly) in Lp
′
j (Ω) as ε→ 0
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for each 1 ≤ j ≤ N . It follows that

N∑
j=1

∫
Ω
Âj(uε) ∂jv dx→

N∑
j=1

∫
Ω
Âj(U) ∂jv dx as ε→ 0.

By letting ε→ 0 in (4.36), we conclude that

N∑
j=1

∫
Ω
Âj(U) ∂jv dx+

∫
Ω

Φ̂(U) v dx+

∫
Ω

Θ̂(U) v dx = 〈BU, v〉 (4.38)

for every v ∈W 1,−→p
0 (Ω) ∩ L∞(Ω). Hence, U is a solution of (1.1) with f = 0.

It remains to prove (4.35). Since U may not be in L∞(Ω), we cannot directly use

v = U in (4.38). Nevertheless, for every k > 0, we have Tk(U) ∈ W 1,−→p
0 (Ω) ∩ L∞(Ω).

Hence, by taking v = Tk(U) in (4.38), we see that

〈AU, Tk(U)〉+

∫
Ω

Φ̂(U)Tk(U) dx+

∫
Ω

Θ̂(U)Tk(U) dx = 〈BU, Tk(U)〉. (4.39)

Notice that ‖Tk(U)‖
W 1,−→p

0 (Ω)
≤ ‖U‖

W 1,−→p
0 (Ω)

for all k > 0. Moreover, for every 1 ≤ j ≤ N ,

we have ∂j(Tk(U))→ ∂jU a.e. in Ω as k →∞ so that

Tk(U) ⇀ U (weakly) in W 1,−→p
0 (Ω) as k →∞.

Since AU and BU belong to W−1,−→p ′(Ω), it follows that

lim
k→∞
〈AU, Tk(U)〉 = 〈AU,U〉 and lim

k→∞
〈BU, Tk(U)〉 = 〈BU,U〉.

Recalling that Φ̂(U)U ∈ L1(Ω) and (1.11) holds, from the Dominated Convergence
Theorem, we can pass to the limit k →∞ in (4.39) to obtain (4.35). �

5. Proof of Theorem 1.1

Suppose for the moment only (1.3), (1.10), (1.11) and (1.12). Overall, to prove The-
orem 1.1, we follow similar arguments to those developed for proving Theorem 1.2 in
Section 4. But there are several differences that appear when introducing a function
f ∈ L1(Ω) in the equation (1.1). We first approximate f by a “nice” function fε ∈ L∞(Ω)
with the properties that

|fε| ≤ |f | a.e. in Ω and fε → f a.e. in Ω as ε→ 0. (5.1)

Then, by the Dominated Convergence Theorem, we find that

fε → f (strongly) in L1(Ω) as ε→ 0. (5.2)

For example, for every ε > 0, we could take

fε(x) :=
f(x)

1 + ε|f(x)|
for a.e. x ∈ Ω.
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This approximation is done so that we can apply Theorem 1.2 for the problem generated
by (1.1) with fε in place of f . Then such an approximate problem admits at least a
solution Uε, namely, {

AUε + Φ̂(Uε) + Θ̂(Uε) = BUε + fε in Ω,

Uε ∈W 1,−→p
0 (Ω), Φ̂(Uε) ∈ L1(Ω).

(5.3)

To see this, we return to Example 1.7, which shows that if

〈Bεu, v〉 = 〈Bu, v〉+

∫
Ω
fε v dx for every u, v ∈W 1,−→p

0 (Ω), (5.4)

then Bε : W 1,−→p
0 (Ω) → W−1,−→p ′(Ω) satisfies (P1) and (P2). By Theorem 1.2 applied for

Bε instead of B, we obtain a solution Uε for (5.3). This means that

N∑
j=1

∫
Ω
Âj(Uε) ∂jv dx+

∫
Ω

Φ̂(Uε) v dx+

∫
Ω

Θ̂(Uε) v dx = 〈BUε, v〉+

∫
Ω
fε v dx (5.5)

for every v ∈ W 1,−→p
0 (Ω) ∩ L∞(Ω). However, unlike Theorem 1.2, to obtain that Uε is

uniformly bounded in W 1,−→p
0 (Ω) with respect to ε, we need an additional hypothesis,

namely, (1.13), which we formulate below for convenience:
there exist positive constants τ and γ such that for a.e. x ∈ Ω and every ξ ∈ RN

|Φ(x, t, ξ)| ≥ γ
N∑
j=1

|ξj |pj for all |t| ≥ τ. (5.6)

For the rest of this section, besides (1.3), (1.10), (1.11) and (1.12), we also assume
(5.6). To avoid repetition, we understand that all the computations in Section 4 are
done here replacing uε, U and Φε by Uε, U0 and Φ, respectively. We only stress the
differences that appear compared with the developments in Section 4.

5.1. A priori estimates. In Lemma 4.1 we gave a priori estimates for the solution uε
to (4.2), corresponding to the problem (1.1) with f = 0 and Φε instead of Φ. We next
obtain a priori estimates for Uε solving (5.3), that is, (1.1) with fε instead of f .

Lemma 5.1. Let Uε be a solution of (5.3).
(a) For a positive constant C, independent of ε, we have

‖Uε‖W 1,−→p
0 (Ω)

+

∫
Ω
|Φ̂(Uε)| dx ≤ C. (5.7)

(b) There exists U0 ∈W 1,−→p
0 (Ω) such that, up to a subsequence of {Uε},

Uε ⇀ U0 (weakly) in W 1,−→p
0 (Ω), Uε → U0 a.e. in Ω as ε→ 0. (5.8)

Proof. There are new ideas coming into play because of the introduction of fε and
working with Φ in (5.3) (rather than Φε). Hence, we provide the details.

(a) Let τ > 0 be as in (5.6). The choice of fε gives that ‖fε‖L1(Ω) ≤ ‖f‖L1(Ω). As a

test function in (5.5), we take v = Tτ (Uε), which belongs to W 1,−→p
0 (Ω) ∩ L∞(Ω). Since
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∂jTτ (Uε) = χ{|Uε|<τ} ∂jUε a.e. in Ω for every 1 ≤ j ≤ N , using also the sign-condition
of Φ in (1.12), we obtain that

N∑
j=1

∫
Ω
Âj(Uε) ∂jUε χ{|Uε|<τ} dx+ τ

∫
Ω
|Φ̂(Uε)|χ{|Uε|≥τ} dx (5.9)

is bounded above by

|〈BUε, Tτ (Uε)〉|+ τ
(
‖f‖L1(Ω) + CΘ meas (Ω)

)
. (5.10)

By virtue of (5.6) and the coercivity condition in (1.10), we see that the quantity in
(5.9) is bounded below by

ν0

N∑
j=1

∫
Ω
|∂jUε|pj χ{|Uε|<τ} dx+ τγ

N∑
j=1

∫
Ω
|∂jUε|pj χ{|Uε|≥τ} dx.

If we define c0 := min{ν0, τγ}, then c0 > 0 and the above estimates lead to

c0

N∑
j=1

∫
Ω
|∂jUε|pj dx ≤ |〈BUε, Tτ (Uε)〉|+ τ

(
‖f‖L1(Ω) + CΘ meas (Ω)

)
. (5.11)

From (1.14) in the assumption (P1), for every u ∈W 1,−→p
0 (Ω), we have

|〈Bu, Tτ (u)〉| ≤ C(1 + ‖u‖b
W 1,−→p

0 (Ω)
)(a0‖u‖W 1,−→p

0 (Ω)
+ ‖u‖Ls(Ω)), (5.12)

where C > 0, s ∈ [1, p∗), a0 ≥ 0, b ∈ (0, p1 − 1) if a0 > 0 and b ∈ (0, p1/p
′) if a0 = 0.

With an argument similar to that in Lemma 3.9, we can deduce that

c0

N∑
j=1

∫
Ω
|∂ju|pj dx− |〈Bu, Tτ (u)〉|

‖u‖
W 1,−→p

0 (Ω)

→∞ as ‖u‖
W 1,−→p

0 (Ω)
→∞.

This fact, jointly with (5.11), implies that there exists a constant C0 > 0 such that

‖Uε‖W 1,−→p
0 (Ω)

≤ C0 for every ε > 0. (5.13)

By letting u = Uε in (5.12) and using (5.13), we find a constant C1 > 0 such that

|〈BUε, Tτ (Uε)〉| ≤ C1 for every ε > 0. (5.14)

Since the sum over j = 1, . . . , N in (5.9) is nonnegative, the remaining term in (5.9) is
bounded above by the quantity in (5.10). Then, using (5.14), we arrive at∫

Ω
|Φ̂(Uε)|χ{|Uε|≥τ} dx ≤ C1τ

−1 + ‖f‖L1(Ω) + CΘ meas (Ω) := C2. (5.15)

Now, from the boundedness of {Uε} in W 1,−→p
0 (Ω) (see (5.13)) and the growth condition

on Φ in (1.12), we obtain a positive constant C3 such that∫
Ω
|Φ̂(Uε)|χ{|Uε|≤τ} dx ≤ C3 for every ε > 0. (5.16)

Putting together the estimates in (5.13), (5.15) and (5.16), we conclude (5.7).
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(b) The assertion in (5.8) follows from (5.13), jointly with the reflexivity of W 1,−→p
0 (Ω)

and the compactness of the embedding W 1,−→p
0 (Ω) ↪→ Lr(Ω) for r ∈ [1, p∗) (see Re-

mark 1.6). The proof of Lemma 5.1 is now complete. �

5.2. Strong convergence of Tk(Uε). The game plan is closely related to that in Sec-
tion 4.1. As mentioned before, when adapting the calculations, we need to replace uε,
U and B in Section 4 by Uε, U0 and Bε, respectively. The counterpart of Lemma 4.2
holds so that we obtain the following.

Lemma 5.2. There exists a subsequence of {Uε}ε, relabeled {Uε}ε, such that

∇Uε → ∇U0 a.e. in Ω and Tk(Uε)→ Tk(U0) (strongly) in W 1,−→p
0 (Ω) as ε→ 0

for every positive integer k.

Proof. The computations in Section 4.1 can be carried out with Φ instead of Φε since
the upper bounds used for |Φε| were derived from those satisfied by |Φ| and the sign-
condition of Φ is the same as for Φε (see (4.1)). A small change arises in the proof of
(4.22) because of the introduction of fε in (5.3). Using the definition of Bε in (5.4),
the inequalities in (4.24) and (4.28) must be read with Bε instead of B. We note that
〈BεUε, ϕλ(zε,k)〉 is the sum between 〈BUε, ϕλ(zε,k)〉 and

∫
Ω fε ϕλ(zε,k) dx. The latter

term, like the former, converges to 0 as ε→ 0. The new claim regarding the convergence
to zero of

∫
Ω fε ϕλ(zε,k) dx follows from the Dominated Convergence Theorem using

(5.1), |ϕλ(zε,k)| ≤ 2k exp (4λk2) and ϕλ(zε,k)→ 0 a.e. in Ω as ε→ 0. The remainder of
the proof of (4.22) carries over easily to our setting. �

5.3. Passing to the limit. We aim to pass to the limit as ε→ 0 in (5.5) to obtain that

U0 is a solution of (1.1). Since fε satisfies (5.2) and Uε ⇀ U0 (weakly) in W 1,−→p
0 (Ω) as ε→

0, we readily have the convergence of the right-hand side of (5.5) to 〈BU0, v〉+
∫

Ω f v dx

for every v ∈ W 1,−→p
0 (Ω) ∩ L∞(Ω). Moreover, because of the convergence ∇Uε → ∇U0

a.e. in Ω, we can use the same argument as in Lemma 4.4 to deduce that∫
Ω

Θ̂(uε) v dx→
∫

Ω
Θ̂(U0) v dx as ε→ 0,

N∑
j=1

∫
Ω
Âj(Uε) ∂jv dx→

N∑
j=1

∫
Ω
Âj(U0) ∂jv dx as ε→ 0

for every v ∈ W 1,−→p
0 (Ω). What is here different compared with Section 4.2 is the proof

of the convergence

Φ̂(Uε)→ Φ̂(U0) (strongly) in L1(Ω) as ε→ 0. (5.17)

To conclude that U0 is a solution of (1.1), it remains to justify (5.17). So, instead of
Lemma 4.3, we establish the following.

Lemma 5.3. We have Φ̂(U0) ∈ L1(Ω) and (5.17) holds.

Proof. We infer that Φ̂(U0) ∈ L1(Ω) from Fatou’s Lemma based on the boundedness of
the second term in the left-hand side of (5.7) and the poinwise convergence

|Φ̂(Uε)| → |Φ̂(U0)| a.e. in Ω as ε→ 0. (5.18)
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The assertion of (5.18) follows from Lemma 5.2, the pointwise convergence in (5.8) and
the continuity of Φ(x, ·, ·) in the last two variables.

Proof of (5.17). We will use Vitali’s Theorem. To this end, taking into account (5.18),

we need to show that {Φ̂(Uε)}ε is uniformly integrable over Ω. We can only partially

imitate the proof of the uniform integrability of {Φ̂ε(uε)}ε in Lemma 4.3. Fix M > 1
arbitrary. For any measurable subset ω of Ω, using the growth condition of Φ in (1.12),
we find that∫

ω
|Φ̂(Uε)|χ{|Uε|≤M} dx ≤ φ(M)

 N∑
j=1

‖∂jTM (Uε)‖
pj
Lpj (ω)

+ ‖c‖L1(ω)

 . (5.19)

Since ∂jTM (Uε) → ∂jTM (U0) (strongly) in Lpj (Ω) as ε → 0 for every 1 ≤ j ≤ N and
c(·) ∈ L1(Ω), we see that the right-hand side of (5.19) is as small as desired uniformly
in ε when the measure of ω is small.

We next bound from above
∫
ω |Φ̂(Uε)|χ{|Uε|>M} dx. This is where the modification

appears since we don’t have anymore that {Φ̂(Uε)Uε}ε is uniformly bounded in L1(Ω)
with respect to ε. We adapt an approach from [13]. In (5.5) we take

v = T1(GM−1(Uε)),

which belongs to W 1,−→p
0 (Ω) ∩ L∞(Ω). Then, using (1.11), the coercivity condition in

(1.10) and the sign-condition of Φ in (1.12), we obtain the estimate∫
Ω
|Φ̂(Uε)|χ{|Uε|>M} dx ≤

∫
Ω

(|fε|+CΘ)χ{|Uε|≥M−1} dx+|〈BUε, T1(GM−1(Uε))〉|. (5.20)

Now, up to a subsequence of {Uε}, from (5.8), we have

T1(GM−1(Uε)) ⇀ T1(GM−1(U0)) (weakly) in W 1,−→p
0 (Ω) as ε→ 0.

Using this in (5.20), jointly with (5.1) and the property (P2) for B, we find that

lim sup
ε→0

∫
Ω
|Φ̂(Uε)|χ{|Uε|>M} dx ≤

∫
Ω

(|f |+CΘ)χ{|U0|≥M−1} dx+ |〈BU0, T1(GM−1(U0))〉|.

Recall that f ∈ L1(Ω) and B satisfies the growth condition in (1.14). Since we have

∂j T1(GM−1(U0)) = χ{M−1<|U0|<M} ∂jU0 a.e. in Ω

for every 1 ≤ j ≤ N , from the above inequality, we infer that∫
ω
|Φ̂(Uε)|χ{|Uε|>M} dx

is small, uniformly in ε and ω, when M is sufficiently large. Thus, using also the

comments after (5.19), we conclude the uniform integrability of {Φ̂(Uε)}ε over Ω. Hence,
(5.17) follows from Vitali’s Theorem, based on (5.18). The proof of Lemma 5.3 is now
complete. �

By letting ε → 0 in (5.5), we conclude that U0 is a solution of (1.1). This ends the
proof of Theorem 1.1. �
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6. Strong convergence of uε in Theorem 1.2

We show here that in the setting of Theorem 1.2, up to a subsequence of {uε}, not
only the assertions of Lemma 4.2 hold, but also the strong convergence in (1.7), that is,

uε → U (strongly) in W 1,−→p
0 (Ω) as ε→ 0. (6.1)

We establish (6.1) in Lemma 6.2, based on Lemma 6.1 below. For every k ≥ 1, we define

Lk :=
|〈BU,Gk(U)〉|+ CΘ‖Gk(U)‖L1(Ω)

ν0
. (6.2)

Lemma 6.1. For every integer k ≥ 1, up to a subsequence of {uε}, we have

lim sup
ε→0

‖Gk(uε)‖W 1,−→p
0 (Ω)

≤
N∑
j=1

L
1/pj
k . (6.3)

Proof. Let k ≥ 1 be a fixed integer. Since Gk(uε) = uε − Tk(uε) and

∂jTk(uε) = ∂juε χ{|uε|<k} for every 1 ≤ j ≤ N,

from the coercivity assumption in (1.10), we see that

〈Auε, Gk(uε)〉 =
N∑
j=1

∫
{|uε|>k}

Âj(uε) ∂juε dx

≥ ν0

N∑
j=1

∫
{|uε|>k}

|∂juε|pj dx = ν0

N∑
j=1

‖∂jGk(uε)‖
pj
Lpj (Ω)

.

Using (4.1) and tGk(t) ≥ 0 for every t ∈ R, we observe that Gk(t) Φ̂ε(t) ≥ 0 for all
t ∈ R. Then, by testing (4.3) with v = Gk(uε) and using (1.11), we find that

〈Auε, Gk(uε)〉 ≤ 〈Auε, Gk(uε)〉+

∫
Ω
Gk(uε) Φ̂ε(uε) dx

= 〈Buε, Gk(uε)〉 −
∫

Ω
Θ̂(uε)Gk(uε) dx

≤ |〈Buε, Gk(uε)〉|+ CΘ

∫
Ω
|Gk(uε)| dx.

From (4.5), the boundedness of {uε} in W 1,−→p
0 (Ω) and Remark 1.6, we can pass to a

subsequence of {uε} (relabeled {uε}) such that as ε→ 0

Tk(uε)→ Tk(U) a.e. in Ω and Tk(uε) ⇀ Tk(U) (weakly) in W 1,−→p
0 (Ω),

Gk(uε)→ Gk(U) a.e. in Ω and Gk(uε) ⇀ Gk(U) (weakly) in W 1,−→p
0 (Ω),

Gk(uε)→ Gk(U) strongly in Lr(Ω) with 1 ≤ r < p∗.

Hence, using the property (P2), we derive that

lim
ε→0
〈Buε, Gk(uε)〉 = 〈BU,Gk(U)〉 and lim

ε→0
‖Gk(uε)‖L1(Ω) = ‖Gk(U)‖L1(Ω).



ANISOTROPIC ELLIPTIC EQUATIONS WITH L1 DATA 33

Consequently, for every 1 ≤ j ≤ N , we have

lim sup
ε→0

‖∂j(Gk(uε))‖Lpj (Ω) ≤
( |〈BU,Gk(U)〉|+ CΘ‖Gk(U)‖L1(Ω)

ν0

)1/pj

= L
1/pj
k .

This establishes the inequality in (6.3), completing the proof of Lemma 6.1. �

Lemma 6.2. Up to a subsequence of {uε}ε, relabeled {uε}ε, we have (6.1).

Proof. Recall that {uε}ε stands for a sequence {uε`}`≥1 with ε` ↘ 0 as ` → ∞. By
Lemmas 4.1 and 6.1, as well as from the proof of Lemma 4.2, we get that for any given

integer k ≥ 1, there exists a subsequence of {uε}ε that depends on k, say {u(k)
ε` }`≥1, for

which (6.3) and (4.12) hold with u
(k)
ε` in place of {uε}. This means that

lim sup
`→∞

‖Gk(u(k)
ε`

)‖
W 1,−→p

0 (Ω)
≤

N∑
j=1

L
1/pj
k ,

lim
`→∞

‖Tk
(
u(k)
ε`

)
− Tk(U)‖

W 1,−→p
0 (Ω)

= 0.

(6.4)

We proceed inductively with respect to k, at each step (k+ 1) selecting the subsequence

{u(k+1)
ε` }`≥1 from {u(k)

ε` }`≥1, the subsequence of {uε} with the properties in (6.4). Then,

{u(`)
ε` }`≥k is a subsequence of {u(j)

ε` }`≥1 for every 1 ≤ j ≤ k. Hence, by a standard

diagonal argument, there exists a subsequence of {uε}ε, that is, {u(`)
ε` }`, relabeled {uε}ε,

such that (6.3) and (4.12) hold for every k ≥ 1, namely

lim sup
ε→0

‖Gk(uε)‖W 1,−→p
0 (Ω)

≤
N∑
j=1

L
1/pj
k ,

lim
ε→0
‖Tk(uε)− Tk(U)‖

W 1,−→p
0 (Ω)

= 0.

(6.5)

Using the weak convergence of Gk(uε) to Gk(U) in W 1,−→p
0 (Ω) as ε→ 0, we see that

‖Gk(U)‖
W 1,−→p

0 (Ω)
≤ lim inf

ε→0
‖Gk(uε)‖W 1,−→p

0 (Ω)
≤

N∑
j=1

L
1/pj
k . (6.6)

We now complete the proof of (6.1). From the definition of Gk in (4.8), we find that

‖uε − U‖W 1,−→p
0 (Ω)

≤ ‖Gk(uε)‖W 1,−→p
0 (Ω)

+ ‖Gk(U)‖
W 1,−→p

0 (Ω)
+ ‖Tk(uε)− Tk(U)‖

W 1,−→p
0 (Ω)

.

Then, in view of (6.5) and (6.6), for every k ≥ 1, we obtain that

lim sup
ε→0

‖uε − U‖W 1,−→p
0 (Ω)

≤ 2
N∑
j=1

L
1/pj
k . (6.7)

Remark that Lk (defined in (6.2)) converges to 0 as k → ∞ since Gk(U) ⇀ 0 (weakly)

in W 1,−→p
0 (Ω) and Gk(U) → 0 (strongly) in L1(Ω) as k → ∞. Hence, by letting k → ∞

in (6.7), we obtain (6.1). This ends the proof of Lemma 6.2. �
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Fourier (Grenoble) 18 (1968), no. fasc. 1, 115–175.



ANISOTROPIC ELLIPTIC EQUATIONS WITH L1 DATA 35

[19] F. E. Browder, Existence theorems for nonlinear partial differential equations, Global Analysis (Proc.
Sympos. Pure Math., Vol. XVI, Berkeley, Calif., 1968), 1970, pp. 1–60.

[20] A. Cianchi, Symmetrization in anisotropic elliptic problems, Comm. Partial Differential Equations
32 (2007), no. 4-6, 693–717.
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[28] I. Fragalà, F. Gazzola, and B. Kawohl, Existence and nonexistence results for anisotropic quasilinear
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