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Abstract

Linear mixed model is the prevailing method in genomic prediction and
selection as it fits the structure of the data well. There are many forms of
the analysis using linear mixed models however it is widely concurred that
a single model that analyses the individual plot data, i.e. one-stage
analysis, is superior to a two-stage analysis. Briefly, two-stage analysis
involves computation of the adjusted genotype means in the first stage
with a weighted or unweighted analysis in the second stage. A prevalent
form of two-stage analysis lacks spatial modelling nor considers variance
heterogeneity for genotype × environment effects.

Often in crop breeding trials, analytical approaches do not take into
account the non-genetic sources of variation, either by the adoption of
more suitable designs (Butler et al, 2014) or an appropriate analysis
(Stefanova et al, 2009) or both. In particular, a two-stage analysis is
frequently used in the analysis of crop breeding trials. We present
one-stage and two-stage models for single trial analysis. Our one-stage
model utilises both the pedigree and marker information and is an
extension to the approach in Oakey et al (2006). Our simulation results
based on 48 early generation wheat selection trials show there is almost
always a loss in accuracy for the prevalent weighted and unweighted
two-stage analysis over a one-stage analysis. The loss of accuracy was
noticeably larger from the lack of use in spatial modelling than the use of a
weighted analysis. In addition, the loss was more pronounced for partially
replicated designs (Cullis et al, 2006) which are becoming widely adopted
in plant improvement programs in Australia.
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1 Introduction

With the advent of high-throughput genotyping technologies, molecular
markers such as single nucleotide polymorphisms (SNPs) are now readily
available for genomic prediction of breeding values (Crossa et al, 2011).
Traditionally, breeding values were estimated based on pedigree
information alone which can infer the average additive genetic effects
(Crossa et al, 2010). Molecular marker information can capture the
variation due to Mendelian sampling and has become prolific for use in
plant improvement programs worldwide .

Advances on experimental design and analysis that accounts for
non-genetic sources of variation of plant breeding programs have shown
great improvement in genomic prediction (Cooper et al, 2014). More
specifically, the application of linear mixed models that account for effects
in relation to the experimental design (such as block effects) and field
variation as described in Cullis and Gleeson (1991); Gilmour et al (1997);
Stefanova et al (2009) have reduced the undesirable impact of non-genetic
sources of variation. For multi-environmental trial (MET) datasets, the
modelling of the between trial variance-covariance matrix can be
accommodated in the two-stage approach with or without weights (Piepho
et al, 2012; Smith et al, 2001a; Welham et al, 2010) or preferably in a
one-stage approach with the use of multiplicative mixed models (Smith
et al, 2001b). Oakey et al (2006) demonstrated that a one-stage analysis
using an appropriate spatial linear mixed model that partitions the total
genetic effects to additive and non-additive effects with the use of pedigree
information provides better accuracies for both the additive and total
genetic effects. In this paper, we extend this model to include three sets of
genetic effects, namely, additive effects due to markers, residual additive
effects and non-additive effects.

In a simulation study for late-stage variety evaluation trials, Welham
et al (2010) demonstrated that genetic gain decreased when using a
two-stage analysis, especially without using appropriate weights and when
trials with low accuracy were present, compared to the one-stage approach.
Their study, however, focussed on the prediction of the total genetic effects
and did not incorporate marker nor pedigree data. In their study, Welham
et al (2010) used the weights recommended by Smith et al (2001a) in
which weights are given as the diagonal of the (asymptotic)
variance-covariance matrix of the empirical best linear unbiased estimators
(E-BLUEs) of the line means from a single site analysis. Piepho et al
(2012) suggest an alternative weighting scheme which use the full
variance-covariance matrix of the E-BLUEs. Using an empirical example
they suggest that use of these weights results in predictions which are more
similar to the prediction of genetic effects from a one stage analysis.
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In the selection of best parents for further crosses, the interest lies in
the prediction of additive genetic effects as these can be passed onto the
progeny in a expected way. The common practice in current genomic
prediction methods in plant breeding is to employ a two-stage analysis
with a number of studies accounting of no genotype × environment (G×E)
interaction. For studies that consider G×E effects, the model in the first
stage generally predicted the main genotype effect with G×E as a nuisance
factor resulting in an equivalent formulation to a model that assumes a
compound symmetric variance-covariance structure to the G×E effects.
The adjusted genotype means per trial, usually obtained from a model
with fixed genotype effects, are used as the response in the second stage in
either a weighted or unweighted overall mixed model analyses. The main
appeal of the two-stage analysis is the computational efficiency, however,
the two stage approach may be simply employed due to software
restrictions. For MET datasets, a two-stage approach without weights and
assuming no genetic correlation between environments in genomic
prediction models is commonly employed. The between trial variance and
covariance heterogeneity is occasionally accommodated in genomic
selection models, albeit in a two-stage approach.

In addition, Bernal-Vasquez et al (2014); Cullis and Gleeson (1991);
Gilmour et al (1997); Stefanova et al (2009) have shown clear gains in the
prediction of genetic effects by taking into account spatial variation or
trends in the data. The lack of incorporating spatial variation or trend is
in particular prevalent in two-stage analysis.

The aim of this paper is to use real breeding trials as a basis of
simulation to evaluate the loss of accuracy of one-stage analysis over
prevalent two-stage approaches in prediction of breeding values using single
trial information. This aim is similar to Schulz-Streeck et al (2013) but the
major differences lie in that we consider spatial variation or trends and a
more realistic comparison by incorporating a model selection procedure for
our simulation. Furthermore, Schulz-Streeck et al (2013) did not consider
heterogeneity for the genetic effects nor residuals as per Smith et al
(2001b) thus we cannot draw conclusions from their model for dataset that
exhibit this heterogeneity.

An outline of the paper is as follows. We describe the motivating data
set that served as a basis of our simulation. The statistical models for
one-stage and two-stage analysis in the context of a single trial are
reviewed. The analysis of motivating data set is presented. The simulation
setting is described and results are presented. We conclude with a
discussion of the results.
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2 Motivating dataset

The motivating dataset we consider is 48 early generation selection trials
conducted by Australian Grain Technologies (AGT) wheat breeding
program in 2010-2013. Each trial was planted as a rectangular array of 12
rows by 16 columns or 12 rows by 24 columns, i.e. a total of 192 or 288
plots. The number of genotypes varied from 138 to 191 with a total of 448
genotypes across the 48 trials. All trials were designed using the DiGGer
software (Coombes, 2002) with default trial design parameters. Most trials
(28 of the 48 trials) were designed as p-replicate designs (Cullis et al, 2006)
in which a proportion p of genotypes were sown with two plots each, and
the remaining genotypes sown with a single plot each. Some check varieties
had additional plots. The range of p across all p-replicate trials is (0.33,
0.48) with a mean of 0.43. The remaining 20 trials had 2 replicates of all
genotypes with some additional plots for check varieties. All trials had 2
resolvable blocks (for the replicated genotypes only in the p-replicate
designs), such that the first replicate block comprised of columns 1-6 and
the second replicate columns 7-12.

The trait of interest is grain yield and the trial mean yield ranged from
0.88 to 6.70 t/ha (Figure 1) with most trials missing phenotypic data for
less than 3 plots (< 2% missing). We provide a detailed analysis of a single
trial in Section 4.1.

The genotypes grown in these trials all have marker and pedigree
information. These genotypes were part of the early generation selection
trials and have no particular population structure (see Appendix A). The
marker genotype information was obtained from a custom AxiomTM

Affymetrix array. For each of the 17,305 SNP markers, the individual was
coded as -1, 1, or 0 for homozygous minor allele, homozygous major allele
or heterozygous, respectively. Missing marker information was imputed
using k-nearest neighbour using the R-package pedicure (Butler, 2014).
Pedigree information was available on a total of 1831 lines, which
comprised all the genotypes grown in the 48 trials together with the
ancestral varieties. Note that lines, entries, varieties and genotypes are
used synonymously in this paper.

3 Statistical methods

We consider the analysis of a single trial. Let y denote the n× 1 vector of
(phenotypic) data, where n is the number of plots in the trial. We assume
that md genotypes were grown in the trial but that we only have marker
data (on r markers) for m ≤ md genotypes. Pedigree information is
available on mp lines which includes the m genotypes with marker data (so
mp ≥ m). Note that this is a general model that considers lines with
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Figure 1. Plot of trial error variance versus trial mean yield (t/ha) in
log-scales for the motivating dataset. The size of the points correspond to
the average genotype reliability of the trial calculated as in (7).
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missing marker or pedigree information and our analysis of the motivating
data is a special case of this model since all our genotypes have marker and
pedigree information.

3.1 One-stage analysis

Following on from the results in Appendix B and C, we can write the
model for the data vector that excludes irrelevant genotypes (such as check
varieties) and entries without data as

y = Xτ +Zgug +Zpup + e (1)

where τ is a vector of fixed effects with associated design matrix X; ug is
the m× 1 vector of random genetic effects corresponding to those
genotypes with marker data, and has associated n×m design matrix Zg;
up is a vector of non-genetic or peripheral random effects with associated
design matrix Zp and e is the n× 1 vector of residuals. The fixed effects
are partitioned as τ = (τ0

>, τg0
>)> where τg0 is the (md −m)× 1 vector of

fixed effects corresponding to the genotypes without marker data and we
let Xg0 denote the associated n× (md −m) design matrix. Thus
X = [X0 Xg0 ] where X0 is the design matrix associated with the
(non-genetic) fixed effects τ0. The vector up consists of subvectors that
may include random terms for extraneous field variation such as random
row or column variation and also design and randomisation based blocking
factors. We assume that the vectors of random effects and residuals are
mutually independent, and distributed as multivariate Normal, with zero
means and var (up) = Gp, var (ug) = Gg and var (e) = R. The matrix
Gp may be completely general, but in many applications, it is block
diagonal with blocks given by σ2

pk
Inpk

with σ2
pk

and npk corresponding to
the variance component and the length of the associated effect,
respectively. The structures of Gg and R are discussed in Section 3.1.1
and Section 3.1.2, respectively.

We then consider a simple model for ug given by

ug = ua + ue (2)

where the two terms represent the additive and non-additive (or residual)
genetic effects. Then we propose that the additive genetic effects be
modelled as a linear function of the marker covariates so write

where um is the m× 1 vector of additive genetic effects due to r markers;
M is the m× r matrix of marker covariate data; α is the associated r × 1
vector of random marker effects (regression coefficents) and uε is the m× 1
vector of lack of fit effects for the marker regressions.
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Thus the model in equation (1) can be written as

y = Xτ +ZgMα+Zguε +Zgue +Zpup + e. (4)

We assume that the variance matrices of random genetic effects are
given by

var (α) = σ2
mD

var (uε) = σ2
εA

var (ue) = σ2
eIm

where A is the m×m block of the numerator relationship matrix that
relates to the genotypes with marker data; D is an r × r matrix, often
assumed to be the identity matrix Ir, and σ2

m, σ
2
ε and σ2

e are the variances
for marker effects, marker lack of fit effects and residual genetic effects,
respectively.

The variance matrix for the (total) genetic effects, denoted Gg, is
therefore given by

Gg = var (ug) = σ2
mMDM> + σ2

εA+ σ2
eIm

= σ2
mK + σ2

εA+ σ2
eIm (5)

where K is the m×m genomic relationship matrix. We write
Gg = Gg(σ

2
m, σ

2
ε , σ

2
e) to highlight that in the maximal genetic model in

which both pedigree and marker information is included, it is a function of
three unknown parameters.

3.1.1 Spatial modelling

In general, field trials are arranged in a rectangular array of nr rows and
nc columns (so n = nrnc). Every trial generally have considerable sources
of non-genetic variation that may not be expected at the experimental
design stage, thus, it is important to perform spatial model selection at the
analysis stage. Following the spatial modelling approaches of Cullis and
Gleeson (1991); Gilmour et al (1997), the residuals are assumed to
represent local spatial variation or trend and their variance matrix is
chosen from the class of separable processes.

Suppose that y is ordered so that rows are within columns, then we
write R = σ2Σc ⊗Σr where the matrices Σc and Σr are nc × nc and
nr × nr correlation matrices for the column and row dimension,
respectively. Often these are assumed to correspond to autoregressive
processes of order one, so each is a function of a single autocorrelation
parameter, denoted ρc and ρr. Here-after, this first order separable
autoregressive process will be referred to as an AR1×AR1 process.
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Simplifications to the correlation model may be appropriate and will be
referred to as ID×AR1 if there is independence for the column dimension
(i.e. Σc = Inc), AR1×ID if there is independence for the row dimension
(i.e. Σr = Inr), and ID×ID if there is independence for both dimensions,
in which case the standard assumption of independent and identically
distributed (iid) residuals applies (i.e. R = σ2In).

Gilmour et al (1997) discuss the need to allow for global trend and
extraneous variation in addition to the local trend if any. This may be
accommodated in the model by fitting appropriate effects, either fixed or
random, that are related to the spatial co-ordinates (rows and columns) of
the trial (see Table 2). A white noise component (also called measurement
error or a nugget effect) may be added by including a sub-vector of n
independent random effects in up, provided the residual is not assumed iid.
We assess the fit of the spatial model using diagnostic tools, such as
coverage intervals for the sample variogram, as described in Stefanova et al
(2009).

3.1.2 Genetic modelling

The baseline model in (4) assumes the presence of three sets of genetic
effects, namely the additive effects associated with the markers, the
residual additive effects and the non-additive genetic effects. After the
spatial modelling selection, we then consider a selection of genetic effects
to form the “best” one-stage model. More specifically, we assess three
genetic models given the spatial model using the Akaike Information
Criterion (AIC, Akaike, 1973): (1) a model that includes the three set of
genetic effects as described above, denoted MPI, (2) a model that includes
additive effects associated with markers and residual genetic effects
denoted MI, and (3) a model that includes expected additive genetic
effects based on pedigree information alone and the residual genetic effects
denoted PI. These models are listed in Table 1. The model with the
smallest AIC is selected as the best one-stage model.

Note the value predicted is the total additive genetic value or genomic
estimated breeding values (GEBV) under the specified model. For a
one-stage analysis, the genetic model may differ according to the best fit to
the data. Specifically, the predicted value is um + uε, um, or uε under
MPI, MI or PI, respectively. For the two-stage analysis, the predicted
value is the breeding value by the markers which is analogous to um in the
one-stage model. We acknowledge that the value compare appear to differ,
however we emphasise that both are predictions of additive genetics effects.
The difference lies in the model used to predict this. Two stage approach
in plant breeding commonly uses the marker information alone and our
model is a reflection of what is commonly used.
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Table 1. The list of genetic models fitted for the selection of genetic effects
in one-stage analysis. For MPI, Gg is given as in (5); for MI, the term uε in
(4) is dropped; and for PI, the term α in (4) is dropped. The corresponding
Gg is then σ2

mK + σ2
eIm and σ2

εA+ σ2
eIm, respectively.

Model Marker Pedigree Residual

MPI 3 3 3

MI 3 7 3

PI 7 3 3

3.2 Accuracy of prediction of additive effects

We compute the reliability of the trait for each genotype as the squared
accuracy of each genotype as defined in ?. Specifically, the accuracy of the
i-th genotype is the correlation of the corresponding additive effect to its
predicted value and given as

ri =

√
1− Caa

ii

Gaii

(6)

where Caa
ii is the i-th diagonal element of the prediction error variance

matrix for um + uε under the best one-stage model (um = 0 or uε = 0 if
not included in the best model) and Gaii is the i-th diagonal element of the
variance matrix of the total additive genetic effects given as
Ga = σ2

εA+ σ2
mMDM> (σ2

ε = 0 or σ2
m = 0 if not included in the best

model). We call this model-based accuracy to make a distinction to the
simulation-based accuracy later. Then the (mean genotype) reliability is
given as

r̄2 =
1

m

m∑
i=1

r2
i . (7)

3.3 Two-stage analysis

The two-stage analysis comprises of the analysis of plot data for prediction
of genotype means (Stage 1) followed by either an unweighted or weighted
analysis of the genotype means (Stage 2).

Stage 1

The plot data for the first stage in the two-stage analysis can be modelled
as

y = Xτ +Xgτg +Zpup + e (8)
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where Xg is the same as Zg in (1) except the associated effects τg are
treated as fixed effects; τ , X, up and Zp are as defined before in (1); and
e is the n× 1 vector of residuals that includes the residual genetic effects.
We assume that up and e are mutually independent and up ∼ N(0,Gp)
and e ∼ N(0,R). Note the terms in up and the variance matrix Gp and
R may differ from (1) due to differences in spatial modelling.

The prediction of genotype means, the adjusted genotype means,
obtained as a set of E-BLUEs are taken as the vector of observations,
which we denote y∗ in the next stage.

Stage 2

In the second stage we fit the following model

y∗ = X0
∗τ0
∗ +Mα+ e∗ (9)

where y∗ is the m× 1 vector of predicted genotype means from (8), τ0
∗ is

the non-genetic fixed effects with the associated design matrix X0
∗; α is

the r × 1 random marker effects; M is the m× r matrix of marker
covariates where rows are ordered to correspond to the genotypes in y∗;
and e∗ is the m× 1 vector of residuals.

Stage 2: unweighted analysis

For an unweighted analysis, we assume α and e∗ are mutually independent
and α ∼ N(0, σ2

mD) and e∗ ∼ N(0,R∗). Typically, R∗ and D are scaled
identity matrices.

Stage 2: weighted analysis

For a weighted analysis we use two methods: one from Smith et al (2001a)
and other from Piepho et al (2012) which we will refer to as diag and
full weights, respectively. Specifically, in (9), we fit e∗ = ξ + η, the sum
of two components where ξ represents the residual genetic effect and η
reflects within-trial plot error variation and assume thatαξ

η

 ∼ N

0
0
0

 ,
σ2

mD 0 0
0 Ω 0
0 0 Σ

 (10)

where Σ is a known matrix, though in practice is unknown and replaced
with the approximation, Σ̃, from the data in the first stage. Note that
var (y∗|α, ξ) = Σ. The approximation Σ̃ is generally based on the
covariance of the predicted means which we denote C̃. The standard
approach is to use inverse-variance weighting which equates to assuming a
diagonal form for Σ̃ where the diagonal elements are given as the variance
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of the predicted genotype means. An alternative suggestion by Smith et al
(2001a) (diag) was to assume a diagonal form for Σ̃ with diagonal

elements given as the reciprocal of the diagonal elements of C̃
−1

. This

approach was motivated as Σ̃
−1

plays a direct role in the estimation and
prediction of fixed and random effects in (9). Piepho et al (2012) uses the
approximation Σ̃ = C̃ (full) and assumes ξ = 0 (we do not adopt the
latter assumption). Piepho et al (2012) further uses a transformation for
(9) referred to as rotated means which is equivalent to the model in (9)
with the aforementioned assumption. These approximations take into
account the uncertainty in estimated data y∗ by taking into consideration
the differing number of replication of the genotype within the trial.

Note that if we follow on from our one stage model then ξ = uε + ue.
Subsequently, we can assume Ω = σ2

εA+ σ2
eIm as before however we will

not take this approach, rather we approximate Ω by σ2
eIm as commonly

done.

4 Analysis of motivating data

All 48 trials were analysed separately using the stage model (4) where we
assume D = Ir. The baseline model given in (4) included three sets of
genetic effects, namely the additive effects associated with the markers, the
residual additive effects associated with the pedigree information and the
non-additive genetic effects; random peripheral effects comprised the
replicate block effects; the fixed effects related to the overall mean; and we
chose to fit an AR1×AR1 process for the residuals.

Subsequently extraneous variables, such as random factors based on the
column or row indices or fixed covariates to model a linear trend across
rows or columns (or its interaction), were fitted. Each fit was assessed by a
combination of diagnostic tools to identify the most appropriate model as
described in Gilmour et al (1997) and Stefanova et al (2009).

Given the terms for extraneous variation and global trend, the adequacy
of the correlation model for local trend is then examined by considering
other correlation structures to the residual; namely ID×AR1, AR1×ID,
and ID×ID. This was examined using a combination of AIC and graphical
diagnostic tools as such as the sample variogram and the coverage intervals.

After the spatial modelling selection, we then select the genetic effects
to form the final one-stage model corresponding to the models listed in
Table 1. We assumed that all trials have some additive genetic components.
The average genotype reliability and the estimate of the error variance for
each trial is graphically depicted in Figure 1. There is an approximate
linear trend, with moderate variability, observed for the trial mean yield
and trial error variance. The non-genetic terms added to the model and
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the correlation structures fitted is shown in Table 2 along with the REML
estimate of the total genetic variance with its percentage contribution by
marker, pedigree-based and non-additive effects.

4.1 An example of trial analysis

We select one trial as an example of our analysis. The diagnostic plots
from the fit of the baseline model (Model 1 in Table 3) are shown in Figure
2. The plot of the E-BLUPs of residuals against the row number for each
column number in Figure 2(a) shows a similar variation in E-BLUPs of the
residuals for any column. The 3D plot of the sample variogram in Figure
2(b) also shows a clear departures from the sample variogram assumed
AR1×AR1 variance model, which is clearly visible also in Figure 2(d) -
this is indicative of random column effects. The sill of the face in Figure
2(c) is well below the mean from the simulations for majority of the row
lags and sits close to the boundary of the coverage interval. This also
suggests the presence of random column effects. The full sequence of
models fitted to these data is listed in the first column of Table 3.

The addition only of random column effects was deemed sufficient in
terms of extraneous variation and global trend. Simplified structures for
the variance of the residuals were considered as outlined in Section 3.1.1 -
these correspond to the Models 3-5 in Table 3. Based on AIC we have
chosen Model 3 (MPI + ID×AR1 + rc) as our best model fit from our
spatial modelling.

We then examined the three genetic models, fixing the spatial terms
from previous steps and varying the genetic effects as outlined in Table 1.
The best selection was based on AIC, which in this case was provided by
the MPI model (Model 3).

The diagnostic plots from the fit of Model 3 are shown in Figure 3 and
suggest that this model provides an adequate fit to the data. The REML
estimates of the variance parameters for Model 3 were σ̂2

m = 0.1353,
σ̂2
ε = 0.0244, σ̂2

e = 0.0064, 0.0419 (Block variance), 0.0277 (Column
variance), σ̂2 = 0.0374 and ρ̂r = 0.0101.

5 Simulation study

For each trial, the best one-stage model is used in a parametric bootstrap
to obtain 200 samples of simulated data. There are eight models we fit to
this simulated data, namely, the one-stage data-generated model, the
one-stage model selected via AIC and the six two-stage models from a
factorial combination of 3 weighting schemes (none, diag, full) and
spatial modelling (no, yes). The list of models and their names are
provided in Table 4.
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Figure 2. Diagnostic plots from fit of baseline spatial model to the trial
data: (a) E-BLUPs of residuals against the row number for each column, (b)
3D plot of the sample variogram, (c) row face of the sample variogram (red
line) and mean (black solid line) and approximate 95% coverage intervals
(dashed lines), (d) as for (c) but column face.

The measure of the accuracy of each model was computed as follows.
For the i-th variety in trial t, we predict the (total) additive effects under
each model - specific computation under each model is described in more
detail under each model headings below. This was then used to obtain the
sample correlation between the true and predicted additive effects of the
i-th variety in trial t across the simulations which we denote as ρ̂i,t and
term as simulation-based accuracy. Note this measure is different to ri in
(6) which we term as the model-based accuracy. We then further averaged
the simulation-based accuracy across varieties for each trial to obtain the
average simulation-based accuracy at trial t:

ˆ̄ρt =
1

m

m∑
i=1

ρ̂i,t.
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Figure 3. Diagnostic plots from fit of final model to the trial data: (a)
E-BLUPs of residuals against the row number for each column, (b) 3D
plot of the sample variogram, (c) row face of the sample variogram (red
line) and mean (black solid line) and approximate 95% coverage intervals
(dashed lines), (d) as for (c) but column face.

We also compute the (average genotype) reliability per trial (?), as

r̂2
t =

1

m

m∑
i=1

ρ̂2
i,t.

5.1 One-stage analysis with the best model (1SB)

For each of the 200 simulated data of the 48 trials, we fitted the model
that generated the data. We then obtain the GEBV from the prediction of
the total additive effects, um + ue (where um = 0 or ue = 0 if the best
model did not include these effects).
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5.2 One-stage analysis with model selection (1SM)

Clearly, the prediction in 1SB does not reflect what occurs in reality as we
do not know what the data generated model is. To reflect reality, we
perform another one-stage analysis which incorporated a model selection
procedure to identify the best spatial and genetic model. Specifically, for
each generated datasets, we initially fit the baseline model that included
random replicated block effects; random genetic effects partitioned into
three sets related to additive effects due to markers, residual additive
effects and residual genetic effects; fixed overall mean effect; and fixed
covariates that model the linear trend across rows, columns and its
interaction. These fixed effects were fitted regardless of the generated
model as to avoid a model selection step for fixed effects. This is because
model comparison for different sets of fixed and random effects remain
unclear (Müller et al, 2013) and our inclusion in the first step penalises the
one-stage model selection approach by the loss of degrees of freedom in the
prediction of random effects (and the estimation of variance components).

A spatial model selection step is incorporated as follows: 16 models
consisting of factorial combination of random column effects; random row
effects; AR1 correlation structure to row and column (where here non-AR1
structure means assume ID structure) as outlined in Table 5 are fitted and
the model with the lowest AIC is automatically selected. Given the spatial
model, a model selection for the additive genetic effects is carried out.
Specifically, we assumed the presence of some additive effect and three
models are fitted, namely MPI, MI and PI models with the same spatial
trends selected in the previous step. Note that all three of these models
contain the non-additive genetic effects. We again select the model with
the lowest AIC and this selected model is used to obtain the GEBV, as in
1SB, by the prediction of the total additive effects.

5.3 Two-stage analysis with no weights (2SN)

For each simulated data, we proceed as described in Section 3.3.
Specifically, X0 = 1n in Stage 1 model, and up include only the block
effects that is assumed iid. We either assumed that R = σ2In (2SN-N) or
R = σ2Σc ⊗Σr (2SN-S). For the latter, we then incorporate a model
selection procedure in the same fashion as 1SM. In the Stage 2 model, we
fitted a model to the adjusted genotype means with a fixed overall mean;
random marker effects assuming iid and R∗ = σ∗2Im. The sum of the
predicted marker effects of a genotype is given as the GEBV.
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5.4 Two-stage analysis with weights 1 (2SW & 2SV)

For the weighted analysis, Stage 1 model is the same as 2SN (hyphenated
with N or S to indicate no spatial modelling or incorporating spatial model
selection, respectively). In Stage 2, we fit a model that partitions the
residual into two components as described in Section 3.3 with assumption
that Ω = σ∗2Im and Σ estimated based on Smith et al (2001a) (diag) or
Piepho et al (2012) (full) denoted 2SW and 2SV, respectively. As in 2SN,
the sum of the predicted marker effects of a genotype is given as the
GEBV under the aforementioned assumption.

6 Results

Table 6 shows the five number summary of the average relative percentage
difference in the simulation-based accuracy per variety across trials for
selected comparison of the two methods specified in the first column. For
example, we observe that there is a maximum average of 46.6% decrease in
a trial in the accuracy of GEBV using 2SN-N compared to 1SB, computed
from

max
t=1,...,48

100

m

m∑
i=1

ρ̂1SB
i,t − ρ̂2SN

i,t

ρ̂1SB
i,t

.

The average relative loss in accuracy using a two-stage approach
compared to a one-stage approach ranged from negligible to 46.6% with an
overall loss of 7.0%. The more realistic one-stage approach (1SM) against
a slightly more advantageous two-stage approach (2SV-S) shows that on
average the loss is negligible however the loss may be particularly high (e.g.
19.7%) for some sites as reflected in Figure 4. This is also reflected in
Figure 4 where almost all sites showed a higher average simulation-based
accuracy of GEBV for 1SM compared to 2SV-S.

The one-stage analysis was clearly superior in the accuracy of the
GEBV compared to the two-stage analysis with almost all yielding a
higher accuracy for all the 9600 simulations (Figure 4). The loss of
accuracy is noticeably larger with the lack of spatial modelling in the
two-stage analysis, as commonly is the case, than between the different
weighting schemes (Figure 4).

The difference between the different approaches within one-stage
analysis (1SB vs 1SM) appeared negligible (Table 6). As a formal
statistical comparison between methods, we carry out a Wilcoxon signed
rank test for the mean difference of the accuracy of GEBV between 1SB
and 1SM on the 48 observed mean difference of simulation-based accuracy.
This test was carried out using the wilcox.test function in the statistical
computing software R (R Development Core Team, 2008) with parameter
exact=T, yielded a p-value of 7.60× 10−12. For the weighted two-stage
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analysis, 2SV-S performed better than 2SW-S as was demonstrated by
Piepho et al (2012). In the rest of the results, we concentrate on the
comparison between the more realistic one-stage method (1SM) and the
better weighted two-stage method (2SV-S).

No spatial modelling Spatial modelling
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Figure 4. The boxplot of the difference in average accuracy of GEBV
(across genotypes) between 1SM and the 2SN, 2SV and 2SW that incor-
porated (-S) or not incorporated (-N) spatial modelling by experimental
design. Positive difference indicates that 1SM is more accurate.

Figure 5 show the plot of simulation-based accuracy of GEBV for each
varieties per four selected sites, namely, CS11 showed the most difference
in average accuracy over genotype, ¯̂ρt, between 1SM and 2SV-S; LC11
showed a high difference where the value of ¯̂ρt is high for both 1SM and
2SV-S (note ¯̂ρt of 1SM and 2SV-S correspond to the average of the values
along x- and y-axes of Figure 5.b, respectively); KM10 and HR10 showed
very little difference with low and moderate ¯̂ρt respectively. The latter two
sites employ a design with two replicates for each test lines (2-rep) whereas
the other two have a partial replicate design (p-rep). Interestingly, as
pointed out by the Editor, former two sites have a better fit with the
pedigree-based one-stage model while the latter two are fitted with the
marker-based one-stage model. This motivates the following comparisons
(we omit a factorial comparison as we there is very few sites with only
pedigree-based models).

There are 6 and 39 sites with only pedigree-based and only
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marker-based models and the mean difference between 1SM and 2SV-S are
0.0182 and 0.013, respectively. While the average accuracies, as one might
expect, are higher for trials that employed a 2-rep design than the p-rep
design, the differences in the average accuracy between one-stage and
two-stage analysis appear to be more pronounced depending on the design.
For example, the mean difference between 1SM and 2SV-S for p-rep trials
is 0.017 compared to 0.006 for 2-rep trials.
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Figure 5. The plots of the simulation-based accuracy of GEBV (ρ̂i,t) at
four sites: (a) CS11, (b) LC11, (c) KM10, and (d) HR10, for 1SM vs 2SV-S.
The colours indicate the number of plots for the genotype in the trial. The
solid straight line corresponds to the line y = x, where the two methods
are equivalent with each other. The points above the diagonal line indicate
that the 1SM approach is faring better than the 2SV-S approach.
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7 Discussion

In this paper, we have considered simulation based on 48 wheat breeding
trials to quantify the loss in GEBV accuracy in using a prevalent two-stage
approach to the one-stage approach that takes into account spatial
variation or trend. Our trait of interest was yield and the average genotype
reliability of yield in these trials ranged from 0.21 to 0.61.

The loss in GEBV accuracy by adopting a two-stage approach which
does not adequately accommodate non-genetic sources of variation is
substantial (Figure 4). Routine use of such approaches appears
common-place in many studies in genomic prediction for plant
improvement. Our results indicate, that for a single site, the loss is modest
if the two-stage approach incorporates an efficient analysis in the stage 1.
This conclusion supports the recommendation by Bernal-Vasquez et al
(2014).

We have purposefully restricted our focus to the simple problem of a
consideration of a single trial and predictions of GEBV for genotypes
within trial. We omitted the consideration of G×E effects as a viable or
sensible approach of the two-stage approach in a MET analysis poses
another layer of complexity and is beyond the focus of this paper.

Schulz-Streeck et al (2013) raised the question of the implications of the
experimental design for genomic selection purposes. From our simulation
study, the application of the different experiment designs (2-rep and p-rep)
show there may be implications in the difference of accuracy between the
one-stage and two-stage methods with differences notably smaller in the
2-rep designs. This is expected as the single site one-stage analysis of an
experiment with a randomised complete block design (where all genotypes
appear exactly once in each block) would be the same as the two-stage
analysis (even without weights), provided that the variance components
are known (similar argument is also echoed by Schulz-Streeck et al (2013)).

As Bernal-Vasquez et al (2014) mentions “if feasible, a single-stage
approach is preferable to a stage-wise analysis”, there is general consensus
that one-stage analysis is superior, however a two-stage analysis remains in
wide usage due to its computational efficiency. It becomes increasingly
important to be aware that the usage of two-stage approaches (or
multi-stage analysis for that matter) almost surely results in a loss of
accuracy and this loss is particularly pronounced if no spatial modelling is
taken into account. We strongly recommend that one-stage approach be
used in favour of any multi-stage approach where computational possible.
Future research would no doubt benefit greatly from continuing to examine
ways to improve computational efficiency such that the use of one-stage
analysis with G×E effects pose no computational hurdle.
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A Population Structure

The 448 genotypes from the motivating dataset are part of the early
generation selection trials. An eigenanalysis of the genomic relationship
matrix as described in Patterson et al (2006) revealed that there was no
evidence of a population structure. More specifically, we first centre and
scale the marker matrix M , which we denote as Z with the (i, j)-th entry
given as

Zij =
Mij − µj√
pj(1− pj)

where µj is the j-th column mean of M , pj = 1
2
(µj + 1) (note the entries

of M are coded as -1, 0 and 1). We then apply a singular value
decomposition to the m×m matrix K = ZZ>. Suppose that λi
(1 ≤ i ≤ m) are the eigenvalues of K in descending order. Note that the
first principle component accounted 8.7% of the total variation. We form a
test statistic

T ∗ =
L− µ
σ

where

L =
(m− 1)λ1∑m

i λi
,

µ =
(
√
r′ − 1 +

√
m)2

r′
,

σ2 =

∑m
i λi

(m− 1)r′
, and

r′ =
(m+ 1) (

∑m
i=1 λi)

2

(m− 1)
∑m

i=1 λ
2
i − (

∑m
i=1 λi)

2 .

The above scaling (σ) and r′, the effective sample size, takes into account
of the dependence between columns (i.e. linked markers). The above test
statistic, T ∗ has an approximate Tracy-Widom distribution under standard
population genetics assumptions. The p-value was calculated using the
R-package RMTstat (Johnstone et al, 2014) and yielded 0.066 indicating
there is no evidence of population structure.

B Exclusion of genotypes with no

phenotypic data

We consider the case where there are md genotypes with phenotypic data,
but there is pedigree information available on mp > md lines. Without loss
of generality, we consider the analysis for a single site and we exclude the
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random peripheral (non-genetic) effects so write the linear mixed model for
the n× 1 data vector y as

y = Xτ +Zgug + e (11)

where τ is a vector of fixed effects with associated design matrix X; ug is
the mp × 1 vector of genetic effects with associated n×mp design matrix
Zg and e is the vector of residuals.

We write the genetic effects as ug = (ug
>
1,ug

>
2)> where ug1 and ug2

represent the genetic effects for entries without and with phenotypic data,
respectively. The design matrix is therefore given by Zg =

[
0 Zg2

]
where

0 is an n× (mp −md) matrix of zeros. The genetic variance matrix and its
inverse are partitioned conformably as

var (ug) = G =

[
G11 G12

G21 G22

]
with G−1 =

[
G11 G12

G21 G22

]
(12)

The mixed model equation (MME) for the model in equation (11) are
given by X>R−1X 0 X>R−1Zg2

0 G11 G12

Zg
>
2R
−1X G21 Zg

>
2R
−1Zg2 +G22

 τ̂
ũg1
ũg2

 =

 X>R−1y
0

Zg
>
2R
−1y

 (13)

From the second equation in (13) we have that

ũg1 = −(G11)−1G12ũg2 (14)

and substituting this into the third equation in (13) yields the reduced set
of MME given by[

X>R−1X X>R−1Zg2

Zg
>
2R
−1X Zg

>
2R
−1Zg2 +G22

−1

] [
τ̂
ũg2

]
=

[
X>R−1y
Zg
>
2R
−1y

]
(15)

Therefore, instead of working with the linear mixed model of equation (11),
in which the vector of genetic effects, ug, is of length mp and corresponds
to all lines in the pedigree, we could use the model commensurate with the
MME in equation (15), namely

y = Xτ +Zg2ug2 + e (16)

In this model the vector of genetic effects, ug2, is of length md and
corresponds only to those genotypes grown in the trial, that is, those
genotypes with phenotypic data.

Then we would obtain the E-BLUPs of the genetic effects for entries
with data via a solution of the MME in equation (15) and the genetic
effects for entries without data using equation (14). Note that we propose
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the form of the model in equation (16) for ease of illustration of the
concepts presented in this paper. When the variance matrix G involves the
numerator relationship matrix, and when, as is typically the case, the
majority of entries with data are non-parental entries, then it is
computationally more efficient to use the model as in equation (11) with
MME in (13). This is due to the fact that the block of the inverse of the
numerator relationship matrix that relates to non-parental entries is
diagonal (see Cullis et al, 2014).

C Exclusion of irrelevant genotypes

We consider the case where there are md genotypes with phenotypic data,
but we are only interested in m < md of these genotypes. For example,
parental or check varieties may have been grown in the field trial but may
not be of interest, or, we may not have marker data for all of the entries
grown in the trial. In order to preserve the spatial structure of the trial, we
choose not to remove any phenotypic data but instead exclude effects from
the genetic model. Without loss of generality, we consider the analysis for
a single site and we exclude the random peripheral (non-genetic) effects so
write the linear mixed model for the n× 1 data vector y as

y = Xτ +Zgug + e (17)

where τ is a vector of fixed effects with associated design matrix X; ug is
the md × 1 vector of genetic effects with associated n×md design matrix
Zg and e is the vector of residuals.

We write the fixed effects as τ = (τ0
>, τg

>)> where τg is the
(md −m)× 1 vector of fixed effects corresponding to the entries to be
excluded and we let Xg denote the associated n× (md −m) design matrix.
Thus X = [X0 Xg] where X0 is the design matrix associated with the
(non-genetic) fixed effects τ0.

In an analogous manner we write the genetic effects as ug = (ug
>
1,ug

>
2)>

where ug1 is the (md −m)× 1 vector of genetic effects corresponding to
the entries to be excluded and ug2 is the m× 1 vector of genetic effects of
interest. The design matrix is therefore given by Zg =

[
Xg Zg2

]
. The

genetic variance matrix and its inverse are partitioned conformably as

var (ug) = G =

[
G11 G12

G21 G22

]
with G−1 =

[
G11 G12

G21 G22

]
(18)

22



The MME for the model in equation (17) are given by[
X0

>R−1X0 X0
>R−1Zg2 X0

>R−1Xg X0
>R−1Xg

Zg
>
2R
−1X0 Zg

>
2R
−1Zg2 +G22 Zg

>
2R
−1Xg +G21 Zg

>
2R
−1Xg

Xg
>R−1X0 Xg

>R−1Zg2 +G12 Xg
>R−1Xg +G11 Xg

>R−1Xg

Xg
>R−1X0 Xg

>R−1Zg2 Xg
>R−1Xg Xg

>R−1Xg

]

τ̂ 0

ũg2
ũg1
τ̂ g

 =


X0

>R−1y
Zg
>
2R
−1y

Xg
>R−1y

Xg
>R−1y

 (19)

Absorbing the equation for τ̂ g gives X0
>SX0 X0

>SZg2 0
Zg
>
2SX0 Zg

>
2SZg2 +G22 G21

0 G12 G11

 τ̂ 0

ũg2
ũg1

 =

 X0
>Sy

Zg
>
2Sy
0

 (20)

where S = R−1 −R−1Xg

(
Xg

>R−1Xg

)−1
Xg

>R−1. Thus, in a similar
manner to Appendix B, the third equation in (20) gives

ũg1 = −(G11)−1G12ũg2 (21)

and substituting this into the second equation in (19) yields the reduced
set of MME, after absorbing τ̂ g, given by[

X0
>SX0 X0

>SZg2

Zg
>
2SX0 Zg

>
2SZg2 +G22

−1

] [
τ̂ 0

ũg2

]
=

[
X0

>Sy
Zg
>
2Sy

]
(22)

Therefore, instead of working with the linear mixed model of equation (17),
in which the vector of random genetic effects, ug, is of length md and
corresponds to all genotypes grown in the trial, that is, all genotypes with
phenotypic data, we could use the model commensurate with the MME in
equation (22), namely

y = X0τ 0 +Zg2ug2 + e (23)

In this model the vector of random genetic effects, ug2, is of length m and
corresponds only to those entries of interest, for example, those with
marker data. Additionally, the model (17) includes fixed effects, τg,
corresponding to the genotypes to be excluded.

D Software

All models in this paper were fitted using the ASReml-R package (Butler
et al, 2009) within the R statistical environment (R Development Core
Team, 2008) which uses the average information algorithm (Gilmour et al,
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1995) for residual maximum likelihood (REML) estimation for variance
parameters. Once the REML estimates of the variance parameters are
obtained, a solution of the mixed model equations (MME) is used to
provide the empirical best linear unbiased estimates (E-BLUEs) of the
fixed effects and empirical best linear unbiased predictions (E-BLUPs) of
the random effects (Gilmour et al, 2004).

In general the number of markers is much larger than the number of
genotypes with marker data (r � m). Thus the dimension of the MME
coefficient is large. To reduce the computational burden these effects are
fitted in the linear mixed model using the high-dimensional approach of
Strandén and Garrick (2009).
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Table 2. Columns 2-9 shows the non-genetic parameters included in the final model for

individual trial analysis. The ρr and ρc correspond to the AR1 structure in the residual

for row and column direction, respectively; rr and rc are the random row and column

effects; lrow, lcol and lrlc correspond to the fixed effects for linear trend across row,

column, and their interaction respectively. The tenth column shows REML estimates of

the total genetic variance per trial where variances are scaled to reflect their contribution

to the total variance (i.e. σ̂2
m and σ̂2

ε are multiplied with the mean of the diagonal

elements of K and A, respectively). The percentage contribution to the total genetic

variance from the total marker additive effects (M), residual or pedigree-based additive

effects (P) and non-additive effects (I) are shown in columns 3-5. The last column is the

reliability as given in (7). ‘-’ means that the effect was not in the chosen best model and

∗ signifies where the REML estimate of the variance component hit the boundary and

was fixed at 0.

Trial
Parameters in the model Total Genetic Contribution (%)

r̄2
ρc ρr rc rr block lrow lcol lrlc Variance M P I

AN11 - 3 - 3 3 3 3 3 0.125 77.6 - 22.4 0.376
AN13 - 3 - - 3 3 3 3 0.036 80.2 - 19.8 0.327
BL10 3 3 3 - 3 - - - 0.064 100.0 - 0.0∗ 0.444
BL11 3 3 - - 3 - 3 - 0.074 94.7 - 5.3 0.445
BL13 3 3 - - 3 - - - 0.101 100.0 - 0.0∗ 0.435
BN10 - - 3 3 3 - - - 0.029 77.2 - 22.8 0.358
BN11 3 3 3 - 3 - - - 0.271 87.5 - 12.5 0.472
CD13 - 3 - - 3 - - - 0.054 83.1 - 16.9 0.409
CG11 - 3 3 - 3 - - - 0.059 83.7 - 16.3 0.423
CH13 3 3 - - 3 - - - 0.075 79.7 - 20.3 0.348
CM10 3 3 - - 3 - - - 0.038 100.0 - 0.0∗ 0.418
CM11 - 3 - - 3 - - - 0.052 96.0 - 4.0 0.441
CM13 - - 3 - 3 - - - 0.192 81.8 - 18.2 0.394
CS10 3 3 3 3 3 - - - 0.138 80.3 - 19.7 0.263
CS11 3 3 - - 3 - - - 0.067 - 100.0 0.0∗ 0.432
EL11 - 3 - 3 3 - 3 - 0.021 - 84.9 15.1 0.358
GW13 - 3 3 - 3 - - - 0.169 60.2 - 39.8 0.321
HR10 - - - - 3 - - - 0.408 84.7 - 15.3 0.348
HR11 3 3 - 3 - - - 0.055 - 34.1 65.9 0.250
HR13 - 3 - 3 3 - - - 0.183 52.3 - 47.7 0.271
KM10 3 3 - - 3 - 3 - 0.010 36.0 - 64.0 0.213
LC10 3 3 - - 3 - - - 0.138 91.0 - 9.0 0.429
LC11 - - 3 - 3 - - - 0.061 - 99.5 0.5 0.608
LC13 3 3 3 - - - 0.103 58.5 - 41.5 0.235
LG13 - 3 3 3 3 - - - 0.021 46.7 - 53.3 0.224
MN10 - 3 3 - 3 - - - 0.135 89.7 - 10.3 0.429
MN11 - 3 3 - 3 - - - 0.189 71.8 24.8 3.4 0.535

MNG13 - 3 - - 3 - 3 - 0.022 - 47.0 53.0 0.261
MT10 3 3 - 3 - - - 0.247 92.5 - 7.5 0.452
MT11 3 3 - 3 - - - 0.124 52.3 - 47.7 0.300
NH11 - 3 3 - 3 - - - 0.206 97.4 - 2.6 0.488
NH13 - 3 3 - 3 3 - - 0.204 77.0 - 23.0 0.393
PN11 - 3 - - 3 - - - 0.016 - 70.3 29.7 0.341
PN13 3 3 3 - 3 - - - 0.023 59.0 34.4 6.5 0.477
RS10 3 - 3 - 3 - - - 0.166 94.1 - 5.9 0.424
RS11 3 3 - - 3 - - - 0.146 84.8 - 15.2 0.423
RS13 - 3 - - 3 - - - 0.358 93.8 - 6.2 0.445
SH11 3 3 - - 3 3 - - 0.054 48.5 - 51.5 0.250
TC10 - 3 3 - 3 - - - 0.355 100.0 - 0.0∗ 0.496
TC13 3 3 - - 3 - - - 0.413 91.7 - 8.3 0.479
WG11 3 3 - 3 3 - - - 0.042 41.0 - 59.0 0.234
WN10 - - 3 3 3 - - - 0.054 80.8 - 19.2 0.373
WN11 3 3 3 - 3 - - - 0.125 97.8 - 2.2 0.420
WT10 - 3 - 3 3 3 3 3 0.271 100.0 - 0.0∗ 0.469
WT11 3 3 3 - 3 - - - 0.171 46.7 - 53.3 0.287
WT13 3 3 3 - 3 - - - 0.962 55.8 33.6 10.6 0.546
BH13 3 - 3 - 3 - - - 0.076 100.0 - 0.0∗ 0.392
MN13 3 3 - - 3 - - - 0.127 100.0 - 0.0∗ 0.51528



Table 3. Residual log-likelihood and AIC of models fitted to the example
trial. Initial model was base-line with the three set of genetic effect (MPI)
and AR1×AR1 spatial correlation model (1). Subsequent models involved
addition of random column effects (rc) (2) and simplification to the spatial
correlation model (3-5). The last 3 models (6-8) are fit with different genetic
models as defined in Table 1. The horizontal lines separate between the
selection of global trends (of which there was none that can be seen in this
example) and extraneous variation, different correlation structure for the
local trend, and selection of genetic effects.

Model Residual log-likelihood AIC

1. MPI + AR1×AR1 180.35 -346.70
2. MPI + AR1×AR1 + rc 187.39 -358.79

3. MPI + ID×AR1 + rc 187.16 -360.32
4. MPI + AR1×ID + rc 185.16 -356.32
5. MPI + ID×ID + rc 185.13 -358.26

6. PI + ID×AR1 + rc 179.20 -346.39
7. MI + ID×AR1 + rc 185.59 -359.18
8. I + ID×AR1 + rc 153.21 -296.42

Table 4. The list of models compared in the simulation study with the
number of stages in the model; whether spatial modelling was included and
the weighting scheme used if relevant. ∗for 1SB, the data generation models
matched the data fitted models.

Model name No. of stages Spatial modelling Weights
1SB 1 3∗ N/A
1SM 1 3 N/A

2SN-N 2 7 none
2SN-S 2 3 none
2SW-N 2 7 diag

2SW-S 2 3 diag

2SV-N 2 7 full

2SV-S 2 3 full
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Table 5. The sixteen models fitted in the spatial model selection in
simulation for 1SM. Note rc and rr represent random factors based on the
column and row indices, respectively.

Local trend
Extraneous variation

rc only rr only rc + rr none
ID×ID 1 5 9 13

AR1×ID 2 6 10 14
ID×AR1 3 7 11 15

AR1×AR1 4 8 12 16

Table 6. Five number summary of the average relative percentage differ-
ence of the simulation-based accuracy per variety across trials for selected
comparisons where relative percentage difference reference to the first
method written in the first column.

Method comparison Min Q1 Median Q3 Max

1SB vs. 2SN-N 0.3 4.1 7.0 15.8 46.6
1SM vs. 2SV-S -0.4 0.7 0.8 2.7 19.7
1SB vs. 1SM -0.2 0.2 0.7 1.3 7.4
2SV-S vs. 2SW-S 0.0 0.3 0.9 2.6 15.2
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