PD3-GROUPS AND HNN EXTENSIONS

JONATHAN A. HILLMAN

ABSTRACT. We show that if a PD_3 -group G splits as an HNN extension $A*_C \varphi$ where C is a PD_2 -group then the Poincaré dual in $H^1(G; \mathbb{Z}) = Hom(G, \mathbb{Z})$ of the homology class [C] is the epimorphism $f: G \to \mathbb{Z}$ with kernel the normal closure of A. We also make several other observations about PD_3 -groups which split over PD_2 -groups.

In this note we shall give algebraic analogues of some properties of Haken 3-manifolds. We are interested in the question "when does a PD_3 -group split over a PD_2 -group?". In §2 we show that such splittings are minimal in a natural partial order on splittings over more general subgroups. In the next two sections we consider PD_3 -groups G which split as an HNN extension $A *_C \varphi$ with A and C finitely generated. In §3 we show that A and C have the same number of indecomposable factors. Our main result is in §4, where we show that if C is a PD_2 -group then the Poincaré dual in $H^1(G; \mathbb{Z}) = Hom(G, \mathbb{Z})$ of the homology class [C] is the epimorphism $f: G \to \mathbb{Z}$ with kernel the normal closure of A. In §5 we extend an argument from [7] to show that no FP_2 subgroup of a PD_3 -group is a properly ascending HNN extension, and in §6 we show that if G is residually finite and splits over a PD_2 -group then G has a subgroup of finite index with infinite abelianization. Our arguments extend readily to PD_n -groups with PD_{n-1} -subgroups, but as our primary interest is in the case n=3, we shall formulate our results in such terms.

1. TERMINOLOGY

We mention here three properties of 3-manifold groups that are not yet known for all PD_3 -groups: coherence, residual finiteness and having subgroups of finite index with infinite abelianization. Coherence may often be sidestepped by requiring the subgroups in play to be FP_2 rather than finitely generated. If every finitely generated subgroup of a group G is FP_2 we say that G is almost coherent.

We shall say that a group G is split over a subgroup C if it is either a generalized free product with amalgamation (GFPA) $G=A*_CB$, where C<A and C<B, or an HNN extension $G=HNN(A;\alpha,\gamma:C\to A)$, where α and γ are monomorphisms. (We may also write $G=A*_C\varphi$, where $\varphi=\gamma\circ\alpha^{-1}$.) An HNN extension is ascending if one of the associated subgroups is the base. In that case we may assume that $\alpha=id_A$, and $\varphi=\gamma$ is an injective endomorphism of A.

The virtual first Betti number $v\beta(G)$ of a finitely generated group is the least upper bound of the first Betti numbers $\beta_1(N)$ of normal subgroups N of finite index in G. Thus $v\beta(G) > 0$ if some subgroup of finite index maps onto \mathbb{Z} .

A group G is large if it has a subgroup of finite index which maps onto a non-abelian free group. It is clear that if G is large then $v\beta(G) = \infty$.

¹⁹⁹¹ Mathematics Subject Classification. 57N13.

 $Key\ words\ and\ phrases.$ fundamental class, HNN extension, PD_3 -group, surface group.

2. Comparison of splittings

Let G be a group which is a GFPA $A*_C B$ or an HNN extension $A*_C \varphi$. If we identify the groups A, B and C with subgroups of G then inclusion defines a partial order on such splittings: $A*_C B \leqslant A'*_{C'} B'$ if $A \leqslant A', B \leqslant B'$ and $C \leqslant C'$, and $A*_C \varphi \leqslant A'*_{C'} \varphi'$ if $A \leqslant A', C \leqslant C'$ and $\varphi'|_C = \varphi$, and the stable letters coincide. (In the HNN case we are really comparing splittings compatible with a given epimorphism $G \to \mathbb{Z} \cong G/\langle\langle A \rangle\rangle$.)

Lemma 1. Let $G = A' *_C \varphi$ be an HNN extension, with stable letter t, and let $A \leq A'$ be a subgroup such that $C \cup \varphi(C) \leq A$. If $G = \langle A, t \rangle$ then A = A'.

Proof. Let $\alpha \in A'$. Then we may write $\alpha = a_0 t^{\varepsilon_1} a_1 \dots t^{\varepsilon_n} a_n$ where $a_i \in A$ and $\varepsilon_i = \pm 1$, for all i, since $G = \langle A, t \rangle$. We may clearly assume that n is minimal. Hence there are no substrings of the form tct^{-1} or $t^{-1}\varphi(c)t$, with $c \in C$, in this expression for α (since any such may be replaced by $\varphi(c)$ or c, respectively). But it then follows from Britton's Lemma for the HNN extension $A' *_C \varphi$ that n = 0, and so $\alpha = a_0$ is in A.

If G is a PD_3 -group then we would like to know when C can be chosen to be a PD_2 -group.

Lemma 2. Let G be a PD₃-group which is a generalized free product with amalgamation $A *_C B$ or an HNN extension $A *_C \varphi$, with C a PD₂-group. Then the splitting is minimal in the partial order determined by inclusions.

Proof. Suppose that $A' *_{C'} B' \leq A *_C B$ or $A' *_{C'} \varphi' \leq A *_C \varphi$ (respectively), is another splitting for G. Then C' is either a free group or has finite index in C. The inclusions induce a commuting diagram relating the Mayer-Vietoris sequences associated to the splittings. In each case, the left hand end of the diagram is

$$0 \to H_3(G; \mathbb{Z}) \xrightarrow{\delta'} H_2(C'; \mathbb{Z})$$

$$= \downarrow \qquad \qquad \downarrow$$

$$0 \to H_3(G; \mathbb{Z}) \xrightarrow{\delta} H_2(C; \mathbb{Z}).$$

Since the connecting homomorphisms δ' is injective, $H_2(C'; \mathbb{Z}) \neq 0$, and so C' cannot be a free group. Hence it is a PD_2 -group, and so δ and δ' are isomorphisms [3]. Since the inclusion of C' into C has degree 1, we see that C' = C. If $G = A' *_C \varphi$ it then follows from Lemma 1 that A' = A. If $G = A *_C B$ and $G = A' *_C B'$ then a similar argument based on normal forms shows that A' = A and B' = B.

If $f:G\to\mathbb{Z}$ is an epimorphism then $G\cong A*_C\varphi$ with $\mathrm{Ker}(f)=\langle\langle A\rangle\rangle$ and stable letter represented by $t\in G$ with f(t)=1. For instance, we may take $C=A=\mathrm{Ker}(f)$ and φ to be conjugation by t. If $\mathrm{Ker}(f)$ is finitely generated, this is the only possibility (up to the choice of t with $f(t)=\pm 1$), but in general there are other ways to do this. If G is FP_2 then we may choose A and C finitely generated [4], and if G is almost coherent then A and C are also FP_2 . The construction of [4] gives a pair (A,C) with A generated by $C\cup \varphi(C)$, which is usually far from minimal in this partial order. (See below for an example.) If G is FP then A is FP_k if and only if C is FP_k , for any $k\geqslant 1$ [2, Proposition 2.13].

If G is FP_2 and Ker(f) is not finitely generated then any HNN structure for G with finitely generated base and associated subgroups is the initial term of an

infinite increasing chain of such structures, obtained by applying the construction of [4]. If $G = A *_A \varphi$ is a properly ascending HNN extension, so that $\varphi(A) < A$, then G has a doubly infinite chain of HNN structures, with bases the subgroups $t^n A t^{-n}$, for $n \in \mathbb{Z}$. However PD_n -groups are never properly ascending HNN extensions. (See Theorem 5 below.) Does every descending chain of HNN structures for a PD_3 -group terminate? Do any PD_3 -groups which are HNN extensions have minimal splittings over FP_2 -groups which are not PD_2 -groups?

Let T_2 be the orientable surface of genus 2. The PD_2 -group $H = \pi_1(T_2)$ has a standard presentation

$$\langle a, b, c, d \mid [a, b][c, d] = 1 \rangle.$$

We may rewrite this presentation as

$$\langle a, b, c, t \mid tct^{-1} = aba^{-1}b^{-1}c \rangle,$$

which displays H as an HNN extension $F(a,b,c)*_{\langle c\rangle}\varphi$, split over the PD_1 -group $\langle c\rangle\cong\mathbb{Z}$. The associated epimorphism $f:H\to\mathbb{Z}$ is determined by f(a)=f(b)=f(c)=0 and f(d)=1. In this case the algorithm from [4] would suggest taking $C=\langle a,b,c\rangle$ and $A=\langle a,b,c,tat^{-1},tbt^{-1}\rangle$, giving an HNN extension with base $A\cong F(5)$ and split over $C\cong F(3)$. Taking products, we see then that the PD_3 -group $G=\pi_1(T_2\times S^1)=H\times\mathbb{Z}$ splits over the PD_2 -group \mathbb{Z}^2 , and is also an HNN extension with base $F(5)\times\mathbb{Z}$ and associated subgroups $F(3)\times\mathbb{Z}$. The latter groups have one end, but are not PD_2 -groups.

Splittings over PD_2 -groups need not be unique. Let W be an aspherical orientable 3-manifold with incompressible boundary and two boundary components U, V. Let M = DW be the double of W along its boundary. Then M splits over copies of U and V, and [U] = [V] in $H_2(M; \mathbb{Z})$. If U and V are not homeomorphic the corresponding (minimal) splittings of $G = \pi_1(M)$ are evidently distinct. For instance, we may start with the hyperbolic 3-manifold of [11, Example 3.3.12], which is the exterior of a knotted θ -curve $\Theta \subset S^3$. Let W be obtained by deleting an open regular neighbourhood of a meridian of one of the arcs of Θ . Then W is aspherical, $\partial W = T \coprod T_2$ and each component of ∂W is incompressible in W.

3. INDECOMPOSABLE FACTORS

If G is a PD_3 -group then c.d.A = c.d.C = 2, since these subgroups have infinite index in G, and $H_2(C;\mathbb{Z}) \neq 0$, as observed in Lemma 2. A simple Mayer-Vietoris argument shows that $H^1(A;\mathbb{Z}[G]) \cong H^1(C;\mathbb{Z}[G])$ as right $\mathbb{Z}[G]$ -modules, since $H^i(G;\mathbb{Z}[G]) = 0$ for $i \leq 2$. (Note that the latter condition fails for PD_2 -groups.) The isomorphism is given by the difference $\alpha_* - \gamma_*$ of the homomorphisms induced by α and γ .

We shall assume henceforth that A and C are finitely generated. Then these modules may be obtained by extension of coefficients from the "end modules" $H^1(A; \mathbb{Z}[A])$ and $H^1(C; \mathbb{Z}[C])$. If one is 0 so is the other, and so A has one end if and only if C has one end. If A and C are FP_2 and have one end then they are 2-dimensional duality groups, and we may hope to apply the ideas of [9].

Can G have splittings with base and associated subgroups having more than one end? The next lemma implies that the subgroups A and C must have the same numbers of indecomposable factors. (The analogous statement for PD_2 -groups is false, as may be seen from the example in $\S 2$ above!)

Lemma 3. Let $K = (*_{i=1}^m K_i) * F(n)$ be the free product of $m \ge 1$ finitely generated groups K_i with one end and $n \ge 0$ copies of \mathbb{Z} . Then $H^1(K; \mathbb{Z}[K]) \cong \mathbb{Z}[K]^{r-1}$, where r = m + n is the number of indecomposable factors of K.

Proof. If n=0 the result follows from the Mayer-Vietoris sequence for the free product, with coefficients $\mathbb{Z}[K]$.

In general, let $J=*_{i=1}^mK_i$ and let $C_*(J)$ be a resolution of the augmentation module \mathbb{Z} by free $\mathbb{Z}[J]$ -modules, with $C_0(J)=\mathbb{Z}[J]$. Then there is a corresponding resolution $C_*(K)$ of \mathbb{Z} with $C_q(K)\cong \mathbb{Z}[K]\otimes_{\mathbb{Z}[J]}C_q(J)$ if $q\neq 1$ and $C_1(K)\cong \mathbb{Z}[K]\otimes_{\mathbb{Z}[J]}C_q(J)\oplus \mathbb{Z}[K]^n$. Hence there is a short exact sequence of chain complexes (of left $\mathbb{Z}[K]$ -modules)

$$0 \to \mathbb{Z}[K] \otimes_{\mathbb{Z}[J]} C_*(J) \to C_*(K) \to \mathbb{Z}[K]^n \to 0,$$

where the third term is concentrated in degree 1. The exact sequence of cohomology with coefficients $\mathbb{Z}[K]$ gives a short exact sequence of $right \mathbb{Z}[K]$ -modules

$$0 \to \mathbb{Z}[K]^n \to H^1(K; \mathbb{Z}[K]) \to H^1(Hom_{\mathbb{Z}[K]}(\mathbb{Z}[K] \otimes_{\mathbb{Z}[J]} C_*(J), \mathbb{Z}[K]) \to 0.$$

We may identify the right-hand term with $H^1(J; \mathbb{Z}[J]) \otimes_{\mathbb{Z}[J]} \mathbb{Z}[K] \cong \mathbb{Z}[K]^{m-1}$, since J is finitely generated. The lemma follows easily.

The lemma applies to A and C, since they are finitely generated and torsion-free. The indecomposable factors of C are either conjugate to subgroups of indecomposable factors of A or are infinite cyclic, by the Kurosh subgroup theorem. If A and C have no free factors and the factors of C are conjugate into distinct factors of A then, after modifying φ appropriately, we may assume that $\alpha(C_i) \leq A_i$, for all i. However, we cannot expect to also normalize γ in a similar fashion.

4. THE DUAL CLASS

If M is a closed 3-manifold with $\beta_1(M) > 0$ then there is an essential map $f: M \to S^1$. Transversality and the Loop Theorem together imply that there is a closed incompressible surface $S \subset M$ such that $M \setminus S$ is connected. Hence $\pi_1(M)$ is an HNN extension with base $\pi_1(M \setminus S)$ and associated subgroups copies of $\pi_1(S)$. Moreover, the stable letter of the extension is represented by a simple closed curve in M which intersects S transversely in one point. Let $w = w_1(M)$. Then $w_1(S) = w|_S$ and the image of the fundamental class [S] in $H_2(M; \mathbb{Z}^w)$ is Poincaré dual to the image of f in $H^1(M; \mathbb{Z}) = [M, S^1]$.

There is no obvious analogue of transversality in group theory. Nevertheless a similar result holds for PD_3 -groups. (We consider only the orientable case, for simplicity.)

Theorem 4. Let $G = HNN(A; \alpha, \gamma : C \to A)$ be an orientable PD_3 -group which is an HNN extension split over a PD_2 -group C. Let $f \in H^1(G; \mathbb{Z})$ be the epimorphism with kernel $\langle \langle A \rangle \rangle_G$. Then $f \frown [G]$ is the image of [C] in $H_2(G; \mathbb{Z})$, up to sign.

Proof. The subgroup C is orientable and the pair $(A; \alpha, \gamma)$ is a PD_3^+ -pair [3, Theorem 8.1], and so there is an exact sequence

$$H_3(A, \partial; \mathbb{Z}) \xrightarrow{(1,1)} H_2(C; \mathbb{Z}) \oplus H_2(C; \mathbb{Z}) \xrightarrow{(\alpha_*, -\gamma_*)} H_2(A; \mathbb{Z}) \to H_2(A; \partial; \mathbb{Z}).$$

Hence $\alpha_*[C] = \gamma_*[C]$, and the subgroup they generate is an infinite cyclic direct summand of $H_2(A; \mathbb{Z})$, since $H_2(A; \mathbb{Z}) \cong H^1(A; \mathbb{Z})$ is free abelian.

Let $t \in G$ correspond to the stable letter for the HNN extension, and let $A_j = t^j A t^{-j}$, $\alpha_j(c) = t^j \alpha(c) t^{-j}$ and $\gamma_j(c) = t^j \gamma(c) t^{-j}$, for all $c \in C$ and $j \in \mathbb{Z}$. Let K_p be the subgroup generated by $\bigcup_{|j| \leq |p|} A_j$, for $p \geq 0$. Then $K_0 = A$ and

$$K_{p+1} = A_{-p-1} *_{\alpha_{-p} = \gamma_{-p-1}} K_p *_{\alpha_{p+1} = \gamma_p} A_{p+1}, \text{ for all } p \ge 0,$$

and $K = \langle \langle A \rangle \rangle_G = \operatorname{Ker}(f)$ is the increasing union $K = \cup K_p$ of iterated amalgamations with copies of A over copies of C. Each pair $(K_p; \alpha_{-p}, \gamma_p)$ is again a PD_3^+ -pair, and so the images of [C] in $H_2(K; \mathbb{Z})$ under the homomorphisms induced by the α_n s all agree.

Let $\Lambda = \mathbb{Z}[G/K] = \mathbb{Z}[t,t^{-1}]$, and let $\varepsilon : \Lambda \to \mathbb{Z}$ be the augmentation. Then $H_i(K;\mathbb{Z}) = H_2(G;\Lambda)$ is a finitely generated Λ -module, with action deriving from the action of G on K by conjugation. Then $H_2(G;\Lambda) = H_2(K;\mathbb{Z}) = \lim H_2(K_p;\mathbb{Z})$. Since $t.\alpha_{n*}[C] = \alpha_{(n+1)*}[C] = \alpha_{n*}[C]$, for all n, the image of [C] in $H_2(K;\mathbb{Z})$ generates an infinite cyclic direct summand.

Poincaré duality gives an isomorphism $H_2(G;\Lambda) \cong \overline{H^1(G;\Lambda)}$, and this is in turn an extension of $\overline{Hom_{\Lambda}(K/K',\Lambda)}$ by $Ext^1_{\Lambda}(\mathbb{Z},\Lambda)$, by the Universal Coefficient spectral sequence. Note that $\overline{Hom_{\Lambda}(K/K',\Lambda)}$ has no non-trivial Λ -torsion, while $Ext^1_{\Lambda}(\mathbb{Z},\Lambda) \cong \Lambda/(t-1)\Lambda = \mathbb{Z}$.

We have a commutative diagram

$$H^{1}(\mathbb{Z}; \Lambda) \xrightarrow{H^{1}(f)} H^{1}(G; \Lambda) \xrightarrow{\frown [G]} H_{2}(G; \Lambda)$$

$$\cong \downarrow^{\varepsilon_{\#}} \qquad \qquad \downarrow^{\varepsilon_{\#}} \qquad \qquad \downarrow^{\varepsilon_{\#}}$$

$$H^{1}(\mathbb{Z}; \mathbb{Z}) \xrightarrow{id_{\mathbb{Z}} \mapsto f} H^{1}(G; \mathbb{Z}) \xrightarrow{\frown [G]} H_{2}(G; \mathbb{Z})$$

in which the vertical homomorphisms are induced by the change of coefficients ε and the two right hand horizontal homomorphisms are Poincaré duality isomorphisms. Since $H^1(f)$ carries $H^1(\mathbb{Z};\Lambda) = Ext^1_{\Lambda}(\mathbb{Z},\Lambda) \cong \mathbb{Z}$ onto the Λ -torsion submodule of $H^1(G;\Lambda)$, a diagram chase shows that $f \cap [G]$ is the image of [C] in $H_2(G;\mathbb{Z})$, up to sign.

In [10] it is shown that if a PD_3 -group G has a subgroup S which is a PD_2 -group then G splits over a subgroup commensurate with S if and only if an invariant $sing(S) \in \mathbb{Z}/2\mathbb{Z}$ is 0, and then S is maximal among compatibly oriented commensurate subgroups. Theorem 4 suggests a slight refinement of this splitting criterion.

Theorem (Kropholler-Roller [10]). Let G be an orientable PD_3 -group and S < G a subgroup which is an orientable PD_2 -group. Then

- (1) $G \cong A *_T B$ for some T commensurate with $S \Leftrightarrow sing(S) = 0$ and [S] = 0 in $H_2(G; \mathbb{Z})$;
- (2) $G \cong A *_T \varphi$ for some T commensurate with $S \Leftrightarrow sing(S) = 0$ and [S] has infinite order in $H_2(G; \mathbb{Z})$;
- (3) $G \cong A *_S \varphi \Leftrightarrow sing(S) = 0$ and [S] generates an infinite direct summand of $H_2(G; \mathbb{Z})$.

Proof. The group G splits over a subgroup T commensurate with S if and only if sing(S) = 0 [10], and [S] and [T] are then proportional. If $G = A *_T B$ is a generalized free product with amalgamation over a PD_2 -group T then the pairs (A,T) and (B,T) are again PD_3^+ -pairs [3]. The image of [T] in $H_2(G;\mathbb{Z})$ is trivial, since T bounds each of (A,T) and (B,T), and so [S] = 0 also.

If $G \cong A *_T \varphi$ is an HNN extension then the Poincaré dual of [T] is an epimorphism $f: G \to \mathbb{Z}$, by the theorem, and so [T] generates an infinite cyclic direct summand of $H_2(G; \mathbb{Z})$. Hence [S] also has infinite order.

If [C] = [S] and sing(S) = 0 is sing(C) = 0 also?

5. NO PROPERLY ASCENDING HNN EXTENSIONS

Cohomological arguments imply that no PD_3 -group is a properly ascending HNN extension [7, Theorem 3]. A stronger result holds for 3-manifold groups: no finitely generated subgroup can be conjugate to a proper subgroup of itself [6]. We shall adapt the argument of [7] to prove the corresponding result for FP_2 subgroups of PD_3 -groups.

Theorem 5. Let H be an FP_2 subgroup of a PD_3 -group G. If $gHg^{-1} \leq H$ for some $g \in G$ then $gHg^{-1} = H$.

Proof. Suppose that $gHg^{-1} < H$. Then $g \notin H$. Let $\theta(h) = ghg^{-1}$, for all $h \in H$, and let $K = H *_H \theta$ be the associated HNN extension, with stable letter t. The normal closure of H in K is the union $\bigcup_{r \in \mathbb{Z}} t^r H t^{-r}$, and so every element of K has a normal form $k = t^m t^r h t^{-r}$, where m is uniquely determined by k, and h is determined by k, m and r. Let $f: K \to G$ be the homomorphism defined by f(h) = h for all $h \in H$ and f(t) = g. If $f(t^m t^r h t^{-r}) = f(t^n t^s h' t^{-s})$ for some m, n, r, s then $g^{n-m} = g^s h' g^{-s} g^t h^{-1} g^{-t}$. After conjugating by a power of g if necessary, we may assume that $s, t \geq 0$, and so $g^{n-m} \in H$. But then $H = g^{|n-m|} H g^{-|n-m|}$. Since gHg^{-1} is a proper subgroup of H, we must have n = m. It follows easily that f is an isomorphism from K to the subgroup of G generated by g and H.

Since K is an ascending HNN extension with FP_2 -base, $H^1(K; \mathbb{Z}[K])$ is a quotient of $H^0(H; \mathbb{Z}[K]) = 0$ [5, Theorem 0.1]. Hence it has one end. Since no PD_3 -group is an ascending HNN extension [7, Theorem 3], K is a 2-dimensional duality group. Hence it is the ambient group of a PD_3 -pair (K, \mathcal{S}) [9]. Doubling this pair along its boundary gives a PD_3 -group. But this is again a properly ascending HNN extension, and so cannot happen. Therefore the original supposition was false, and so $gHg^{-1} = H$.

6. RESIDUAL FINITENESS, SPLITTING AND LARGENESS

The fundamental group of an aspherical closed 3-manifold is either solvable or large [1, Flowcharts 1 and 4]. This is also so for residually finite PD_3 -groups containing \mathbb{Z}^2 [8, Theorem 11.19]. Here we shall give a weaker result for PD_3 -groups which split over other PD_2 -groups.

Theorem 6. Let G be a residually finite orientable PD_3 -group which splits over an orientable PD_2 -group C. Then either $\beta_1(G) > 0$, or G maps onto D_{∞} , or G is large. Hence $v\beta(G) > 0$. If G is LERF and $\chi(C) < 0$ then G is large.

Proof. For the first assertion, we may assume that $\beta_1(G) = 0$, and that $G \cong A *_C B$. Then (A, C) and (B, C) are PD_3 -pairs, and so $\beta_1(C) \leqslant 2\beta_1(A)$ and $\beta_1(C) \leqslant 2\beta_1(B)$. Since $\beta_1(C) > 0$, we must have $\beta_1(A) > 0$ and $\beta_1(B) > 0$ also. Moreover $\beta_1(C) = \beta_1(A) + \beta_1(B)$, since $H_1(G)$ is finite and $H_2(G) = 0$. Hence $\beta_1(C) > \beta_1(A)$ and $\beta_1(C) > \beta_1(B)$.

Let $\{\Delta_n|n\geqslant 1\}$ be a descending filtration of G by normal subgroups of finite index. Then $A_n=A/A\cap\Delta_n$, $B_n=B/B\cap\Delta_n$ and $C_n=C/C\cap\Delta_n$ are finite, and

G maps onto $A_n *_{C_n} B_n$, for all n. If $A_n *_{C_n} B_n$ is finite then $C_n = A_n$ or B_n . Thus if all these quotients of G are finite we may assume that $C_n = A_n$ for all n. But then the inclusion of C into A induces an isomorphism on profinite completions, and so $\beta_1(C) = \beta_1(A)$, contrary to what was shown in the paragraph above.

If C_n is a proper subgroup of both A_n and B_n then either $[A_n : C_n] = [B_n : C_n] = 2$, in which case G maps onto D_{∞} , or one of these indices is greater than 2, in which case $A_n *_{C_n} B_n$ is virtually free of rank > 1, and so G is large. In each case, it is clear that $v\beta(G) \ge 1$.

Suppose now that G is LERF. If $[A_n:C_n] \leq 2$ then C_n is normal in A_n , and so $C(A \cap \Delta_n)$ is normal in A. Hence if $[A_n:C_n] \leq 2$ for all n then $\cap_n C(A \cap \Delta_n)$ is normal in A. Since G is LERF, this intersection is C. Hence if both $[A_n:C_n] \leq 2$ and $[B_n:C_n] \leq 2$ for all n then C is normal in G, so G is virtually a semidirect product $C \rtimes \mathbb{Z}$, and is a 3-manifold group. If $\chi(C) < 0$ then G is large [1, Flowcharts 1 and 4].

Remark. The lower central series of $D_{\infty} = Z/2Z * Z/2Z$ gives a descending filtration by normal subgroups of finite index which meets each of the free factors trivially.

Is every PD_3 -group either solvable or large?

References

- Aschenbrenner, M., Friedl, S. and Wilton, H. 3-Manifold Groups, EMS Series of Lectures in Mathematics, European Mathematical Society, Zürich (2015).
- [2] Bieri, R. Homological Dimensions of Discrete Groups, Queen Mary College Mathematical Notes, London (1976).
- [3] Bieri, R. and Eckmann, B. Relative homology and Poincaré duality for group pairs, J. Pure Appl. Alg. 13 (1978), 277–319.
- [4] Bieri, R. and Strebel, R. Almost finitely presentable soluble groups, Comment. Math. Helvetici 53 (1978), 258–278.
- [5] Brown, K. S. and Geoghegan, R. Cohomology with free coefficients of the fundamental group of a graph of groups, Comment. Math. Helvetici 60 (1985), 31–45.
- [6] Button, J. O. Mapping tori with first Betti number at least two, J. Math. Soc. Japan 59 (2007), 351–370.
- [7] Hillman, J. A. Tits alternatives and low dimensional topology, J. Math. Soc. Japan 55 (2003), 365–383.
- [8] Hillman, J. A. Poincaré Duality in Dimension 3, The Open Book Series, MSP, Berkeley (2020), to appear.
- [9] Kapovich, M. and Kleiner, B. Coarse Alexander duality and duality groups, J. Diff. Geom. 69 (2005), 279–352.
- [10] Kropholler, P. H. and Roller, M. A. Splittings of Poincaré duality groups, Math. Zeit. 197 (1988), 421–438.
- [11] Thurston, W. P. Three-Dimensional Geometry and Topology, (edited by S. Levy), Princeton University Press, Princeton, N.J. (1997).

SCHOOL OF MATHEMATICS AND STATISTICS, UNIVERSITY OF SYDNEY, NSW 2006, AUSTRALIA *Email address*: jonathan.hillman@sydney.edu.au