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Abstract. We provide a homological algebraic realization of the lattices of integer cuts
and integer flows of graphs. To a finite 2-edge-connected graph Γ with a spanning tree T ,
we associate a finite dimensional Koszul algebra AΓ,T . Under the construction, planar dual
graphs with dual spanning trees are associated Koszul dual algebras. The Grothendieck
group of the category of finitely-generated AΓ,T modules is isomorphic to the Euclidean

lattice ZE(Γ), and we describe the sublattices of integer cuts and integer flows on Γ in
terms of the representation theory of AΓ,T . The grading on AΓ,T gives rise to q-analogs of
the lattices of integer cuts and flows; these q-lattices depend non-trivially on the choice of
spanning tree. We give a q-analog of the matrix-tree theorem, and prove that the q-flow
lattice of (Γ1, T1) is isomorphic to the q-flow lattice of (Γ2, T2) if and only if there is a cycle
preserving bijection from the edges of Γ1 to the edges of Γ2 taking the spanning tree T1 to
the spanning tree T2. This gives a q-analog of a classical theorem of Caporaso-Viviani and
Su-Wagner.
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1. Introduction

1.1. Lattices and Grothendieck groups. An integer lattice is a finitely generated free
Abelian group with a symmetric, Z-valued bilinear form, sometimes required to be non-
degenerate. Integer lattices appear naturally in the representation theory of finite dimen-
sional algebras: if A is a finite dimensional algebra, the Grothendieck group of the additive
category of finitely-generated projective left A modules, denoted G0, is a free abelian group
with basis the distinct isomorphism classes of indecomposable projective modules. The
pairing ([P ], [Q]) = dim Hom(P,Q) is bilinear, and though it is not always symmetric, it
sometime is – e.g. when A is a symmetric algebra. In this way many important lattices
in Lie theory arise in geometric representation theory as Grothendieck groups of additive
categories.

It is interesting to explore the relationship between properties of lattices and structures
in homological algebra. To give an example, denote by K0 the Grothendieck group of the
abelian category of all finite-dimensional A-modules; K0 is also a free abelian group, which
by the Jordan-Holder theorem is spanned by the classes of the simple modules. The Hom
pairing identifies K0 as the dual of G0, at least as an abelian group. If G0 is a lattice, it is
tempting to try to identify K0 as the dual lattice, after endowing K0 with the Euler form:

〈[M ], [N ]〉 :=
∞∑
i=0

(−1)i dim ExtiA(B)(M,N).

In general this alternating sum need not converge; however, if A has finite homological
dimension, the Euler form gives a bilinear pairing on K0. Moreover, since in that case every
simple module has a finite length projective resolution, the natural map G0 −→ K0 is an
isomorphism of lattices, so that G0 is a unimodular lattice. Thus, the lattice-theoretic notion
of unimodularity is captured by a categorical notion of homological finiteness.

In lattice theory, unimodular lattices are often constructed by gluing non-unimodular
lattices of smaller rank (see [CS, Chapters 4.3, 16]). Perhaps the simplest example, which
is the only one we consider in this paper, is when the unimodular lattice is the Euclidean
lattice, and it is obtained by gluing together two smaller rank lattices. This example is of
interest in graph theory: given a 2-edge-connected graph Γ with edge set E(Γ), the lattice
of integer flows F(Γ) and the lattice of integer cuts C(Γ) glue to form the Euclidean lattice
ZE(Γ); in particular, F(Γ) and C(Γ) appear as mutual orthogonal complements inside the
Euclidean lattice ZE(Γ).

The main construction of the current paper gives a homological algebra lift of this par-
ticular occurrence of lattice gluing. More specifically, given a 2-connected graph Γ with a
choice of a spanning tree T , we construct a bipartite algebra AΓ,T , as the quotient of a path
algebra. The first basic result is that AΓ,T is standard Koszul; if follows from this that the
Grothendieck groups K0

∼= G0 equipped with the Euler/Hom pairing are isomorphic to the
Euclidean lattice ZE(G).

Moreover, the subcategory of AΓ,T -mod generated by a distinguished subset of projective
modules descends in the Grothendieck group to the lattice of integer flows F(Γ); similarly,
the lattice of integer cuts C(G) is realized in the Grothendieck group as the span of a
complementary collection of simple modules.

When Γ is planar, the pair (Γ, T ) has a planar dual (Γ!, T !), and it is immediate from
the construction that the algebra assigned to (Γ!, T !) is the Koszul dual of that assigned
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to (Γ, T ). This is reminiscent of other combinatorial shadows of Koszul duality, such as
the Gale duality/Koszul duality phenomena appearing in work of the second author with
Braden–Proudfoot–Webster [BLPW] on symplectic duality for hypertoric varieties.

From this point of view, the structure of the Euclidean lattice is categorified by that of
a finite dimensional standard Koszul algebra. It would be interesting to see whether or
not other unimodular lattices, such as the Leech lattice and Niemeier lattices, appear as
“homologically finite” structures in classical or p-dg homological algebra. Although we don’t
address it in the current document, this question is a large part of our motivation for writing
this paper.

1.2. q-lattices and graph theory. One interesting piece of structure enjoyed by the bipar-
tite algebras AΓ,T is a non-negative (Koszul) grading. We may therefore consider categories
of graded AΓ,T modules, so that the Grothendieck groups of these categories are free Z[q, q−1]
modules endowed with Z[q, q−1]-valued bilinear forms; these free modules are interesting in
their own right.

We define a q-lattice to be a finitely generated free Z[q, q−1]-module L with a non-degenerate
sesqui-linear (that is, linear in the second argument and q-anti-linear in the first argument)
form

〈•, •〉 : L× L −→ Z[q, q−1],

together with a q-anti-linear involution d : L −→ L such that for all x, y ∈ L,

〈x, y〉 = 〈d(y), d(x)〉,

and such that d becomes the identity map after setting q = 1. The Grothendieck groups
of categories of graded AΓ,T modules are then q-lattices. We consider the analogs of ba-
sic lattice-theoretic notions such as duality, determinants, unimodularity, and gluing for
q-lattices (Section 3). We define the q-cut and q-flow lattices of graphs, and, in Section 4,
prove q-analogues of two famous classical results in graph theory.

We note here that are many generalizations of integer lattices in the literature of lattices
to rings other than Z, however, most focus on the theory of lattices over principal ideal
domains. Thus, as far as we are aware, there doesn’t currently exist a well-developed theory
of q-lattices, to which our q-cut and q-flow lattices belong. However, Z[q, q−1] shares some
features with principal ideal domains: for example, projective modules over Z[q, q−1] are
always free [Sw].

It is easy to see from their construction that the isomorphism class of the q-cut and q-flow
lattices of a graph-and-spanning-tree pair (Γ, T ) depends non-trivially on the spanning tree
T , in contrast to the theory of classical cut and flow lattices. We now briefly explain the
graph-theoretic information that is captured by including the parameter q.

A theorem of Su–Wagner and Caporaso–Viviani [SW, CV] states that for two (two-edge-
connected) graphs Γ1 and Γ2, there exists a lattice isomorphism between the lattices of
integer flows F(Γ1) ∼= F(Γ2), if and only if there exists a bijection F : E(Γ1)→ E(Γ2), which
preserves cycles. The q-analogue of this theorem, Theorem 4.5 of this paper, illustrates that
the q-cut and q-flow lattices we define essentially determine the spanning tree T :

Theorem. For two graphs Γ1 and Γ2 with respective spanning trees T1 and T2, there exists
a q-lattice isomorphism Fq(Γ1, T1) ∼= Fq(Γ2, T2), if and only if there exists a cycle-preserving
bijection of edges F : E(Γ1)→ E(Γ2) such that F (T1) = T2.
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The classical Matrix-Tree Theorem (see for example [Bi, Chapter 6]) of graph theory,
also known as the Kirchoff Theorem, states that the determinant of C(Γ) – that is, the
determinant of the pairing matrix of the bilinear form on C(Γ) – counts the number of
spanning trees of Γ. In Theorem 4.6 we prove the following q-analogue, which further
illustrates how the q-cut and q-flow lattices retain the spanning tree information:

Theorem. Let Γ be a graph with chosen spanning tree T . Then the determinant of Cq(Γ, T )
is a polynomial

∑r
i=0 ciq

2i with c0 = 1, and r = |E(T )| = |V (G)| − 1. The coefficient ci is
equal to the number of spanning trees of Γ which differ from T in exactly i edges.

Finally, we note that the constructions and results of this paper generalise in a straight-
forward way from graphs to regular matroids. Regular matroids possess a notion of duality
(also known as Gale duality), which generalizes planar graph duality, and exchanges the
lattices of integer cuts and integer flows. It is this more general matroid duality that really
corresponds to Koszul duality at the level of bipartite algebras in our main construction.
While we predominantly use the language of graphs for simplicity in the body of the paper,
we will take short detours into the world of regular matroids to indicate how our construc-
tions apply in that setting. A more matroid-centred approach can be found in the University
of Sydney undergraduate honours thesis of Leo Jiang [Ji].

1.3. Plan. The paper is structured as follows. In Section 2 we introduce bipartite algebras
and establish basic properties of their module categories. In Section 3 we define q-lattices,
and basic notions such as Gram matrices and lattice gluing. Our guiding examples are
Grothendieck groups of graded module categories over bipartite algebras. In Section 4, the
most substantial section of this paper, we construct bipartite algebras from graphs with a
choice of a spanning tree. We use their module categories to categorify the classical cut and
flow lattices, study the q-cut and q-flow lattices obtained from this construction, and prove
the graph theoretic theorems mentioned above.

1.4. Acknowledgements. We are grateful to Leo Jiang for his input in Section 3, in par-
ticular the proof of statement (1) of Theorem 3.3, and for proofreading a draft of this paper.
We thank Ben Webster for helpful conversations, and Tatiana Nagnibeda for pointing us to
the valuable reference [BHN] at an early stage of this project.

Z. D. was funded by an Australian Research Council Discovery Early Career Research
Award DE170101128. A. L. acknowledges support from the Australian Research Council
Discovery Project DP180103150.

2. Bipartite algebras

We start by introducing bipartite algebras, associated to bipartite graphs via a path algebra
construction. In Section 4 we will discuss how bipartite algebras arise naturally from (not
necessarily bipartite) graphs along with a choice of a spanning tree, and in this way they give
rise to a homological algebraic realization of the lattices of integer cuts and flows associated
to graphs.

Definition 2.1. Let B be a bipartite graph, with vertices V (B) = V0(B)∪V1(B). Let Q(B)
denote the double quiver of B, that is, the directed graph in which each edge of B is replaced
by two arrows, one in each orientation. We associate two C-algebras to B:

• A(B) := Path(Q(B))/{length two paths which start and end in V0(B)},
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• A!(B) := Path(Q(B))/{length two paths which start and end in V1(B)}.
Here Path(Q(B)) denotes the path algebra of Q(B), whose underlying vector space is spanned
by the oriented paths in the quiver Q(B). Multiplication is given by concatenation of paths
whenever the last vertex of the first path agrees with the first vertex of the second, and
defined to be zero otherwise.

We call A(B) the bipartite algebra associated to B. Both A(B) and A!(B) are Z-graded by
path length. We note also that it is immediate from the definitions that any path consisting
of three or more edges is zero in both A(B) and A!(B). In what follows we denote by ei the
constant path at vertex i: the {ei} are pairwise orthogonal idempotents, with 1 =

∑
i∈V (B) ei.

2.1. Finitely generated graded A(B)-modules. Let A(B)-mod denote the category of
finitely generated graded left A(B)-modules. Classifying simple and indecomposable projec-
tive A(B)-modules is straightforward from the quiver description of A(B). We state the
basic results below, leaving proofs to the interested reader or to [GG, Ji].

Proposition 2.1. Isomorphism classes of ungraded simple A(B)-modules are in bijection
with the bipartite vertex set V (B). Denote the simple module corresponding to ei ∈ V (B) by
Li: as a vector space Li is one dimensional, ei acts as the identity, and all other ej as well
as the positively graded subalgebra of A(B), act by zero.

As graded modules, the Li are declared to be contained in degree zero. All graded simple
modules are shifts of the Li. Since A(B) is Artinian, indecomposable projective modules are
in bijection with simple modules. Hence, we obtain the following:

Corollary 2.2. The indecomposable projective A(B)-modules are given by the projective
covers of the simple modules. The projective cover Li is Pi := A(B) · ei, which has a as a
vector space by paths which end at i.

The modules Pi are naturally graded by path length, and all graded indecomposable
projective A(B)-modules are shifts of the Pi. Morphisms between indecomposable projective
modules are given as follows:

Proposition 2.3. The set of A-homomorphisms Hom(Pi, Pj) has a basis consisting of paths
from i to j. That is, Hom(Pi, Pj) ∼= eiA(B)ej, as graded vector spaces. The map which sends
a path α to the reverse path α extends linearly to a vector space isomorphism Hom(Pi, Pj) ∼=
Hom(Pj, Pi).

Next, we show that A(B) is a standard Koszul algebra. In general, a graded algebra A
is Koszul if every graded simple left module admits a finite linear projective resolution. Let
{Li : i ∈ I} denote the simple left A-modules, and let {Pi : i ∈ I} be their respective
projective covers. We recall the definition of a standard Koszul algebra:

Definition 2.2. The Koszul algebra A is called standard Koszul if there exists a set of

standard modules {Vi : i ∈ I} with surjections Pi
pi−→ Vi

πi−→ Li, such that for some partial
order < on I,

(1) For all i ∈ I the module ker(πi) has a filtration where each sub-quotient is isomorphic
to Lj for some j < i, and

(2) For all i ∈ I the module ker(pi) has a filtration where each sub-quotient is isomorphic
to Vk for some k > i.

5



In this case, the category A(B)-mod is called a highest weight category. For a more detailed
introduction to highest weight categories and Koszul algebras, see Section 5 of [BLPW].
Algebras whose module categories are highest weight are also called quasi-hereditary.

Proposition 2.4. Each simple graded left A(B)-module Li has a finite linear projective
resolution.

Proof. Let Ni denote the neighbourhood of the vertex i in B, that is, the set of vertices
adjacent to i. Let xij denote the length one path i→ j, where i and j are adjacent vertices.
We’ll denote the degree shift in the path length grading by {·}.

First assume i ∈ V1(B). Then the linear projective resolution for Li is⊕
j∈Ni

Pj{1}
∑
·xji−−−→ Pi → Li.

Similarly, if i ∈ V0(B), then Li has linear projective resolution⊕
j∈Ni

⊕
k∈Nj

Pk{2}
∑
·xkj−−−−→

⊕
j∈Ni

Pj{1}
∑
·xji−−−→ Pi → Li.

Note that in the sum
⊕

j∈Ni

⊕
k∈Nj

Pk{2}, each indecomposable projective module may

appear multiple times. �

Proposition 2.5. With respect to the partial order given by V (1) < V (0), the standard
modules over A(B) are Vi = Pi when i ∈ V (0), and Vi = Li when i ∈ V (1).

Proof. We need to check that the conditions (1) and (2) of Definition 2.2 are satisfied. Assume
that i ∈ V (0). In this case Vi = Pi, so condition (2) is vacuous. As for condition (1), a basis
for ker(πi) consists of the length one paths xji for j ∈ N(i). Let N(i) = {j1, ..., jr}. Then
the filtration A(B)xj1i ⊆ A(B)xj1i ⊕ A(B)xj2i ⊆ ... ⊆ A(B)xj1i ⊕ A(B)xj2i ⊕ ...⊕ A(B)xjri
satisfies condition (1). The proof is similar for i ∈ V (1). �

A Koszul algebra A is always quadratic, and in this case the quadratic dual algebra is also
called the Koszul dual, and denoted by A!.

Proposition 2.6. The algebra A!(B) of Definition 2.1 is the Koszul dual of A(B).

Proof. Let R = C{ei : i ∈ V (B)} be the ring generated by the idempotents ei, and M =
C{xij : xij ∈ E(Q(B))} be the R-bimodule spanned by the edges of Q(B). Then the tensor
algebra T := TR(M) is the path algebra of Q(B).

We have A(B) = T/TWT , where W ⊆ M ⊗R M is the R-bimodule of length two paths
which start and end in V (0), as in Definition 2.1. The annihilator W⊥ ⊆M∗ ⊗M∗ is easily
identified with the set of length two paths which start and end in V (1), which shows that
the quadratic dual TR(M∗)/TR(M∗)W⊥TR(M∗) is isomorphic to A!(B). �

Let Li be a simple A(B)-module and Pi its projective cover. The injective hull Ii of Li, as
a vector space, is isomorphic to the linear dual of Pi, with the negative path length grading.

This is naturally an A(B)op-module. There is an isomorphism A(B)
∼=−→ A(B)op sending a

path x to the reverse path x. This defines the action of A(B) on Ii = P ∗i .
Similarly, costandard modules Λi are the linear duals of the corresponding standard mod-

ules Vi, with the action of A(B) defined via the bar isomorphism as above. This in particular
means that Λi

∼= Li for ei ∈ V1(B), and Λi
∼= Ii for ei ∈ V0(B).

6



Remark 2.1. Note that “acting on the linear dual via the bar isomorphism” is a con-
travariant auto-equivalence of ungraded finitely generated A(B)-modules, denoted d, with
the properties that dLi = Li, dPi = Ii and dVi = Λi. However, d reverses gradings and
grading shifts, for instance d(M{1}) = (dM){−1}, and similarly for morphisms. �

2.2. The Grothendieck group. The category A(B) -mod of finite dimensional graded
A(B)-modules is an abelian category. The graded Grothendieck group K0 := K0(A(B) -mod)
is, by definition, the Z[q, q−1]-module generated by the isomorphism classes of modules, mod-
ulo the relations [A]− [B] + [C] = 0 for any short exact sequence of modules 0→A→B→
C→0; and q[A] = [A{1}], where {·} denotes the grading shift.

Definition 2.3. The graded Euler form on K0 is defined by

〈[M ], [N ]〉 :=
∞∑
i=0

(−1)iqdim ExtiA(B)(M,N).

Here qdim denotes the graded dimension, that is, qdim ExtiA(B)(M,N) is the Laurent poly-

nomial in which the coefficient of qk is the dimension of the degree k piece of ExtiA(B)(M,N).

The graded Euler form is a non-degenerate q-sesqui-linear form on K0(A(B) -mod). Here
q-sesqui-linear means that for any f ∈ Z[q, q−1] and M,N ∈ A(B) -mod, with f̄(q) := f(q−1),

〈f̄ [M ], [N ]〉 = f〈[M ], [N ]〉 = 〈[M ], f [N ]〉.

Sesquilinearity is a reflection of the behaviour of the Hom functor with respect to grading
shifts:

Hom(M{−1}, N) = Hom{1}(M,N) = Hom(M,N{1}).

Proposition 2.7. K0 is a free Z[q, q−1]-module of rank n = |V (B)|. The classes of sim-
ple modules {[Li]}i∈V (B), indecomposable projectives {[Pi]}, indecomposable injectives {[Ii]},
standard modules {[Vi]}, and costandard modules {[Λi]} all form bases for K0.

Proof. The existence of a Jordan-Holder filtration implies that the classes of simple modules
form a spanning set for K0. The uniqueness of the Jordan-Holder composition factors means
that the classes of simple modules indeed form a basis, and the rank of K0 is n. Every simple
module has a finite projective resolution, hence the isomorphism classes of indecomposable
projective modules also span, and since there is n of them they form a basis.

For any quasi-hereditary algebra A, costandard modules form a right dual set to standard
modules in A-mod [CPS, 3.11] meaning that

Exti(Vk,Λl) =

{
C if k = l and i = 0,

0 otherwise.

Hence, 〈[Vk], [Λl]〉 = δkl. This implies that standard and costandard modules are both inde-
pendent sets. To see this, assume for example that there is a linear dependence

∑n
k=1 fk(q)[Vk] =

0, where fk(q) ∈ Z[q, q−1]. Then

0 =
〈∑

k

fk(q)[Vk],
n∑
l=1

fl(q)[Λl]
〉

=
n∑
k=1

fk(q
−1)fk(q).
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Note that fk(q
−1)fk(q) has a non-negative constant term, which is zero only if fk = 0. Hence,

fk = 0 for all k, a contradiction. Therefore, standard and costandard modules each form
bases.

The involution d of Remark 2.1 induces a q-antilinear map on K0 with d[Li] = [Li]. So, if
[Lk] =

∑n
i=1 ci(q)[Pi] with ci(q) ∈ Z[q, q−1], then [Lk] = d[Lk] =

∑n
i=1 ci(q

−1)[Ii]. Hence the
indecomposable injective modules {[Ii]} also span and hence form a basis. �

Remark 2.2. The involution d satisfies a symmetry property with respect to the graded
Euler form: 〈[M ], [N ]〉 = 〈d[N ], d[M ]〉. To check this, write [M ] and [N ] as Z[q, q−1]-linear
combinations of simple modules.

3. q-Lattices

Recall that a lattice is a finitely generated free abelian group with a symmetric bilin-
ear form, typically required to be non-degenerate. The following definition lifts lattices
to free modules over the ring of Laurent polynomials: the guiding example is the graded
Grothendieck group of Section 2. In this section we establish the analogues of some basic
notions and facts of lattice theory.

Definition 3.1. A q-lattice is a finitely generated free Z[q, q−1]-module L with a non-
degenerate sesquilinear1 form

〈•, •〉 : L× L −→ Z[q, q−1];

and equipped with a q-anti-linear involution d : L −→ L such that for all x, y ∈ L
〈x, y〉 = 〈d(y), d(x)〉,

and dq=1 : L⊗Z[q,q−1] Z −→ L⊗Z[q,q−1] Z is the identity map.

After setting q = 1, a q-lattice becomes an ordinary lattice, although note that it is possible
for a non-degenerate q-pairing to become degenerate at q = 1. The involution d deforming
the identity is used to give the appropriate q-analog for the symmetry of the form.

Since the sesquilinear form is not symmetric, one has to distinguish between various “left”
and “right” notions: left and right duals, orthogonality and complements will be defined
later in this section. The involution d can be used to move between opposite side notions.

Example 3.1. In this language, the Grothendieck group K0 of the category of finite-
dimensional graded A(B)-modules is a q-lattice under the graded Euler form, with d induced
by the duality map defined in Remark 2.1. On K0, d is the unique q-anti-linear map which
fixes the classes [Li] of simple modules.

3.1. Gram matrices and change of basis. Recall that given a basis
B = {b1, ..., bn} for a classical Z-lattice L, the bilinear form is encoded in the Gram matrix
A = AB, where Aij = 〈bi, bj〉 ∈ Z. Given any two elements x, y ∈ L, let xB and yB denote
the column vectors expressing x and y, respectively, in the basis B. Then 〈x, y〉 = xtBAyB,
where the superscript t denotes the matrix transpose.

Let B′ = {b′1, ..., b′n} be a different basis for L, and T = TB
′
B the change of basis matrix.

That is, the i-th column of T is the vector (b′i)B. Then the Gram matrix AB′ is T tABT . The

1That is, q-anti-linear in the first argument, and linear in the second argument, as described after Defini-
tion 2.3.
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Gram matrix determines the lattice up to isomorphism, and two lattices with Gram matrices
A and A′ are isomorphic if and only if there exists an integer matrix T , invertible over Z,
such that A′ = T tAT .

Similarly, given a choice of a basis B = {b1, ..., bn} for a q-lattice L, the sesquilinear form
is again encoded in the Gram matrix AB, where Aij = 〈bi, bj〉 ∈ Z[q, q−1]. Given elements
x, y ∈ L, and xB and yB the column vectors expressing x and y in the basis B, we have
〈x, y〉 = x∗BAyB, where the superscript ∗ denotes the matrix transpose composed with the
involution q 7→ q−1.

Let B′ = {b′1, ..., b′n} be another basis of L, and again let T denote the change of basis
matrix, where the i-th column of T is the vector (b′i)B. Note that T is an invertible matrix
over Z[q, q−1], so that detT = ±qk for some k ∈ Z. Then the Gram matrix with respect
to the basis B′ is T ∗AT . It is still true that the Gram matrix determines the q-lattice up
to isomorphism, and two q-lattices given by Gram matrices A and A′ are isomorphic if and
only if there exists an invertible matrix T over Z[q, q−1] such that A′ = T ∗AT .

Note in particular that the determinant of the Gram matrix is an isomorphism invariant
of both classical lattices and q-lattices, that is, it is independent of the choice of basis in
which the Gram matrix is written. Hence, it is also called the determinant of the lattice.

3.2. Dual q-lattices. In classical lattice theory, given an integer lattice L, the lattice dual
is defined as L∨ := {x ∈ L ⊗Z Q | 〈x, v〉 ∈ Z ∀v ∈ L}. The lattice dual is typically not
an integer lattice, as elements may pair non-integrally with each other. The lattice dual is
a free abelian group of the same rank as L, with a Q-valued symmetric bilinear form, and
includes L.

Given a basis B = {b1, ..., bn} of the classical lattice L, the dual basis in L ⊗Z Q is the
unique basis B∨ = {b∨1 , ..., b∨n} with the property that 〈bi, b∨j 〉 = δij for all 1 ≤ i, j ≤ n. The
dual basis B∨ is a basis for L∨.

If L = L∨, the lattice is called unimodular. A lattice is unimodular if and only if its
determinant, the determinant of the Gram matrix, is a unit of Z, that is, ±1. The Gram
matrix AB also arises as the change of basis matrix TBB∨ , or in other words the matrix of the
inclusion map L ↪→ L∨, with respect to the bases B and B∨.

We now describe the analogous duality notions for q-lattices.

Definition 3.2. Given a q-lattice L, we define the right dual L∨ of L to be

L∨ := {x ∈ L⊗Z[q,q−1] Q(q) | 〈v, x〉 ∈ Z[q, q−1] ∀v ∈ L}.

Given a basis B = {b1, ..., bn} of L, the right dual basis in L⊗Z[q,q−1] Q(q) is the unique basis
B∨ = {b∨1 , ..., b∨n} with the property that 〈bi, b∨j 〉 = δij for all 1 ≤ i, j ≤ n.

Similarly, the left dual of L is ∨L := {x ∈ L ⊗Z[q,q−1] Q(q) | 〈x, v〉 ∈ Z[q, q−1] ∀v ∈ L},
and the left dual basis of B is the unique basis ∨B = {∨b1, ...,

∨bn} with the property that
〈∨bi, bj〉 = δij for all 1 ≤ i, j ≤ n. Note that d intertwines left/right duality in the sense that
(d(B))∨ = d(∨B).

Remark 3.2. The left and right dual q-lattices are indeed free Z[q, q−1]-modules, with basis
given by the left and right dual bases, respectively. They are not necessarily q-lattices, as
the pairing on them might not be valued in the Laurent polynomial ring Z[q, q−1]. As for the
existence and uniqueness of the dual bases, observe that given a non-degenerate q-sesquilinar
pairing, one can orthogonalise bases in a Q(q)-vector space using the Gram-Schmidt process
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(without normalisation). This implies that left and right orthogonal complements exist and
are unique. Given a basis vector bi ∈ B, the dual basis vector ∨bi (or b∨i ) lies in the one-
dimensional left (or right) orthogonal complement of the subspace spanned by B \ {bi}, and
can be chosen so that 〈∨bi, bi〉 = 1, (or 〈bi, b∨i 〉 = 1).

For example, in K0 := K0(A(B) -mod), costandard modules form a right dual basis to
standard modules, indecomposable projectives are left dual to the simple modules, and inde-
composable injectives are right dual to the simple modules. This, as well as the asymmetry
of the orthogonality relation, is illustrated in the following example.

Example 3.3. Let B denote the complete bipartite graph on three vertices with V0(B) =
{e1, e2} and V1(B) = e3. Then the Grothendieck group K0 of finitely generated graded A(B)-
modules is a rank three q-lattice. The isomorphism classes of indecomposable projective
modules [Pi], for i = 1, 2, 3, form a basis, and with respect to this basis the Gram matrix is
symmetric: 1 0 q

0 1 q
q q 1 + 2q2


The basis {[P1], [P2], [P3]} is left dual to the basis given by the simple modules {[L1], [L2], [L3]},
so that 〈[Pi], [Lj]〉 = δij. However, 〈[Lj], [Pi]〉 is not necessarily equal to δji: from Proposi-
tion 2.4 we see that

[L1] = (1 + q2)[P1] + q2[P2]− q[P3],

[L2] = q2[P1] + (1 + q2)[P2]− q[P3],

[L3] = −q[P1]− q[P2] + [P3].

Hence, for example, 〈[L1], [P1]〉 = q−2, and 〈[L3], [P1]〉 = q − q−1. Note that at the value
q = 1 one recovers the symmetric ungraded Euler form, so that 〈[Lj], [Pi]〉q=1 = δji.

The standard modules in this example are V1 = P1, V2 = P2, and V3 = L3; the costandard
modules are Λ1 = I1, Λ2 = I2 and Λ3 = L3. The classes of the costandard modules form
a right dual basis to the classes of the standard modules. Note that in the ungraded case,
when q = 1, the involution d is the identity on K0, and hence [Vi]q=1 = [Λi]q=1. That is, in
the ungraded case both the standard and the costandard modules form orthonormal bases
for K0 at q = 1. For general q, however, the Gram matrix in the basis {V1, V2, V3} is: 1 0 0

0 1 0
q − q−1 q − q−1 1


This pattern holds more generally for the pairings between graded standard modules for
bipartite algebras: 〈[Vi], [Vj]〉 = δij unless i ∈ V1(B), j ∈ V0(B) and i is adjacent to j in B,
in which case 〈[Vi], [Vj]〉 = q − q−1.

Proposition 3.1. If L is a q-lattice with B a basis, then the Gram matrix AB coincides with
the matrix of the embedding L ↪→ L∨ with respect to the bases B and B∨. The matrix of the
embedding L ↪→ ∨L with respect to the bases B and ∨B coincides with the conjugate AB, that
is, the involution q 7→ q−1 applied to each matrix entry of AB.
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Proof. Like the classical case, this is elementary linear algebra. We need to show that
bi =

∑n
j=1〈bj, bi〉b∨j , and bi =

∑n
j=1 〈bi, bj〉 ∨bj, for each i = 1, ..., n. For the first equality,

take the pairing on the left with each basis vector bk; for the second, do the same but on the
right. �

Example 3.4. As before, let K0 denote the Grothendieck group of finitely generated graded
A(B)-modules, a q-lattice. Let G denote the Gram matrix in the basis given by the classes
of indecomposable projective modules {[Pi]}. Simple modules form a right dual basis to
this, so Proposition 3.1 means that the i-th column of G is the vector [Pi] written in the
basis {[Li]}. Applying d, one obtains that the matrix whose i-th column is the class of the
injective module [Ii], written in the basis {[Li]}, is G, where the bar denotes the involution
q 7→ q−1. In turn, via changes of bases, this implies that the Gram matrix in the basis {[Li]}
is G

−1
, and the Gram matrix in the basis {[Ii]} coincides with G.

Definition 3.3. A q-lattice is unimodular if L∨ = L.

Luckily, we don’t need to distinguish between left and right unimodularity: even without
the assumption of the existence of the involution d, it is true that L∨ = L if and only if
∨L = L. To see this, observe that if L∨ = L for a q-lattice L with basis B, then B∨ is also
a basis for L. Since, by definition, ∨(B∨) = B, it follows that ∨L = L. Observe also that
a q-lattice is unimodular if and only if the determinant (of the Gram matrix) is a unit in
Z[q, q−1], that is, detL = ±qk.

3.3. q-Lattice gluing. In classical lattice theory, lattice gluing is an important construction
which allows for producing larger, indecomposable lattices from smaller components, see for
example [CS, Chapter 4.3]. To glue two lattices L1 and L2, one takes their direct sum, and
then adjoins carefully selected elements of L∨1 ⊕ L∨2 to obtain an integer lattice. Of course
the construction can be generalised to more than two glued components.

Lattice gluing is of particular interest when the resulting lattice is unimodular, and used
in the classification of unimodular lattices of small rank [CS, Chapter 16]. It is therefore
important to understand when it may be possible to glue two lattices together so that the end
result is unimodular. In this case, the original lattices are embedded as mutual orthogonal
complements in the unimodular lattice. A theorem (this formulation due to [BHN], also in
[CS]) provides an important necessary condition for when this is possible:

Theorem 3.2. [BHN] Let L be a unimodular lattice, and L1 and L2 sub-lattices which are
mutual orthogonal complements of each other within L. Then

(1) The images of the orthogonal projections of L onto L1⊗ZQ and L2⊗ZQ are L∨1 and
L∨2 , respectively.

(2) The glue groups of L1 and L2 are isomorphic, that is, L∨1 /L1
∼= L∨2 /L2.

(3) The determinants of L1 and L2 are equal.

We end this section with the q-analogue of this theorem:

Theorem 3.3. Let L be a unimodular q-lattice and let L1 and L2 be sub-lattices such that
L/L1 and L/L2 are free Z[q, q−1]-modules. Assume further that L⊥1 = L2 (L2 is the right
orthogonal complement of L1 in L), and L1 =⊥L2 (L1 is the left orthogonal complement of
L2 in L). Then:
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(1) Any x ∈ L can be uniquely written as a sum x = x1 + x2 where x1 ∈ L1⊗Z[q,q−1] Q(q)
and x2 ∈ L2 ⊗Z[q,q−1] Q(q). This defines left/right orthogonal projections

π1 : L→ L1 ⊗Z[q,q−1] Q(q), π1(x) = x1

and

π2 : L→ L2 ⊗Z[q,q−1] Q(q), π2(x) = x2.

Then the image of π1 is L∨1 and the image of π2 is ∨L2.
(2) L∨1 /L1

∼= ∨L2/L2.
(3) The determinants of L1 and L2 are equal up to units.

Proof. We prove the first statement for the projection π1. Since L/L1 is free, every basis
B1 = {b1, ..., br} of L1 can be extended to a basis B = {b1, ..., br, cr+1, ..., cn} of L.

Since L is unimodular, the right dual basis B∨ = {b∨1 , ..., b∨r , c∨r+1, ..., c
∨
n} is also a basis for

L. Note that for j > r, c∨j ∈ (L1 ⊗Z[q,q−1] Q(q))⊥ = L2 ⊗Z[q,q−1] Q(q). Hence, π1(c∨j ) = 0, and
therefore {π1(b∨j ) : j ≤ r} spans the image of π1.

For j ≤ r, b∨j = π1(b∨j ) + π2(b∨j ). Then, for any k ≤ j, 〈bk, π2(b∨j )〉 = 0, since π2(b∨j ) ∈
(L1⊗Q(q))⊥. So 〈bk, π1(b∨j )〉 = 〈bk, b∨j 〉 = δjk, so {π1(b∨j ) : j ≤ r} is a right dual basis to B1.
This completes the proof of statement (1) for π1, and the case of π2 is similar.

For the second statement, we will prove that L∨1 /L1
∼= L/(L1 ⊕ L2) ∼= ∨L2/L2. Consider

the map of Z[q, q−1]-modules π1 : L/(L1⊕L2)→ L∨1 /L1, given by [x] 7→ [π1(x)], where x ∈ L,
and square brackets denote cosets. The map π1 is well defined since π1(L1 ⊕ L2) = L1.

It is also injective: if [π1(x)] = 0, then π1(x) ∈ L1. Now, for all x ∈ L, x = π1(x) + π2(x),
with π2(x) ∈ ∨L2. But L2 is the right orthogonal complement of L1 in L, so if x ∈ L and
π1(x) ∈ L1, then π2(x) ∈ L2. Thus [π1(x)] = 0 implies x ∈ L1 ⊕ L2, hence π1 is injective.
In addition, π1 is surjective because the image of π1 is L∨1 . This completes the proof of the
first isomorphism, and the second is similar.

For statement (3), choose bases B1 = {b1, ..., br} for L1 and B2 = {br+1, ..., bn} for L2. By
part (1), the image of π1 is L∨1 , and the kernel of π1 is L2. Furthermore, by assumption
L/L2 is free. So, given the dual basis B∨1 = {b∨1 , ..., b∨r }, we can obtain a basis of L by
choosing arbitrary vectors π−1

1 (b∨j ) in the preimage of b∨j and taking the union π−1
1 (B∨1 )∪B2,

where π−1
1 (B∨1 ) = {π−1

1 (b∨j ) : j ≤ r}. Similarly, after choosing vectors π−1
2 (∨bk), we have that

B1 ∪ π−1
2 (∨B2) also forms a basis of L, where π−1

2 (∨B2) = {π−1
2 (∨bk) : r < k ≤ n}.

Consider the q-lattice dilations D1 and D2,

L L1 ⊕ L2

L

D1

D2

where D1 is defined by taking the ordered basis vectors π−1
1 (B∨1 ) ∪ B2 to the ordered basis

B1 ∪ B2 ; similarly D2 maps B1 ∪ π−1
2 (∨B2) to B1 ∪ B2. After extending scalars to Q(q), note

that now L ⊗ Q(q) = L1 ⊗ Q(q) ⊕ L2 ⊗ Q(q), and D1 ⊗ id and D2 ⊗ id are vector space
12



automorphisms. (We abuse notation and write D1 ⊗ id and D2 ⊗ id as simply D1 and D2):

L⊗Z[q,q−1] Q(q) (L1 ⊗Z[q,q−1] Q(q))⊕ (L2 ⊗Z[q,q−1] Q(q))

L⊗Z[q,q−1] Q(q)

D1

D2
D−1

1 ◦D2

In particular, by composing D2 with D−1
1 we obtain an automorphism of L ⊗ Q(q), which

restricts to a lattice automorphism of L. The determinant of a q-lattice automorphism is a
unit in Z[q, q−1], that is, the determinant of D−1

1 ◦ D2 is equal to ±qk for some integer k.
Therefore, the determinants of D1 and D2 agree up to units.

What remains is to compute these determinants. We accomplish this by writing D1, as a
matrix in the basis B∨1 ∪B2 = {b∨1 , ..., b∨r , br+1, ..., bn}. We know that D1 is the identity when
restricted to L2 ⊗Z[q,q−1] Q(q). Furthermore, for 1 ≤ i ≤ r, we have b∨i = π−1

1 (b∨i ) + βi, for
some βi ∈ L2 ⊗Z[q,q−1] Q(q), and so D1(b∨i ) = bi + βi.

Proposition 3.1 implies that the matrix of the linear map

L1 ⊗Z[q,q−1] Q(q)→ L1 ⊗Z[q,q−1] Q(q)

b∨i 7→ bi,

written in the basis B∨1 , is the Gram matrix AL1,B1 of L1. So the matrix of D1 is a block

diagonal matrix

[
AL1,B1 0
∗ id

]
.

Therefore, the determinant of D1 is equal to the determinant of L1. Similarly, the deter-
minant of D2 is equal to the determinant of L2, completing the proof.

�

Remark 3.5. We note here that the proof of the above theorem did not use the existence of
the involution d : L −→ L deforming the identity. Note also that in the classical Theorem 3.2,
statement (3) is almost immediate from (2): the glue groups are finite abelian groups, and the
determinant is the size of the glue group by a geometric counting argument. In Theorem 3.3,
the statements remain true but the proof is more involved, as the left and right glue groups
are torsion Z[q, q−1]-modules.

In Theorem 3.2 the mutual orthogonal complement condition implies that the abelian
group L/Li is torsion free for i = 1, 2, which in turn implies that these abelian groups
are free. In Theorem 3.3, the mutual orthogonal complement assumption implies that the
Z[q, q−1]-modules L/Li are torsion free, but it does not follow formally from this that they
are free modules. This is why we assume they are free in the statement of Theorem 3.3 but
not in Theorem 3.2.

4. The q-lattices of integer cuts and flows associated to a spanning tree

4.1. Classical cut and flow lattices. Let Γ be a finite graph, with loop edges and multiple
edges allowed. For simplicity, we assume that Γ is 2-edge-connected, that is, Γ is connected
and remains connected after the removal of any one edge. In this paper we’ll abbreviate this
and say that Γ is 2-connected.

Let V = V (Γ) and E = E(Γ) denote the vertex set and the edge set of Γ, respectively.
Choose an arbitrary orientation ω for Γ (that is, a direction for each edge): this makes Γ
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into a 1-dimensional CW-complex with cellular chain complex

0→ C1(Γ,Q)
∂−→ C0(Γ,Q)→ 0,

where for an edge e that begins at vertex v and ends at w, ∂(e) = w− v. We equip C1(Γ,Q)
and C0(Γ,Q) with inner products 〈·, ·〉 by declaring E and V to be orthonormal bases. Then
the adjoint of the boundary map, ∂∗ : C0(Γ,Q)→ C1(Γ,Q) can be expressed by the formula
∂∗(v) =

∑
e∈E〈∂(e), v〉e.

If |E| = n, then C1(Γ,Q) ∼= Qn has an integer lattice C1(Γ,Z) ∼= Zn inside it. In
C1(Γ,Z), the sublattices {im(∂∗)∩C1(Γ,Z)} and {ker(∂)∩C1(Γ,Z)} are mutual orthogonal
complements. They are called the lattice of integer cuts (the cut lattice) and the lattice of
integer flows (the flow lattice), respectively, and each inherits the inner product restricted
from C1(Γ,Z) ∼= Zn. We denote the cut lattice and the flow lattice by C(Γ) and F(Γ),
respectively. We denote the inner products by 〈·, ·〉C(Γ) and 〈·, ·〉F(Γ) respectively, dropping
the subscripts whenever it does not cause confusion.

Note that even though the definition of C(Γ) and F(Γ) depends on the choice of an
orientation, changing the orientation does not change the isomorphism type of the lattices.
Let ω′ be another orientation of Γ that differs from ω by switching the direction of a single
edge e, and let C ′(Γ) and F ′(Γ) be the cut- and flow lattices corresponding to the orientation

ω′. The isomorphism C1(Γ)
∼=−→ C1(Γ), which sends e to −e, and all other edges to themselves

induces isomorphisms C(Γ) ∼= C ′(Γ) and F(Γ) ∼= F ′(Γ).
In combinatorial terms, the cut lattice is generated by the cuts of Γ, as follows. Given a

partition V = V0 ∪V1, the corresponding cut is the signed sum of the edges connecting V0 to
V1, where each edge oriented from V0 towards V1 participates with positive sign, and edges
oriented from V1 towards V0 participate with negative sign.

The flow lattice, in turn, is generated by oriented cycles (that is, closed walks) in Γ. Each
oriented cycle gives rise to an element of F(Γ): a signed sum of the edges of the cycle, in
which edges participate with positive sign if their orientation agrees with the orientation of
the cycle, and with negative sign otherwise.

This combinatorial description leads to a (well-known) construction of bases for C(Γ) and
F(Γ). Fix a spanning tree T of Γ. Removing an edge e ∈ T splits T into two connected
components. This defines a vertex partition V = V0,e ∪ V1,e, where e is directed from V0,e

towards V1,e. Denote the corresponding cut by

Ke =
∑

e′∈EV0→V1

e′ −
∑

e′′∈EV1→V0

e′′.

This is called the fundamental cut corresponding to the edge e ∈ T . Note that the only
spanning tree edge appearing in Ke is e and it always appears with positive sign. The set of
fundamental cuts {Ke : e ∈ T} forms a basis for C(Γ).

As for the flow lattice, every edge f /∈ T creates a single cycle when added to T , called
the fundamental cycle of f , and denoted Cf . The corresponding basis element of F(Γ) is

Cf =
∑
f ′∈Cf

±f ′.
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Figure 1. The bipartite graph BΓ,T associated to a graph. Spanning tree
edges of Γ are drawn bold, negative edges of BΓ,T are marked with a square.

Here, the signs in the sum are assigned as follows: the orientation of f in ω induces an
orientation of the cycle Cf , and each edge f ′ ∈ Cf appears with a positive sign if its ori-
entation agrees with the orientation of Cf , and with a negative sign otherwise. The set of
fundamental cycles {Cf : f ∈ T c = E \ T} forms a basis of F(Γ).

4.2. Bipartite algebras from graphs. Let Γ be a 2-connected graph with numbered edge
set E = {1, 2, ..., n} and orientation ω, and fix a spanning tree T ⊂ E. Define a bipartite
graph BΓ,T whose vertex set is the edge set of Γ, with the bipartition

V0(BΓ,T ) = T, V1(BΓ,T ) = E \ T.
The edges of BΓ,T are defined as follows. Connect the vertex j ∈ V1(BΓ,T ) to exactly those
vertices i ∈ V0(BΓ,T ) which occur in the fundamental cycle Cj of j, as shown on an example
in Figure 1.

Next, we decorate the edges of BΓ,T with signs arising from the orientation ω. Consider
an edge f in the bipartite graph BΓ,T . This edge corresponds to a pair of edges (i, j) in Γ,
with i ∈ T , j /∈ T . The edge i participates in Cj with a positive or negative sign: this is the
edge sign associated to f . In Figure 1 we denote negative edges of BΓ,T by a small square
placed on the edge.

Note that the bases for C(Γ) and F(Γ) associated to the spanning tree T can be read off
BΓ,T . It is a short combinatorial exercise to show that the edge i appears in the fundamental
cycle Cj, if and only if j appears in the fundamental cut Ki. Furthermore, their signs are
always opposite: i appears in Cj with positive sign if and only if j appears in Ki with
negative sign.

While changing the orientation ω of Γ does not change the isomorphism types of C(Γ) and
F(Γ), it has an effect on the edge signs of BΓ,T . Namely, changing the orientation of an edge
i of Γ flips the sign of all the edges of BΓ,T incident to the vertex i, but it does not otherwise
change the bipartite graph.

Set AΓ,T := A(BΓ,T ), as defined in Section 2. The edge signs of B(Γ, T ) turn the double
quiver Q(B(Γ, T )) into a signed quiver (both directions of an edge inherit the same sign).
This induces a Z2-grading on the path algebra: the Z2-degree of a path is the parity of the
number of negative edges in it. Since the relations are homogeneous, there is an induced
Z2-grading on AΓ,T , and on finitely generated AΓ,T -modules. The Groethendieck group
K0(AΓ,T -mod) is now a free module over the ring Z[q, q−1, t]/(t2 = 1), and the graded Euler
form is valued in Z[q, q−1, t]/(t2 = 1), and is t-bilinear and q-sesquilinear. The substitutions
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t = 1 and t = −1 both turn the Grothendieck group into a q-lattice. From here on we will
also refer to the Z2-grading as the t-grading.

The statements of Section 2 hold with t = 1, and otherwise are easily modified to include
the t-grading. The simple modules Li are contained in t-degree 0. The indecomposable
projective modules Pi are naturally t-graded, as their elements can be viewed as paths.
Homomorphisms between indecomposable projective modules are spanned by paths as in
Proposition 2.3, and t-graded accordingly. In Proposition 2.4, projective resolutions can be
adjusted to account for the t-grading by inserting t-shifts whenever the edge “leading to”
an indecomposable projective module has a negative sign. For instance, in the example of
Figure 1, the projective resolution of L4 is P2{1}〈1〉 ⊕ P1{1} → P4, where 〈·〉 denotes the
t-grading shift. The functor d respects the t-grading, and descends to a t-linear, q-anti-linear
map on the Grothendieck group.

Proposition 4.1. For edges i, j /∈ T the pairing 〈[Pi], [Pj]〉|q=1,t=−1 agrees with the pairing
〈Ci, Cj〉F(Γ) of the corresponding fundamental cycles in the flow lattice of Γ.

Proof. Since Pi and Pj are projective modules, the Ext in the definition of the graded Euler
pairing reduces to Hom. So we need to show that when i, j /∈ T ,

qtdim Hom(Pi, Pj)|q=1,t=−1 = 〈Ci, Cj〉F(Γ).

As shown in Proposition 2.3, a basis for Hom(Pi, Pj) is given by paths from ei to ej in BΓ,T

all of which are of length 2, except for the length zero path ei in the case i = 1. The length
2 paths, in turn, correspond to T -edges in common between Ci and Cj. The substitution
t = −1 gives these T -edges signs according to whether an edge participates in Ci and Cj with
the same sign or opposite signs. This is exactly how the pairing 〈Ci, Cj〉F(Γ) is defined. �

Remark 4.1. In light of Example 3.4, we may substitute indecomposable injective modules
for the indecomposable projective modules in the statement of Proposition 4.1. Specifically,
for any signed bipartite graph B and modules M,N ∈ A(B)-mod, in K0(A(B)-mod) we have
〈[M ], [N ]〉(q, t) = 〈[dN ], [dM ]〉(q−1, t). Hence, for ei, ej /∈ T , and indecomposable injective
AΓ,T -modules Ii and Ij, 〈[Ii], [Ij]〉|q=1,t=−1 = 〈Ci, Cj〉F(Γ).

The following is a dual statement to Proposition 4.1, which we will prove in Section 4.3:

Proposition 4.2. For edges i, j ∈ T the pairing 〈[Li], [Lj]〉|q=1,t=−1 agrees with the pairing
〈Ki, Kj〉C(Γ) of the corresponding fundamental cuts in the cut lattice of Γ.

4.3. Koszul duality and matroid duality. Rather than proving Proposition 4.2 directly
we explain how it is dual to the statement of Proposition 4.1. Proposition 2.5 implies
that if B! denotes the bipartite graph obtained from B by switching the bipartition, then
A(B!) ∼= A!(B), where A!(B) is the Koszul dual of A(B).

If B is a signed bipartite graph, we set the convention that B! is the bipartite graph
obtained from B by switching the bipartition and all edge signs. This induces a t-grading
on A(B!) ∼= A!(B).

4.3.1. Koszul duality and Grothendieck groups. By Theorem 1.2.6 of [BGS], there is a Koszul
duality derived equivalence between derived categories of graded modules

K : Db(A(B)-mod)→ Db(A(B!)-mod).
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Figure 2. On the left, we show an oriented graph Γ with spanning tree T
shown in thick edges, and its oriented planar dual Γ!, with spanning tree T !

complementary to T . The corresponding signed bipartite graphs are shown on
the right: BΓ!,T ! is obtained from BΓ,T by flipping the bipartition and all edge
signs. As an example, the fundamental cycle C !

2 and the fundamental cut K2

are both given by “2 + 4− 5”.

If M is a module over A(B), we write M ∈ Db(A(B)-mod) and mean the complex whose
homological degree 0 chain module is M , and whose other chain modules are zero; and
similarly for modules over A(B!).

If M ∈ A(B)-mod, {·} denotes the internal grading shift, and [·] denotes the homological
grading shift, then K(M{n}) = (KM)[−n]{−n}. On the other hand, K commutes with
t-shifts.

For i = 1, ..., n, K sends the simple module Li over AΓ,T to the indecomposable projective
module P !

i over the Koszul dual A!
Γ,T .

The Grothendieck group of Db(A(B)-mod) coincides with K0(A(B)-mod) via the graded
Euler characteristic, that is, the alternating sum of graded dimensions of chain modules.
Koszul duality induces a Z-linear map

K : K0(A(B)-mod)→ K0(A(B!)-mod),

determined by K[Li] = [P !
i ], K(q) = −q−1, and K(t) = t. Furthermore, we have

〈[M ], [N ]〉 = 〈K(M), K(N)〉|q→−q−1 .

4.3.2. Planar Graph Duality and Matroid Duality. If Γ is an oriented planar graph with
spanning tree T , and Γ! its oriented planar dual, then there is a canonical bijection ϕ :
E(Γ)→ E(Γ!), and E(Γ!) \ϕ(T ) forms a spanning tree for Γ!. It is a short exercise to check
that the bipartite graph BΓ!,E(G)\T coincides with (BΓ,T )!. See Figure 2 for an example.

Furthermore, F(Γ) ∼= C(Γ!) canonically, and vice versa. For i ∈ T , Ki = C !
i, where Ki

denotes the fundamental cut for i in C(Γ), and C !
i denotes the fundamental cycle for i in

F(Γ!). For i /∈ T , Ci = K !
i.

Proof of Proposition 4.2 for planar graphs. From Proposition 4.1 for the dual graph Γ!,
we have that for Γ-edges i, j ∈ T ,

〈[P !
i ], [P

!
j ]〉|q=1,t=−1 = 〈C !

i, C
!
j〉F(Γ!).
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On the left, Koszul duality gives

〈[Li], [Lj]〉|q=1,t=−1 = 〈[P !
i ], [P

!
j ]〉|q=−1,t=−1 = 〈[P !

i ], [P
!
j ]〉|q=1,t=−1,

since pairings between the classes of “same side” indecomposable projective modules are
functions of q2.

On the right, planar graph duality gives

〈C !
i, C

!
j〉F(Γ!) = 〈Ki, Kj〉C(Γ),

and combining the two sides one obtains the statement of Proposition 4.2. �

If Γ is not planar, there is no dual graph, though there is still a Koszul dual bipartite
algebra, and a dual (flipped) bipartite graph. In this case these dualities correspond to the
matroid dual of the oriented graphical matroid associated to Γ. Thus in fact the most natural
language for describing the combinatorial origin for Koszul duality of bipartite algebras is to
assign a bipartite graph and bipartite algebra to any oriented regular matroid with a matroid
basis, rather than just to a graph with a spanning tree. To simplify language in this paper,
we will not present the details of the construction for regular matroids, and instead define
the lattices of integer cuts and flows at the bipartite graph level. However, for the reader
who is interested in matroid statements, we give a brief summary of the basic points here.

Each oriented regular matroid has a regular oriented matroid dual. Each oriented graph
has an associated oriented graphic matroid, which is always regular, and for planar graphs
the dual matroid of the graphic matroid agrees with the graphic matroid of the planar dual
graph. For non-planar graphs, the dual of the graphic matroid is a regular, non-graphic
matroid.

Regular matroids have associated lattices of integer cuts and flows, and everything in this
paper can be extended to that context without difficulty. In particular, the analogue of a
spanning tree is a basis of the matroid, and the analogue of a spanning tree basis for C(Γ)
or F(Γ) is called the fundamental basis of the cut or flow lattice associated to a basis of the
matroid. The complement of a basis for an oriented regular matroid forms a basis for the
dual matroid, and matroid duality exchanges cut and flow lattices. Hence, the planar graph
statements above also apply to regular matroids.

4.3.3. Cuts and Flows for Bipartite Graphs. Given a signed bipartite graph B with numbered
vertex set E = E0 ∪E1, let ZE denote the Euclidean lattice generated by elements of E (ie,
elements of E form an orthonormal basis). The flow lattice F(B) of B is the sublattice of
ZE generated by fundamental cycles Ci associated to each i ∈ E1 as follows:

Ci = i+
∑
j∈Ni

εijj,

where Ni denotes the set of neighbours of i and εij is the sign of the edge i—j in B. Similarly,
the cut lattice C(B) of B is the sublattice of ZE spanned by fundamental cuts Ki for i ∈ E0,
where

Ki = i−
∑
j∈Ni

εijj.

It is clear that for a bipartite graph arising from a graph with a spanning tree, F(BΓ,T ) ∼=
F(Γ) and C(BΓ,T ) ∼= C(Γ), and the isomorphisms preserve fundamental cuts and flows.
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Furthermore, F(B) ∼= C(B!) and C(B) ∼= F(B!). Proposition 4.1 and its proof remains true
for flow lattices of signed bipartite graphs.

Proof of Proposition 4.2. The proof for planar graphs generalises directly, replacing T
with E0, and planar graph duality with bipartite graph duality. �

4.3.4. Bipartite graphs and classes of matroids. For those interested in matroid aspects,
we clarify the relationship between graphs, signed bipartite graphs, and various classes of
matroids.

From an oriented graph Γ with a choice of spanning tree T , we constructed a signed
bipartite graph. From the pair (Γ, T ), one also obtains an oriented graphic matroid M(G)
with a chosen basis B. It is possible to construct the signed bipartite graph BΓ,T from
M(G): the vertices correspond to the base set E of the matroid, partitioned into the basis
and non-basis elements. Signed edges incident to a non-basis element are drawn according
to the fundamental signed circuit in the fundamental basis of F(M(G)) corresponding to
B. In fact, this construction of signed bipartite graphs from matroids works not only for
graphic matroids but for any oriented regular matroid with a chosen basis.

Conversely, for any signed bipartite graph B, we can construct an (oriented) matroid with
a chosen basis. The base set of this matroid is the vertex set E of B, the basis is the E1 side
of the vertex partition, and circuits are generated by the fundamental circuits corresponding
to elements of E1. This matroid is always Q-representable, but not necessarily regular. For
example, the complete bipartite graph on 2 + 2 vertices, with one negative edge sign, gives
rise to a matroid not representable over F2.

In general, a Q-representable matroid with a chosen basis would give rise to a bipartite
graph with Z-weighted edges as opposed to a signed bipartite graph. So signed bipartite
graphs can be seen as a class of matroids between regular matroids and Q-representable
matroids.

4.4. The q-cut and q-flow lattices. For a signed bipartite graph B with vertex set E =
E0∪E1, the Groethendieck group K0(A(B)-mod)|t=−1 is a q-lattice in the sense of Section 3,
with the graded Euler form at t = −1, and the involution d of Remark 2.1. We define the
q-cut and q-flow lattices as the appropriate q-sublattices of the Grothendieck group. After
giving the definition, we will see that it is also possible to define these objects combinatorially,
without any reference to the bipartite algebra A(B) or its representation category. The rest
of this Section focuses on the intricate combinatorial properties of these new graph invariants.

Definition 4.1. For a signed bipartite graph B, with vertex set E = E0 ∪ E1, the q-flow
lattice Fq(B) is the Z[q, q−1]-submodule of K0 = K0(AB-mod)|t=−1 generated by the classes
of projective modules {[Pi] : i ∈ E1}, with the inherited sesquilinear form. The involution d
is defined to be the Z-linear map which fixes the classes {[Pi]}, and for which d(q) = q−1.

Similarly, the q-cut lattice Cq(B) is generated by the classes of simple modules {[Li] : i ∈
E0}, with the inherited form, and d([Li]) = Li.

If B = BΓ,T for some graph Γ with chosen spanning tree T , then we call B graphical, and
denote Fq(BΓ,T ) = Fq(Γ, T ), and Cq(BΓ,T ) = Cq(Γ, T ).

Note that in the case of the q-flow lattice, the involution d is the composition of the
involution d on K0 with the canonical pairing-preserving isomorphism between the Z[q, q−1]-
submodule generated by {[Pi] : i ∈ E1}, and that generated by the classes of indecomposable
injective modules {[Ii] : i ∈ E1}.
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In the classical case, for a graph (or regular matroid) Γ, F(Γ) and C(Γ) are mutual
orthogonal complements in the Euclidean lattice ZE(Γ). The q-analogue of this statement is
the following:

Proposition 4.3. In K0, Cq(B) is the right orthogonal complement to Fq(B), and Fq(B) is
the left orthogonal complement of Cq(B).

Proof. Recall that simple modules form a right dual basis to indecomposable projective
modules with respect to the graded Euler pairing. That is, 〈[Pi], [Lj]〉 = δij for all 1 ≤
i, j ≤ n. This implies that the right orthogonal complement [Pi]

⊥ of [Pi] is the span of
{[Lj] : j 6= i}, since the simple modules form a basis, and pairing with [Pi] on the left picks
out the coefficient of [Li]. The right orthogonal complement of Fq(B) is the intersection⋂
ei∈E1

[Pi]
⊥, that is, the span of {[Lj] : ej ∈ E0}, which is by definition Cq(B).

The same argument, using the fact that indecomposable projective modules also form a
basis, proves that the left orthogonal complement of Cq(B) is Fq(B). �

Remark 4.2. Given a signed bipartite graph B, with vertex set E = E0 ∪ E1 it is possible
to define the q-cut and q-flow lattices without reference to the category A(B)-mod. Namely,
in the basis {[Pi]}i∈E, the q-Gram matrix of the “Euclidean q-lattice” K0 is of the form

GK0,{[Pi]} =

[
I C
Ct GF

]
.

Here I is the identity matrix of size |E0|, and C = qMB, where MB denotes the signed
adjacency matrix of B. That is, if i ∈ E0 and j ∈ E1 then Cij is zero if i and j are not
adjacent, q if they are adjacent via a positive edge, and −q if adjacent via a negative edge
of B. Ct is the transpose of C.

The matrix GF is the Gram matrix of the q-flow lattice in the basis {[Pi]}i∈E1 , namely, for
ei, ej ∈ E1 and 〈·, ·〉F(B) denoting the pairing in the classical flow lattice of B,

(GF)ij =

{
1 + (〈Ci, Ci〉F(B) − 1)q2 when i = j

〈Ci, Cj〉F(B)q
2 when i 6= j.

The classes [Li] (i ∈ E) written in the basis {[Pi]}i∈E are the columns of G−1
K0,{[Pi]}. The

involution d on K0 is defined by q-anti-linearity and fixing the elements {[Li] : i ∈ E}
The q-flow lattice can be defined as the submodule spanned by {[Pi] : ei ∈ E1}, with the

inherited form and the involution given by d([Pi]) = [Pi], d(q) = q−1.
The q-cut lattice is the right orthogonal complement of the q-flow lattice, or equivalently,

the q-sublattice generated by {[Li] : i ∈ E0}. The Gram matrix of Cq(B) is given in the basis
{[Li] : i ∈ E0} is given by

(GC)ij =

{
1 + (〈Ki, Ki〉C(B) − 1)q2 when i = j

〈Ki, Kj〉F(B)q
2 when i 6= j.

Remark 4.3. It was an arbitrary choice to define the q-flow lattice via the basis of indecom-
posable projectives, and one equally reasonable choice would have been to use indecompos-
able injective modules (cf Remark 4.1). Then Cq(B) would be the left orthogonal complement
of Fq(B) in K0. The Gram matrix would remain the same (but in the basis {[Ii]}i∈E1), and
d would fix the elements [Ii].
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In classical lattice theory, if an orthonormal basis of a Z-lattice exists, then this basis is
unique up to signs and permutation of the basis vectors. Furthermore, if v is an element of
norm ±1, then one of {v,−v} is an element of this basis. There is a similar rigidity statement
for a special class of q-lattices which have a basis satisfying certain conditions, but which
need not be orthonormal. This includes in particular q-cut and q-flow lattices:

Lemma 4.4. Suppose a q-lattice L of rank n has a basis {Bi : i = 1, . . . , n} and that there
exists k ∈ Z such that for all i, j = 1, . . . , n:

• 〈Bi, Bi〉 = 1 + ciiq
k with cii ∈ Z, and

• 〈Bi, Bj〉 = 〈Bj, Bi〉 = cijq
k for i 6= j with cij ∈ Z.

Then such a basis is unique up to permutation and signs: if for any B ∈ L, 〈B,B〉 = 1 + cqk

for some c ∈ Z, then B = ±Bi for some i.

Proof. Assume that for some B ∈ L, 〈B,B〉 = 1 + cqk, and B =
∑n

i=1 αiBi for some
αi ∈ Z[q, q−1]. Then

〈B,B〉 =
n∑

i,j=1

ᾱiαj〈Bi, Bj〉 =

(
n∑
i=1

ᾱiαi

)
+ qk

(
n∑
i=1

ciiᾱiαi +
∑
i<j

cij(ᾱiαj + ᾱjαi)

)
,

where ᾱi(q) = αi(q
−1). Denote

X(q) =
n∑
i=1

ᾱiαi, and Y (q) =
n∑
i=1

ciiᾱiαi +
∑
i<j

cij(ᾱiαj + ᾱjαi).

Notice that X and Y are symmetric Laurent polynomials: X(q) = X(q−1) and Y (q) =
Y (q−1). So we have

1 + cqk = X + Y qk.

Substituting q−1 for q we obtain

1 + cq−k = X + Y q−k.

Subtract the second equation from the first to get

c(qk − q−k) = Y (qk − q−k),

therefore Y = c and X = 1.
Going back to the definition of X, note that the constant term of ᾱiαi is a non-negative

integer, and it is 0 if and only if αi = 0. Since 1 = X(q) =
∑n

i=1 ᾱiαi, it must be that αi = 0
for all but one i, and for the one exception αi = ±1. Hence, B = ±Bi for some i, and as a
result such a basis is unique up to permutation and signs. �

Definition 4.2. Let Lq be a q-lattice with a given basis {Bi : i = 1...n}. If for any element
x ∈ Lq the norm 〈x, x〉 determines whether x = ±Bi for some i, then we call Lq Gram-rigid.

In other words, Gram-rigid q-lattices have a “canonical basis” producing a Gram matrix
of a certain form. The q-flow lattice of a signed bipartite graph is Gram-rigid with the basis
{[Pi]}i∈E1 , and the q-cut lattice is Gram rigid with the basis {[Lj]}j∈E0 .
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4.5. The q-cut and q-flow lattices and 2-isomorphisms of graphs. A theorem of Su–
Wagner [SW] and Caporaso–Viviani [CV] states that the classical lattice of integer flows is
a complete 2-isomorphism invariant of 2-edge-connected graphs. That is, F(Γ1) ∼= F(Γ2)
if and only if there exists a cycle-preserving bijection between E(Γ1) and E(Γ2). Such a
bijection is called a two-isomorphism of graphs. Dually, the lattice of integer cuts is a
complete 2-isomorphism invariant of graphs without loops.

The Su–Wagner result is stated in the context of regular matroids, where matroid isomor-
phism replaces 2-isomorphisms of graphs, and 2-edge-connected graphs translate to matroids
without co-loops. This result is useful not only in graph theory and matroid theory but also
in low-dimensional topology [Gr].

The following q-analogue of this theorem shows that Fq(Γ, T ) and Cq(Γ, T ) are complete
invariants of the two-isomorphism type of the pair (Γ, T ), in other words, the q-lattices
“remember” the spanning tree:

Theorem 4.5. For 2-edge-connected loopless graphs Γ1 and Γ2 with respective spanning trees
T1 and T2, the following are equivalent:

(1) Fq(Γ1, T1) ∼= Fq(Γ2, T2);
(2) There exists a cycle-preserving bijection F : E(Γ1)→ E(Γ2) for which F (T1) = T2;
(3) Cq(Γ1, T1) ∼= Cq(Γ2, T2).

Proof. We first prove (2) ⇒ (1). It is a classical fact that the map F lifts to a map of
lattices F̃ : ZE(Γ1) → ZE(Γ2), where F̃ (e) = ±F (e), such that F̃ restricts to an isomorphism

ϕ : F(Γ1)
∼=−→ F(Γ2). Since F (T1) = T2, ϕ sends fundamental cycles corresponding to T1

to fundamental cycles corresponding to T2, and therefore it lifts to an isomorphism ϕ :

Fq(Γ1, T1)
∼=−→ Fq(Γ2, T2).

To prove (1)⇒ (2), given an isomorphism ϕ : Fq(Γ1, T1)
∼=−→ Fq(Γ2, T2), set q = 1 to obtain

an isomorphism ϕ : F(Γ1)
∼=−→ F(G2). By a strong version of the Su–Wagner–Caporaso–

Viviani theorem (see proof of [Gr, Thm.3.8]), ϕ extends to an isomorphism F ′ : ZE(Γ1) →
ZE(Γ2), which sends each edge of Γ1 to a signed edge of Γ2.

Forgetting signs, we obtain a cycle-preserving bijection F ′ : E(G1) → E(G2), which in
particular sends T1-fundamental cycles to T2-fundamental cycles. Note that this does not
imply that F ′ sends T1 to T2. If an edge e of Γ1 participates in at least two T1-fundamental
cycles, then e is an edge of T1, and F ′(e) an edge of T2. On the other hand, if an edge
e ∈ T1 participates in a unique fundamental cycle, say Ci, then F ′(e) may be a non-T2 edge
of F ′(Ci).

However, if two edges e1, e2 ∈ E(Γ1) both only appear in the fundamental cycle Ci, then
e1 and e2 appear together in any cycle of Γ1, and so the transposition of e1 and e2 is a
cycle-preserving automorphism of E(Γ1). Hence, F ′ can always be composed with such
transpositions to obtain a cycle preserving bijection F : E(Γ1) → E(Γ2) which sends T1 to
T2.

To prove (2)⇔ (3), similar arguments can be made using fundamental cuts. �

Note that, building on the Su-Wagner result, Theorem 4.5 can be generalised to regular
matroids with a chosen basis, and then a duality argument implies (2)⇔ (3).

The Su–Wagner/Caporaso–Viviani Theorem implies in particular that for 2-edge-connected
loopless graphs the isomorphism class of F(Γ) determines the isomorphism class of C(Γ), and
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vice versa. Similarly, Theorem 4.5 says that for these graphs with a choice of spanning tree,
the isomorphism type of Fq(Γ, T ) determines the isomorphism type of Cq(Γ, T ) and vice
versa. This, however, is not true in general for the q-cut and q-flow lattices associated to
signed bipartite graphs whose associated matroid is non-regular: an example is shown in
Figure 3. Note that for a bipartite graph “2-edge-connected” means there is no isolated
vertex in V (0), and “loopless” means there’s no isolated vertex in V (1).

Figure 3. The isomorphism class of Fq(B) does not necessarily determine
the isomorphism class of Cq(B) for signed bipartite graphs whose associated
matroid is not regular: the bipartite graphs above have identical q-flow lattices,
but non-isomorphic q-cut lattices (non-isomorphism is easily seen for Gram-
rigid q-lattices). The blue edges highlight the difference between the two
graphs.

4.6. A q-Matrix-Tree theorem. The classical integer cut and flow lattices glue together
to form the Euclidean lattice ZE; this implies through Theorem 3.2 that for any signed
bipartite graph B, detF(B) = det C(B). Analogously, the q-cut and q-flow lattices glue to
form a unimodular q-lattice: they embed as mutual one-sided orthogonal complements in a
unimodular q-lattice satisfying the conditions of Theorem 3.3. This implies that detFq(B) =
det Cq(B), up to units.

In graph theory, the famous Matrix-Tree Theorem states that the determinant of the
classical cut and flow lattices counts the number of spanning trees for a graph. (It also
applies to regular matroids, where the determinant equals the number of bases.) Our final
result is a q-analogue of this theorem, which further illustrates how the q-cut and q-flow
lattices encode information about the choice of spanning tree. This theorem also applies to
regular matroids, with the same proof; here we state and prove it for graphs.

Theorem 4.6. Given a graph Γ and a spanning tree T ⊆ E(Γ), set r := |T |. Then

det Cq(Γ, T ) =
r∑
i=0

ciq
2i,

where ci is the number of spanning trees T ′ of Γ with |T ′∩T | = r− i. (In particular, c0 = 1.)

This proof is based on the proof of the classical Matrix-Tree Theorem presented in [Bi,
Chapter 6].
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Proof. The plan for the proof is to define a matrix Q0, and prove that on one hand, detQ0 =∑r
i=0 ciq

2i, and on the other hand, that Q0 is a q-Gram matrix for Cq(Γ, T ).
Let D denote the signed “q-incidence matrix” for (Γ, T ): the rows of D are indexed by

V (Γ), and the columns are indexed by E(G), with T -columns preceding non-T columns.
The entries of D are defined as follows:

Dij =


1 if the edge j ∈ T ends at the vertex i,

−1 if the edge j ∈ T begins at the vertex i,

q if the edge j /∈ T ends at the vertex i,

−q if the edge j /∈ T begins at the vertex i.

Define Q := DDt. Q is a symmetric matrix whose rows and columns are indexed by V (Γ).
By a simple computation, Qii = αi + βiq

2, where αi is the number of T -edges incident to
vertex i, and βi is the number of non-T edges incident to vertex i. When i 6= j, let γij denote
the number of non-T edges between the vertices i and j, in either direction. If the vertices
i and j are also connected by a single T -edge in either direction, then Qij = −1 − γijq

2.
Otherwise Qij = −γijq2.

Note that the rank of D is r = |T |, since the T -columns are linearly independent, and
there are r + 1 rows summing to zero. Hence, Q is a symmetric (r + 1) × (r + 1) matrix
of rank r, so all cofactors of Q are the same. (A cofactor is the determinant of any r × r
submatrix.) Let D0 denote D with the last row deleted. Let Q0 := D0D

t
0.

For any subset J ⊆ E(Γ), |J | = r, let DJ denote the minor of D0 which contains the
columns in J . By the Binet-Cauchy Theorem, detQ0 =

∑
J detDJ · detDt

J . Observe that
detDJ = 0 if and only if J contains a cycle.

If J does not contain a cycle, then, since |J | = r, J is a spanning tree, and detDJ = ±qk,
where k is the number of non-T edges in J . To see this, observe that there is at least one
vertex l which is a leaf of J and does not correspond to the deleted last row of D. The row
l has a single non-zero entry in DJ , which is ±1 if the single J-edge incident to it is also
in T , and ±q otherwise. Use the cofactor expansion of detDJ according to this row, which
therefore has a single non-zero component, where the cofactor corresponds to a spanning
tree for Γ \ l. Hence, by repeating this process, we obtain the determinant ±qk.

Thus, we have shown that detQ0 =
∑r

i=0 ciq
2i. It remains to prove that Q0 is a Gram

matrix for Cq(Γ, T ), by exhibiting a change of basis matrix T such that the Gram matrix
(GC)ij defined in Remark 4.2 equals T tQ0T .

For intuition, we note that the (classical) lattice of integer cuts has a basis corresponding
to any set of r vertices (all but one of the vertices). The basis element corresponding to
a vertex v is the cut given by the partition {v} ∪ (V (Γ) \ v). As an element of ZE(Γ),
this cut is a linear combination of the edges incident to v, where incoming edges appear
with +1 coefficient and the outgoing edges with −1 coefficient. The basis consists of cuts
corresponding to all but one of the vertices since the cut corresponding to the last vertex
is the negative sum of all the others. The lattice Q0 is the quantised version of the Gram
matrix in this vertex basis, with the last vertex omitted. The change of basis matrix T is
the matrix whose columns are the fundamental cuts Ki written in the vertex basis.

With the above in mind, we define the matrix T as follows. Let the edges of T be numbered
1, ..., r. Label the vertices of Γ corresponding to the rows of D0 with v1, ..., vr, in the order
of their appearance as rows in D0. Let vr+1 denote the vertex corresponding to the omitted
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last row of D. The fundamental cut Ki = V0,i∪V1,i includes vr+1 on one side of the partition.
The change of basis matrix T is the r × r matrix given by:

Tij =


1 if vi ∈ V0,j and vr+1 ∈ V1,j;

−1 if vi ∈ V1,j and vr+1 ∈ V0,j;

0 otherwise.

It is then a straightforward check that Cq(Γ, T ) = T tQ0T = (T tD0)(Dt
0T ). �
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