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Abstract

There are extensive results known for the existence of generalized Bhaskar Rao de-
signs signed over solvable groups, and particularly for designs with block size 3. There
have so far been no comparable results for any non-solvable groups and in particular
none for the non-solvable group of smallest order, the simple group A5. In this pa-
per we define the new notion of pairwise balanced signed block designs, signed over a
group. Our central new result is then a composition theorem for these pairwise balanced
signed block designs. From this we derive a pair of induction theorems specifically for
constructing generalized Bhaskar Rao design pieces. These induction theorems give
conditions under which generalized Bhaskar Rao designs pieces signed over group can
be induced from such designs signed over a subgroup. This is in contrast to long es-
tablished results which give conditions under which generalized Bhaskar Rao design
pieces signed over a quotient group can be inflated to give such designs signed over the
whole group. By making systematic use of our new induction theorems and various
piecewise constructions we are able to elegantly establish that the well known necessary
condition for the existence of generalized Bhaskar Rao designs of block size 3 are also
sufficient for designs signed over the non-solvable group A5, Z2 × A5 and S5. In the
course of these applications we identify a number of new generic generalized Bhaskar
Rao design pieces. Finally, an independently of the new induction theorems, we identify
a new infinite family of solvable groups for which the known necessary conditions for
the existence of generalized Bhaskar Rao designs of block size 3 are also sufficient.

Key words: Generalized Bhaskar Rao designs, difference matrices, group divisible
designs, holey generalized Bhaskar Rao designs.
AMS subject classification: 05B05, 05B10, 05B30, 51E05.

1 Introduction

Generalized Bhaskar Rao designs, introduced by Seberry in [31], are simultaneously a gener-
alization of incidence matrices of pairwise balanced block design and of difference matrices
of finite groups. They allow for the generalization of Bhaskar Rao’s method, [10],[11],
for constructing of group divisible designs. Generalized Bhaskar Rao designs have found
applications to many other combinatorial constructions, (see for example [21]), and to ap-
plications in cryptography and coding theory, most recently for the construction of optical
orthogonal codes, (see for example [33], [34]). There are established necessary conditions
for the existence of generalized Bhaskar Rao designs with a single block size. There are
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some limited results on the sufficiency of these conditions for some, mainly abelian, groups
in cases block size greater than 3, principally for designs with block sizes 4 or 5, (see [16],
[26], [12], [20], [18], [34]). The most extensive results, and most recent research, has been
focused on the case block size 3. The evidence so far supports the conjecture that the known
necessary conditions for the existence of generalized Bhaskar Rao designs of block size 3 are
always sufficient. However these known results all involve solvable groups. There are no
comparable results for non-solvable groups, and particular none for the non-solvable group
of least order, the simple group A5.

In the construction of pairwise balanced block designs one principle tool is composition
of designs. Palmer [28, 29] proved a powerful general composition theorem for generalized
Bhaskar Rao designs. This composition theorem gives conditions under which given a group
G and a normal subgroup N a generalized Bhaskar Rao design signed over the quotient
group G/N can be inflated to give a generalized Bhaskar Rao design signed over the whole
group G. Progress up to [6] in constructing generalized Bhaskar Rao designs had come
by combining direct constructions of designs of various fixed and multiple block sizes and
ever more sophisticated group theory together with inflation theorems. Abel et al. [6] in
their piecewise construction theorem, and in particular their holey generalized Bhaskar Rao
design construction added the idea of building generalized Bhaskar Rao designs from smaller
units they call generalized Bhaskar Rao design pieces. These included generalized Bhaskar
Rao designs, and the new notation of holey generalized Bhaskar Rao design pieces featured
in their holey generalized Bhaskar Rao design construction, as special cases. In that paper
they prove an inflation theorem for generalized Bhaskar Rao design pieces, which extends
Palmer’s inflation theorem for generalized Bhaskar Rao designs and specializes to give an
inflation theorem for holy generalized Bhaskar Rao designs

Generalized Bhaskar Rao designs are defined as incidence matrices of block designs
signed over a group, which satisfy an appropriate balancing property. Over time defini-
tion of this balancing property has been expressed in a number of different but equivalent
ways. In dealing with block designs it is convenient to work sometimes in terms of sets
and sometimes in terms of incidence matrices. In [6] Abel et al. define the notion of a
signed block design to correspond to signed incidence matrix. When these signed block
designs satisfy an appropriate balancing property they correspond to generalized Bhaskar
Rao design pieces. Such signed block designs they call generalized Bhaskar Rao block design
pieces. They include generalized Bhaskar Rao block designs and holey generalized Bhaskar
Rao block designs whose incidence matrices correspond to respectively, generalized Bhaskar
Rao designs and holey generalized Bhaskar Rao designs. In this paper from hence forward
we work exclusively with signed block designs. We express the defining balancing property
of generalized Bhaskar Rao block design pieces in multiset terms. This formulation of the
definition suggest the new notion of pairwise balanced signed block designs as the natural
extension of the concept of pairwise balanced block designs from block designs to signed
block designs. Now generalized Bhaskar Rao block designs, holey generalized Bhaskar Rao
block designs, and generalized Bhaskar Rao block design pieces all become examples of
pairwise balanced signed block designs. One benefit of this new definition is a considerable
simplification of notation for generalized Bhaskar Rao block design pieces. A second benefit
is that it allows for the formulation of the new composition result, the General Induction
Theorem, Theorem 26 of this paper.

This new composition result gives conditions under which a pairwise balanced block
signed block design, signed over a group G, can be induced from a pairwise balanced signed
block design, signed over an arbitrary subgroup H. From this we derive a pair of induction
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theorems specifically for constructing generalized Bhaskar Rao block design pieces. As test
case of the efficacy of these new induction theorems, and to illustrate their application, we
use them to elegantly construct key designs signed over respectively A5, Z2×A5 and S5, that
show for these two non-solvable groups the known necessary conditions for the existence
of generalized Bhaskar Rao designs of block size 3 are sufficient. To carry out the proofs
in this paper we use not only the holey generalized Bhaskar Rao design construction of
Abel et al. [6] but make full use of their more general piecewise construction method. The
new generalized Bhaskar Rao block design pieces encountered in the course of these proofs
are listed in section 10. To round out the paper we further develop the group theoretic
arguments of previous papers, Abel et al. [4, 5, 6], which together with known results let us
identify a new (infinite) family of solvable groups, groups of order divisible by 6 whose 2-
Sylow and 3-Sylow subgroups are cyclic, for which the well known necessary and conditions
for existence of generalized Bhaskar Rao designs with block size 3 can be proved sufficient.

2 Some Notations and Conventions

In this paper G denotes a finite group, m, n, r, s, t, v, are positive integers, and K a set of
positive integers. We denote the identity element of a multiplicative group by e. Denote by
Zm the ring of integers modulo m. The additive group Z2

2 = {00, 01, 10, 11} is elementary
abelian of order four. We denote it by EA(4). Denote by Sn the group of permutations
of the symbols 1, . . . , n. Its subgroup of even permutations is denoted An. We read cyclic
permutations (i1i2 . . . ir) and compose permutations from left to right. Suppose m < n.
Writing permutations as products of their non-trivial disjoint cycles we can view Sm and
its subgroups as embedded naturally as subgroups of Sn. With this convention Am embeds
naturally as a subgroup of An.

For U and W subsets of G we denote by U ·W the set {uw : u ∈ U, w ∈W}. For set X
and positive integer t we denote by X[t] the multiset which consists of the elements of X each
with multiplicity t. By a list, or more generally by an array, of the elements of a multiset
we a mean list, or more generally array, in which the each element of the underlying subset
of the multiset appears with the multiplicity it has in the multiset. In particular suppose
a set X has m elements. Then any t ×m array in which each row is a list of the elements
of the set X is an array of the elements of X[t]. If L and M are multisets of elements of G,
denote by L ◦M the multiset {xy : x ∈ L, y ∈ M}. Let x1, . . . , xm be a list of the elements
of L and y1, . . . , yn be a list of the elements of M. Then the m × n array with ijth entry
xiyj is an array of the elements of the multiset L ◦M.

3 Signed Block Designs

3.1 Block Designs

Definition 1. A block design is a pair (V,B) where V is a non-empty finite set, called the
point set of the design, and B a non-empty finite multiset of subsets of V . These subsets
are called the blocks of the design.

A block design (V,B) is called a (v,K) block design if |V | = v and each block B ∈ B
has block size |B| ∈ K. When K = {k} is a singleton set we call it a (v, k) block design.
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3.2 Pairwise Balanced Designs

Definition 2. A block design (V,B) is called a pairwise balanced block design (PBD) if each
pair of distinct points c, d ∈ V lies in the same number of blocks. This number is called the
index of the design. By a PBD(v,K;λ) we mean a pairwise balanced (v,K) block design
of index λ.

3.3 G-Signed Block Designs

By a G-signing of a set X we means a map σ : X → G. By a G-signing of the blocks of
a block design (V,B) we mean a B-tuple σ = (σB)B∈B, where for each block B ∈ B the
component σB is a G-signing, σB : B → G, of B.

Definition 3. A G-signed block design is a triple (V,B, σ), where (V,B) is a block design
and σ = (σB)B∈B is a G-signing of the blocks of (V,B). By a (v,K;G) block design we
mean a G-signed block design whose underlying block design is a (v,K) block design.

3.4 Generalized Bhaskar Rao Block Designs

Definition 4. A generalized Bhaskar Rao (GBR) block design is a G-signed block design
(V,B, σ) with the property that for each pair of elements c, d ∈ V the multiset of difference
quotients,

{σB(c)σB(d)−1 : (B ∈ B) ∧ (c, d ∈ B)},
consists of the elements of G, each with the same multiplicity. If this multiplicity is t we
say the design has multiplicity t. In this case the underlying block design (V,B) is a PBD
of index λ = t|G|. If this underlying PBD is a (v,K) block design then we call the GBR
block design a GBR(v,K;G), multiplicity t, block design.

3.5 Holey Bhaskar Rao Block Designs

Definition 5. Let H be a proper subgroup of G. A holey Bhaskar Rao (HGBR) block
design with hole H is a G-signed block design (V,B, σ) with the property that for each pair
of elements c, d ∈ V , the multiset of difference quotients,

{σB(c)σB(d)−1 : (B ∈ B) ∧ (c, d ∈ B)},

consists of the elements of the complement of H in G, each with the same multiplicity. If
this multiplicity is t we say the design has multiplicity t. In this case the underlying block
design (V,B) is a PBD of index λ = t(|G| − |H|). If this underlying PBD is a (v,K) block
design then we call the HGBR block design an HGBR(v,K;G), multiplicity t, hole H, block
design.

3.6 Generalized Bhaskar Rao Block Design Pieces

In [6] Abel et al. define the notion of generalized Bhaskar Rao block design pieces, of which
generalized Bhaskar Rao block designs and holey Bhaskar Rao block designs are examples.

Definition 6. Let A be a non-empty subset of G. An A-GBR block design piece over G is
a G-signed block design (V,B, σ) such that for each pair of elements c, d ∈ V the multiset
of difference quotients,

{σB(c)σB(d)−1 : (B ∈ B) ∧ (c, d ∈ B)},

4



consists of the elements of A, each with the same multiplicity. If this multiplicity is t we say
the block design piece has multiplicity t. In this case the underlying block design (V,B) is
a PBD of index λ = t|A|. If this underlying PBD is a (v,K) block design then the A-GBR
block design over G is called an A-GBR(v,K;G), multiplicity t, block design piece.

3.7 Pairwise Balanced G-Signed Block Designs

The above definitions in terms multiset of difference quotients suggest the following gen-
eralization of the notion of pairwise balanced block designs to the case of G-signed block
designs.

Definition 7. Call a G-signed block design (V,B, σ) pairwise balanced if for each pair of
elements c, d ∈ V the multiset of difference quotients,

{σB(c)σB(d)−1 : (B ∈ B) ∧ (c, d ∈ B)},

is independent of the choice of pair c, d. In this case call this common multiset the index
multiset of the pairwise balanced G-signed block design. If this index multiset has cardinal-
ity λ then the underlying block design (V,B) is a pairwise balanced block design of index λ.
Let M be a multiset of elements of G. By an M-PBD(v,K;G) we mean a pairwise balanced
G-signed block design with index set M whose underlying block design is a (v,K) block
design.

Remark 8. Let A be a non-empty subset of G, and t a positive integer. Recall A[t]
denotes the multiset consisting of the elements of A, each with multiplicity t. So an A-
GBR, multiplicity t, block design piece is the same object as an A[t]-PBD. From now on in
theorems and proofs we preference the more compact notation of pairwise balanced signed
block designs over that of generalised Bhaskar Rao block design pieces.

4 Generalized Bhaskar Rao Designs with Block Size 3

We summarize previously established results for the existence of GBR(v, 3;G) block designs.

4.1 The Case v = 3

The case v = 3 is settled: see Abel et al. [8].

Theorem 9. For a GBR(3, 3;G), multiplicity t, block design to exist it is necessary and
sufficient that either G has non-cyclic 2-Sylow subgroups or t is even.

Sufficiency of these necessary conditions for the existence a GBR(3, 3) block designs was
long known to be equivalent to the Hall-Paige conjecture for finite groups, [23]. Following
the proof of this conjecture, (Evans [17], Wilcox [35], and Wilcox, Evans and Bray [13],
New results), they are now known to be sufficient.

4.2 The Case v ≥ 4

We state the known necessary conditions, Seberry [32], for the existence of a GBR(v, 3;G)
for v ≥ 4, and the groups G for which sufficiency has been established as listed in Abel et
al. [6]. These results have long history. The case G cyclic of order 2, known as Bhaskar
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Rao designs were studied by Bhaskar Rao [10, 11] and then by Seberry and others; G cyclic
of order 3 by Seberry [31]; the case G cyclic of order 4 by de Launey et al. [15]; the case
of elementary abelian groups by Lam and Seberry [26], and by Palmer [27]. Sufficiency
for various groups of order 6, and 8 was shown in Palmer and Seberry [30]; sufficiency
for nilpotent groups of odd order by Palmer [28]. Sufficiency by all abelian G was finally
established by Ge et al. [19]. The case of groups of order 12 was settled by Combe et al. [14],
all groups of order 16 by Abel et al. [8]. Abel et al. [7] dealt with the cases G dihedral or
dicyclic. Continuing through Abel et al. [2, 3, 4, 5, 6] the results as listed in Theorem 10 (2)
below were gradually built up.

Theorem 10. (1) For v ≥ 4 the following conditions are necessary for the existence of a
GBR(v, 3;G), multiplicity t, block design.

(i) t|G| is even, or v is odd;

(ii) t|G| is divisible by 3, or v 6≡ 2 (mod 3).

(iii) if G has twice odd order then t is even or v ≡ 0, 1 (mod 4).

(2) For v ≥ 4 these necessary conditions for the existence of a GBR(v, 3;G), multiplicity
t, block design are sufficient in each of the following cases:

(i) G is supersolvable, (includes G abelian, dihedral or metacyclic);

(ii) G is a solvable group with order prime to 3;

(iii) G has odd order;

(iv) G has order 2n3m;

(v) |G| ≤ 100 with possible exception of A5, the simple group of order 60.

Example 11. Suppose G is elementary abelian of order 4, or dihedral of order 8, v ≥ 4
and v 6≡ 2 (mod 3). Then the necessary conditions of Theorem 10 (1) for the existence of
a GBR(v; 3;G), multiplicity 1, block design are satisfied. By Theorem 10 (2)(v) they are
sufficient. Hence for such groups G and such v a GBR(v; 3;G), multiplicity 1, block design
exists.

4.3 The Generalized Hall-Paige Conjecture

There are standard congruence conditions for the existence of a PBD(v, k;λ) block de-
sign [13]: λ(v − 1) ≡ 0 (mod (k − 1) ) and λv(v − 1) ≡ 0 (mod k(k − 1) ). By Hanani [24]
they are sufficient in the case k = 3. The underlying block design of a GBR(v, 3;G), mul-
tiplicity t, block design is a PBD(v, 3; t|G|) block design. The conditions (1)(i) and (1)(ii)
of Theorem 10 are equivalent to the standard congruence conditions for existence of such
a block design. The condition (1)(iii) is an extra parity condition which only has force
for groups whose 2-Sylow subgroups are cyclic of order 2. Abel et al. [8] conjecture these
necessary conditions are sufficient. In view of the connection between Theorem 9 and the
Hall-Paige conjecture this can be viewed as a generalized Hall-Paige conjecture.

Definition 12. We say the Generalized Hall-Paige (GHP) Conjecture holds for G if for
all v ≥ 4 the necessary conditions of Theorem 10 for the existence of a GBR(v, 3;G),
multiplicity t, block design are sufficient.

From Theorem 9 above and Lemma 46 in Abel et al. [6] we have:
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Theorem 13. Suppose G has order divisible by 12 and non-cyclic 2-Sylow subgroup.
Then the GHP Conjecture holds for G if and only if a GBR(v, 3;G), multiplicity t, block

design exists for all v ≥ 3 and all multiplicities t.
To show the GHP Conjecture holds for such G it suffices to show that a GBR(v, 3;G),

multiplicity 1, block design exists for each v ∈ {4, 5, 6, 8}.

5 Piecewise Constructions

In view of Remark 8 the Piecewise Construction Theorem for GBR block design pieces,
Theorem 26 of Abel et al. [6], can be recast as follows.

Theorem 14. Let A1, . . . , Am, be a partition of a non-empty subset A of G. Suppose
for each i = 1, . . . ,m, an Ai[t]-PBD(v,K;G) is given. Then an A[t]-PBD(v,K;G) can be
constructed.

Example 15. Let x, y, x ∈ G involutions satisfying xyz = e. From Example 21 in Abel
et al. [6] we know we can construct a {x, y, z}[1]-PBD(3, 3;G). Hence if a subset A of G
can be partitioned as a disjoint union of triples of involutions with product the identity an
A[1]-PBD(3, 3;G) can be constructed.

Example 16. From Example 24 in Abel et al. [6] we know that given ρ ∈ G of order 3
we can construct a {ρ, ρ−1}[1]-PBD(4, 3;G). Hence if a subset A of G can be partitioned
as a disjoint union reciprocal pairs of elements of order 3 an A[1]-PBD(4, 3;G) can be
constructed.

5.1 The Holey Generalized Bhaskar Rao Design Construction

We make extensive use of the holey Generalized Bhaskar Rao design construction, Theo-
rem 27 of Abel et al. [6].

Theorem 17. Let H be a proper subgroup of G. Given an HGBR(v,K;G) block design
with hole H, and a GBR(v,K;H) block design, both of multiplicity t, we can construct a
GBR(v,K;H), multiplicity t, block design.

5.2 The General Piecewise Construction

The Piecewise Construction Theorem for GBR block design pieces, which includes the Holey
Design Construction Theorem as crucial special case, is subsumed by the following piecewise
construction theorem for pairwise balanced G-signed block designs.

Theorem 18. Let M1, . . . , Mm, be non empty multisets of elements of G with multiset
union M. Suppose for each i = 1, . . . , m, an Mi-PBD(v,K;G) is given. Then we can
construct an M-PBD(v,K;G).

Proof. Let V be a set of cardinality v. Then for each i, from the given Mi-PBD(v,K;G),
we can construct an Mi-PBD(v,K;G) block design on point set V . The totality of these
G-signed blocks for i = 1, . . . ,m, form an M-PBD(v,K;G) on point set V .
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6 The Induction Theorems

In this section H will denote an arbitrary subgroup of G. We will lead up to the statement of
the two induction theorems for GBR block designs pieces which are the key to constructing
our designs over A5, S5 and Z2 × A5. In the case H = {e} the identity subgroup of G each
of these induction theorems, Theorem 23 and Theorem 24, is equivalent to Theorem 38 of
Abel et al. [6]. They are derived in turn as special cases of the more general induction
theorems, Theorem 29 and Theorem 26, proved in subsequent subsections.

6.1 Right Coset Representatives

For any non-empty subset W of G the set H ·W = {hg : h ∈ H, g ∈ G} is the union of the
right cosets Hg, g ∈W.

Definition 19. Let A be a union of right H-cosets. Then a set of right H-coset representa-
tives of A is a subset W of A such that A = H ·W and distinct elements of W lie in distinct
right H-cosets.

A subset W of G is a set of right coset representatives for a union A of right H-cosets if
an only if H ·W = A and each element a ∈ A can be expressed uniquely in the form a = hg,
h ∈ H, g ∈ G. If the elements of a non-empty subset W of G lie in distinct right H-cosets
then W is a set of right H-coset representatives for H ·W.

6.2 Double Cosets

By a double H-coset of G we mean an (H,H)-double coset, that is a subset of G of the form
{hgk : h, k ∈ H} for some g ∈ G. Double H-cosets partition G.

Example 20. The group H is a double H-coset. When H is a proper subgroup of G the
complement of H in G is a union of double H-cosets.

Example 21. More generally suppose K is a subgroup of a subgroup G containing H. Then
K is union of double H-cosets and when K is a proper subgroup of G the complement of K
in G is a union of double H-cosets.

A double H-coset, or more generally a union of double H-cosets, is both a union of
left H-cosets and a union of right H-cosets. In particular for g ∈ G the double H-coset
containing g is the union of all right cosets Hgh, h ∈ G.

A key observation in the discovery of our new composition theorems is a connection
between double H-cosets and the action of H on G by conjugation.

6.3 Double Cosets and Conjugation

Suppose g ∈ G and h ∈ H. Recall that gh denotes the conjugate h−1gh of g by h. Recall as
well that for U a subset of G, setting Ug = {gh : g ∈ U} defines an action of H on the set of
subsets of G. Under this action Hh = H, and so (Hg)h = Hhgh = Hgh. Hence conjugation
by H permutes the set of right cosets of H in G. Further for h ∈ H the conjugate (Hg)h by h
of the right H-coset Hg generated by g ∈ G is the right H-coset generated by the conjugate
gh of g by h. But now look:

Hgh = Hh−1gh = Hgh.
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This leads to the key observation that a double H-coset containing an element g ∈ G can
be viewed not as the union of right H-cosets Hgh, h ∈ H, but rather, and fruitfully as
it turns out, as the union of the conjugate right H-cosets (Hg)h, h ∈ H, or equivalently,
since (Hg)h = Hgh, as the union of the right H-cosets generated by the H-conjugates of g.
Consequent on this, we deduce that if a subset W of G consists of a single orbit under H
acting by conjugation, then H ·W is a double H-coset of G.

6.4 H-Admissible Subsets

Definition 22. We say a subset W of G is H-admissible if it is non-empty and closed under
conjugation by the elements of H.

Suppose W is an H-admissible subset of G. Then W is a union of H-orbits under H-
conjugation. If H-conjugation partitions W into s orbits W1, . . . , Ws, then H ·W is a union
of the double cosets H ·W1, . . . , H ·Ws. Suppose further that distinct elements of W lie in
distinct right H-cosets. Then these double H-cosets, H ·W1, . . . , H ·Ws, are distinct and
hence they partition H ·W.

6.5 The First Induction Theorem for GBR Block Design Pieces

Theorem 23. Let the subset A of G be a union of double H-cosets. Suppose A possesses
an H-admissible set of right coset representatives W. Then given a GBR(v,K1;H), mul-
tiplicity s, block design, and for each k ∈ K1 a W[t]-PBD(k,K2;G), we can construct an
A[st]-PBD(v,K2;G).

This first induction theorem for generalised Bhaskar Rao block design pieces is the closest
induction analogue of the inflation theorem for generalised Bhaskar Rao block design pieces
proved in Abel et al. [6]. We will derive it from the general double coset induction theorem,
Theorem 29 proved later.

6.6 The Second Induction Theorem for GBR Block Design Pieces

Theorem 24. Let H be a subgroup of G and B a subset of H. Suppose W is an H-admissible
subset of G whose elements lie in distinct right H-cosets. Given a B[s]-PBD(v,K1;H), and
for each h ∈ K1 a W[t]-PBD(h,K2;G) we can construct a B ·W[st]-PBD(v,K2;G).

This second induction theorem for generalised Bhaskar Rao block design pieces follows
from the general induction theorem, Theorem 26, proved in the next subsection. Note
that a GBR(v,K;H) multiplicity s block design is an H[s]-PBD(v,K;H), and if W is an
H-admissible subset of G whose elements lie in distinct right H-cosets then A = H ·W is a
union of double H-cosets with H-admissible set of right H-coset representatives W. Hence
the first induction theorem is in fact the special case B = H of the second induction theorem.

6.7 The General Induction Theorem

Definition 25. Say a multiset M of elements of G is H-admissible if it closed under conju-
gation by the elements of H. That is if g1, . . . , gn, is a list of the elements of M then so too
is g1

h, . . . , gn
h, for each h ∈ G.

For example if W is an H-admissible subset of G then every multiset W[t] is H-admissible.
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Theorem 26. Let L be a multiset of elements of a subgroup H of group G, and M be
an H-admissible multiset of elements of G. Then given an L-PBD(v,K1;H), and for each
k ∈ K1 an M-PBD(k,K2;G), we can construct an L ◦M-PBD(v,K2;G).

Proof. Let (V,B, σ) be the given L-PBD(v,K1;H) block design. Let B1, . . . , Bb be a list of
its blocks. Set σi = σBi . So (B1, σi), . . . , (Bb, σb) is a list of the H-signed blocks of the given
design.

For i = 1, . . . , b, set ki = |Bi|. By assumption, each ki ∈ K1. So from the given M-
PBD(ki,K2;G) we can construct an M-PBD(ki,K2;G) on point set Bi, (Bi,Bi, τi) say. Let
Bi1, . . . , Biai be a list of the blocks in Bi. We call the Bij , j = 1, . . . , ai, sub-blocks of Bi.
Note by assumption all sub-block sizes |Bij | ∈ K2. For j = 1, . . . , ai let τij denote the G-
signing τBj of the sub-block Bij . So (Bi1, τi1), . . . , (Biai , τiai) is a list of the G-signed blocks
of (Bi,Bi, τi). Let C be the multiset union of the Bi. Consider the block design (V, C).

Each block of the block design (V, C) is a sub-block Bij of some block Bi of B. Thus
all its block sizes lie in K2. So (V, C) is a (v,K2) block design. If c ∈ Bij then c ∈ Bi and
we set ρij(c) = σi(c)τij(c) ∈ G. We sign the block Bij of C by ρij . Consider the G-signed
block design (V, C, ρ), with signed blocks (Bij , ρij), i = 1, . . . , b, j = 1, . . . , ai. This design
is a (v,K2;G) block design. We complete the proof by showing it is pairwise balanced with
index multiset L ◦M.

Fix a pair of distinct elements c and d of V . Suppose c, d ∈ Bij . Then c, d ∈ Bi and the
difference quotient

ρij(c)ρij(d)−1 = σi(c)τij(c)τij(d)−1σi(d)−1

= σi(c)σi(d)−1
(
σi(d)τij(c)τij(d)−1σi(d)−1

)
.

For each i = 1, . . . , b, the multiset of difference quotients determined by the design (Bi,Bi, τi)
and the pair c, d, {τij(c)τij(d)−1 : (Bij ∈ Bi) ∧ (c, d ∈ Bij)} = M. Hence, because the σi
take values in H and M is H-admissible, for each i the multiset{

σi(d)τij(c)τ
−1
ij (d)σi(d)−1 : (Bij ∈ Bi) ∧ (c, d ∈ Bij)

}
= σi(d)

{
τij(c)τij(d)−1 : (Bij ∈ Bi) ∧ (c, d ∈ Bij)

}
σi(d)−1

= σi(d)Mσi(d)−1 = M.

So the multiset of difference quotients determined by the design (V, C, ρ) and the pair
c, d ∈ V ,{

ρij(c)ρij(d)−1 : (Bij ∈ C) ∧ (c, d ∈ Bij)
}

=
{
σi(c)σi(d)−1g : (Bi ∈ B) ∧ (c, d ∈ Bi) ∧ (g ∈M)

}
=
{
σi(c)σi(d)−1 : (Bi ∈ B) ∧ (c, d ∈ Bi)

}
◦M = L ◦M.

The last inequality follows because
{
σi(c)σi(d)−1 : (Bi ∈ B) ∧ (c, d ∈ Bi)

}
is the multiset of

difference quotients for (V,B, ρ), which is the given L-PBD(v,K1;H). We deduce that the
(v,K2;G) block design (V, C, ρ) constructed above is indeed pairwise balanced with index
multiset L ◦M.

Lemma 27. Let B be subset of H and W a subset of G. Suppose distinct elements of W
lie in distinct right H-cosets. Then B[s] ◦W[t] = B ·W[st].
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Proof. Each element of the multiset B[s]◦W[t] lies in the set B·W. Since distinct elements of
W lie in distinct right H-cosets each element of the set B·W can be expressed uniquely in the
form hg, h ∈ B and g ∈W. In the multiset B[s] each element h of B occurs with multiplicity
s, and in the multiset W[t] each element g occurs with multiplicity t. Hence every element
of the underlying set B ·W of B[s] ◦W[t] occurs with the same multiplicity st.

Proof of Theorem 24 Assume the conditions of Theorem 24 hold. The assumption W is
H-admissible implies the multiset W[t] is H-admissible. So, from Theorem 26 with L = B[s]
and M = W[t], given a B[s]-PBD(v,K1;H) and for each h ∈ K1 a W[t]-PBD(h,K2;G), we
can construct a B[s] ◦W[t]-PBD(v,K2;G). Since it is assumed elements of W lie in distinct
right H-cosets the result now follows by Lemma 27.

6.8 The General Double Coset Induction Theorem

Definition 28. Let A be a union of right cosets of H in G. We say a multiset M is a
multiset right H-coset representatives for A of multiplicity t modulo H if the elements of
M lie in A and any right H-coset making up A has exactly t representatives in any list of
elements of M.

For example suppose A is union of double H-cosets and W is set of right H-coset rep-
resentatives for A. Then W[t] is a multiset of right H-cosets representatives for H ·W of
multiplicity t modulo H.

Theorem 29. Suppose A is a union of double H-cosets with an H-admissible multiset M
of right H-coset representatives of multiplicity t modulo H. Given a GBR(v,K1;H) block
design, and for each k ∈ K1 an M-PBD(k,K2;G), we can construct an A[st]-PBD(v,K2;G).

Proof. A GBR(v,K1;H) multiplicity s block design is an H[s]-PBD(v,K1;H). So by The-
orem 26 we can construct an H[s] ◦M-PBD(v,K2;G). By Lemma 30 below, H[s] ◦M =
A[st].

Lemma 30. Suppose that a non-empty subset of A of G is union of right H-coset. Let M
be multiset of right H-coset representatives for A of multiplicity t modulo H. Then for all
positive integers s, H[s] ◦M = A[st].

Proof. Every element in H[s]◦M is of the form a = hg, h ∈ H[s], g ∈M. By assumption the
elements M are all elements of A. Because A is a union of right H-cosets it is closed under
left multiplication by elements of H. Hence every element of H[s] ◦M lies in A. Further a
given element a ∈ A occurs s times for every time there is an element g ∈ M in the same
right H-coset as a. By assumption there are t such elements for each a ∈ A. Hence each
element of A occurs with multiplicity st in H[s] ◦M.

Proof of Theorem 23 Let A be a union double H-cosets with an H-admissible set of
right H-cosets representatives W. Then the multiset W[t] is an H-admissible, multiset of
right H-coset representatives for A of multiplicity t modulo H. Hence the induction theorem,
Theorem 23, is a special case of the double coset composition theorem, Theorem 29.

7 Designs for the Alternating Group A5

In this section we construct HGBR(v, 3;A5), multiplicity 1, hole A4, block designs for vari-
ous v, including v = 4, 5, 6, 8. Given these results we can settle the GHP Conjecture for A5.
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The group A4 has order 12 and non-cyclic 2-Sylow subgroup. The GHP Conjecture holds
for the group A4, as was proved in Combe et al. [14]. So by Theorem 13, for v = 4, 5, 6, 8, a
GBR(v, 3;A4), multiplicity 1, block design exists. Hence, given the aforementioned HGBR
results, by the Holey Design Construction, Theorem 17, we can construct a GBR(v, 3;A5),
multiplicity 1, block design for each of v = 4, 5, 6, 8. Since A5 has order divisible by 12 and
has non-cyclic 2-Sylow subgroup we can, by Theorem 13, deduce:

Theorem 31. The GHP Conjecture holds for A5: for each v ≥ 3 and positive integer t a
GBR(v, 3;A5), multiplicity t, block design can be constructed.

In the next subsection we consider double coset for an EA(4), (elementary abelian
order 4), subgroup of A5. In subsequent subsections we use the induction theorems with H
this subgroup to construct HGBR(v, 3;A5) multiplicity 1, hole A4, block designs for various
v, including v = 4, 5, 6, 8.

7.1 Double Cosets for an EA(4) Subgroup of A5

Given four distinct elements a, b, c, d of {1, 2, 3, 4, 5}, the three involutions (ab)(cd), (ac)(bd),
(ad)(bc) are mutually commuting and the product of any two is the third. They together
with the identity e ∈ A5 form an EA(4) subgroup of A5. For i = 1, . . . , 5, let Ei denote
that such EA(4) subgroup of A5 in which none of a, b, c, d equals i. Equivalently Ei consists
of the elements in A5 of even order which fix i. Let E′i be the subset of involutions (non-
identity elements) of Ei. In particular E5 = {e, (12)(34), (13)(24), (14)(23)} and E′5 =
{(12)(34), (13)(24), (14)(23)}.

The normalizer of E5 in A5 consist of the even permutations which fix 5, that is the
subgroup A4 of A5. Each coset of E5 in A4,

E5 = {e, (12)(34), (13)(24), (14)(23)},
E5(123) = {(123), (134), (243), (142)},
E5(132) = {(132), (234), (124), (143)},

is by itself a double E5-coset.
Let V = A5 \A4, the complement of A4 in A5. This subset of A5 falls into three double

E5-cosets, V1, V2, V3, whose elements are listed in the correspondingly labelled arrays
below. The elements of any column of these arrays form a right E5-coset. Consequently
the elements of any one row of these arrays form a set of right E5-coset representatives
of the corresponding double E5-coset. Reading across any row of these arrays we see the
conjugates of left hand element conjugated successively by e, (12)(34), (13)(24), (14)(23).
Consequently the elements of any row one of these array form an E5-admissible subset
of A5 of right E5-coset representatives of its corresponding double E5-coset.

The array displaying the elements of V1, has columns elements the right E5-cosets
generated by the conjugates under E5 of the top left entry (12)(35) of the array. Reading
down the first column of V1 we see the head of the column multiplied on the left by
successively e, (12)(34), (13)(24), (14)(23). Because E5 is abelian the elements of E5 are
fixed under E5 conjugation. Hence for π, ρ ∈ E5, and σ ∈ A5, (πρ)σ = πρσ. Consequently
if we read down any column of V1 we see the head of the column multiplied on the left
by successively e, (12)(34), (13)(24), (14)(23). So if we let vector M1 be the first row of
array of elements of V1 the subsequent rows of the array are: (12)(34)M1, (13)(24)M1,
(14)(23)M1.
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V1 :


(12)(35) (12)(45) (34)(15) (34)(25)

(345) (435) (125) (215)
(32415) (41325) (14235) (23145)
(31425) (42315) (13245) (24135)

 =


M1

(12)(34)M1

(13)(24)M1

(14)(23)M1


In the array of elements of V2 reading down the first column we see the head of the

column multiplied on the left by successively e, (14)(23), (12)(34), (13)(24). If we let
vector M2 be the first row of array of elements of V2 the subsequent rows of the array are:
(14)(23)M2, (12)(34)M2, (13)(24)M2.

V2 :


(23)(15) (14)(25) (14)(35) (23)(45)

(145) (235) (325) (415)
(13425) (24315) (31245) (42135)
(12435) (21345) (34215) (43125)

 =


M2

(14)(23)M2

(12)(34)M2

(13)(24)M2


In the array of elements of V3 reading down the first column we see the head of the

column multiplied on the left by successively e, (13)(24), (14)(23), (12)(34). If we let
vector M3 be the first row of array of elements of V2 the subsequent rows of the array are:
(13)(24)M3, (14)(23)M3, (12)(34)M3.

V3 :


(13)(25) (24)(15) (13)(45) (24)(35)

(245) (135) (425) (315)
(21435) (12345) (43215) (34125)
(23415) (14325) (41235) (32145)

 =


M3

(13)(24)M3

(14)(23)M3

(12)(34)M3


Because V is the complement of A4 in A5, an HGBR(v, 3;A5), multiplicity 1, hole A4,

block design and a V[1]-PBD(v, 3;A5) are the same objects. We use the double E5-cosets,
V1, V2, V3, to construct our required designs. We note again that the arrays displaying
the elements of these double cosets have the property that the elements of any row form an
E5-admissible set of right E5-coset representatives for its corresponding double E5-coset.

7.2 HGBR Block Designs over A5 for v ∈ {4, 6}

We aim to prove an HGBR(v, 3;A5), multiplicity 1, hole A4, block design can be constructed
for v = 4, 6. Both v = 4 and v = 6 satisfy v 6≡ 2 (mod 3). We can as easily prove more.

Theorem 32. For each v ≥ 4 with v 6≡ 2 (mod 3) an HGBR(v, 3;A5), multiplicity 1, hole
A4, block design can be constructed.

Proof. We show equivalently that a V[1]-PBD(v, 3;A5) can be constructed for each v ≥ 4
with v 6≡ 2 (mod 3).

The group A5 contains fifteen involutions (ab)(cd). Three, those which fix the symbol
5, lie in A4. The remaining twelve involutions, those which do not fix the symbol 5, all lie
in V. Four of these twelve involutions make up the first row M1 of the array of elements
of V1. They form an E5-admissible set of right coset representatives for V1. Another four
of these twelve involutions make up the first row M2 of our array of elements of V2. They
form an E5-admissible set of right coset representatives for V2. The remaining four of these
twelve involutions make up the first row M3 of our array of elements of V3. They form
an E5-admissible set of right coset representatives for V3. Hence these twelve involutions
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together form a E5-admissible set T of distinct right E5-coset representatives for V. We use
a piecewise construction to form a T[1]-PBD(3, 3;A5).

The first entries of M1, M2, M3 make up E′1, their second entries make up E′2, their
third entries make up E′3, finally their last entries make up E′4. The set T thus falls into
disjoint union of these four subsets of size three, E′1, E′2, E′3 and E′4. Each of E′1, E′2, E′3 and
E′4 consists of three involutions which multiply to give the identity. So by Example 15 we
can construct a T[1]-PBD(3, 3;A5).

Suppose now v ≥ 4, with v 6≡ 2 (mod 3). Then by Example 11 a GBR(v, 3;E5),
multiplicity 1, block design can be found. We have remarked that T is an E5-admissible set
of right E5-coset representatives for V. By induction, Theorem 23, from such a design and
a T[1]-PBD(3, 3;A5) a V[1]-PBD(v, 3;A5), that is an HGBR(v, 3;A5), multiplicity 1, hole
A4, block design can be constructed

7.3 HGBR Block Designs over A5 for v ∈ {5, 8}

Any 5-cycle in A5 can be expressed uniquely in the form (abcd5), where abcd is a permu-
tation of 1234. The five cycles fall into two orbits under the action of A4 by conjugation,
characterized by the parity of the permutation abcd of 1234. We call this parity the A4-
parity of the 5-cycle. Each of the three double E5-cosets making up the complement of A4

in A5, V1, V2, V3, contains four even A4-parity 5-cycles and four odd A4-parity 5-cycles.
The first row of 5-cycles in each array consists of even A4-parity 5-cycles and the second
row consists of odd A4-parity 5-cycles. Any of these rows forms an E5-admissible set of
right E5-coset representatives of their double E5-coset.

In this subsection let W be the set of even A4-parity 5-cycles. Then, since V1, V2, V3,
partition V, the set W is an E5-admissible set of right E5-coset representatives for V. The
sets E′5 and {e} partition E5. Since W is a set of right E5-coset representatives for V, not
only does the set E5 ·W = V, but further the sets E′5 ·W and W = W · {e} partition V.

The set W itself can be partitioned as follows:

X1 = {(12345), (34125), (13425)}, X2 = {(42135), (13425), (41325)},
X−11 = {(43215), (21435), (24315)}, X−12 = {(31245), (24315), (23145)}

Further we have,

X1 : (12345)(34125)(13425) = e, X2 : (42135)(13425)(41325) = e.

Thus the set W of twelve even A4-parity 5-cycles can partitioned into two subsets of size
six, W1 = X1 ∪X−11 and W2 = X2 ∪X−12 , of the form {u, v, w, u−1, v−1, w−1} with uvw = e.

Theorem 33. An HGBR(v, 3;A5), multiplicity 1, hole A4, block design can be constructed
for both v = 5 and v = 8.

Proof. We show equivalently that for each v ∈ {5, 8} a V[1]-PBD(v, 3;A5) can be con-
structed.

Consider the case v = 5. By Example 44, we can construct a W1[1]-PBD(3, 3;A5) and
a W2[1]-PBD(3, 3;A5), both on point set Z3. These together give a W[1]-PBD(3, 3;A5) on
point set Z3. By Example 42 we can form an E′5[1]-PBD(5, 3;E5). By induction, Theo-
rem 24, from this and a W[1]-PBD(3, 3;A5) we can construct an E′5 ·W[1]-PBD(5, 3;A5).
By Example 46 we can construct both a W1[1]-PBD(5, 3;A5) and a W2[1]-PBD(5, 3;A5) on
point set Z5. These together give a W[1]-PBD(5, 3;A5) on point set Z5.
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Consider the case v = 8. By Example 45 we can construct a W1[1]-PBD(4, 3;A5) and a
W2[1]-PBD(4, 3;A5), both on point set EA(4). These together give a W[1]-PBD(4, 3;A5) on
point set EA(4). By Example 43 we can form an E′5[1]-PBD(8, 4;E5). From one such and a
W[1]-PBD(4, 3;A5) we can, by induction, Theorem 24, construct a E′5 ·W[1]-PBD(8, 3;A5).
By Example 47 we can construct both a W1[1]-PBD(8, 3;A5) and a W2[1]-PBD(8, 3;A5)
on point set Z7 ∪ {∞}. Combining one of each gives a W[1]-PBD(8, 3;A5) on point set
Z7 ∪ {∞}.

We shown that for each v ∈ {5, 8} we can construct both an E′5 ·W[1]-PBD(v, 3;A5)
and a W[1]-PBD(v, 3;A5). We noted in the preamble to this theorem that the sets E′5 ·W
and W partition V. So by the piecewise construction, Theorem 14, we can construct a
V[1]-PBD(v, 3;A5), that is an HGBR(v, 3;A5), multiplicity 1, hole A4, block design.

8 The Group Z2 × A5

In coming subsection we construct HGBR(v, 3;Z2×A5), multiplicity 1, hole Z2×A4, block
designs for various v, including v = 4, 5, 6, 8. Given these results we can settle the GHP
Conjecture for Z2 ×A5. The group Z2 ×A4 has order 24 and non-cyclic 2-Sylow subgroup.
The GHP Conjecture holds for the group Z2×A4, as was proved in Combe et al. [14]. So by
Theorem 13 a GBR(v, 3;Z2×A4), multiplicity 1, block design exists for v = 4, 5, 6, 8. Hence,
given the aforementioned HGBR results, by the Holey Design Construction, Theorem 17,
we can construct a GBR(v, 3;Z2×A5), multiplicity 1, block design for each of v = 4, 5, 6, 8.
Since Z2 × A5 has order divisible by 12 and has non-cyclic 2-Sylow subgroup we can, by
Theorem 13, deduce:

Theorem 34. The GHP Conjecture holds for Z2×A5: for each v ≥ 3 and positive integer t
a GBR(v, 3;Z2 × A5), multiplicity t, block design can be constructed.

8.1 HGBR Block Designs over Z2 × A5

For X a subset of A5 let X̃ = {0} × A5. For H a subgroup of A5 elements of H̃ form an

isomorphic copy of H in Z2×A5. If W is an H-admissible subset of A5 then W̃ is a Z2×H-
admissible subset of Z2 × A5. If the elements of W lie in distinct right H-cosets, then the
elements of W̃ lie in distinct right Z2 × H-cosets. If A is a union of double H-cosets, then
Z2 × A is a union of double Z2 × H-cosets in Z2 × A5. So if W is an H-admissible subset
of right H-coset representatives of a union A of double H-cosets then W̃ is an H̃-admissible
set of right Z2 × A5-coset representatives of Z2 × A.

We reprise the notation of section 7. We let V denote the complement of A4 in A5. For
i = 1, 2, 3, 4, 5, we let Ei denote the EA(4) subgroup of A5 generated by the involutions
which fix the symbol i. Again, let T denote set of twelve involutions in A5 which do not
fix the symbol 5. Consequently the complement of Z2 × A4 in Z2 × A5 equals Z2 × V. We
saw the set T is an E′5-admissible set of distinct right E5-coset representatives for V. Hence

T̃ is a Z2 × E′5-admissible set of right Z2 × E′5-coset representatives of Z2 × T. Following

on the corresponding partition of T the set T̃ falls into the disjoint union of the following

four subsets of size three, Ẽ′1, Ẽ′2, Ẽ′3 and Ẽ′4. Each of these for subsets consists of three
involutions in Z2 × A5 which multiply to give the identity. So by Example 15 we can
construct a T̃[1]-PBD(3, 3;Z2 × A5). We use the fact that that we can construct such a
design in the proofs of the two theorems to follow.
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Theorem 35. For each v ≥ 4 with v 6≡ 2 (mod 3) an HGBR(v, 3;Z2 ×A5), multiplicity 1,
hole Z2 × A4, block design can be constructed.

Proof. We show equivalently a Z2 × V[1]-PBD(v, 3;Z2 × A5) can be constructed for each
v ≥ 4 with v 6≡ 2 (mod 3).

Suppose v ≥ 4, with v 6≡ 2 (mod 3). The group Z2×E5 is elementary abelian of order 8.
So by Example 11 a GBR(v, 3;Z2 × E5), multiplicity 1, block design can be constructed.
We have remarked that T̃ is a Z2 ×E5-admissible set of right Z2 ×E5-coset representatives
for Z2 × V. By induction, Theorem 23, from such a design and a T̃[1]-PBD(3, 3;A5) a
Z2×V[1]-PBD(v, 3;Z2×A5), that is an HGBR(v, 3;A5), multiplicity 1, hole Z2×A4, block
design can be constructed

Corollary 36. An HGBR(v, 3;A5), multiplicity 1, hole A4, block design can be constructed
for v = 4, 6.

Theorem 37. An HGBR(v, 3;A5), multiplicity 1, hole A4, block design can be constructed
for both v = 5 and v = 8.

Proof. Let v ∈ {5, 8}. We show equivalently a Z2 × V[1]-PBD(v, 3;Z2 × A5) can be con-
structed.

We use the generalised Bhaskar Rao design pieces of section 10.5. To do this we note
the following. Let E be any EA(4) subgroup of A5. Then Z2 × E is an elementary abelian
subgroup of Z2 ×A5 of order eight. Let π and ρ are pair of generators of E. Set x = (0, π),
y = (0, ρ) and w = (1, e). Then 〈x, y, z〉 = Z2×E, and the complement of 〈w〉 in Z2×E equals
Z2×E′. By Example 51 in the case v = 5, or Example 52 in the case v = 8, can construct a
Z2 × E′5[1]-PBD(v, 3;Z2 × E5). We have noted we can construct a T̃[1]-PBD(3, 3;Z2 ×A5).

So by induction, Theorem 24, we can construct a Z2 × E′5 · T̃[1]-PBD(v, 3;A5).
By Example 51 in the case v = 5, or by Example 52 in the case v = 8, we can for each

i = 1, 2, 3, 4 construct a Z2 × Ẽi[1]-PBD(v, 3;Z2 × A5) on point set Z5. Four such together
give a Z2 × T̃[1]-PBD(v, 3;Z2 × A5) on point set Z5.

The sets Z2 × E′5 · T̃ and Z2 × T̃ partition Z2 × V. We can construct both a Z2 × T̃[1]-
PBD(v, 3;Z2 × A5) and an E′5 · T[1]-PBD(v, 3;Z2 × A5). So from one each of these we can
by piecewise construction, Theorem 14, construct a Z2 × V[1]-PBD(v, 3;A5), that is an
HGBR(v, 3;Z2 × A5), multiplicity 1, hole Z2 × A4 block design.

9 The Symmetric Group S5

In the first subsection of this section we consider some double cosets for a dihedral order
eight subgroup of S5. In subsequent subsections we use the induction theorems using this
subgroup to construct HGBR(v, 3;S5), multiplicity 1, hole S4, block designs for various v,
including v = 4, 5, 6, 8. Given these results we can settle the GHP Conjecture for S5. The
group S4 has order 24 and non-cyclic 2-Sylow subgroup. The GHP Conjecture holds for the
group S4, as was proved first in Abel et al. in [2]. So by Theorem 13, for each of v = 4, 5, 6, 8,
a GBR(v, 3;S4), multiplicity 1, block design can be found. Hence, given our HGBR results,
and using the Holey Design Construction, Theorem 17, we can construct a GBR(v, 3;S5),
multiplicity 1, block design for each of v = 4, 5, 6, 8. Since S5 has order divisible by 12 and
non-cyclic 2-Sylow subgroup we can, by Theorem 13, deduce:

Theorem 38. The GHP Conjecture holds for S5: for each v ≥ 3 and positive integer t a
GBRD(v, 3;S5), multiplicity t, block design can be constructed.
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9.1 Double Cosets for a Dihedral Order 8 Subgroup of S5

Consider the dihedral order 8 subgroup D of S5 generated by E5 and the 2-cycle (12):

D = {e, (12)(34), (13)(24), (14)(23), (12), (34), (1324), (1423)}.

This dihedral order 8 subgroup D is a subgroup of S4. The even parity involution (12)(34)
is central in D. The centre of D is {e, (12)(34)}. The two other even parity involutions
(13)(24), (14)(23), form a coset {(13)(24), (14)(23)} modulo the centre.

Denote by U the complement S5 \ S4 of S4 in S5. We note that an HGBR(v, 3;A5),
multiplicity 1, hole A4, block design and a U[1]-PBD(v, 3;A5) are the same objects. The
subset U falls into two double D-cosets, which we designate Us and Ul. We use these double
D-cosets, Us and Ul, to construct our required designs. For each of these double cosets
we display below an array of their elements in which the elements of any column form a
right D-coset, and the elements in any row are D-conjugate. Since we are working inside
a symmetric group conjugation preserves parity. Hence the elements of any row of these
array have the same parity. We only need to deal with even parity elements. In the arrays
below the dots represent elements the odd parity with we fortunately do not need to concern
ourselves. In each array reading down the first column we see the head multiplied on the left
by the even permutation in D in the order e, (12)(34), (13)(24), (14)(23). The vertical dots
in this column represent the head of the column multiplied by the odd parity permutations
(12), (34), (1324), (1423) of D. The vectors, M1, M2, M3, are first rows of the arrays
displaying the elements of the double E5-cosets, V1, V2, V3, as given in section 7.1. Note
that E5 is the subgroup even parity permutations in D.

The double coset Us consists of four right D-cosets.

Us :



M1

(12)(34)M1

(13)(24)M1

(14)(23)M1
...
...


=



(12)(35) (12)(45) (34)(15) (34)(25)
(345) (435) (125) (215)

(32415) (41325) (14235) (23145)
(31425) (42315) (13245) (24135)

...
...

...
...

...
...

...
...


.

The double coset Ul consists of eight right D-cosets.

Ul :



M2 M3

(14)(23)M2 (13)(24)M3

(12)(34)M2 (12)(34)M3

(13)(24)M2 (14)(23)M3
...

...
...

...



=



(23)(15) (14)(25) (14)(35) (23)(45) (13)(25) (24)(15) (13)(45) (24)(35)
(145) (235) (325) (415) (245) (135) (425) (315)

(13425) (24315) (31245) (42135) (23415) (14325) (41235) (32145)
(12435) (21345) (34215) (43125) (21435) (12345) (43215) (34125)

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...


.
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In each array the first four columns are generated by right conjugating the left hand
column elementwise by successively by the even parity permutations making up E5: e,
(12)(34), (13)(24), (14)(23). In the case of Ul the next four columns are successively the
conjugates of the first column by the odd parity permutations in this order: (12), (34),
(1423), (1324). Now

(12) = e× (12), (34) = (12)(34)× (12), (1324) = (13)(24)× (12), (1423) = (14)(23)× (12)

in which the order of the odd parity cycles is now (12), (34), (1324), (1423). Hence the
second half of the array for Ul is derived from the first half by conjugating elementwise by
(12) and interchanging the third and fourth columns.

In both arrays the elements of any row form a set of right D-coset representatives for
its corresponding double D-coset. In the array for Ul each row is also D-admissible. By
construction in the array for Us the elements of any row form an E5-admissible subset. The
elements of a row will therefore by D-admissible if and only if conjugation by (12) permutes
the elements of the row. We see by inspection that the set of even parity involutions which
make up the first row M1 of the array for Us form a D-admissible set, as does the set of
three cycles making up the second row (12)(34)M1 of that array. Neither of the rows of
5-cycles in the array for Us lists elements of a D-admissible subset. The set of 5-cycles
listed in the third row are of even 4-parity. The set of 5-cycles listed in the fourth row
are of odd 4-parity. Conjugating by (12) maps these two sets bijectively one to the other.
To form a D-admissible subset of 5-cycles in Us you need take the elements of both these
rows of 5-cycles. If you call this set of 5-cycles X, then X[1] is a multiset of right D-coset
representatives for Us oof multiplicity 2.

For the constructions below the critical observation is that in the double D-cosets Us
and in the double D-coset Ul, if we take either the subset of even parity involutions or the
subset of 3-cycles we have a D-admissible set of right D-coset representatives of that double
D-coset.

9.2 HGBR Block Designs over S5 for v ∈ {4, 6}

We aim to show an HGBR(v, 3;S5), multiplicity 1, hole S4, block design can be constructed
for v = 4, 6. As in the A5 and Z2 × A5 cases we can as easily prove more.

Theorem 39. For all v ≥ 4 with v 6≡ 2 (mod 3) an HGBR(v, 3;S5), multiplicity 1, hole
S4, block design can be constructed.

Proof. We show equivalently that for all v ≥ 4 with v 6≡ 2 (mod 3) a U[1]-PBD(v, 3;A5)
can be constructed.

Let T be the set of even of even parity involutions in U, that is the involutions which
do not fix the symbol 5. This is the set T which we met in the proof of Theorem 32.
This set T is partitioned into those involutions which lie in Us, and those which lie in
Ul. Those in Us form a D-admissible set of right D-coset representatives for Us, and those
which lie in Ul form a D-admissible set of right D-coset representatives for Ul. Thus T is
a D-admissible set of right D-coset representatives in S5 for U. This set T is the disjoint
union of four sets of three commuting involutions with product the identity, E′1, E′2, E′3,
E′4. So by Example 15 we can construct a T[1]-PBD(3, 3;S5). By Example 11, for v ≥ 4,
v 6≡ 2 (mod 3), a GBR(v, 3;D), multiplicity 1 block design can be found. So by induction,
Theorem 23, a U[1]-PBD(v, 3;S5), that is an HGBR(v, 3;S5), multiplicity 1, hole S4, block
design can be constructed for all v ≥ 4, with v 6≡ 2 (mod 3).
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9.3 HGBR Block Designs over S5 for v ∈ {5, 8}

Let Ws be the set of eight 5-cycles making up the 2nd and 3rd rows of the given array
displaying the elements of Us. So Ws is the totality of elements displayed by the row
vectors (13)(24)M1, (14)(23)M1. Let Ws be the set of eight 3-cycles and eight 5-cycles
making up the second and fourth rows of the given array displaying the elements of Ul.
So Ws is the totality of elements displayed by the row vectors (13)(24)M2, (14)(23)M2,
(13)(24)M3, (14)(23)M3.

Let W be the union of Ws and Wl. Then Ws and Wl partition W. The elements of W
form the entries of the following subarrays, of successively, the arrays of elements of double
E5-cosets V1, V2, V3 in A5 we met in section 7.1. The first subarray displays the elements
of Ws, the second and third display the elements of Wl.[

(13)(24)M1

(14)(23)M1

]
=

[
(32415) (41325) (14235) (23145)
(31425) (42315) (13245) (24135)

]
,

[
(14)(23)M2

(13)(24)M2

]
=

[
(145) (235) (325) (415)

(12435) (21345) (34215) (43125)

]
,

[
(13)(24)M3

(14)(23)M3

]
=

[
(245) (135) (425) (315)

(21435) (12345) (43215) (34125)

]
.

We see W consists of eight 3-cycles and sixteen 5-cycles. These twenty-four elements can
be partitioned into the following eight triples:

X1 = {(31425), (145), (12435)}, X2 = {(42315), (235), (21345)},
X3 = {(32415), (245), (21435)}, X4 = {(41325), (315), (12345))},
X−11 = {(24135), (415), (34215)}, X−12 = {(13245), (325), (43125)},
X−13 = {(14235), (425), (34125)}, X−14 = {(23145), (135), (43215)}.

Further we have relations:

X1 : (31425)(145)(12435) = e, X2 : (42315)(235)(21345) = e,
X3 : (32415)(245)(21435) = e, X4 : (41325)(315)(12345) = e.

Hence, W1 = X1 ∪X−11 , W2 = X2 ∪X−12 , W3 = X3 ∪X−13 , W4 = X4 ∪X−14 , is a partition of
W into four six element subsets of the form {u, v, w, u−1, v−1, w−1}, with uvw = e.

Theorem 40. An HGBR(5, 3;S5), multiplicity 1, hole S4, block design can be constructed.

Proof. We show equivalently that a U[1]-PBD(5, 3;S5) can be constructed.
The set of even parity involutions in U is the set T we met in the proofs of Theorem 32

and Theorem 39. Let D′s denote the complement in D of the coset {(13)(24), (14)(23)} of the
centre {e, (12)(34)} of D. As previously noted T is a set of right D-cosets representatives
of U. Consequently the sets {(13)(24), (14)(23)} · T and D′s · T partition U. Now T has
elements the entries listed by M1, together with those listed by M2 and M3. Hence the set
{(13)(24), (14)(23)} ·T is the totality of elements listed by (13)(24)M1, (14)(23)M1, which
elements we originally noted make up Ws, taken together with those listed by (13)(24)M2,
(14)(23)M2, (13)(24)M3, (14)(23)M3, which elements we originally noted make up Wl.
Since Ws and Wl partition W we deduce that the set {(13)(24), (14)(23)} · T = W. Hence
the sets W and D′s · T partition U.
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As we observed in the proof of Theorem 39, the set T is a D-admissible set of right
D-coset representatives of U, and we can form a T[1]-PBD(3, 3;S5). By Example 56 we
can form a D′s[1]-PBD(5, 3;D). So by induction, Theorem 24, we can construct a D′s · T[1]-
PBD(5, 3;S5). Now W1, W2, W3, W4, is a partition of W into four six element subsets of the
form {u, v, w, u−1, v−1, w−1}, with uvw = e. By Example 46, for each of these Wi we can
construct a Wi[1]-PBD(5, 3;S5) on point set Z5. Taken together these four PBD(5, 3;S5) on
point set Z5 form a W[1]-PBD(5, 3;S5) on point set Z5. Since W and D′s ·T partition U, from
this design and a D′s ◦ T[1]-PBD(5, 3;S5), we can by piecewise construction, Theorem 14,
construct a U[1]-PBD(5, 3;S5), that is an HGBR(5, 3;S5), multiplicity 1, hole S4, block
design.

Theorem 41. An HGBR(8, 3;S5), multiplicity 1, hole S4, block design can be constructed.

Proof. We show equivalently that a U[1]-PBD(8, 3;A5) can be constructed. In this proof
we work with the 3-cycles in U, that is the 3-cycles moving the symbol 5.

The set of those 3-cycles in Us, its subset Ys = {(345), (435), (125), (215)}, is a D-
admissible set of right D-coset representatives for the short double coset Us. The set of
3-cycles in Ul, its subset Yl = {(145), (235), (325), (415), (245), (135), (425), (315)}, is a D-
admissible set of right D-coset representatives for the long double coset Ul. Note in each of
these subsets each 3-cycle appears along with its inverse.

Let D′s again denote the complement in D of the coset {(14)(23), (13)(24)} of its centre.
Set U′s = D′s · Ys. The set Ys is a set of right D-coset representatives of Us. Consequently
U′s and {(14)(23), (13)(24)} · Ys partition Us. The elements Ys are listed by (12)(34)M1.
Hence {(14)(23), (13)(24)} · Ys is the set of elements displayed by the array[

(14)(23)
(13)(24)

] [
(12)(34)M1

]
=

[
(13)(24)M1

(14)(23)M1

]
.

This array is made up of the 2nd and 3rd rows of our array displaying the elements of Us.
Hence {(14)(23), (13)(24)} · Ys = Ws. We deduce therefore that U′s and Ws partition Us.

Let D′l denote the complement in D of its centre {e, (12)(34)}. Set U′l = Dl · Yl. The
set Yl is a set of right D-coset representatives of Ul. Consequently U′l and {e, (12)(34)} ·Yl.
partition Ul. The set Yl has elements the 3-cycles displayed by (14)(23)M2 and (13)(24)M3.
Hence {e, (12)(34)} · Yl is the set of elements displayed by the array[

e
(12)(34)

] [
(14)(23)M2 (13)(24)M3

]
=

[
(14)(23)M2 (13)(24)M3

(13)(24)M2 (14)(23)M3

]
.

This array is made up of the 2nd and 4th rows of our array displaying the elements of Ul.
Hence {e, (12)(34)} · Yl = Wl. We deduce therefore that U′l and Ws partition Ul.

The sets Us and Us partition U. We have shown that the sets U′s and Ws partition Us
and that the sets U′s and Ws partition Us. Hence the sets Us, Ul, Ws, Wl partition U.
We know the sets Ws and Wl partition W. So we deduce that the sets U′s, U′l, and W
partition U.

Both Ys and Yl are disjoint unions of pairs of reciprocal elements of order three. Hence,
by Example 16, both a Ys[1]-PBD(4, 3;S5), and a Yl[1]-PBD(4, 3;S5) can be constructed.
By Example 57 a D′s[1]-PBD(8, 4;D) can be constructed, and by Example 55 a D′l[1]-
PBD(8, 4;D) can be constructed. So by induction, Theorem 24, both a U′s[1]-PBD(8, 3;S5)
and a U′l[1]-PBD(8, 3;S5) can be constructed.
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The set W can partitioned into four six element subsets W1, W2, W3, W4, of the
form {u, v, w, u−1, v−1, w−1}, with uvw = e. By example 47 for each of these Wi we can
construct a Wi[1]-PBD(8, 3;S5) on point set Z7 ∪ {∞}, and taken together they make up a
W[1]-PBD(8, 3;S5) on point set Z7 ∪ {∞}. Since we have already shown we can construct
both a U′s[1]-PBD(8, 3;S5) and a U′l[1]-PBD(8, 3;S5), and observed that U′s and U′l and W
partition U, we can by piecewise construction, Theorem 14, construct a U[1]-PBD(8, 3;S5),
that is an HGBR(8, 3;S5), multiplicity 1, hole S4, block design.

10 New Generalised Bhaskar Rao Block Design Pieces

In this section we list the new generalised block design pieces referenced in sections 7, 8,
and 9.

10.1 Developing Signed Designs from Signed Base Blocks

Let D be a group acting by permutation on point set V . Then D has a natural action on
the set of G-signed subsets of V : if (X, ρ) = {(x1, g1), . . . , (xk, gk)} is a G-signed subset of
V and δ ∈ D,

(X, ρ)δ = {(xδ1, g1), . . . , (xδk, gk)}.

The D-orbit generated by {(x1, g1), . . . , (xk, gk)} defines a G-signed block design called the
development of the base block (X, ρ). We say this is the design generated by developing the
signed base block (X, ρ). More generally suppose (X1, ρ1), . . . , (Xn, ρn) is a list of G-signed
subsets of V . Then the disjoint union of the developments of these blocks is a G-signed block
design. This design is called the development of the signed base blocks (X1, ρ1), . . . , (Xn, ρn).

In the cases below, when we give signed base blocks on point set the set of elements of
one of the additive groups Z3, Z5 or EA(4), the signed base blocks are to be developed by
letting that additive group act on its underlying set by addition. In the cases below, when
the point set of the base blocks is Z7 ∪ {∞}, signed base blocks are to be developed by
letting the additive group Z7 fix the point ∞ and act by addition on the points in Z7.

10.2 Three Commuting Involutions Design Pieces

Let x, y, z ∈ G be involutions such that xyz = e. Then E = {e, x, y, z} forms an EA(4)
subgroup of G. Set E′ = {x, y, z}.

Example 42. Developing the G-signed base blocks on point set Z5,

{(0, e), (1, x), (2, z)}, {(0, e), (2, x), (4, z)},

gives an E′[1]-PBD(5, 3;G).
In particular we can form an HGBR(5, 3;E), multiplicity 1, hole {e}, block design.

Example 43. Developing the G-signed base blocks on point set Z7 ∪ {∞},

{(∞, e), (1, x), (2, y), (4, z)}, {(0, e), (3, x), (5, z), (6, y)},

gives an E′[1]-PBD(8, 4;G).
In particular we can form an HGBR(8, 4;E), multiplicity 1, hole {e}, block design.
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10.3 Involution Free Sextuple Design Pieces

Let u, v, w be three elements of G with uvw = e and such that u, v, w, u−1, v−1, w−1, u−1

are all distinct. Set A = {u, v, w, u−1, v−1, w−1}.

Example 44. Developing the G-signed base blocks on point set Z3,

{(0, e), (1, u−1), (2, w)}, {(0, e), (1, w), (2, u−1)},

gives an A[1]-PBD(3, 3;G).

Example 45. Developing the G-signed base blocks on point set EA(4),

{(00, e), (10, u), (01, v−1)}, {(00, e), (10, v), (01, w−1)}
{(00, e), (10, v), (01, w−1)},

gives an A[1]-PBD(4, 3;G):

Example 46. Developing the G-signed base blocks on point set Z5,

{(0, e), (1, v), (2, w−1)}, {(0, e), (1, u−1), (2, w)},
{(0, e), (2, v), (4, w−1)}, {(0, e), (2, u−1), (4, w)},

gives an A[1]-PBD(5, 3;G).

Example 47. Developing the G-signed base blocks on point set Z7 ∪ {∞},

{(∞, u), (0, v−1), (1, e)}, {(0, u), (∞, v−1), (3, e)},
{(1, u), (3, v−1), (∞, e)}, {(2, u), (6, v−1), (4, e)},
{(3, u), (1, v−1), (0, e)}, {(4, u), (5, v−1), (2, e)},
{(5, u), (4, v−1), (6, e)}, {(6, u), (2, v−1), (5, e)},

gives an A[1]-PBD(8, 3;G).

The following observation, Lemma 48, was useful in discovering the designs in this
subsection. Note that in S3, (12)(23) = (23)(13) = (13)(12) = (132). So the assumption
u, v, w are distinct is necessary.

Lemma 48. Suppose x, y, z are three distinct pairwise non-commuting involutions such that
u = xy, v = yz, w = zx are also distinct. Then uvw = e and u, v, w, u−1, v−1, w−1 are all
distinct.

10.4 Sextuples with Four Involutions Design Pieces

Suppose u ∈ G factors in two distinct ways, u = xy and u = zw, as a product of a pair of
non-commuting involutions, x, y and z, w. Then w, x, y, z, u, u−1 are six distinct elements
of G. Let A be the sextuple {x, y, z, w, u, u−1}.

Example 49. Developing the G-signed base blocks on point set Z5,

{(0, x), (1, e), (2, y)}, {(0, w), (1, e), (2, z)},
{(0, x), (2, e), (4, y)}, {(0, w), (2, e), (4, z)},

gives an A[1]-PBD(5, 3;G):
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Example 50. Developing the G-signed base blocks on point set Z7 ∪ {∞},

{(∞, x), (0, y), (1, e)}, {(0, x), (∞, y), (3, e)},
{(1, w), (3, z), (∞, e)}, {(2, x), (6, y), (4, e)},
{(3, w), (1, z), (0, e)}, {(4, w), (5, z), (2, e)},
{(5, w), (4, z), (6, e)}, {(6, x), (2, y), (5, e)}.

gives an A[1]-PBD(8, 3;G).

10.5 Design Pieces for Elementary Abelian Order 8 Subgroups

Suppose w, x, y ∈ G generate an elementary abelian subgroup of order 8. Set z = xy,
x′ = wx, y′ = wy, z′ = wz. Then A = {x, y, z, x′, y′, z′} is the complement in < w, x, y > of
its cyclic order 2 subgroup < w >.

Example 51. Using Example 24 of Abel et al [6] we can construct an HGBR(5, 3; 〈w, x, y〉),
multiplicity 1, hole 〈w〉 block design. The blocks of this design form an A[1]-PBD(5, 3;G).

Example 52. Developing the G-signed base blocks on point set Z7 ∪ {∞},

{(∞, x), (0, y), (1, e)}, {(0, x), (∞, y′), (3, e)},
{(1, x′), (3, y), (∞, e)}, {(2, x), (6, y), (4, e)},
{(3, x′), (1, y′), (0, e)}, {(4, x′), (5, y), (2, e)},
{(5, x′), (4, y′), (6, e)}, {(6, x), (2, y′), (5, e)}.

gives an A[1]-PBD(8, 3;G).

10.6 Design Pieces for Dihedral Order 8 Subgroups

We note first a preliminary example of possible future interest.

Example 53. Let G be a group with an element ρ of order 4. Developing the G-signed
base blocks on point set Z5,

{(0, ρ), (1, e), (2, ρ)}, {(0, ρ3), (2, e), (4, ρ3)},

gives an {e, ρ, ρ3}[1]-PBD(5, 3;G).

Let G be a group with an element ρ of order 4 and an element τ of order 2 such that
τρ = ρ3τ . Then ρ and τ generate a dihedral order 8 subgroup D of G:

D = {e, ρ, ρ2, ρ3, τ, τρ = ρ3τ, τρ2 = ρ2τ, τρ3 = ρτ}.

The element ρ2 is a central involution of D. It generates the centre {e, ρ2} of D.

Remark 54. For applications of the designs of this subsection to the constructions in
section 9 set ρ = (1324) and τ = (12). Then

ρ2 = (12)(34), ρ3 = (1423), τρ = (14)(23), τρ2 = (34), τρ3 = (13)(24).
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Example 55. Let D′l be the complement in D of its centre.

Developing the G-signed base blocks on point set Z7 ∪ {∞},

{(∞, e), (1, τ), (2, ρ), (4, τρ3)}, {(0, e), (3, τρ3), (5, τ), (6, ρ3)},
{(∞, e), (1, τρ), (2, ρ3), (4, τρ2)}, {(0, e), (3, τρ2), (5, τρ), (6, ρ)},

gives a D′l[1]-PBD(8, 4;G).
In particular for a dihedral group D of order 8 we can form an HGBR(8, 4;D) of multi-

plicity 1, with hole its central subgroup.

Example 56. The non-central involutions in D fall into two coset, {τ, τρ2} and {τρ, τρ3},
modulo the centre. Let D′s be the complement in D of the coset {τρ, τρ3}.

Developing the G-signed base blocks on point set Z5,

{(0, e), (1, τ), (2, τρ2)}, {(0, e), (2, τ), (4, τρ2)},
{(0, ρ), (1, e), (2, ρ)}, {(0, ρ3), (2, e), (4, ρ3)},

gives a D′s[1]-PBD(5, 3;G).
Note that this generalised Bhaskar Rao block design piece decomposes into two simpler

block design pieces. The subsets {τ, ρ2τρ2} and {e, ρ, ρ3} partition D′s. The elements τ ,
ρ2, τρ2 are three commuting involutions with product the identity. The first pair of base
blocks above form the {τ, ρ2τ, ρ2}[1]-PBD(5, 3;G) of Example 42, and the second form the
{e, ρ, ρ3}[1]-PBD(5, 3;G) of Example 53.

Example 57. Developing the G-signed base blocks on point set Z7 ∪ {∞},

{(∞, e), (1, ρ), (2, ρ3), (4, ρ2)}, {(0, e), (3, ρ), (5, e), (6, ρ)},
{(∞, e), (1, e), (2, τ), (4, τρ2)}, {(0, e), (3, ρ2), (5, τρ2), (6, τρ2)},

gives a D′s[1]-PBD(8, 4;G).

11 Solvable Groups of Order Divisible by 6

Theorem 58. Let G be a solvable group whose order is divisible by at least two primes.
Let l the minimal prime divisor of the order of G. Suppose the l-Sylow subgroups of G are
cyclic. Then G has a normal Hall l′-subgroup.

Proof. We proceed by induction on the order of G. The groups of minimal order which
satisfy the hypothesis of the theorem are S3 and the cyclic group of order 6. For each of
these l = 2. Each has normal 3-Sylow subgroup, and this is a normal 2′-Hall subgroup. So
the result holds for them. Let G be a group of minimal order for which the result is not yet
established. It is enough now to show it holds for G.

We start by showing G has a non-trivial normal subgroup N of order prime to l. Let
{e} = H0 < H1 < · · · < Hn = G be a chief series for G. So each Hi is normal in G and,
because G is solvable, each factor Hi/Hi−1 is an elementary abelian p-group. So, since the
order of G is divisible by at least two primes, we must have n ≥ 2. By assumption Hn = G
is not an l-group. Let j ≥ 1 be the smallest index for which Hj is not an l-group.

If j = 1, then H1 is an elementary abelian p-group for some prime p > l. In this case
N = H1 is a non-trivial normal subgroup of G with order prime to l. Suppose j > 1. Then
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Hj−1 is an l-subgroup of G and Hj/Hj−1 is elementary p-abelian for some prime p > l.
Hence, since the orders of Hj−1 and Hj/Hj−1 are coprime, by Schur-Zassenhaus Theorem,
(see for example [25]), Hj is a semidirect product of Hj−1 and Hj/Hj−1. Further in this
semidirect product the factor Hj/Hj−1 corresponds to a Hall l′-subgroup of G. Denote this
subgroup by N. This N is a non-trivial subgroup of G of order prime to l. We now proceed
to show it is normal in G. Every l-subgroup of G is a subgroup of some l-Sylow subgroup.
Subgroups of cyclic groups are cyclic. Hence every l-subgroup of G is a cyclic l-group. In
particular Hj−1 is a cyclic l-group. Hence it is isomorphic to the additive group of Zlr
for some r. The semidirect product above corresponds to giving an action of Hj/Hj−1 on
Zlr by automorphism. But the automorphism group of the additive group of any residue
class ring Zm is isomorphic to its group of units Z∗m. For m = lr this group has order
lr−1(l − 1), all of whose positive divisors are less than or equal to l. Hence no element of
the automorphism group of Zlr has order p. Now any non-trivial action by an element an
elementary abelian p-group has order p. We conclude that the action of Hj/Hj−1 on Hj−1
is trivial. Equivalently the semidirect product of Hj−1 and Hj/Hj−1 is direct. Hence the
Hall l′-subgroup N of Hj corresponding to Hj/Hj−1 is a normal subgroup Hj . Because N is
a normal Hall subgroup of Hj , it is a characteristic subgroup of Hj . Since Hj is a normal
subgroup of G and N is a characteristic subgroup of Hj , the group N is also normal in G.

In either case j = 1 or j > 1 we have found a proper non-trivial normal subgroup
N of G with order prime to l. If G/N is an l-group then N is our required normal Hall
l′-subgroup. Otherwise G/N is a solvable group whose order is divisible by at least two
primes, with l the minimal prime divisor of its order, and whose l-Sylow subgroups are
cyclic. Since N is non-trivial the quotient group G/N has smaller order than G. Hence by
our induction assumption G/N has a normal Hall l′-subgroup. Since N has order prime to l
this normal Hall l′-subgroup pulls back via the conical map from G to G/N to give a normal
Hall l′-subgroup of G.

Corollary 59. Suppose G is a group of order divisible by 6 with cyclic 2-Sylow and cyclic
3-Sylow subgroups. Then G is solvable. Further G has a normal subgroup N of order prime
to 6 with a metacyclic quotient.

Proof. By a standard exercise in group theory if the 2-Sylow subgroup of G is cyclic of order
2n the group G has a normal subgroup K with quotient cyclic of order 2n. This normal
subgroup K has odd order. So by the Feit-Thompson Theorem this subgroup K is solvable.
Hence, because K and G/K are both solvable, G is itself solvable.

Suppose 3 is the only odd prime dividing the order of G. Then K is a normal 3-Sylow
subgroup of G and hence by assumption is a cyclic 3-group. Thus G is the semidirect
product of a cyclic 2-group and a cyclic 3-group. So G is metacyclic. In this case we take
N = {e}. Suppose now the order of G is divisible by some prime other than 2 or 3. Then
conditions of the theorem apply to K and the prime 3. Hence K has a normal Hall 3′-
subgroup N. This N is a Hall {2, 3}′-subgroup of G. Because N is a normal Hall subgroup
of K it is a characteristic subgroup. So because K is normal in G we conclude N is normal in
G. This group N is thus a normal Hall {2, 3}′-subgroup of G. The quotient G/N has order
only divisible by the primes 2 and 3 and has cyclic 2-Sylow and cyclic 3-Sylow subgroups.
At the beginning of this paragraph we have proved that such a group is metacyclic. Thus
G/N is metacyclic.

Theorem 60. The GHP Conjecture holds for all groups G of order divisible by 6 whose
2-Sylow and 3-Sylow subgroups are cyclic.
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Proof. By criterion which can be found stated in any of [4], [5], or [6], if G has a normal
subgroup N such that, gcd(|G/N|, 12) = gcd(|G|, 12), and a GBR(3, 3;N), multiplicity 1,
block design exists, and the GHP Conjecture holds for G/N, then GHP Conjecture holds
for G.

By the corollary to Theorem 58 the group G has normal subgroup N of order prime to
6 with metacyclic quotient. Since N has order not divisible by 2 or 3, for any r = 2n3m,
gcd(|G/N|, r) = gcd(|G|, r). In particular gcd(|G/N|, 12) = gcd(|G|, 12). Also, because
the order of N is not even, a GBR(3, 3;G), multiplicity 1, block design exist by Theorem 9.
Since the quotient G/N is metacyclic the GHP Conjecture holds for G/N by Theorem 10(i).
Hence the GHP Conjecture holds for G.

Corollary 61. The GHP Conjecture holds for groups G of order 6m with m prime to 6.

Proof. In this case the group order is only divisible by the first order of the primes 2 and
3. So all 2-Sylow subgroups of G are cyclic of order 2 and all 3-Sylow subgroup of G are
cyclic of order 3.

12 New Summary of Evidence for the GHP Conjecture

Theorem 62. For v ≥ 4, the well known necessary conditions for existence of generalized
Bhaskar Rao block designs of block size 3 are sufficient in each of the following cases:

(i) G is supersolvable;

(ii) G is a solvable group with order prime to 3;

(iii) G has odd order;

(iv) G has order 2n3m;

(v) G has order divisible by 6 and its 2-Sylow and its 3-Sylow subgroups are cyclic;

(vi) |G| < 120;

(vii) G = S5 and G = Z2 × A5.

Proof. Cases (i)–(iv) are already listed in Theorem 10. Case (v) is Theorem 60. The
only non-solvable group of order less than 120 is A5. This is dealt with by Theorem 31
of this paper. The solvable groups of order less than or equal to 100 are dealt with by
Theorem 10 (iv). Cases (ii)–(iii) of Theorem 10 deal with all solvable groups of order not
divisible by 6. Of groups of orders between 100 and 120 this leaves only those with orders
102, 108, or 114. Groups of order 108 = 2233 are dealt with by Theorem 10 (iv). The other
orders, 102 = 6×17, and 114 = 6×19, are of the form 6m, with m prime to 6. Groups with
these orders are dealt with by the corollary to Theorem 60. Hence case (vi) is established.
Case (vii) follow from Theorems 38 and 34.
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