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Abstract. In this article we classify the Coxeter systems for which the Brink-

Howlett automaton is minimal. We show that this automaton is minimal if and
only if each elementary root is supported on a standard spherical subsystem,

thereby resolving a conjecture of Hohlweg, Nadeau and Williams.

Introduction

In their celebrated 1993 paper [5], Brink and Howlett proved that all finitely
generated Coxeter systems (W,S) are automatic. In particular, they constructed
a finite state automaton, which we denote by ABH , recognising the language of
reduced words of (W,S). The construction of this automaton utilises the standard
geometric representation of Coxeter groups via the associated root system Φ, and
the key property discovered by Brink and Howlett is the finiteness of the set E of
elementary roots.

In certain cases the automaton ABH is known to be minimal, in the sense that
it has the fewest states amongst all automata recognising the language of reduced
words of (W,S). For example Eriksson [10] and Headley [11] independently proved

that ABH is minimal if W is an affine Coxeter group of type Ãn. However in general
ABH is not minimal, with the simplest example being type C̃2 in which case the
automaton ABH has one superfluous state.

Recently, Hohlweg, Nadeau and Williams [12] introduced a combinatorial ap-
proach to constructing an automaton recognising the language of reduced words of
(W,S) using the weak order on (W,S) and the notion of a Garside shadow, build-
ing on the work of Dehornoy, Dyer and Hohlweg [6] and Dyer and Hohlweg [8]. In
[12], relations between the Garside shadow automaton AG and the Brink-Howlett
automaton ABH are investigated and the following conjecture [12, Conjecture 2] is
stated:

Conjecture. The Brink-Howlett automaton ABH is minimal if and only if E =
Φ+

sph, where Φ+
sph is the set of roots supported on a standard spherical subsystem.

In [12] this conjecture was shown to hold in the following cases:

(1) when W is finite,
(2) when W is right-angled,
(3) when the Coxeter graph Γ is a complete graph,

(4) when W is of type Ãn,
(5) when W has rank 3.
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In this paper we prove the above conjecture. Moreover, we provide a classification
of the Coxeter systems for which ABH is minimal in terms of excluded subgraphs
of the Coxeter graph. Let X denote the set of connected Coxeter graphs which
are either of affine or compact hyperbolic type and contain neither circuits nor
infinite bonds. Specifically X consists of the Coxeter graphs of the irreducible
affine Coxeter groups other than type Ãn, along with the graphs

X3(a, b):
a b

X4(c):
c 5

X5(d):
d 5

Y4:
5

Z4:
5

Z5:
5

where a, b < ∞ with 1
a + 1

b <
1
2 , c ∈ {4, 5}, and d ∈ {3, 4, 5}. Note that if a ≤ b

then either (a, b) ∈ {(4, 5), (5, 5)}, or 3 ≤ a <∞ and 6 ≤ b <∞ with (a, b) 6= (3, 6).
The main theorem of this paper is the following.

Theorem 1. Let (W,S) be a finitely generated Coxeter system. The following are
equivalent:

(1) The Brink-Howlett automaton ABH is minimal.
(2) The Coxeter graph of (W,S) does not have a subgraph contained in X .
(3) The set of elementary roots is E = Φ+

sph.

2. Preliminaries

In this section we recall some standard facts regarding Coxeter systems (W,S)
from [2] and [14]. We also recall the construction of crystallographic root systems
and some general facts regarding finite state automata from [9] and [13].

2.1. Coxeter systems and root systems. Let (W,S) be a Coxeter system with
|S| < ∞. Let m(s, t) denote the order of st for s, t ∈ S, and let Γ = Γ(S) denote
the Coxeter graph of (W,S). For J ⊆ S let WJ be the standard parabolic subgroup
generated by J . We say that J is spherical if |WJ | <∞. Let Γ(J) be the subgraph
of Γ with vertex set J . Thus Γ(J) is the Coxeter graph of the standard parabolic
Coxeter system (WJ , J).

The length of w ∈W is

`(w) = min{n ≥ 0 | w = s1 · · · sn with s1, . . . , sn ∈ S},

and an expression w = s1 · · · sn with n = `(w) is called a reduced expression for w.
For J ⊆ S spherical, let wJ denote the unique longest element of WJ .

The (left) descent set of w ∈W is

D(w) = {s ∈ S | `(sw) < `(w)}.

Let V be an R-vector space with basis {αs | s ∈ S}. Define a symmetric bilinear
form on V by linearly extending 〈αs, αt〉 = − cos(π/m(s, t)). The Coxeter group
W acts on V by the rule s(v) = v − 2〈v, αs〉αs for s ∈ S and v ∈ V , and the root
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system of W is Φ = {w(αs) | w ∈ W, s ∈ S}. The elements of Φ are called roots,
and the simple roots are the roots αs with s ∈ S.

Each root α ∈ Φ can be written as α =
∑
s∈S csαs with either cs ≥ 0 for all

s ∈ S, or cs ≤ 0 for all s ∈ S. In the first case α is called positive (written α > 0),
and in the second case α is called negative (written α < 0). Let Φ+ be the set of
all positive roots. The support of α ∈ Φ is the set J(α) = {s ∈ S | cs 6= 0}. For
J ⊆ S define Φ+

J ⊆ Φ+ to be the set of positive roots α with J(α) = J . Moreover,
we write Γ(α) = Γ(J(α)) for the associated subgraph of Γ. Let

Φ+
sph = {α ∈ Φ+ | J(α) is spherical}.

The inversion set of w ∈W is

Φ(w) = {α ∈ Φ+ | w(α) < 0}.
A root α ∈ Φ+ is said to dominate a root β ∈ Φ+ if w(α) < 0 implies that

w(β) < 0 (for all w ∈ W ). A root α ∈ Φ+ is said to be elementary if α dominates
no other positive root β 6= α. We note that these roots are also called small, humble
or minimal in the literature.

Let E ⊆ Φ+ denote the set of all elementary roots. By [4, Proposition 2.2(i)] we
have Φ+

sph ⊆ E . The key result of [5] is that E is a finite set for all finitely generated

Coxeter systems (W,S). The elementary inversion set of w ∈W is

E (w) = {α ∈ E | w(α) < 0} = Φ(w) ∩ E .

We recall the following result of Brink [4].

Lemma 2.1. [4, Lemma 4.1] Let α ∈ Φ+ be such that Γ(α) contains a circuit or
an infinite bond. Then α /∈ E .

2.2. Crystallographic affine root systems. In the case of affine Coxeter groups
there is a useful explicit construction of the root system and the elementary roots.

This construction starts with a reduced, irreducible, crystallographic root system
Φ0 in a Euclidean vector space V0 with positive definite inner product 〈·, ·〉 (see, for
example, [3] or [7, §3.3]). Note that the crystallographic condition allows for roots
of different lengths, and hence this is a slight modification of the general setup
outlined in Section 2.1. The notions of dominance and elementary roots extend
verbatim to this setting.

Let {α1, . . . , αn} be a set of simple roots of Φ0 (when a choice of indexing is
required we will use the Bourbaki conventions [3]). For α ∈ Φ0 let sα be the
reflection sα(v) = v−〈v, α∨〉α, where α∨ = 2α/〈α, α〉. Let (W0, S0) be the Coxeter
system with S0 = {si | 1 ≤ i ≤ n}, where we set si = sαi .

Now define V := V0⊕Rδ. The bilinear form 〈·, ·〉 extends uniquely to a symmetric
positive semidefinite bilinear form on V with radical Rδ by

〈α+ lδ, β + kδ〉 = 〈α, β〉 for α, β ∈ V0 and l, k ∈ R.
The affine root system is Φ = Φ0 +Zδ. In particular, the set of positive affine roots
is

Φ+ = (Φ+
0 + Z≥0δ) ∪ (−Φ+

0 + Z>0δ).

Let W be the subgroup of GL(V ) generated by {sα+kδ | α+ kδ ∈ Φ}. Note that

sα+lδ(β + kδ) = sα(β) + (l − k〈β, α∨〉)δ.
Define α0 = −ϕ+ δ where ϕ is the highest root of Φ0 (see [7]). Then (W,S) is an
affine Coxeter system with S = {si | 0 ≤ i ≤ n} where s0 := sα0

.
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In terms of the construction of the crystallographic root system described here,
it is easy to see that the set of elementary roots is

E = (Φ+
0 ) ∪ (−Φ+

0 + δ).

2.3. Automata. Recall the following definition of automata from [9].

Definition 2.2. An automaton A is a quintuple (X,S, µ, Y, o), where X is a set,
called the state set, S is a finite set called the alphabet, µ : X×S → X is a function,
called the transition function, Y ⊆ X is the set of accept states, and o is the initial
state. A finite state automaton is an automaton A = (X,S, µ, Y, o) with |X| <∞.

Since we are interested in automata recognising the language of reduced words
of a Coxeter system, for the automata described in this article every state is an
accept state (hence X = Y ) and the alphabet is the set of Coxeter generators S.
We view an automaton A as a directed graph with edges labelled by elements of S.
The set of vertices of this graph is the set X of states, and there is a directed edge
labelled s from vertex x to vertex y if and only if µ(x, s) = y. A word w = s1s2 · · · sn
is reduced if and only if (s1, s2, . . . , sn) corresponds to a sequence of directed edges
labeled si for 1 ≤ i ≤ n in the automaton A, beginning from the initial state o.

The automaton ABH constructed in [5] is defined using elementary inversion sets
of W . Let E (W ) be the set of all elementary inversion sets. Note that E (W ) is a
finite set because the set E is finite (see [5, Theorem 2.8]). The automaton ABH is
defined in the following way:

(1) The set of states is E (W ) with initial state E (e).

(2) The transition function µ : E (W )×S → E (W ) is defined by E (w)
s−→ E (ws)

if αs /∈ E (w).

See [5] for complete details regarding the Brink-Howlett automaton and proof
of the finiteness of the elementary roots. We note that in fact Brink and Howlett
construct an automaton recognising the language of lexicographically minimal re-
duced words, however the construction given above is implicit in their paper. An
exposition is also in [2, Chapter 4].

We now construct the unique minimal automaton recognising the language of
reduced words in (W,S), following [9, p16 and §3.2]. Note that this construction
applies to all finitely generated groups (G,S), however we will focus on the case of
Coxeter groups here.

The cone type of w ∈W is

T (w) = {v ∈W | `(wv) = `(w) + `(v)}.
Let T (W ) = {T (w) | w ∈W} denote the set of all cone types. Let

A0 = (T (W ), S, µ0, T (W ), T (e))

where µ0(T, s) = T ′ if and only if there exists w ∈ W such that T = T (w) and
T ′ = T (ws) with `(ws) = `(w) + 1. It is well known, and easy to check, that A0

an automaton recognising the language of reduced words of (W,S). Moreover A0

is the unique minimal such automaton in the following sense.

Proposition 2.3 (Myhill-Nerode). Let A = (X,S, µ,X, o) be an automaton recog-
nising the language of reduced words of (W,S). Then there is a unique surjective
map θ : X → T (W ) such that if µ(x, s) = y then µ0(θ(x), s) = θ(y).

Proof. See [9, Theorem 1.2.9] and the proof thereof. �
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In particular, note that the map θ from the set of states of ABH to the set of
states of A0 is given by

θ(E (w)) = T (w).

Moreover, note that the finiteness of the set E (W ) implies that the set T (W )
of cone types is finite. Furthermore, since minimality of ABH is equivalent to
injectivity of θ, we have that ABH is minimal if and only if T (w) = T (v) whenever
E (w) = E (v).

3. Proof of theorem 1

The proof of Theorem 1 relies on the following key lemma, which gives a partic-
ular condition under which the Brink-Howlett automaton is not minimal.

Lemma 3.1. Let (W,S) be a finitely generated Coxeter system. If there exists
J ⊂ S and t ∈ S such that:

(i) J is spherical, and
(ii) J ∪ {t} is not spherical, and

(iii) wJ(αt) ∈ E ,

then the automaton ABH is not minimal.

Proof. Since wJ is the longest element of WJ , we have E (wJ) = Φ+
J and since t /∈ J

we have `(twJ) = `(wJ) + 1 and wJ(αt) /∈ Φ+
J . Thus it follows from (iii) that

E (twJ) = E (wJ)∪ {wJ(αt)}, and therefore the elementary descent sets E (wJ) and
E (twJ) are distinct states of the automaton ABH . Hence it suffices to show that
T (twJ) = T (wJ). If v ∈ T (twJ) then

`(twJv) = `(twJ) + `(v) = 1 + `(wJ) + `(v).

Hence `(wJv) = `(wJ) + `(v) and thus v ∈ T (wJ). To show the reverse inclusion,
suppose that there is v ∈ T (wJ) \ T (twJ). Then we have `(wJv) = `(wJ) + `(v)
and

`(twJv) < `(twJ) + `(v) = 1 + `(wJ) + `(v) = 1 + `(wJv).

Thus `(twJv) = `(wJv) − 1 and therefore t ∈ D(wJv). Since wJ is the longest
element of WJ this implies that J ∪ {t} ⊆ D(wJv) which is a contradiction with
(ii) since left descent sets generate finite subgroups (see [1, Corollary 2.18]). �

Proof of Theorem 1. (1) =⇒ (2). We prove the contrapositive. Suppose that Γ
contains a subgraph Γ′ found in X . Let S′ denote the vertices of Γ′. Our strategy
is to choose J ⊂ S′ and t ∈ S′ such that conditions (i)-(iii) of Lemma 3.1 hold.

Suppose that Γ′ is the Coxeter graph of an irreducible, affine Weyl group (other

than type Ãn), and let t be the unique node of Γ′ to which s0 is connected in
the standard numbering (see [3]). Let Φ0 = ΦS′\{s0} and W0 = WS′\{s0} with
w0 the longest element of W0. After rescaling vectors we will assume that Φ0 is
crystallographic, as outlined in Section 2.2. We let J = S′ \ {t}. Since Γ′ is affine,
it is clear that |WJ | <∞ and |WJ∪{t}| =∞. We show that wJ(αt) ∈ E .

Let J ′ = S′\{s0, t}. Then wJ = s0wJ′ . We claim that wJ′ = w0sϕ. We
prove the claim by showing that Φ(wJ′) = Φ+

J′ = Φ(w0sϕ). The first equality is

obvious. For the second equality, note that if α ∈ Φ+
J′ then since 〈α,ϕ∨〉 = 0 for

all α ∈ J ′ we have w0sϕ(α) = w0(α) ∈ −Φ+, and so Φ+
J′ ⊆ Φ(w0sϕ). Moreover,

if β ∈ Φ+
0 \Φ

+
J′ then β = aαt + γ with a ≥ 1 and γ ∈ Φ+

J′ . Since 〈αt, ϕ∨〉 = 1

we compute sϕ(β) = β − aϕ ∈ −Φ+
0 (since ϕ is the highest root of Φ0) and hence
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w0sϕ(β) ∈ Φ+. Therefore β /∈ Φ(w0sϕ), and so Φ(w0sϕ) = Φ+
J′ which completes

the proof of the claim.
Thus wJ = s0w0sϕ, and so

wJ(αt) = s0w0sϕ(αt) = s0w0(αt − ϕ) = s0(−αt + ϕ),

where we have used the easily verified facts that w0αt = −αt and w0ϕ = −ϕ.
Since s0 = s−ϕ+δ we compute wJ(αt) = −αt + δ, and thus wJ(αt) ∈ E . Hence
the conditions of Lemma 3.1 hold and this completes the argument for the case of
Coxeter graphs with a subgraph of affine type (other than type Ãn).

We now consider the graphs Γ′ of the compact hyperbolic Coxeter groups which
do not contain a circuit. Hence, for any choice of t, WJ is finite for J = S \ {t} and
WJ∪{t} is infinite. Therefore by Lemma 3.1 we just need to show that there is a
choice of t such that wJ(αt) is elementary. To do this we need to show that wJ(αt)
does not dominate any α ∈ Φ+

J and by [4, Proposition 2.2(i)] it suffices to show

that 〈wJ(αt), α〉 < 1 for all α ∈ Φ+
J . Since the bilinear form is W -invariant and

wJ(Φ+
J ) = −Φ+

J , this is equivalent to showing that 〈αt, α〉 > −1 for all α ∈ Φ+
J .

Consider the graphs X3(a, b) with a, b < ∞ and 1
a + 1

b < 1
2 . Label the ver-

tices s1, s2, s3 reading from left to right and let t = s2 and J = {s1, s3}. Thus
〈αt, α〉 > −1 for all α ∈ Φ+

J = {α1, α3}, and hence the result for these subgraphs.
Now consider the graph X5(5). Label the vertices s1, . . . , s5 reading left to right

and choose t = s3 and J = {s1, s2, s4, s5}. We have Φ+
J = Φ+

{s1,s2} tΦ+
{s4,s5}. Since

Φ+
{s1,s2} = {α1, α2, α1 + ζα2, α2 + ζα1, ζα1 + ζα2} where ζ = 2 cos π5 we have that

〈αt, α〉 ∈ { 12 , 0,
ζ
2} for all α ∈ Φ+

J . Hence the result for this graph. All other cases
are similar: take t = s2 in the diagrams X4(c) and Y4 (numbering left to right),
take t = s3 in the diagrams X5(d) (numbering left to right), and take t to be the
node of valency 3 in the diagrams Z4 and Z5.

(2) =⇒ (3). Let Γ be a Coxeter graph which does not have a subgraph in X .
As in [4], for J ⊆ S, let EJ = {α ∈ E | J(α) = J}. Then E is the disjoint union of
all EJ such that Γ(J) is connected.

Suppose that E 6= Φ+
sph. Then there exists J ⊂ S such that |WJ | = ∞ and

EJ 6= ∅. By Lemma 2.1, the graph Γ(J) cannot contain a circuit or an infinite
bond. Hence Γ(J) must be a tree with no infinite bonds. Since Γ does not have
any subgraph in X , it follows that Γ(J) does not have a subgraph in X .

Let m denote the maximal edge label in Γ(J). Since Γ(J) contains no subgraph

of type X3(a, b) or G̃2 we have m < 6 (note that |J | ≥ 3 as WJ is infinite).
Suppose that m = 5, and let e = {s, t} be an edge of Γ(J) with edge label 5.

Suppose that there is another edge f = {s′, t′} 6= e of Γ(J) with edge label 4 or 5.
Let d be the distance between e and f (measured in the edge graph). The nonexis-
tence of X3(4, 5), X3(5, 5), Xj(4) and Xj(5) subgraphs with j = 4, 5 forces d > 3,
however then the nonexistence of X5(3) subgraphs gives a contradiction. So there
is a unique bond with edge label 5. Since Γ(J) contains no Y4, X5(3), Z4 or Z5

graphs it follows that Γ(J) is of type H3 or H4, a contradiction.

Suppose that m = 4. The nonexistence of C̃n subgraphs forces there to be a
unique edge with label 4. Since Γ(J) contains no B̃n subgraphs the tree Γ(J) has

no branch points. Since Γ(J) contains no F̃4 subgraphs we see that Γ(J) is of type
F4 or Bn, a contradiction.
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Thus m = 3. Since Γ(J) contains no D̃4 subgraph every vertex of Γ(J) has

degree at most 3. Since Γ(J) contains no D̃n subgraph with n ≥ 5 there is at most
one branch point. Suppose there is a branch point x. Thus x is the unique vertex
of Γ(J) of degree 3. Let pi for i ∈ {0, 1, 2} denote the three paths of Γ(J) out of the
vertex x, so that Γ(J) = ∪i∈{0,1,2}pi and ∩i∈{0,1,2}pi = {x}. For i ∈ {0, 1, 2} let
ai denote the length of the path pi, and without loss of generality we may suppose
that a0 ≤ a1 ≤ a2. The nonexistence of Ẽ6 subgraphs implies that a0 = 1. The
nonexistence of Ẽ7 subgraphs implies that a1 ∈ {1, 2}. However if a1 = 1 then
Γ(J) is of type Dn, and if a1 = 2 then Γ(J) is either of type E6, E7, or E8, or

it contains an Ẽ8 subgraph, a contradiction. Thus Γ(J) has no branch point and
therefore must be of type An, a contradiction.

(3) =⇒ (1). This implication was proven in [12, Proposition 3.14]. For com-
pleteness, we repeat the argument here.

Suppose that T (w) = T (v). We are required to show that E (w) = E (v). Sup-
pose, for a contradiction, that there is α ∈ E (w)\E (v), and let J = J(α). Let
w1 (respectively v1) be the unique minimal length representative of the coset wWJ

(respectively vWJ). Then w = w1w2 and v = v1v2 for some w2, v2 ∈ WJ , and
moreover `(w1u) = `(w1) + `(u) and `(v1u) = `(v1) + `(u) for all u ∈ WJ (see [1,
Proposition 2.20]).

Let z ∈ WJ . Since T (w) = T (v) we have `(wz) = `(w) + `(z) if and only
if `(vz) = `(v) + `(z), and using the decompositions w = w1w2 and v = v1v2
it follows that `(w2z) = `(w2) + `(z) if and only if `(v2z) = `(v2) + `(z). Thus
TJ(w2) = TJ(v2), where we write TJ(u) for the cone type in the group WJ of an
element u ∈ WJ . However since E = Φ+

sph we have that WJ is a finite group, and
thus the associated Brink-Howlett automaton for this group is necessarily minimal
(to see this, note firstly that the Brink-Howlett automaton has |WJ | states because
every positive root of a finite Coxeter group is elementary and the set of inversion
sets is in bijection with elements of WJ , and secondly that the minimal automaton
also has |WJ | states because distinct elements of a finite Coxeter group have distinct
cone types). Thus E (w2) = E (v2). Now, by [13, Corollary 2.13] we have Φ(w2) =
Φ(w) ∩ Φ+

J , and hence E (w2) = E (w) ∩ Φ+
J . Thus α ∈ E (w2). However since we

also have E (v2) = E (v) ∩ Φ+
J and E (w2) = E (v2) we conclude that α ∈ E (v), a

contradiction. Thus E (w) = E (v) as required. �

Remark 3.2. If |S| =∞ then of course there is no finite state automaton recognis-
ing the language of reduced words of (W,S). However in this setting the statement
of Theorem 1, and its proof, remain valid if one interprets “minimal” to mean that
the map θ in Proposition 2.3 is bijective.
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