
PD3-GROUPS AND HNN EXTENSIONS

JONATHAN A. HILLMAN

Abstract. We show that if a PD3-group G splits as an HNN extension A∗Cϕ

where C is a PD2-group then the Poincaré dual in H1(G;Z) = Hom(G,Z) of

the homology class [C] is the epimorphism f : G→ Z with kernel the normal
closure of A. We also make several other observations about PD3-groups which

split over PD2-groups.

In this note we shall give algebraic analogues of some properties of Haken 3-
manifolds. We are interested in the question “when does a PD3-group split over
a PD2-group?”. In §2 we show that such splittings are minimal in a natural par-
tial order on splittings over more general subgroups. In the next two sections we
consider PD3-groups G which split as an HNN extension A ∗C ϕ with A and C
finitely generated. In §3 we show that A and C have the same number of indecom-
posable factors. Our main result is in §4, where we show that if C is a PD2-group
then the Poincaré dual in H1(G;Z) = Hom(G,Z) of the homology class [C] is the
epimorphism f : G → Z with kernel the normal closure of A. In §5 we extend an
argument from [7] to show that no FP2 subgroup of a PD3-group is a properly
ascending HNN extension, and in §6 we show that if G is residually finite and splits
over a PD2-group then G has a subgroup of finite index with infinite abelianization.
Our arguments extend readily to PDn-groups with PDn−1-subgroups, but as our
primary interest is in the case n = 3, we shall formulate our results in such terms.

1. terminology

We mention here three properties of 3-manifold groups that are not yet known
for all PD3-groups: coherence, residual finiteness and having subgroups of finite
index with infinite abelianization. Coherence may often be sidestepped by requiring
the subgroups in play to be FP2 rather than finitely generated. If every finitely
generated subgroup of a group G is FP2 we say that G is almost coherent.

We shall say that a group G is split over a subgroup C if it is either a gener-
alized free product with amalgamation (GFPA) G = A ∗C B, where C < A and
C < B, or an HNN extension G = HNN(A;α, γ : C → A), where α and γ are
monomorphisms. (We may also write G = A ∗C ϕ, where ϕ = γ ◦ α−1.) An HNN
extension is ascending if one of the associated subgroups is the base. In that case
we may assume that α = idA, and ϕ = γ is an injective endomorphism of A.

The virtual first Betti number vβ(G) of a finitely generated group is the least
upper bound of the first Betti numbers β1(N) of normal subgroups N of finite index
in G. Thus vβ(G) > 0 if some subgroup of finite index maps onto Z.

A group G is large if it has a subgroup of finite index which maps onto a non-
abelian free group. It is clear that if G is large then vβ(G) =∞.
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2. comparison of splittings

Let G be a group which is a GFPA A ∗C B or an HNN extension A ∗C ϕ. If
we identify the groups A,B and C with subgroups of G then inclusion defines a
partial order on such splittings: A∗C B 6 A′ ∗C′ B′ if A 6 A′, B 6 B′ and C 6 C ′,
and A ∗C ϕ 6 A′ ∗C′ ϕ′ if A 6 A′, C 6 C ′ and ϕ′|C = ϕ, and the stable letters
coincide. (In the HNN case we are really comparing splittings compatible with a
given epimorphism G→ Z ∼= G/〈〈A〉〉.)

Lemma 1. Let G = A′ ∗C ϕ be an HNN extension, with stable letter t, and let
A 6 A′ be a subgroup such that C ∪ ϕ(C) 6 A. If G = 〈A, t〉 then A = A′.

Proof. Let α ∈ A′. Then we may write α = a0t
ε1a1 . . . t

εnan where ai ∈ A and
εi = ±1, for all i, since G = 〈A, t〉. We may clearly assume that n is minimal.
Hence there are no substrings of the form tct−1 or t−1ϕ(c)t, with c ∈ C, in this
expression for α (since any such may be replaced by ϕ(c) or c, respectively). But
it then follows from Britton’s Lemma for the HNN extension A′ ∗C ϕ that n = 0,
and so α = a0 is in A. �

If G is a PD3-group then we would like to know when C can be chosen to be a
PD2-group.

Lemma 2. Let G be a PD3-group which is a generalized free product with amal-
gamation A ∗C B or an HNN extension A ∗C ϕ, with C a PD2-group. Then the
splitting is minimal in the partial order determined by inclusions.

Proof. Suppose that A′ ∗C′ B′ 6 A ∗C B or A′ ∗C′ ϕ′ 6 A ∗C ϕ (respectively), is
another splitting for G. Then C ′ is either a free group or has finite index in C.
The inclusions induce a commuting diagram relating the Mayer-Vietoris sequences
associated to the splittings. In each case, the left hand end of the diagram is

0→ H3(G;Z)
δ′−−−−→ H2(C ′;Z)

=

y y
0→ H3(G;Z)

δ−−−−→ H2(C;Z).

Since the connecting homomorphisms δ′ is injective, H2(C ′;Z) 6= 0, and so C ′

cannot be a free group. Hence it is a PD2-group, and so δ and δ′ are isomorphisms
[3]. Since the inclusion of C ′ into C has degree 1, we see that C ′ = C. If G = A′∗Cϕ
it then follows from Lemma 1 that A′ = A. If G = A ∗C B and G = A′ ∗C B′ then
a similar argument based on normal forms shows that A′ = A and B′ = B. �

If f : G → Z is an epimorphism then G ∼= A ∗C ϕ with Ker(f) = 〈〈A〉〉 and
stable letter represented by t ∈ G with f(t) = 1. For instance, we may take
C = A = Ker(f) and ϕ to be conjugation by t. If Ker(f) is finitely generated, this
is the only possibility (up to the choice of t with f(t) = ±1), but in general there are
other ways to do this. If G is FP2 then we may choose A and C finitely generated
[4], and if G is almost coherent then A and C are also FP2. The construction of
[4] gives a pair (A,C) with A generated by C ∪ ϕ(C), which is usually far from
minimal in this partial order. (See below for an example.) If G is FP then A is
FPk if and only if C is FPk, for any k > 1 [2, Proposition 2.13].

If G is FP2 and Ker(f) is not finitely generated then any HNN structure for
G with finitely generated base and associated subgroups is the initial term of an
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infinite increasing chain of such structures, obtained by applying the construction of
[4]. If G = A∗Aϕ is a properly ascending HNN extension, so that ϕ(A) < A, then G
has a doubly infinite chain of HNN structures, with bases the subgroups tnAt−n, for
n ∈ Z. However PDn-groups are never properly ascending HNN extensions. (See
Theorem 5 below.) Does every descending chain of HNN structures for a PD3-
group terminate? Do any PD3-groups which are HNN extensions have minimal
splittings over FP2-groups which are not PD2-groups?

Let T2 be the orientable surface of genus 2. The PD2-group H = π1(T2) has a
standard presentation

〈a, b, c, d | [a, b][c, d] = 1〉.

We may rewrite this presentation as

〈a, b, c, t | tct−1 = aba−1b−1c〉,

which displays H as an HNN extension F (a, b, c) ∗〈c〉 ϕ, split over the PD1-group
〈c〉 ∼= Z. The associated epimorphism f : H → Z is determined by f(a) = f(b) =
f(c) = 0 and f(d) = 1. In this case the algorithm from [4] would suggest taking
C = 〈a, b, c〉 and A = 〈a, b, c, tat−1, tbt−1〉, giving an HNN extension with base
A ∼= F (5) and split over C ∼= F (3). Taking products, we see then that the PD3-
group G = π1(T2×S1) = H ×Z splits over the PD2-group Z2, and is also an HNN
extension with base F (5)×Z and associated subgroups F (3)×Z. The latter groups
have one end, but are not PD2-groups.

Splittings over PD2-groups need not be unique. Let W be an aspherical ori-
entable 3-manifold with incompressible boundary and two boundary components
U, V . Let M = DW be the double of W along its boundary. Then M splits over
copies of U and V , and [U ] = [V ] in H2(M ;Z). If U and V are not homeomor-
phic the corresponding (minimal) splittings of G = π1(M) are evidently distinct.
For instance, we may start with the hyperbolic 3-manifold of [11, Example 3.3.12],
which is the exterior of a knotted θ-curve Θ ⊂ S3. Let W be obtained by deleting
an open regular neighbourhood of a meridian of one of the arcs of Θ. Then W is
aspherical, ∂W = T q T2 and each component of ∂W is incompressible in W .

3. indecomposable factors

If G is a PD3-group then c.d.A = c.d.C = 2, since these subgroups have infi-
nite index in G, and H2(C;Z) 6= 0, as observed in Lemma 2. A simple Mayer-
Vietoris argument shows that H1(A;Z[G]) ∼= H1(C;Z[G]) as right Z[G]-modules,
since Hi(G;Z[G]) = 0 for i 6 2. (Note that the latter condition fails for PD2-
groups.) The isomorphism is given by the difference α∗−γ∗ of the homomorphisms
induced by α and γ.

We shall assume henceforth that A and C are finitely generated. Then these
modules may be obtained by extension of coefficients from the “end modules”
H1(A;Z[A]) and H1(C;Z[C]). If one is 0 so is the other, and so A has one end if
and only if C has one end. If A and C are FP2 and have one end then they are
2-dimensional duality groups, and we may hope to apply the ideas of [9].

Can G have splittings with base and associated subgroups having more than one
end? The next lemma implies that the subgroups A and C must have the same
numbers of indecomposable factors. (The analogous statement for PD2-groups is
false, as may be seen from the example in §2 above!)
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Lemma 3. Let K = (∗mi=1Ki)∗F (n) be the free product of m > 1 finitely generated
groups Ki with one end and n > 0 copies of Z. Then H1(K;Z[K]) ∼= Z[K]r−1,
where r = m+ n is the number of indecomposable factors of K.

Proof. If n = 0 the result follows from the Mayer-Vietoris sequence for the free
product, with coefficients Z[K].

In general, let J = ∗mi=1Ki and let C∗(J) be a resolution of the augmentation
module Z by free Z[J ]-modules, with C0(J) = Z[J ]. Then there is a corresponding
resolution C∗(K) of Z with Cq(K) ∼= Z[K] ⊗Z[J] Cq(J) if q 6= 1 and C1(K) ∼=
Z[K]⊗Z[J]Cq(J)⊕Z[K]n. Hence there is a short exact sequence of chain complexes
(of left Z[K]-modules)

0→ Z[K]⊗Z[J] C∗(J)→ C∗(K)→ Z[K]n → 0,

where the third term is concentrated in degree 1. The exact sequence of cohomology
with coefficients Z[K] gives a short exact sequence of right Z[K]-modules

0→ Z[K]n → H1(K;Z[K])→ H1(HomZ[K](Z[K]⊗Z[J] C∗(J),Z[K])→ 0.

We may identify the right-hand term with H1(J ;Z[J ])⊗Z[J]Z[K] ∼= Z[K]m−1, since
J is finitely generated. The lemma follows easily. �

The lemma applies to A and C, since they are finitely generated and torsion-free.
The indecomposable factors of C are either conjugate to subgroups of indecompos-
able factors of A or are infinite cyclic, by the Kurosh subgroup theorem. If A and
C have no free factors and the factors of C are conjugate into distinct factors of A
then, after modifying ϕ appropriately, we may assume that α(Ci) 6 Ai, for all i.
However, we cannot expect to also normalize γ in a similar fashion.

4. the dual class

If M is a closed 3-manifold with β1(M) > 0 then there is an essential map
f : M → S1. Transversality and the Loop Theorem together imply that there
is a closed incompressible surface S ⊂ M such that M \ S is connected. Hence
π1(M) is an HNN extension with base π1(M \ S) and associated subgroups copies
of π1(S). Moreover, the stable letter of the extension is represented by a simple
closed curve in M which intersects S transversely in one point. Let w = w1(M).
Then w1(S) = w|S and the image of the fundamental class [S] in H2(M ;Zw) is
Poincaré dual to the image of f in H1(M ;Z) = [M,S1].

There is no obvious analogue of transversality in group theory. Nevertheless a
similar result holds for PD3-groups. (We consider only the orientable case, for
simplicity.)

Theorem 4. Let G = HNN(A;α, γ : C → A) be an orientable PD3-group which is
an HNN extension split over a PD2-group C. Let f ∈ H1(G;Z) be the epimorphism
with kernel 〈〈A〉〉G. Then f _ [G] is the image of [C] in H2(G;Z), up to sign.

Proof. The subgroup C is orientable and the pair (A;α, γ) is a PD+
3 -pair [3, The-

orem 8.1], and so there is an exact sequence

H3(A, ∂;Z)
(1,1)−−−−→ H2(C;Z)⊕H2(C;Z)

(α∗,−γ∗)−−−−−−→ H2(A;Z)→ H2(A; ∂;Z).

Hence α∗[C] = γ∗[C], and the subgroup they generate is an infinite cyclic direct
summand of H2(A;Z), since H2(A; ∂;Z) ∼= H1(A;Z) is free abelian.
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Let t ∈ G correspond to the stable letter for the HNN extension, and let Aj =
tjAt−j , αj(c) = tjα(c)t−j and γj(c) = tjγ(c)t−j , for all c ∈ C and j ∈ Z. Let Kp

be the subgroup generated by ∪|j|6|p|Aj , for p > 0. Then K0 = A and

Kp+1 = A−p−1 ∗α−p=γ−p−1 Kp ∗αp+1=γp Ap+1, for all p > 0,

and K = 〈〈A〉〉G = Ker(f) is the increasing union K = ∪Kp of iterated amal-
gamations with copies of A over copies of C. Each pair (Kp;α−p, γp) is again a
PD+

3 -pair, and so the images of [C] in H2(K;Z) under the homomorphisms induced
by the αns all agree.

Let Λ = Z[G/K] = Z[t, t−1], and let ε : Λ → Z be the augmentation. Then
Hi(K;Z) = H2(G; Λ) is a finitely generated Λ-module, with action deriving from
the action of G on K by conjugation. Then H2(G; Λ) = H2(K;Z) = limH2(Kp;Z).
Since t.αn∗[C] = α(n+1)∗[C] = αn∗[C], for all n, the image of [C] in H2(K;Z)
generates an infinite cyclic direct summand.

Poincaré duality gives an isomorphism H2(G; Λ) ∼= H1(G; Λ), and this is in

turn an extension of HomΛ(K/K ′,Λ) by Ext1Λ(Z,Λ), by the Universal Coefficient

spectral sequence. Note that HomΛ(K/K ′,Λ) has no non-trivial Λ-torsion, while
Ext1Λ(Z,Λ) ∼= Λ/(t− 1)Λ = Z.

We have a commutative diagram

H1(Z; Λ)
H1(f)−−−−→ H1(G; Λ)

_[G]−−−−→ H2(G; Λ)

∼=
yε# yε# yε#

H1(Z;Z)
idZ 7→f−−−−→ H1(G;Z)

_[G]−−−−→ H2(G;Z)

in which the vertical homomorphisms are induced by the change of coefficients ε and
the two right hand horizontal homomorphisms are Poincaré duality isomorphisms.
Since H1(f) carries H1(Z; Λ) = Ext1Λ(Z,Λ) ∼= Z onto the Λ-torsion submodule of
H1(G; Λ), a diagram chase shows that f _ [G] is the image of [C] in H2(G;Z), up
to sign. �

In [10] it is shown that if a PD3-group G has a subgroup S which is a PD2-
group then G splits over a subgroup commensurate with S if and only if an invariant
sing(S) ∈ Z/2Z is 0, and then S is maximal among compatibly oriented commen-
surate subgroups. Theorem 4 suggests a slight refinement of this splitting criterion.

Theorem (Kropholler-Roller [10]). Let G be an orientable PD3-group and S < G
a subgroup which is an orientable PD2-group. Then

(1) G ∼= A ∗T B for some T commensurate with S ⇔ sing(S) = 0 and [S] = 0
in H2(G;Z);

(2) G ∼= A ∗T ϕ for some T commensurate with S ⇔ sing(S) = 0 and [S] has
infinite order in H2(G;Z);

(3) G ∼= A ∗S ϕ ⇔ sing(S) = 0 and [S] generates an infinite direct summand
of H2(G;Z).

Proof. The group G splits over a subgroup T commensurate with S if and only
if sing(S) = 0 [10], and [S] and [T ] are then proportional. If G = A ∗T B is a
generalized free product with amalgamation over a PD2-group T then the pairs
(A, T ) and (B, T ) are again PD+

3 -pairs [3]. The image of [T ] in H2(G;Z) is trivial,
since T bounds each of (A, T ) and (B, T ), and so [S] = 0 also.
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If G ∼= A ∗T ϕ is an HNN extension then the Poincaré dual of [T ] is an epimor-
phism f : G → Z, by the theorem, and so [T ] generates an infinite cyclic direct
summand of H2(G;Z). Hence [S] also has infinite order. �

If [C] = [S] and sing(S) = 0 is sing(C) = 0 also?

5. no properly ascending HNN extensions

Cohomological arguments imply that no PD3-group is a properly ascending HNN
extension [7, Theorem 3]. A stronger result holds for 3-manifold groups: no finitely
generated subgroup can be conjugate to a proper subgroup of itself [6]. We shall
adapt the argument of [7] to prove the corresponding result for FP2 subgroups of
PD3-groups.

Theorem 5. Let H be an FP2 subgroup of a PD3-group G. If gHg−1 6 H for
some g ∈ G then gHg−1 = H.

Proof. Suppose that gHg−1 < H. Then g 6∈ H. Let θ(h) = ghg−1, for all h ∈ H,
and let K = H ∗H θ be the associated HNN extension, with stable letter t. The
normal closure of H in K is the union ∪r∈ZtrHt−r, and so every element of K
has a normal form k = tmtrht−r, where m is uniquely determined by k, and h is
determined by k,m and r. Let f : K → G be the homomorphism defined by f(h) =
h for all h ∈ H and f(t) = g. If f(tmtrht−r) = f(tntsh′t−s) for some m,n, r, s then
gn−m = gsh′g−sgth−1g−t. After conjugating by a power of g if necessary, we may
assume that s, t > 0, and so gn−m ∈ H. But then H = g|n−m|Hg−|n−m|. Since
gHg−1 is a proper subgroup of H, we must have n = m. It follows easily that f is
an isomorphism from K to the subgroup of G generated by g and H.

Since K is an ascending HNN extension with FP2-base, H1(K;Z[K]) is a quo-
tient of H0(H;Z[K]) = 0 [5, Theorem 0.1]. Hence it has one end. Since no PD3-
group is an ascending HNN extension [7, Theorem 3], K is a 2-dimensional duality
group. Hence it is the ambient group of a PD3-pair (K,S) [9]. Doubling this pair
along its boundary gives a PD3-group. But this is again a properly ascending HNN
extension, and so cannot happen. Therefore the original supposition was false, and
so gHg−1 = H. �

6. residual finiteness, splitting and largeness

The fundamental group of an aspherical closed 3-manifold is either solvable or
large [1, Flowcharts 1 and 4]. This is also so for residually finite PD3-groups
containing Z2 [8, Theorem 11.19]. Here we shall give a weaker result for PD3-
groups which split over other PD2-groups.

Theorem 6. Let G be a residually finite orientable PD3-group which splits over
an orientable PD2-group C. Then either β1(G) > 0, or G maps onto D∞, or G is
large. Hence vβ(G) > 0. If G is LERF and χ(C) < 0 then G is large.

Proof. For the first assertion, we may assume that β1(G) = 0, and that G ∼=
A ∗C B. Then (A,C) and (B,C) are PD3-pairs, and so β1(C) 6 2β1(A) and
β1(C) 6 2β1(B). Since β1(C) > 0, we must have β1(A) > 0 and β1(B) > 0 also.
Moreover β1(C) = β1(A) + β1(B), since H1(G) is finite and H2(G) = 0. Hence
β1(C) > β1(A) and β1(C) > β1(B).

Let {∆n|n > 1} be a descending filtration of G by normal subgroups of finite
index. Then An = A/A∩∆n, Bn = B/B ∩∆n and Cn = C/C ∩∆n are finite, and
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G maps onto An ∗Cn
Bn, for all n. If An ∗Cn

Bn is finite then Cn = An or Bn. Thus
if all these quotients of G are finite we may assume that Cn = An for all n. But
then the inclusion of C into A induces an isomorphism on profinite completions,
and so β1(C) = β1(A), contrary to what was shown in the paragraph above.

If Cn is a proper subgroup of both An and Bn then either [An : Cn] = [Bn : Cn] =
2, in which case G maps onto D∞, or one of these indices is greater than 2, in which
case An ∗Cn

Bn is virtually free of rank > 1, and so G is large. In each case, it is
clear that vβ(G) > 1.

Suppose now that G is LERF. If [An : Cn] 6 2 then Cn is normal in An, and so
C(A ∩∆n) is normal in A. Hence if [An : Cn] 6 2 for all n then ∩nC(A ∩∆n) is
normal in A. Since G is LERF, this intersection is C. Hence if both [An : Cn] 6 2
and [Bn : Cn] 6 2 for all n then C is normal in G, so G is virtually a semidirect
product CoZ, and is a 3-manifold group. If χ(C) < 0 then G is large [1, Flowcharts
1 and 4]. �

Remark. The lower central series of D∞ = Z/2Z ∗ Z/2Z gives a descending
filtration by normal subgroups of finite index which meets each of the free factors
trivially.

Is every PD3-group either solvable or large?
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