NILPOTENT GROUPS WITH BALANCED PRESENTATIONS

J.A.HILLMAN

ABSTRACT. We determine the torsion free nilpotent groups with balanced presentations and which have Hirsch length ≤ 5 or nilpotency class ≤ 3 .

A presentation for a finitely generated group G is balanced if it has an equal number of generators and relations. (Clearly G has such a presentation if and only if $def(G) \ge 0$.) It is well-known that torsionfree nilpotent groups of Hirsch length $h \le 3$ are either free abelian or are central extensions of \mathbb{Z}^2 by \mathbb{Z} , and have balanced presentations. A finitely generated group G is homologically balanced if $\beta_2(N; R) \le$ $\beta_1(N; R)$ for all fields R. If G has a balanced presentation then it is homologically balanced. We shall give short arguments to show that there is one homologically balanced torsion free nilpotent group with Hirsch length h = 4 and none with h = 5. We show also that any such group with h = 6 must be generated by 2 elements.

Theorems 4 and 6 below were originally part of [5], in which it is observed that if both complementary regions of a closed hypersurface in S^4 have nilpotent fundamental groups then these groups have homologically balanced presentations on at most 3 generators. A MathSciNet search for "nilpotent AND Betti number" led to [2], where it is shown that in the parallel world of nilpotent Lie algebras, there are just 3 of dimension ≤ 7 with $\beta_2 = \beta_1 = 2$. One has dimension 4 and the other two have dimension 6. There are direct connections between these aspects of nilpotency. If G is a finitely generated torsion-free nilpotent group let $G_{\mathbb{R}}$ be its Mal'cev completion, which is a connected nilpotent Lie group of dimension h(G) in which G is a lattice. The coset space $M = G_{\mathbb{R}}/G$ is a K(G, 1) space, and so $H^q(G; \mathbb{R}) \cong H^q_{DR}(M)$, the de Rham cohomology of M. This in turn is the cohomology of the associated Lie algebra \mathfrak{G} with coefficients in the trivial \mathfrak{G} -module \mathbb{R} .

¹⁹⁹¹ Mathematics Subject Classification. 20J06.

 $Key\ words\ and\ phrases.$ deficiency, Hirsch length, homologically balanced, nilpotent.

Some information is lost in passing from groups to Lie algebras, since commensurable nilpotent groups have isomorphic completions. Moreover, we do not know whether the 6-dimensional examples arise from nilpotent groups. From dimension 7 onwards, there are uncountably many isomorphism classes of nilpotent Lie algebras, and so most do not derive from discrete groups. Nevertheless, the results of [2] provide alternative proofs of Theorems 6 and 7, and suggest other group theoretic results.

In §1 we set out our notation and prove three lemmas. We consider groups of Hirsch length 4 or 5 in §2. These groups are all nilpotent of class ≤ 4 . In §3 we show that there are no other homologically balanced groups which are nilpotent of class ≤ 3 , and in the final section we show that if a nilpotent group G of Hirch length 6 is homologically balanced then $\beta_1(G; \mathbb{Q}) = 2$.

1. PRELIMINARIES

If G is a group ζG , G', G^{τ} and $G_{[n]}$ shall denote the centre, the commutator subgroup, the preimage in G of the torsion subgroup of G/G' and the *n*th stage of the lower central series, respectively. The nilpotency class of G is *n* if $G_{[n]} \neq 1$ and $G_{[n+1]} = 1$. If G is a finitely generated nilpotent group then it has a finite composition series with cyclic factors, and the Hirsch length h(G) is the number of infinite factors in such a series. If G is torsion free and not cyclic then G has nilpotency class $\leq h(G) + 1 - \beta_1(G; \mathbb{Q})$, which is strictly less than h(G).

Let F(r) be the free group of rank r. If $G = F(m)/F(m)_{[k]}$ then $H_2(G;\mathbb{Z}) \cong F(m)_{[k]}/F(m)_{[k+1]}$, by the five-term exact sequence of low degree for the homology of G as a quotient of F(m). This abelian group has rank $\frac{1}{k}\sum_{d|k}\mu(d)m^{\frac{k}{d}}$, where μ is the Möbius function, by the Witt formulae [8, Theorems 5.11 and 5.12]. Hence $H_2(G;\mathbb{Z})$ has rank > m unless $\beta = 1$ or $\beta = 2$ and $k \leq 3$ or $\beta = 3$ and k = 2. Thus the only relatively free nilpotent groups with $\beta_2(G;\mathbb{Q}) \leq \beta_1(G;\mathbb{Q})$ are $G \cong \mathbb{Z}^\beta$ with $\beta \leq 3$ or $G \cong F(2)/F(2)_{[3]}$. These groups each have balanced presentations and Hirsch length $h(G) \leq 3$. Summing the ranks of sections given by the Witt formulae, we see that $h(F(2)/F(2)_{[4]}) = 5$, $h(F(2)/F(2)_{[5]}) = 8$, $h(F(3)/F(3)_{[4]}) = 14$ and $h(F(3)/F(3)_{[5]}) = 38$.

The following lemma is standard (see [6]), but we include it here for convenience.

Lemma 1. Let G be a finitely generated nilpotent group. Then G can be generated by d elements, where $d = \max\{\beta_1(G; \mathbb{F}_p) | p \text{ prime}\}.$

Proof. If G is abelian this is an easy consequence of the structure theorem for finitely generated abelian groups. In general, if G is nilpotent

and the image in G/G' of a subset $X \subset G$ generates G/G' then X generates G. (See [8, Lemma 5.9] or [9, 12.1.5].)

The expression for d is clearly best possible.

A finitely generated nilpotent group G has a maximal finite normal subgroup T and G/T is torsion-free [9, 5.2.7]. The projection of G onto G/T induces isomorphisms on homology with coefficients \mathbb{Q} . We may use these observations to extend arguments based on the torsion-free cases to all finitely generated nilpotent groups. We use also without further comment the facts that if h(G) = h then G is an orientable PD_h -group (Poincaré duality group of formal dimension h) over \mathbb{Q} , and that $\chi(G) = 0$. See [1, Theorem 9.10].

Lemma 2. Let G be a finitely generated nilpotent group. Then there is a torsion free nilpotent group \widehat{G} which can be generated by $\beta = \beta_1(G)$ elements, and such that $\beta_i(\widehat{G}) = \beta_i(G)$ for all i.

Proof. Let $f : F(3) \to G$ be a homomorphism such that $H_1(f)$ is an isomorphism, and let T be the torsion subgroup of G and J =Im(f). Then T is a finite normal subgroup and [G : J] is finite. Let $\widehat{G} = J/T \cap J$. Let K be the intersection of the conjugates of J in G. Then K is a normal subgroup of finite index in each of G and J, and so the inclusions of K into these groups induce isomorphisms on rational homology. Similarly, the projection of J onto \widehat{G} induces an isomorphism on rational homology. Hence $\beta_i(\widehat{G}) = \beta_i(G)$ for all i. \Box

The following lemma was prompted by Lemma 2 of [2].

Lemma 3. Let G be a group with a subgroup $Z \leq \zeta G \cap G'$ of rank $z \geq 1$, and let $\overline{G} = G/Z$ and R be Z or a field. Let $\overline{\beta}_i = \beta_1(\overline{G}; R)$. Then $\overline{\beta}_2 \geq z$ and

$$\overline{\beta}_2 - z + \max\{\overline{\beta}_1 z - \overline{\beta}_3, 0\} \leqslant \beta_2(G; R) \leqslant \overline{\beta}_2 - z + \overline{\beta}_1 z + \binom{z}{2}.$$

Proof. The quotient \overline{G} acts trivially on the cohomology of Z, since Z is central in G. Hence the $E_{1,1}^2$ term of the cohomology LHS spectral sequence for G as a central extension of \overline{G} has rank $\overline{\beta}_1 z$. The $E_{2,0}^2$ term has rank $\overline{\beta}_2$, the $E_{0,1}^2$ term has rank z, the $E_{3,0}^2$ term has rank $\overline{\beta}_3$, and the $E_{0,2}^2$ term has rank $\binom{z}{2}$. The differential $d_{2,0}^2$ must be surjective, since $Z \leq G'$, and so $\overline{\beta}_2 \geq z$. The lemma follows easily.

When $Z \cong \mathbb{Z}$ the spectral sequence reduces to the Gysin sequence associated to G as an extension of \overline{G} by \mathbb{Z} , and the bounds given by Lemma 3 simplify to

 $\beta_2(\overline{G}; R) - 1 \leqslant \beta_2(G; R) \leqslant \beta_2(\overline{G}; R) - 1 + \overline{\beta}_1.$

Note also that if $h = h(\overline{G}) \leq 6$ (and $R = \mathbb{Q}$) then $\beta_3(\overline{G})$ is determined by $\beta_1(\overline{G})$ and $\beta_2(\overline{G})$, via Poincaré duality and the condition $\chi(\overline{G}) = 0$.

If $G = \widetilde{F}/Z$ where \widetilde{F} is a relatively free nilpotent group and $Z \leq \zeta \widetilde{F} \cap \widetilde{F}'$ then the right hand inequality gives a lower bound for $\beta_2(G)$.

2. HIRSCH LENGTH ≤ 5

Lubotzky has extended the Golod-Shafarevich argument to show that if a nilpotent group G can be generated by d elements and pis a prime such that $d = \beta_1(G; \mathbb{F}_p)$ (as in Lemma 1) then either $\beta_2(G; \mathbb{F}_p) > \frac{d^2}{4}$ or $G \cong \mathbb{Z}$ or \mathbb{Z}^2 . Hence homologically balanced nilpotent groups can be generated by 3 elements [6].

Theorem 4. There is just one torsion-free nilpotent group of Hirsch length 4 which is homologically balanced.

Proof. Let N be a torsion-free nilpotent group of Hirsch length 4. If R is a field then $\beta_1(N; R) \ge 2$, since N is not virtually cyclic, and $\beta_2(N; R) = 2(\beta_1(N; R) - 1)$, since N is an orientable PD_4 -group and $\chi(N) = 0$. Hence if $\beta_2(N; R) \le \beta_1(N; R)$ then $\beta_1(N; R) = 2$. If N is homologically balanced this holds for all fields R, and so $N/N' \cong \mathbb{Z}^2$. Therefore N can be generated by 2 elements. Since N' is nilpotent and h(N') = 2, we see that $N' \cong \mathbb{Z}^2$ also.

The central quotient $N/\zeta N$ is torsion-free [9, 5.2.19], and not cyclic, for otherwise N would be abelian. Hence $\zeta N \leq N'$. Since N is a quotient of F(2) and h(N) = 4, we must have $N/N_{3]} \cong F(2)/F(2)_{[3]}$, and so $N_{[3]} \cong \mathbb{Z}$ and N has nilpotency class 3. Moreover, $\zeta N = N_{[3]} < N'$. (See also [3, Theorem 1.5].) Since N is a central extension of $F(2)/F(2)_{[3]}$ by \mathbb{Z} , it has a presentation

$$\langle x, y, u, z \mid u = [x, y], [x, u] = z^a, [y, u] = z^b, xz = zx, yz = zy \rangle,$$

in which x, y represent a basis for $N/N_{[3]}$ and z represents a generator for $N_{[3]}$. Since $N/N' \cong \mathbb{Z}^2$ we must have (a, b) = 1, and after a change of basis for F(2) we may assume that a = 1 and b = 0. The relation yz = zy is then a consequence of the others, and so the presentation simplifies to $\langle x, y \mid [x, [x, [x, y]]] = [y, [x, y]] = 1 \rangle$.

Is every homologically balanced nilpotent group of Hirsch length 4 torsion-free?

An alternative argument uses the observation that the image of Nin Aut(N') preserves the flag $1 < N_{[3]} < N'$. Since N is nilpotent and $N/N' \cong \mathbb{Z}^2$ this image is infinite cyclic, and so $N \cong C \rtimes \mathbb{Z}$, where C is the centralizer of N' in N. Moreover, $C \cong \mathbb{Z}^3$, since $C/N' \cong \mathbb{Z}$. Hence $N \cong \mathbb{Z}^3 \rtimes_A \mathbb{Z}$, where $A \in SL(3,\mathbb{Z})$ is a triangular matrix. It is not hard to see that since N/N' is torsion free of rank 2 there is a basis for C such that

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \in SL(3, \mathbb{Z}).$$

Hence N has the 2-generator balanced presentation

$$\langle t, u \mid [t, [t, [t, u]]] = [u, [t, u]] = 1 \rangle,$$

in which u corresponds to the column vector $(1, 0, 0)^{tr}$ in \mathbb{Z}^3 .

Corollary 5. This group is the only torsion-free nilpotent group of Hirsch length 4 which can be generated by 2 elements.

Proof. If G is a nilpotent group which can be generated by 2 elements then either $G/G' \cong \mathbb{Z}^2$ or $h(G) \leq 1$. Hence if G is torsion-free of Hirsch length 4 then $\beta_1(G; R) = 2$ for all fields R. Since G is an orientable PD_4 -group and $\chi(G) = 0$ it follows that G is homologically balanced, and so $G \cong N$.

This group is a quotient of $\tilde{F} = F(2)/F(2)_{[4]}$ by a maximal infinite cyclic subgroup of $\zeta \tilde{F}$. The quotient of \tilde{F} by the subgroup generated by the *p*th power of a nontrivial central element is nilpotent of Hirsch length 4, and has a finite normal subgroup of order *p*. Thus the condition on torsion is necessary for this corollary.

As most of our results other than Theorem 4 involve showing that $\beta_2(G; \mathbb{Q}) > \beta_1(G; \mathbb{Q})$, for various groups G, we shall simplify the notation henceforth, so that $H_i(G)$, $H^i(G)$ and $\beta_i(G)$ denote homology, cohomology and Betti numbers with coefficients \mathbb{Q} , respectively.

Theorem 6. Let N be a finitely generated nilpotent group of Hirsch length h(N) = 5. Then N is not homologically balanced.

Proof. It shall suffice to show that $\beta_2(N) > \beta = \beta_1(N)$.

If G is any finitely generated group then the kernel of the homomorphism $\psi_G : \wedge^2 H^1(G) \to H^2(G)$ induced by cup product is isomorphic to $Hom(G^{\tau}/[G, G^{\tau}], \mathbb{Q})$ [4]. If G is solvable then $G^{\tau}/[G, G^{\tau}]$ has rank $\leq h(G^{\tau}) = h(G) - \beta_1(G)$. Hence

$$\beta_2(G) - \beta_1(G) \ge {\beta_1(G) \choose 2} - h(G).$$

Thus we may assume that $\beta \leq 3$. Since N is nilpotent and h(N) > 1we must then have $\beta = 2$ or 3. The quotient of N by its maximal finite

normal subgroup is torsion free [9, 5.2.7], and has the same rational Betti numbers as N, so we may also assume that N is torsion-free.

The intersection $N' \cap \zeta N$ is nontrivial [9, 5.2.1], and so we may choose a maximal infinite cyclic subgroup $A \leq N' \cap \zeta N$. Let $\overline{N} = N/A$. Then $h(\overline{N}) = 4$ and \overline{N} is also torsion-free, since the preimage of any finite subgroup in N is torsion-free and virtually \mathbb{Z} . Hence \overline{N} is an orientable PD_4 -group. Moreover, $\beta_1(\overline{N}) = \beta < 4$, since $A \leq N'$, and so $\overline{N}^{\tau}/[\overline{N}, \overline{N}^{\tau}] \neq 1$.

Let $e \in H^2(\overline{N}; \mathbb{Z})$ classify the extension

$$0 \to A \to N \to \overline{N} \to 1.$$

There is an associated "Gysin" exact sequence [7, Example 5C]:

$$0 \to \mathbb{Q}e \to H^2(\overline{N}) \to H^2(N) \to H^1(\overline{N}) \xrightarrow{\cup e} H^3(\overline{N}) \to H^3(N) \to \dots$$

Suppose first that $\beta = 2$. Then $\beta_2(\overline{N}) = 2$ also, since $\chi(\overline{N}) = 0$. Hence $\psi_{\overline{N}} = 0$, since $\overline{N}^{\tau}/[\overline{N}, \overline{N}^{\tau}] \neq 1$ and $\binom{\beta}{2} = 1$. Since the cup product of

 $\psi_{\overline{N}} = 0$, since $N'/[N, N'] \neq 1$ and $\binom{\beta}{2} = 1$. Since the cup product of $H^3(\overline{N})$ with $H^1(\overline{N})$ is a non-singular pairing, it follows that $\alpha \cup e = 0$ for all $\alpha \in H^1(\overline{N})$. Hence $\beta_2(N) = 2 - 1 + 2 = 3 > \beta$.

When $\beta = 3$ we must look a little more closely at the consequences of Poincaré duality. We note first that $\beta_2(\overline{N}) = 2(\beta - 1) = 4$. Since cup-product of odd-dimensional cohomology classes is skew-symmetric, for any $e \in H^2(\overline{N})$ the homomorphism $- \cup e$ from $H^1(\overline{N})$ to $H^3(\overline{N})$ has a skew-symmetric matrix, if these cohomology groups are given bases which are Kronecker dual with respect to the cup-product pairing into $H^4(\overline{N}) \cong \mathbb{Q}$. Since $\beta = 3$ is odd, $\det(- \cup e) = 0$, and so we see that $\beta_2(N) \ge \beta_2(\overline{N}) - 1 + 1 = 4 > \beta$ again. \Box

3. NILPOTENCY CLASS ≤ 3

In this section we shall use the fact that nilpotent groups of class ≤ 3 are closely related to central extensions of the corresponding free nilpotent groups to estimate the Betti numbers of low degree.

Theorem 7. Let G be a finitely generated nilpotent group of class 2. If G is homologically balanced then $h(G) \leq 3$.

Proof. Let $\beta = \beta_1(G)$ and h = h(G). We may assume that G is infinite, and can be generated by at most 3 elements, and so $1 \leq \beta \leq 3$. Then G is a quotient of $F(3)/F(3)_{[3]}$, and so $h(G) \leq 6$. If h = 4 then $\beta = 3$, for otherwise G must have class > 2 [3, Theorem 1.5]. But then G is an orientable PD_4 -group over \mathbb{Q} , and so $\beta_2(G) = 2(\beta - 1) = 4 > \beta$. We cannot have h = 5, by Theorem 6. If h = 6 then the epimorphism from

6

 $F(3)/F(3)_{[3]}$ to \overline{G} is an isomorphism, and so $\beta_2(G) = 8 > \beta$. Therefore $h \leq 3$.

If G is an infinite nilpotent group which is homologically balanced and has nontrivial torsion must it be one of the groups $\mathbb{Z} \oplus \mathbb{Z}/k\mathbb{Z}$?

Theorem 8. Let G be a finitely generated nilpotent group of class 3. If h(G) > 4 then $\beta_2(G) > \beta_1(G)$.

Proof. We may assume that $h(G) \ge 6$, by Theorem 6, and that G is torsion free and is generated by $\beta \le 3$ elements, by Lemma 2 and Lubotzky's result [6]. Two-generator nilpotent groups of class 3 are covered by Theorems 4 and 6, since $h(F(2)/F(2)_{[4]}) = 5$, and so we may also assume that $\beta = 3$. Then $h(G) \le h(F(3)/F(3)_{[4]}) = 14$. Let $Z = G_{[3]}$ and $\overline{G} = G/Z$. Then Z is central in G and Z < G' [9, 5.1.9]. If $\overline{G} \cong F(3)/F(3)_{[3]}$ then $\overline{\beta}_1 = 3$ and $\overline{\beta}_2 = 8$. Hence $\overline{\beta}_3 = 12$, since \overline{G} is an orientable PD_6 -group and $\chi(\overline{G}) = 0$. If $z = \operatorname{rk} Z \ge 4$ then Lemma 3 gives $\beta_2(G) \ge 8 + 2z - 12 \ge 4$, while if $z \le 3$ then it gives $\beta_2(G) \ge 5$.

If $h(\overline{G}) = 5$ then $\overline{\beta}_2 \ge \beta_2(F(3)/F(3)_{[3]}) - 2 = 6$, by Lemma 3 (applied to $G = F(3)/F(3)_{[3]}$ and $Z \cong \mathbb{Z}$). Since $\overline{\beta}_3 = \overline{\beta}_2$, by Poincaré duality, it then follows that $\overline{\beta}_2 \le \beta_2(F(3)/F(3)_{[3]}) + 1 = 9$. In this case we find that if $z \ge 3$ then $\beta_2(G) \ge 2z \ge 6$, while if z < 3 then $\beta_2(G) \ge 6 - 2 = 4$.

Finally, if $h(\overline{G}) = 4$ then $\overline{\beta}_3 = \overline{\beta}_1$, by Poincaré duality, and $\overline{\beta}_2 = 2(\overline{\beta}_1 - 1) = 4$, since $\chi(\overline{G}) = 0$. Since $h(G) \ge 6$, we have z > 1. Hence $\beta z > \overline{\beta}_3$, and so $\beta_2(G) \ge 2z + 1 \ge 5$, by Lemma 3. In all cases $\beta_2(G) > \beta$.

If G is any group then $G'' = [G', G'] \leq G_{[4]}$, and so all nilpotent groups of class 3 are metabelian. If G can be generated by two elements then we can improve this slightly. Let $\{x, y\}$ be a basis for F(2). Then F(2)' is the normal closure of [x, y], so F(2)'' is generated by (conjugates of) elements of the form $[[x, y], \lambda[x, y]\lambda^{-1}]$, for $\lambda \in F(2)$. Since $[[x, y], \lambda[x, y]\lambda^{-1}] = [[x, y], [\lambda, [x, y]]]$ is in $F(2)_{[5]}$, for all such λ , the quotient $F(2)/F(2)_{[5]}$ is metabelian.

We may use this observation to push a little further.

Theorem 9. Let G be a finitely generated nilpotent group of class 4 which can be generated by 2 elements. If h = h(G) > 4 then $\beta_2(G) > \beta_1(G)$.

Proof. Since G is a finitely generated nilpotent group of class 4 which can be generated by 2 elements it is a quotient of $F(2)/F(2)_{[5]}$, and so

 $h \leq 8$. Moreover $G/G' \cong \mathbb{Z}^2$, since h > 1, and G' is abelian (of rank ≤ 6), since $F(2)/F(2)_{[5]}$ is metabelian.

We may assume that $h(G) \neq 5$, by Theorem 6. Suppose that h = 6. Then A = G' has rank 4. We shall use the LHS spectral sequence

$$H_p(\mathbb{Z}^2; H_q(A)) \Rightarrow H_{p+q}(G)$$

for G as an extension of \mathbb{Z}^2 by A to estimate $\beta_2(G)$. In this case there are no nonzero differentials beginning or ending at the (1, 1) position, and so it is enough to estimate the rank of $H_1(\mathbb{Z}^2; \mathbb{Q} \otimes A)$. The homology groups $H_i(\mathbb{Z}^2; \mathbb{Q} \otimes A)$ may be computed from the complex

$$0 \to \mathbb{Q} \otimes A \to \mathbb{Q} \otimes A^2 \to \mathbb{Q} \otimes A \to 0$$

arising from the standard resolution of the augmentation $\mathbb{Z}[\mathbb{Z}^2]$ -module. Let $b_i = \operatorname{rk} H_i(\mathbb{Z}^2; \mathbb{Q} \otimes A)$, for $i \ge 0$. Then $b_0 - b_1 + b_2 = 0$, since the above complex clearly has Euler characteristic 0. We have $b_0 = 1$, since $h(G_{[3]}) = 3$, and $b_2 = 2$, since $G_{[4]} < A$ is central and of rank 2. Therefore $\beta_2(G) \ge b_1 = 3$.

Thus either h(G) = 7 or 8. If $h(G/G_{[4]}) = 4$ then $\beta_2(G/G_{[4]}) = 2$, and so $h(G_{[4]}) \leq 2$, by Lemma 3. But then $h(G) \leq 6$. Therefore $G/G_{[4]} \cong F(2)/F(2)_{[4]}$ and $G_{[4]}$ has rank 2 or 3. The estimates of Lemma 3 then show that $\beta_2(G) > 2$. Hence $\beta_2(G) > \beta_1(G)$ in all cases.

Can we improve these results to cover all metabelian nilpotent groups?

4. HIRSCH LENGTH 6

The Lie algebra results of [2] provide alternative confirmations of Theorems 6 and 7, and imply that if a nilpotent group G of Hirsch length 6 is homologically balanced then $\beta_1(G; \mathbb{Q}) = 2$. We shall give a group-theoretic argument for the latter claim, based the fact that if $G = F(3)/F(3)_{[3]}$ then $\beta_2(G) = 8$.

Theorem 10. Let G be a finitely generated nilpotent group of Hirsch length 6. If $\beta = \beta_1(G) = 3$ then $\beta_2(G) > \beta$, and so G is not homologically balanced.

Proof. We may assume that G is torsion-free and there is an epimorphism $f: F(3) \to G$, by Lemma 2. Since $\beta = 3$ and h(G) = 6, the quotient $G_{[2]}/G_{[3]}$ must be infinite, and so $h(G_{[3]}) \leq 2$.

We may assume that $h(G_{[3]}) = 2$ by Theorem 8. Then $G_{[3]} \cong \mathbb{Z}^2$ and $G_{[2]}/G_{[3]}$ has rank 1. Hence cup product from $\wedge^2 H^1(G)$ into $H^2(G)$ has rank 2 [4]. Let Z be an infinite cyclic subgroup of $\zeta G \cap G_{[3]}$, and let $\overline{G} = G/Z$. Then $\beta_2(\overline{G}) > \beta_1(\overline{G})$, by Theorem 6.

8

If $\beta_2(G) = \beta$ then $\beta_2(\overline{G}) = 4$, by Lemma 3, and then cup product with e maps $H^1(\overline{G})$ injectively to $H^3(\overline{G})$, by the exactness of the Gysin sequence for the extension. (See Theorem 6.) Let a_1, a_2, a_3 be a basis for $H^1(\overline{G})$. Then the cup product of $\langle a_1 \cup e, a_2 \cup e, a_3 \cup e \rangle$ with the image of $\wedge^2 H^1(\overline{G})$ in $H^2(\overline{G})$ is trivial. But this contradicts the fact that the cup-product pairing of $H^2(\overline{G})$ with $H^3(\overline{G})$ into $H^5(\overline{G}) \cong \mathbb{Q}$ is non-degenerate, since \overline{G} is an orientable PD_5 -group over \mathbb{Q} . Therefore we must again have $\beta_2(G) > \beta$.

Corollary 11. If h(G) = 6 and $\beta_2(G) = \beta_1(G)$ then $\beta_i(G) = 2$ for 0 < i < 6.

Proof. Since $\beta_1(G) \leq 3$ [6], we must have $\beta_2(G) = \beta_1(G) = 2$, by the theorem, and the corollary then follows since G is an orientable PD_6 group over \mathbb{Q} and $\chi(G) = 0$.

An argument similar to that of Theorem 10 shows that if h(G) = 6and $\beta_2(G) = \beta_1(G) = 2$ then $h(G_{[3]}) = 3$ and $h(G_{[4]}) = 2$. Since *G* cannot have class 4, by Theorem 9, $h(G_{[5]}) = 1$. We may assume without loss of generality that *G* is a torsion-free quotient of F(2), by Lemma 2, and so $G_{[5]} \cong \mathbb{Z}$. In this case $b_2 = b_0 = 1$, and so $b_1 = 2$, in the notation of Theorem 9. Are there any metabelian examples?

Beyond this, are there any examples at all of homologically balanced nilpotent groups of Hirsch length > 6?

References

- [1] Bieri, R. Homological Dimensions of Discrete Groups, QMC Lecture Notes, London (1976).
- [2] Cairns, G., Jessup, B. and Pitkethly, J. On the Betti numbers of nilpotent Lie algebras of small dimension, in *Integrable Systems and Foliations*, Progress in Mathematics 145, Birkhäuser Verlag (1997), 19–31.
- [3] Hillman, J. A. Four-Manifolds, Geometries and Knots, Geometry and Topology Monographs, vol. 5, Geometry and Topology Publications (2002). (Revisions 2007 and 2014).
- [4] Hillman, J. A. The kernel of integral cup product, J. Austral. Math. Soc. 43 (1987), 10–15.
- [5] Hillman, J. A. 3-manifolds with nilpotent embeddings in S⁴, arXiv: 1912.02939 [math.GT].
- [6] Lubotzky, A. Group presentation, *p*-adic analytic groups and lattices in $SL_2(\mathbb{C})$, Ann. Math. 118 (1983), 115–130.
- [7] McCleary, J. User's Guide to Spectral Sequences, Mathematics Lecture Series 12, Publish or Perish, Inc., Wilmington (1985).
- [8] Magnus, W., Karras, A. and Solitar, D. Combinatorial Group Theory, Interscience Publishers, New York - London - Sydney (1966).
 Second revised edition, Dover Publications inc, New York (1976).
- [9] Robinson, D. J. S. A Course in the Theory of Groups, Graduate Texts in Mathematics 80,
 Springer-Verlag, Berlin - Heidelberg - New York (1982).

School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia

Email address: jonathan.hillman@sydney.edu.au