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Abstract

It is possible for a group W that is abstractly isomorphic to a Coxeter group to have more than
one conjugacy class of Coxeter generating sets, and if S and R are two non-conjugate Coxeter
generating sets then it may or may not be the case that some element s ∈ S is conjugate to an
element r ∈ R. In this paper we classify the so-called intrinsic reflections: those elements of W
whose conjugacy class intersects nontrivially every Coxeter generating set. In combination with
previously known results, this leads us to a classification of Coxeter groups for which all Coxeter
generating sets are conjugate.

1. Introduction

In this paper we answer (in its weakest interpretation) the question When is a Coxeter system
determined by its Coxeter group?, which is the title of the paper [7] of R. Charney and
M. Davis. The publication of [7] sparked much activity, the ultimate goal of which is solving
the isomorphism problem for Coxeter groups. At present, this is still an open problem. However,
based on the results that have been obtained since the publication of [7], we are able to
completely classify those finitely generated Coxeter groups for which the Coxeter generating set
is unique up to conjugacy. The final step in this classification is provided by our characterization
of intrinsic reflections in finite rank Coxeter systems, the proof of which occupies the major
part of this paper.

Let (W,S) be a Coxeter system. Elements of W of the form sw := w−1sw, where w ∈W
and s ∈ S, are called the reflections of (W,S), and t ∈W is called an intrinsic reflection of the
Coxeter group W if t is a reflection of (W,R) for every R ⊆W such that (W,R) is a Coxeter
system. In this paper we provide a complete solution to the following problem.

Problem. Let (W,S) be a Coxeter system of finite rank and let s ∈ S. Give, in terms of
the Coxeter diagram of (W,S), conditions that are necessary and sufficient to ensure that s is
an intrinsic reflection of W.

This problem was formulated in [21] and solved when s is a right-angled generator of (W,S),
that is, when s has the property that, for all t ∈ S \ {s}, the element st either has infinite order
or else has order 2. In the first part of this paper we treat generators s that are not right-angled,
and thus accomplish a complete solution of the problem above. This is our Theorem 1.

As already indicated in [21], combining the characterization of generators that are intrinsic
reflections of W with the results in [5] and [16] provides a characterization of strongly rigid
Coxeter systems in terms of their diagrams. A Coxeter system (W,S) is called strongly rigid if
every Coxeter generating set R of W is of the form Sw for some w ∈W . Strongly rigid Coxeter
systems were introduced in [3], and they form a most interesting class of Coxeter systems.
Indeed, in the literature there are many results saying that various natural classes of Coxeter
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groups are strongly rigid ([4], [6], [7]). However, it is fair to say that the decisive step towards a
characterization of strongly rigid Coxeter systems was made by P.-E. Caprace and P. Przytycki
in [5]. In fact, it was already indicated in that paper, that it is—in principle—possible to give
such a characterization. Our characterization of generators that are intrinsic reflections provides
an efficient tool for making this concrete. As a surprise—at least for us—it turns out that the
final statement of the characterization of strongly rigid Coxeter systems is relatively concise.

The proof of Theorem 1 commences in Sections 5 to 8, in which we establish conditions that
are necessary for a generator s ∈ S in a Coxeter system (W,S) to be intrinsic. The arguments
used in these sections do not need the assumption that S is finite. It turns out that there is a
general condition that must be satisfied if s is to be an intrinsic reflection—see Proposition 5.3
or the Fact in Subsection 2.2 below—and some additional conditions originating from specific
phenomena in certain finite Coxeter groups. For instance, the well known blowing up and
blowing down procedures for Coxeter generating sets, if available, prevent some reflections from
being intrinsic. These derive from the isomorphisms (for odd n) between the Coxeter groups of
type A1 + I2(n) and I2(2n) and the Coxeter groups of type A1 +Dn and Cn. The so-called
C3-neighbours of an odd component of S provide a less familiar phenomenon, derived from the
existence of a certain automorphism of the Coxeter group of type C3. If an odd component has
a C3-neighbour then the reflections in the corresponding conjugacy class are not intrinsic.

This first part of the proof of Theorem 1 is summarized in Section 9, where we also introduce
the main tool used in the second part, namely the finite continuation of a finite order element
of W . This concept, first defined in [11], requires (W,S) to have finite rank; hence we must
assume finite rank in Theorem 1. The proof of Theorem 1 is completed in Section 12.

In the remainder of the paper we investigate strongly rigid Coxeter systems. Our Theorem 3
below provides a characterization of strongly rigid Coxeter systems in terms of their diagrams.
This theorem is achieved in two steps. First we provide such a characterization for the strongly
reflection rigid Coxeter systems. This is Theorem 2. Its proof, which is given in Section 15, is
a synthesis of the main results in [5] and [16]. We hasten to point out that the by far most
substantial part is provided by the main result of [5]. Our contribution to Theorem 2 is the
observation that only a very small part of [16] is needed to deduce Theorem 2 from [5]. This
observation led us to introduce the notion of a flexible generator of a Coxeter system (motivated
by the terminology of [16]). It turns out that flexible generators are most useful in our context
and finally lead to the unexpectedly concise characterization of strongly reflection rigid Coxeter
systems in Theorem 2. They are also convenient for proving and stating Theorem 3, which
characterizes strongly rigid Coxeter systems in terms of their Coxeter diagrams. The proof of
Theorem 3, completed in Section 16, consists essentially of a synthesis of Theorems 1 and 2.

Finally, in Section 17 we record, for ease of future reference, several strong rigidity results for
the most frequently discussed classes of Coxeter groups.

2. Statement of the main results

2.1. Some terminology

The precise statement of our main results requires some preparation, since it involves some
non-standard terminology. We start by fixing our notation for Coxeter systems.

Let (W,S) be a Coxeter system. By [1, Chap. IV, §1, no. 8, Corollary 3], no proper subset
of S generates W . The cardinality of S is called the rank of the system; in our main results we
assume that the rank is finite. The order of an element w ∈W will be denoted by o(w).

The Coxeter diagram of (W,S) is the simplicial graph

Γ(W,S) := (S, { {s, t} | o(st) 6= 2 })
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with edges labelled by {s, t} 7→ o(st) (see [1, Chap. IV, §1, no. 9]). We shall also make use of
the odd graph of (W,S), which is defined as the simplicial graph

Ω(W,S) := (S, { {s, t} | o(st) is finite and odd })

again with edges labelled by {s, t} 7→ o(st).
By [14, Theorem 5.5], if J is a subset of S then (〈J〉, J) is a Coxeter system. We define

J⊥ := { t ∈ S | o(st) = 2 for all s ∈ J }
J∞ := { t ∈ S | o(st) =∞ for all s ∈ J }

and we also write s⊥ := {s}⊥ and s∞ := {s}∞ for all s ∈ S.
If K ⊆ J ⊆ S then we call K a direct factor of J if J ⊆ K ∪K⊥. It is clear that, in this

situation, 〈J〉 = 〈K〉 × 〈J \K〉. We call J irreducible if J 6= ∅ and there is no direct factor K
of J such that K 6= ∅ and K 6= J . A component of J is an irreducible direct factor of J ; thus
the components of J correspond to the connected components of the Coxeter graph Γ(〈J〉, J).
We call (W,S) irreducible if S is irreducible.

We write SW := { sw | s ∈ S, w ∈W }, the set of reflections of the system (W,S). We let
`S : W → N be the length function associated with the generating set S.

We say that J ⊆ S is spherical if 〈J〉 is a finite group. If J is spherical then 〈J〉 has a unique
element of maximal length; we denote it by ρJ . A subset J of S is said to be of (−1)-type if J
is spherical and ρJ is in the centre of 〈J〉. The group W has nontrivial centre if and only if S
has a component of (−1)-type.

The classification of irreducible spherical Coxeter systems is given in [1, Chap. VI, §4, no. 1]
(for example), where the corresponding Coxeter diagrams are listed and named: they are An for
n > 1, Bn = Cn for n > 2, Dn for n > 4, I2(n) for n > 5, H3, H4, F4, E6, E7 and E8, where
the subscript is the rank. These names are also called the types of the corresponding Coxeter
systems. On the occasions that we need to number the vertices of these diagrams, we shall
follow Bourbaki’s numbering. In particular, for type Cn the edge labelled 4 connects vertices
n− 1 and n, and in type Dn vertices n− 1 and n are both adjacent to vertex n− 2.

The irreducible spherical Coxeter systems of types Cn (for n > 2), H3, H4, F4, E7 and E8

are of (−1)-type, E6 is not of (−1)-type, Dn and I2(n) are of (−1)-type if and only if n is even,
and An is of (−1)-type if and only if n = 1.

The type of a reducible spherical Coxeter system is the formal sum of the types of its
components. A reducible spherical system is of (−1)-type if and only if all of its components
are of (−1)-type.

2.2. Intrinsic reflections

The problem of determining which elements of S are intrinsic reflections of W leads naturally
to considering the odd components of (W,S). These are the vertex sets of the connected
components of the odd graph Ω(W,S); thus, the set of odd components of (W,S) is a partition
of S. If s, t ∈ S and o(st) is odd then s and t are conjugate in W, since they are conjugate
in 〈s, t〉. If s and t belong to different odd components then they are not conjugate, since for
any odd component M there is a homomorphism W → {±1} mapping elements of M to −1
and elements of S \M to 1. Hence the odd components parametrize the conjugacy classes of
reflections of (W,S). It is clear that an element s ∈ S is intrinsic if and only if all the reflections
in its conjugacy class are intrinsic.

Let M ⊆ K ⊆ S, and suppose that M is irreducible. We define the M -principal component of
K to be the component that contains M , and call any other component of K an M -subsidiary
component. If M is an odd component of (W,S) we define the even closure of M to be the set
E(M) := S \M∞, and we write C0(M) for the M -principal component of E(M). The following
basic observation is Proposition 5.3 in Section 5.
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Fact (Mutable odd components). Let (W,S) be a Coxeter system and let M ⊆ S an odd
component of (W,S). If E(M) has an M -subsidiary component that is of (−1)-type then the
elements of M are not intrinsic reflections of W.

We call the odd component M mutable if E(M) has an M -subsidiary component of (−1)-type.
We are now able to give a precise statement of our characterization of the elements of S that

are intrinsic reflections in W . But first a remark is in order.

Remark. An element s ∈ S is called a right-angled generator of (W,S) if S \ {s} ⊆ s⊥ ∪ s∞.
Thus s is a right-angled generator if and only if it is an isolated vertex in the Coxeter diagram
Γ(〈S \ s∞〉, S \ s∞). If M is the odd component of (W,S) containing s then s is a right-angled
generator if and only if {s} = M = C0(M). The main result of [21] provides a Coxeter diagram
characterization of the right-angled generators of (W,S) that are intrinsic reflections of W .
The characterization given in [21] is based on the notion of a blowing down pair, as defined in
Definition 7.5 below. Assertion (i) in the statement of our Theorem 1 is just a reformulation of
the main result in [21]. We include it nonetheless for sake of completeness and later reference.

In view of what we have just said, the task for this paper was to classify intrinsic reflections
in odd components M such that |C0(M)| > 2. This situation is subdivided into three cases,
corresponding to assertions (ii), (iii) and (iv) in Theorem 1. In each of these cases, s is an
intrinsic reflection if and only if all automorphisms of 〈C0(M)〉 preserve reflections. In assertion
(iv) the definition of a C3-neighbour of an odd component is needed. As this definition is
somewhat involved, and not essential for the further content of this section, we refer the reader
to Section 8, and to Definition 8.2 in particular, for the details.

Theorem 1. Let (W,S) be a Coxeter system of finite rank, and let s ∈ S. Let M be the
odd component of (W,S) containing s, and let J = C0(M). If the odd component M is mutable
then s is not an intrinsic reflection of W. If M is not mutable then the following hold:

(i) if J = {s} then s is an intrinsic reflection of W if and only if there is no t ∈ S such that
(s, t) is a blowing down pair;

(ii) if J 6= {s} and J is of (−1)-type then s is an intrinsic reflection of W if and only if J is
of type C2, H3, E7, or I2(4k) for some k > 2;

(iii) if J is spherical but not of (−1)-type then s is an intrinsic reflection of W if and only if
J is not of type A5;

(iv) if J is not spherical then s is an intrinsic reflection of W if and only if M has no
C3-neighbours.

2.3. Strong rigidity

We first recall the definitions of strongly rigid and strongly reflection rigid Coxeter systems,
proper twists of Coxeter systems and twist rigid Coxeter systems.

Definition 2.1. Let (W,S) be a Coxeter system.
(i) The system (W,S) is called strongly rigid if for each Coxeter generating set R ⊆W

there exists an element w ∈W such that R = Sw.
(ii) The system (W,S) is called strongly reflection rigid if for each Coxeter generating set

R ⊆ SW there exists an element w ∈W such that R = Sw.
(iii) A pair (J,K) is called a twist of (W,S) if J is an irreducible spherical subset of S and

K ⊆ S \ (J ∪ J⊥) is such that L := S \ (J ∪ J⊥ ∪K) ⊆ K∞. The twist is called proper
if K and L are both nonempty.

(iv) The system (W,S) is called twist rigid if there are no proper twists of (W,S).
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Here are two basic observations concerning these definitions.

Fact (Rigidity). Let (W,S) be a Coxeter system.
(i) The system (W,S) is strongly rigid if and only if it is strongly reflection rigid and each

s ∈ S is an intrinsic reflection of W.
(ii) If (W,S) is strongly reflection rigid then it is twist rigid.

The first of these is clear, the second is proved in Proposition 4.6 below.
Our second theorem provides a characterization of strongly reflection rigid Coxeter systems in

terms of their diagrams. To facilitate its statement it is useful to make the following definition.

Definition 2.2. Let (W,S) be a Coxeter system, let s ∈ S and let J be the irreducible
component of S \ s∞ containing s. Then we call s a flexible generator of (W,S) if J is spherical
and s∞ ⊆ (J \ {s})⊥. The set J is called the flexible factor of s.

If s ∈ S is a flexible generator then we define its type to be the type of its flexible factor.
When more precision is required we say that s is a flexible generator of type (X, i) if X is the
type of the flexible factor and s corresponds to vertex number i in the diagram X. Note that
if J is an irreducible spherical component of (W,S) then each s ∈ J is a flexible generator of
(W,S) whose type is the type of (〈J〉, J).

Theorem 2. Let (W,S) be a twist rigid Coxeter system of finite rank. Then (W,S) is
strongly reflection rigid if and only if the following conditions are both satisfied:

(i) there is no flexible generator of type H3 or H4;
(ii) there is no flexible generator of type I2(n) with n = 5 or n > 7.

Our goal is to characterize strongly rigid Coxeter systems. By the first of the two rigidity
observations above, this can be done by combining our two previous theorems. The conditions
that ensure that each generator s ∈ S is an intrinsic reflection of W can be formulated more
concisely with the additional assumption of twist rigidity. To simplify the precise statement we
use the concept of a flexible pair, which generalizes slightly the flexible generator concept.

Definition 2.3. Let (W,S) and let s 6= t ∈ S. Then (s, t) is called a flexible pair if t is a
flexible generator of (W,S) and s is a right-angled generator of (W,S) such that s∞ = t∞. The
type of (s, t) is the type of t.

Theorem 3. Let (W,S) be a Coxeter system of finite rank. Then (W,S) is strongly rigid if
and only if the following conditions all hold:

(TR) (W,S) is twist rigid;
(NM) (W,S) has no mutable odd component;

(i) there is no flexible generator of type H3 or H4;
(ii) there is no flexible generator of type I2(n) with n > 5;

(iii) there is no flexible generator of type (Cn, n) with n > 3;
(iv) there is no flexible generator of type (C3, 2);
(v) there is no flexible pair of type (Dn, n) or (Dn, n− 1) with n odd and n > 5;
(vi) there is no flexible pair of type A2 or of type (A3, 1) or (A3, 3);

(vii) there is no irreducible component of type A5;
(viii) (W,S) is not of type F4, E8, or D2n with n > 2.
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2.4. Background information about the main results

As already pointed out in the introduction our paper answers, at least partially, the question
When is a Coxeter system determined by its Coxeter group? posed by Charney and Davis as the
title of their paper [7]. In that paper they prove the first non-trivial result about strongly rigid
Coxeter systems, namely, they show that if a Coxeter group W is capable of acting effectively,
properly and cocompactly on a contractible manifold then all Coxeter generating sets in W
are conjugate. In the terminology developed in [3], this means that each such Coxeter group
is strongly rigid. Our Theorem 3 provides a classification of strongly rigid Coxeter systems,
characterizing them in terms of their diagrams. Thus it provides a definite answer to the
above question if “determined” is interpreted as “determined up to inner automorphisms”. The
alternative interpretation “determined up to automorphisms” corresponds to the problem of
classifying all rigid Coxeter systems, and this is still open at present.

In the introduction we also mentioned that the appearance of [7] sparked much activity whose
ultimate goal is the solution of the (still open) isomorphism problem for Coxeter groups. The
proof of Theorem 3 relies on several results produced by this activity, and we give here the final
step. Since Theorem 3 is a complete and definitive result it seems appropriate to provide some
detailed information about the main ingredients of its proof, and, in particular, the previous
results on which the proof relies.

As explained above, we interpret the title of [7] as asking for a characterization of strongly
rigid Coxeter systems. This concept was introduced in the paper [3], which appeared shortly
after the publication of [7]. Twistings of Coxeter systems were also introduced in [3], along with
various notions of rigidity for Coxeter systems. The relevance of [3] to Theorem 3 is the fact
that the definition of a twist rigid Coxeter system is based on the twisting procedure introduced
in that paper.

After the appearance of [3] and [7] there were various contributions to the strong rigidity
problem. Most of them established sufficient conditions for strong rigidity of Coxeter systems in
terms of their diagrams. Here we confine ourselves to mentioning those that play an essential role
in the proofs of the main results of [5] and [16], and therefore in the proofs of our Theorems 2
and 3 as well. If (W,S) is a non-spherical Coxeter system whose presentation diagram is a
chordfree circuit, then W acts effectively, properly and cocompactly on the affine plane or the
hyperbolic plane. Therefore, by the main result of [7], any such Coxeter system is strongly rigid.
Thus we obtain a condition on a diagram of a Coxeter system that ensures strong rigidity. A
second such condition is strong 2-sphericity. We call a Coxeter system (W,S) strongly 2-spherical
if it is irreducible, non-spherical, and o(st) is finite for all s, t ∈ S. By a combination of the
results in [4] and [11], any strongly 2-spherical Coxeter system is strongly rigid. The two criteria
for strong rigidity just described were originally proved in the given references by quite different
methods. Therefore it is worth mentioning the paper [6] in which Caprace and Przytycki study
a geometric condition for Coxeter groups that they call bipolarity. One outcome of their work
is a uniform and more conceptual proof of strong rigidity for both of these classes of Coxeter
systems. See Subsection 17.6 for more information.

Our proof of Theorem 2 is based on results in [5] and [16]. Both of these references make use
of the two criteria for strong rigidity described in the previous paragraph. Therefore, our proof
of Theorem 2 indirectly relies on [4], [7] and [11] (or on the alternative direct approach in [6]).
The key ingredient in our proof of Theorem 2 is the main result of [5]. The ideas in the proof of
the latter are based on methods from geometric group theory that apply in a wider context,
and we refer the reader to the excellent introduction of [5] for more information. Whereas our
proof of Theorem 2 requires the full power of the main result in [5], the amount of [16] that is
needed from is rather limited (although the rigidity results mentioned above are still needed).
In fact, one contribution of the present paper is the notion of a flexible generator, which enables
us to extract precisely what is needed from [16] in our proof of Theorem 2.
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Our proof of Theorem 3 is a straightforward synthesis of our Theorems 1 and 2, together with
a systematic use of the notion of a flexible generator. We have already discussed the ingredients
of Theorem 2, and so it remains to consider Theorem 1. The proof of this is split into two parts,
one of which is published in [21], the other covering the major part of the present paper. The
paper [21] uses only basic results from the theory of Coxeter systems and elementary (but less
known) techniques from [17], [19] and [22]. This is not true for the second part of the proof of
Theorem 1, presented here, because it uses the full power of the main result in [11].

3. Notation and background material

Let (W,S) be a Coxeter system. An S-visible subgroup of W—or just a visible subgroup, if
S is understood—is a subgroup of the form 〈J〉 with J a subset of S. Conjugates of visible
subgroups are called parabolic subgroups. If J ⊆ S then (〈J〉, J) is a Coxeter system, and the
Coxeter diagram Γ(〈J〉, J) is the full labelled subgraph of Γ(W,S) spanned by J .

If J ⊆ S then 〈J〉 is normal in W only if J is a union of components of S. Clearly W is the
internal direct product of the visible subgroups generated by the components of (W,S). So if
t ∈W is a reflection then there is a unique component J of (W,S) such that t ∈ 〈J〉.

Let V be a real vector space with basis {αs | s ∈ S } in bijective correspondence with S. As
shown in [14, Section 5.3] (for example), the group W has a faithful representation as a linear
group acting on V, preserving the bilinear form B defined by B(αs, αt) = − cos(π/o(st)) for all
s, t ∈ S. (We call this the standard geometrical representation of W relative to S.) If s ∈ S then
the (−1)-eigenspace of s in V is the 1-dimensional space spanned by αs. It follows readily that
if (W,S) is irreducible then any element in the centre of W must act on V as multiplication by
a scalar; furthermore, since B is preserved, the scalar must be ±1. So in this case Z(W ) has
order at most 2.

Fact. The centre of W is an elementary abelian 2-group of order 2k, where k is the number
of components of S of (−1)-type.

The root system of (W,S) in V is the set Φ = {wαs | w ∈W, s ∈ S }. It is shown in [14,
Theorem 5.4] that Φ is the disjoint union of Φ+ = Φ ∩ V + and Φ− = {−α | α ∈ Φ+ }, where
V + = {

∑
s∈S csαs | cs > 0 for all s ∈ S }. Moreover, if w ∈W then `S(w) is the number of

α ∈ Φ+ such that wα ∈ Φ−. By [8, Proposition 4.1], the root system Φ is finite if and only
if (W,S) is spherical. It follows that if z ∈W acts on V as multiplication by −1 then `S(z) is
the cardinality of Φ+; so (W,S) is necessarily spherical (since `S(z) is finite) and z = ρS , the
element of W of maximal length. So if J ⊆ S is irreducible then Z(〈J〉) is nontrivial if and only
if J is of (−1)-type.

Note also that whenever J ⊆ S is spherical the element ρJ normalizes the set J , whether or
not J is of (−1)-type (by [8, Proposition 4.1 (iv) and (iv)

′
]).

3.1. Visible subgroups and parabolic subgroups

By [14, Proposition 1.10], if J ⊆ S then each coset w〈J〉 in W contains a unique minimal
length element. (In the notation of Section 3 above, w is minimal length in w〈J〉 if and only if
wαs ∈ Φ+ for all s ∈ J .) Furthermore, if I and J are subsets of S then each (〈I〉, 〈J〉) double
coset in W contains a unique element of minimal length.

Proposition 3.1 (Tits). Let I and J be subsets of S. If d is the minimal length element
in 〈I〉d〈J〉 then 〈I〉 ∩ d〈J〉d−1 = 〈K〉, where K = I ∩ dJd−1.
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Proof. See [27, Lemma 2].

It is clear that the intersection of any two parabolic subgroups of W is conjugate in W to
〈I〉 ∩ d〈J〉d−1 for some I, J and d as in Proposition 3.1, and hence is also parabolic.

Let J ⊂ S and s ∈ S \ J , and let K be the component of J ∪ {s} containing s. If K is
spherical we define v[s, J ] = ρKρK\{s}. Then v[s, J ]Jv[s, J ]−1 ⊂ J ∪ {s}, whenever v[s, J ] is
defined. The components of v[s, J ]Jv[s, J ]−1 are the same as those of J , apart (possibly) from
the components contained in K.

Lemma 3.2. Let I and J be subsets of S. Then 〈I〉 and 〈J〉 are conjugate in W if and only
if there is a w ∈W such that wIw−1 = J . Furthermore, for every such w, the minimal length
element in wWI has the form v[s1, J1]v[s2, J2] · · · v[sn, Jn], where Jn = I and v[siJi]Jiv[siJi]

−1 =
Ji−1 for all i ∈ {1, 2, . . . , n}. Moreover, J0 = J .

Lemma 3.2 was proved in [12] (for finite Coxeter groups) and in [8] (in general).

Lemma 3.3. Let J, K ⊆ S and w ∈W, and suppose that Jw ⊆ 〈K〉. Then there is an
element v ∈ 〈K〉 such that Jwv ⊆ K. In particular |J | 6 |K|, and if |J | = |K| then 〈J〉w = 〈K〉.

Proof. Let d be the minimal length element in the double coset 〈J〉w〈K〉. Note that
〈J〉w〈K〉 = w〈K〉, since Jw ⊆ 〈K〉, so that d = wv for some element v ∈ 〈K〉. It now follows
that 〈J〉 = dv−1〈w−1Jw〉vd−1 ⊆ dv−1〈K〉vd−1 = d〈K〉d−1, and so 〈J〉 ∩ d〈K〉d−1 = 〈J〉. But
〈J〉 ∩ d〈K〉d−1 = 〈J ∩ dKd−1〉, by Proposition 3.1. Hence J ⊆ dKd−1, and Jwv = d−1Jd ⊆ K,
as required. The other claims follow trivially.

Applying Lemma 3.3 in the case |J | = 1 we see that if K ⊆ S and r ∈ SW ∩ 〈K〉 then r is
conjugate in 〈K〉 to an element of K. Hence we obtain the following result.

Proposition 3.4. Let K ⊆ S and let P = 〈K〉 be the corresponding visible subgroup of W .
Then the set of reflections of the Coxeter system (P,K) coincides with the set of reflections of
(W,S) contained in P .

The next proposition, which is Exercise 2d in [1] (p. 130), is of crucial importance.

Proposition 3.5 (Tits). If (W,S) is a Coxeter system and H a finite subgroup of W, then
H is contained in a finite parabolic subgroup of W .

Assume now that (W,S) has finite rank. By Lemma 3.3, if P1 and P2 are parabolic subgroups
with P1 a proper subgroup of P2 then the rank of P1 is strictly less than that of P2. So the
length of any strictly increasing chain of parabolic subgroups is bounded by the rank of W .
Hence it follows from Proposition 3.5 that every finite subgroup of W is contained in a maximal
finite subgroup of W, and that every maximal finite subgroup of W is parabolic.

It is clearly a consequence of Lemma 3.2 that if I ⊆ S is maximal subject to being spherical
then I is not conjugate to any other subset of S. In view of Propositions 3.5 and 3.1, this yields
the following result.
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Lemma 3.6 ([10, Lemma 11]). If I ⊆ S is maximal subject to being spherical then 〈I〉 is a
maximal finite subgroup of W.

Our next result shows that if X is a set of reflections such that 〈X〉 is finite, then 〈X〉 is
contained in a finite parabolic subgroup of rank less than or equal to the cardinality of X.

Proposition 3.7. Let (W,S) be an arbitrary Coxeter system and X a subset of SW such
that 〈X〉 is a finite group. Then there exist J ⊆ S and w ∈W such that J is spherical, |J | 6 |X|,
and Xw ⊆ 〈J〉.

Proof. Suppose first that (W,S) is spherical, and let V be the vector space on which W
acts in its standard geometrical representation. By [14, Theorem 1.12 (d)], the parabolic
subgroups of W are precisely the pointwise stabilizers of subspaces of V . Now if J ⊆ S then
{ v ∈ V | sv = v for all s ∈ J } = { v ∈ V | B(v, αs) = 0 for all s ∈ J }, a subspace of dimension
|S| − |J | (since the form B is nondegenerate—indeed, positive definite—in the spherical case).
So the rank of a parabolic subgroup is the codimension of its fixed point space. Now if
X = {r1, r2, . . . , rk} ⊆ SW then FixV (X) = { v ∈ V | rv = v for all r ∈ X } has codimension
at most k (equality occurring if the roots corresponding to the reflections ri are linearly
independent). So the rank of the pointwise stabilizer of FixV (X) is at most k, as required.

For the general case, we apply Proposition 3.5 to deduce that there exist a spherical subset
K of S and an element v ∈W such that 〈X〉v 6 〈K〉. But now Proposition 3.4 yields that
Xv ⊆ K〈K〉, and so, by the spherical case, there exist J ⊆ K and u ∈ 〈K〉 such that 〈Xv〉u 6 〈J〉
and |J | 6 |Xv| = |X|. Thus the assertion holds with w = vu.

3.2. Involutions

We make substantial use of the classification of involutions in Coxeter groups, due to
Richardson [24]. It is convenient to use the following formulation.

Proposition 3.8 ([10, Proposition 5]). If r ∈W is an involution then there exist w ∈W
and J ⊆ S such that J is of (−1)-type and r = w−1ρJw with `S(r) = `S(ρJ) + 2`S(w).

Definition 3.9. The rank of an involution r ∈W is defined to be the dimension of its
(−1)-eigenspace in the standard geometrical realization.

If J ⊆ S is of (−1)-type then the (−1)-eigenspace of ρJ is spanned by {αs | s ∈ J }, and so
the rank of ρJ is |J |. Reflections are involutions of rank 1. The rank of an involution is clearly
conjugacy invariant, but depends on the Coxeter generating set S.

We shall use the rank in several places when we need to prove that an involution is not a
reflection. The three cases in the next lemma correspond to the specific situations that arise.

Lemma 3.10. Let (W,S) be a Coxeter system and let r ∈W be an involution. Then r /∈ SW
if any of the following conditions hold:

(i) r = ρJ , where J ⊆ S is of (−1)-type and |J | > 2;
(ii) r = ρIρJ where I, J ⊆ S are nonempty and both of (−1)-type, and I ⊆ J⊥;

(iii) r = sρJ where J ⊆ S is of (−1)-type, s ∈ J , and |J | > 3.
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Proof. In case (i) the rank of r is |J |, in case (ii) it is |I|+ |J |, and in case (iii) it is |J | − 1.
So in no case is the rank of r equal to 1.

The next lemma shows that, for a given S, each involution w ∈W has a uniquely defined
type, namely the type of the Coxeter system (〈J〉, J), where J is as in Proposition 3.8.

Lemma 3.11 ([11, Lemma 21]). Suppose that I and J are subsets of S that are both of
(−1)-type. Then {w ∈W | wρIw−1 = ρJ } = {w ∈W | w〈I〉w−1 = 〈J〉 }.

We also need the following result.

Proposition 3.12. Suppose that I ⊆ S is irreducible and of (−1)-type, and has at least
two elements. If J ⊆ S and 〈J〉 = w〈I〉w−1 for some w ∈W , then J = I.

Proof. Suppose, for a contradiction, that there is a w ∈W such that I 6= wIw−1 ⊆ S. By
Lemma 3.2 there must be a sequence J0, J1, . . . , Jk of subsets of S such that J0 = I and
Jk = wIw−1, and for each i ∈ {1, 2, . . . , k},

(i) there is an si ∈ S such that {si} ∪ Ji−1 = Ji ∪ Ji−1,
(ii) {si} ∪ Ji−1 is spherical,
(iii) Ji = σiρi−1Ji−1ρi−1σi, where ρi−1 = ρJi−1

and σi = ρ{si}∪Ji−1
.

Choosing w so that the k above is minimal (subject to I 6= wIw−1 ⊆ S) clearly makes k = 1. So
I is irreducible, of (−1)-type, and of rank at least 2, and there is an s ∈ S such that K = I ∪ {s}
is spherical, and ρKρIIρIρK 6= I. We now use a case by case analysis to show that in fact this
never happens.

Since ρIIρI = I, we must have ρKIρK 6= I, and this certainly means that ρK is not central
in K. So K is not of (−1)-type. Since I is of (−1)-type, it follows that 〈K〉 is not the direct
product of 〈I〉 and 〈s〉. Hence K is irreducible. Furthermore, the rank of K is at least 3, since
the rank of I is assumed to be at least 2.

The only irreducible Coxeter systems of rank 3 or more that are not of (−1)-type are the
E6 system, the An systems and the D2k+1 systems. In E6 there are three irreducible visible
subsystems of rank 5, one of type A5 and two of type D5. Since these are not of (−1)-type, they
are not candidates for I. Similarly, the irreducible rank n− 1 subsystems of An are both of
type An−1, and not of (−1)-type since n > 3. So K must be of type D2k+1, with I of type D2k

(since the only other irreducible rank 2k subsystems are of type A2k, and not of (−1)-type).
But the longest element of D2k+1 normalizes the visible subgroup of type D2k, swapping two of
the generators and centralizing the others, contrary to the requirement that ρKIρK 6= I.

4. Replacement pairs

In order to prove Theorem 1 we have to show that a generator s ∈ S of a Coxeter system
(W,S) is not intrinsic under certain conditions. Thus we will have to establish the existence of
a Coxeter generating set R of W such that s /∈ RW . Our strategy for the construction of such a
set R is based on a local-to-global principle that we present in this section. This principle is
based on the notion of a replacement pair for a Coxeter system. As a first basic example for an
application of replacement pairs we discuss the twisting procedure for Coxeter generating sets,
which was introduced in [3]. We shall need the following two well known results.
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Proposition 4.1. Let W be a group and S, T subsets of W, and suppose that (〈S〉, S)
and (〈T 〉, T ) are Coxeter systems. If W is the direct product of 〈S〉 and 〈T 〉 then (W,S ∪ T ) is
a Coxeter system, with o(st) = 2 whenever s ∈ S and t ∈ T . The Coxeter diagram Γ(W,S ∪ T )
is the disjoint union Γ(〈S〉, S) + Γ(〈T 〉, T ).

Proposition 4.2. Let W be a group and S, T subsets of W, and suppose that (〈S〉, S)
and (〈T 〉, T ) are Coxeter systems. Suppose also that (〈S〉 ∩ 〈T 〉, S ∩ T ) is a Coxeter system and
that W is the free product of 〈S〉 and 〈T 〉 with amalgamation of 〈S〉 ∩ 〈T 〉. Then (W,S ∪ T ) is
a Coxeter system, with o(st) =∞ whenever s ∈ S \ (S ∩ T ) and t ∈ T \ (S ∩ T ). The Coxeter
diagram Γ(W,S ∪ T ) is formed from ΓS = Γ(〈S〉, S) and ΓT = Γ(〈T 〉, T ) by identifying the
subgraphs of ΓS and ΓT spanned by S ∩ T , and adding ∞-labelled edges {s, t} for all s ∈
S \ (S ∩ T ) and t ∈ T \ (S ∩ T ).

Proofs of Propositions 4.1 and 4.2 can be found in [21, Proposition 3.3].

Definition 4.3. Let (W,S) be a Coxeter system, let K be a subset of S and let K ′ be a
subset of W . We say that (K,K ′) is a replacement pair for (W,S) if (W, (S \K) ∪K ′) is also
a Coxeter system.

Of course, if (K,K ′) is a replacement pair for (W,S), and R = (S \K) ∪K ′, then (K ′,K) is
a replacement pair for (W,R).

The usefulness of the replacement pair concept stems from the next lemma, which allows us
to unify several different constructions. Recall that if (W,S) is a Coxeter system and J ⊆ S
then we define

J⊥ = { s ∈ S | o(st) = 2 for all t ∈ J },
J∞ = { s ∈ S | o(st) =∞ for all t ∈ J }.

Lemma 4.4. Let (W,S) be a Coxeter system and J ⊆ S, and suppose that (K,K ′) is
a replacement pair for the Coxeter system (〈J〉, J). If S \ (J ∪ J⊥) ⊆ K∞ then (K,K ′) is a
replacement pair for the Coxeter system (W,S).

Proof. Put G = 〈J〉 and E = 〈J ∪ J⊥〉, noting that E is the direct product of the Coxeter
groups G and 〈J⊥〉. Define J ′ = K ′ ∪ (J \K). Since (K,K ′) is a replacement pair for (G, J)
it follows that (G, J ′) is also a Coxeter system. Hence (E, J ′ ∪ J⊥) is a Coxeter system, by
Proposition 4.1.

Write H = S \ (J ∪ J⊥) and L = (J \K) ∪ J⊥. Since S = (L ∪K) ∪ (L ∪H) and o(st) =∞
for all s ∈ K and t ∈ H, it follows that W is the free product of 〈L ∪K〉 and 〈L ∪H〉 with
amalgamation of 〈L〉. Let D = 〈L ∪H〉, noting that 〈L ∪K〉 = 〈J ∪ J⊥〉 = E, and recall that
J ′ ∪ J⊥ is a Coxeter generating set for E. The setX = (J ′ ∪ J⊥) ∩ (L ∪H) generates a subgroup
of D ∩ E = 〈L〉, and since L = (J \K) ∪ J⊥ ⊆ J ′ ∪ J⊥, we see that L ⊆ X. Hence 〈X〉 = 〈L〉.
So it follows from Proposition 4.2 that (J ′ ∪ J⊥) ∪ (L ∪H) = J ′ ∪ J⊥ ∪H = K ′ ∪ (S \K) is a
Coxeter generating set for W, as required.

Let (G,M) be a Coxeter system and J, H ⊆M with J spherical and H ⊆ J⊥. Put
K = M \ (J ∪H). Since (M \K) ∪ ρJKρJ = J ∪H ∪ ρJKρJ = ρJ(J ∪H ∪K)ρJ = ρJMρJ ,
a conjugate of M , it is clear that (K, ρJKρJ) is a replacement pair for (G,M). Now suppose
that (W,S) is a Coxeter system, for which G as above is a visible subgroup, and S \M ⊆ K∞.
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Then S \ (M ∪M⊥) ⊆ K∞, and thus Lemma 4.4 tells us that (K, ρJKρJ) is a replacement
pair for (W,S). In fact this is just the twisting construction introduced in [3].

Proposition 4.5 ([3, Theorem 4.5.]). Let (W,S) be a Coxeter system, and suppose that
J , H, K and L are pairwise disjoint subsets of S with S = J ∪H ∪K ∪ L. Suppose also that
J is spherical, H ⊆ J⊥ and L ⊆ K∞. Then (K, ρJKρJ) is a replacement pair for (W,S).

The next proposition shows that if (W,S) admits a proper twist then it is not strongly rigid.

Proposition 4.6. Let (W,S) and J , H, K and L be as in Proposition 4.5. If K and L are
nonempty and not subsets of J⊥, and if J is irreducible, then S and R := (S \K) ∪ ρJKρJ are
not conjugate in W.

Proof. Suppose, for a contradiction, that w ∈W and Rw = S. Put M = J ∪H ∪K and
N = J ∪H ∪ L, and let ρ = ρJ . Then (J ∪H)ρ = J ∪H, and Mρw ⊆ Rw ⊆ S. But there is no
s ∈ (S \M) such that v[s,M ] is defined, since o(st) =∞ for all s ∈ L and t ∈ K, and both
L and K are nonempty. So it follows from Lemma 3.2 that ρw ∈ 〈M〉, and thus w ∈ 〈M〉.
Similarly, since Nw ⊆ Rw ⊆ S and there is no s ∈ (S \N) such that v[s,N ] is defined, it follows
that w ∈ 〈N〉. Hence w ∈ 〈J ∪H〉, and since (J ∪H)w = J ∪H it follows that w = ρI where
I is a union of components of J ∪H. If J ⊆ I then Lw * S, since L * J⊥, and if J * I then
Kρw * S, since K * J⊥. Both alternatives contradict Rw = S.

The twisting procedure described in Proposition 4.5 gives a way of constructing a new Coxeter
generating set, replacing a subset K of S by a suitable conjugate K ′ = ρKρ, where ρ is a longest
element in some visible spherical subgroup. If the twist is proper then R := K ′ ∪ (S \K) is not
conjugate to S in W . However, R and S produce the same set of reflections RW = SW, since
by its definition R is a subset of SW, and dually S ⊆ RW (since (K ′, ρK ′ρ) is a replacement
pair for (W,R)).

5. Intrinsic reflections and odd components

In this section we introduce intrinsic reflections and provide some basic observations and
examples concerning this notion. Whether or not an element r in a Coxeter group W is an
intrinsic reflection of W depends on its conjugacy class in W . For a given Coxeter system
(W,S), the reflections are the conjugates of elements of S, and we are naturally led to consider
the odd components of (W,S), since these are precisely the intersections of S with the various
conjugacy classes of reflections. In the final part of this section we obtain a condition that,
if satisfied, ensures that a generator s ∈ S is not an intrinsic reflection of W. This condition
describes, in fact, the generic case in which a generator is not an intrinsic reflection of W.

Definition 5.1. Let W be a Coxeter group. An involution r is called an intrinsic reflection
of W if r ∈ SW for each Coxeter generating set S of W.

We begin with some examples.

(1) Let n > 3 and let (W,S) be a Coxeter system of type I2(n) (so that W is dihedral of order
2n, and |S| = 2). If n is odd or divisible by 4, then the elements of S are intrinsic reflections
of W . If n = 4k + 2 for some k > 1 then there are two nonconjugate Coxeter generating sets
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of cardinality 3: if S = {s, t} and z = (st)2k+1 (the central involution), then {z, s, tst} and
{z, t, sts} are Coxeter generating sets. So W has no intrinsic reflections.

(2) If W is elementary abelian group of order 2n then W is a Coxeter group of type nA1. If
n > 2 then no involution is an intrinsic reflection.

(3) Let (W,S) be irreducible and non-spherical. It was proved in [11] that if (W,S) is
2-spherical (meaning that o(st) is finite for all s, t ∈ S) then all elements of S are intrinsic
reflections of W . The proof given there uses the finite continuation, which will also be our main
tool when it comes to proving that an element of S is an intrinsic reflection of W.

Proving Theorem 1 involves showing that, under certain conditions, an element s ∈ S is not
an intrinsic reflection of W . The following observation is useful in this regard.

Lemma 5.2. Let (W,S) be a Coxeter system, and let M ⊆ S be an odd component of S. If
there exists M ′ ⊆W such that (M,M ′) is a replacement pair for (W,S) and no element of M ′

is conjugate to any element of M , then the elements of M are not intrinsic reflections of W.

Proof. Since (M,M ′) is a replacement pair for (W,S), the set R := (S \M) ∪M ′ is a
Coxeter generating set for W . Since M is an odd component it has at least one element s, and s
is not conjugate to any element of S \M . Since we are also given that s is not conjugate to any
element of M ′, it is not conjugate to any element of R. Hence s is not an intrinsic reflection.

Recall that if M is an odd component of S then its even closure is the set E(M) = S \M∞.
The component of E(M) containing M is called the M -principal component of E(M), and is
denoted by C0(M). The other components of E(M) are called the M -subsidiary components.
Clearly E(M) = C0(M) ∪ C0(M)⊥.

Proposition 5.3. Let M be an odd component of the Coxeter system (W,S), and suppose
that E(M) has a subsidiary component K that is of (−1)-type. Then the elements of M are
not intrinsic reflections.

Proof. Let J = C0(M) ∪K and G = 〈J〉, and observe that (G, J) is a Coxeter system with
exactly two irreducible components, namely C0(M) and K. Let z = ρK be the nontrivial central
element of 〈K〉, and note that z ∈ Z(G).

Observe that there is a endomorphism α : G→ G such that

α(s) =

{
zs if s ∈M ,

s if s ∈ J \M .

Furthermore, since z ∈ 〈K〉 ⊆ 〈J \M〉 it follows that α(z) = z, and hence α2 is the identity
map on G. Thus α is an automorphism of G, and therefore (G,α(J)) is a Coxeter system.
Since clearly α(J) = zM ∪ (J \M) it follows that (M, zM) is a replacement pair for (G, J).
But since J ∪ J⊥ includes all the subsidiary components of E(M) and no elements of M∞, we
see that S \ (J ∪ J⊥) = S \ E(M) = M∞. Hence Lemma 4.4 applies, and tells us that (M, zM)
is a replacement pair for (W,S).

Let s ∈M . As z = ρK and s = ρ{s} ∈ E(M) \K ⊆ K⊥, it follows by assertion (ii) of Lemma
3.10 that zs /∈ SW . Hence zM ∩ SW = ∅, and it follows from Lemma 5.2 that the elements of
M are not intrinsic reflections of W .
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6. Intrinsic reflections in irreducible spherical systems

Our first proposition in this section is well known, but since there is no convenient reference in
the literature we sketch a proof.

Proposition 6.1. Let W be a finite group and let S and R be two Coxeter generating sets
for W such that (W,S) and (W,R) are both irreducible. Then there exists an automorphism of
W mapping S onto R. In particular (W,S) and (W,R) are of the same type.

Proof. This is the same as saying that irreducible spherical Coxeter groups of different types
are not isomorphic. There are many places in the literature where the groups are described (see,
for example, 2.10–2.13 of [14], and Appendix 5 of [26]), and there are many group theoretic
ways to distinguish them from each other.

One tool that can be used in this task, making use of ideas we already have at hand, involves
finding the number of classes of involutions. This is easily done by inspecting the Coxeter
diagram to find all J ⊆ S of (−1)-type, and then using Lemma 3.11 and the methods of [12] to
determine conjugacy. It turns out that two subsets of (−1)-type are conjugate if and only if they
have the same type, except that in E7 there are two classes of involutions of type 3A1, and in
D2k there are two classes of type kA1. To make this correct, when S has two odd components
we need to colour them differently, and say that subsets are of different types if the colours do
not match. Additionally, in type Dn we say that the two element subset of S corresponding to
vertices n− 1 and n of Γ(W,S) is of type D2 rather than 2A1.

For every irreducible finite Coxeter group the abelianized group has order 2 or order 4. Order
4 occurs for types Cn and F4, and for I2(n) when n is even. These can be distinguished from
each other by the number of classes of involutions and by the order. For I2(n) (with n even)
there are three classes of involutions, and W has order 2n. For C3 there are five classes of
involutions, for F4 there are seven, for C4 there are eight, and for Cn with n > 4 there are more
than 8. (In fact the number is bn2/4c+ n.) So there are no isomorphisms between these groups.

Consider now the groups whose abelianization has order 2. Types A1, A2 and I2(n) (for n
odd) are distinguished from the others by having only one class of involutions, and from each
other by their orders. Types E6, An for n > 1 and Dn for n odd and n > 3, are distinguished
from Dn for n even, H3, H4, E7 and E8 by having trivial centre.

We refer the reader to [14, Section 2.10] for the proof that the Coxeter group of type An
is isomorphic to the symmetric group on n+ 1 letters, and thus has order (n+ 1)!, while the
group of type Dn has order 2n−1n!. It is then easily checked that no group of type An has the
same order as any group of type Dm with m > 3 and m odd. The group of type E6 has four
classes of involutions, the same as D5, but E6 contains D5 as a proper (visible) subgroup. To
distinguish E6 from A7 and A8 (which also have four classes of involutions) one can use their
orders, for example.

Types H3, H4, E7 and E8 have, respectively, 3, 4, 9 and 9 classes of involutions. (Note that
the two classes of type 3A1 in E7 are fused in E8.) In D4 and D6 there are, respectively, 6 and
10 classes of involutions, and there are more than 10 in Dn when n is even and n > 3. Since E7

is a proper subgroup of E8, there are no isomorphisms here.

Lemma 6.2. Suppose that (W,S) is of type I2(2n) or Cn where n is odd and n > 3. Let M
be an odd component of S with |M | = 1, and let s, a ∈ S with M = {s} and o(as) > 2. Let
z = ρS , the longest element of W . Then R := {z, sas} ∪ (S \ {s}) is a Coxeter generating set
of W such that s is not in RW . In particular, ({s}, {z, sas}) is a replacement pair for (W,S).
Moreover, s is not an intrinsic reflection of W .
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Proof. The first claim is well known and follows, for instance, from [21, Lemma 3.6]. The
second follows from Lemma 5.2, since s is not conjugate to either z or sas.

Lemma 6.3. Let (W,S) be an irreducible spherical Coxeter system. If W has a nontrivial
direct product decomposition then (W,S) is of (−1)-type and is isomorphic to 〈z〉 ×G, where
〈z〉 = Z(W ) has order 2 and G is indecomposable. Furthermore, one of the following holds:

(i) (W,S) is of type I2(2n) or Cn with n odd and n > 3, and G is a Coxeter group of type
I2(n) or Dn (where D3 = A3),

(ii) (W,S) is of type H3 or E7 and G is not isomorphic to any Coxeter group.

Proof. This is [23, Proposition 7.2]. Note that for types H3 and E7 the abelianization of W
has order 2; hence in (ii) the group G is the derived group of W, and is perfect (which shows
that it is not a Coxeter group). In fact G is simple, isomorphic to Alt(5) in one case and O−6 (2)
in the other. See [14, p. 45].

Lemma 6.4. Assume that (W,S) is of (−1)-type, with S irreducible and |S| > 3. Let M
be an odd component of S, and let z := ρS be the central involution of W . Let ϕ : W →W
be the endomorphism given by ϕ(s) = zs for s ∈M and ϕ(s) = s for s ∈ S \M . Then ϕ is an
automorphism, unless (W,S) is of type H3 or E7, or |M | = 1 and (W,S) is of type Cn with n
odd and n > 3.

If ϕ is an automorphism then (M,ϕ(M)) is a replacement pair for (W,S), and the elements
of M are not intrinsic reflections of W.

Proof. The first assertion follows from [10, Theorem 31], in which the automorphism groups
of irreducible finite Coxeter groups are described. It is obvious that (M,ϕ(M)) is a replacement
pair if α is an automorphism, and since |S| > 3 it follows from assertion (iii) in Lemma 3.10
that the elements of ϕ(M) = zM are not reflections. Thus, by Lemma 5.2, the elements of M
are not intrinsic reflections of W.

Proposition 6.5. Let (W,S) be an irreducible spherical Coxeter system. If (W,S) is of
type C2, H3, E6, E7, An for n 6= 5, Dn for n odd, or I2(n) for n odd or divisible by 4, then all
reflections in W are intrinsic. In all other cases W has no intrinsic reflections.

Proof. Let (W,S) be a Coxeter system of type C2, H3, E6, E7, An, Dn for n odd, or I2(n)
for n odd or divisible by 4, and let R be a Coxeter generating set of W . By Lemma 6.3 it
follows that (W,R) is irreducible and by Proposition 6.1 it then follows that there exists an
automorphism α of W such that α(S) = R. Using Theorem 31 in [10] and going through the
cases yields R = α(S) ⊆ SW except for the case where (W,S) is of type A5. It is well known
that in this particular case W is isomorphic to Sym(6) and that its exceptional automorphism
is not reflection preserving. The second assertion of the Proposition follows now from Lemmas
6.4 and 6.2.

Corollary 6.6. If (W,S) is an irreducible spherical Coxeter system that is not of (−1)-type
then all reflections in W are intrinsic, unless (W,S) is of type A5.
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7. Spherical principal components and blowing down

In this section we consider those odd components M of Coxeter systems (W,S) for which the
M -principal component of the even closure is spherical. Using the results of Section 6 and
replacement pairs, we give conditions that ensure that the elements of M are not intrinsic
reflections. A special case that arises here concerns blowing up generators. We discuss this case
in some detail, because it motivates the concept of a blowing down pair for a Coxeter system.
Blowing down pairs appear in assertion (i) of Theorem 1 and also play a role in the proof of
Theorem 3.

We start with a general observation that will also be used in the next section.

Proposition 7.1. Let (W,S) be a Coxeter system, let M be an odd component, and
let J := C0(M). Suppose that (M,M ′) is replacement pair for (〈J〉, J). Then (M,M ′) is a
replacement pair for (W,S). Moreover, if no element of M ′ is conjugate to any element of M
then the elements of M are not intrinsic reflections of W .

Proof. Recall that S \M∞ = C0(M) ∪ C0(M)⊥ = J ∪ J⊥ (by the remark immediately
preceding Proposition 5.3). Hence the first assertion follows from Lemma 4.4.

The second assertion follows immediately from Lemma 5.2.

Corollary 7.2. Let M be an odd component of the Coxeter system (W,S) and let
J := C0(M), the principal component of the even closure E(M). Assume that J is spherical.
Then the elements of M are not intrinsic reflections if one of the following holds.

(i) J is of (−1)-type and of rank at least 3, and not of type H3 or E7;
(ii) J is of type I2(2n) for some odd n > 3;
(iii) J is of type A5.

Proof. Suppose first that J is of (−1)-type, has rank at least 3, and is not of type H3 or E7.
If J is of type Cn, with n odd, assume additionally that |M | 6= 1. Put z = ρJ . It follows from
Lemma 6.4 that (M, zM) is a replacement pair for (〈J〉, J) and the elements of zM are not
reflections. Thus, by Proposition 7.1, the elements of M are not intrinsic reflections.

To complete the proof of (i) and to prove (ii), let n > 3 be odd, and suppose that J is of type
Cn and |M | = 1, or that J is of type I2(2n). Let s, a ∈ J be such that M = {s} and o(sa) 6= 2,
and let z := ρJ . Then it follows by Lemma 6.2 that ({s}, {z, sas}) is a replacement pair for
(〈J〉, J). It follows from assertion (i) of Lemma 3.10 that z is not in Sw, and s is not conjugate
to sas since s and a are in different odd components of S. Again, Proposition 7.1 yields that
the elements of M are not intrinsic reflections.

If (iii) holds then C0(M) is of type A5, and this forces M = C0(M) since in type A5

systems there is only one odd component. Moreover, as (〈M〉,M) is of type A5, there exists
an automorphism β of 〈M〉 such that the elements of β(M) are not conjugate to the elements
of M . Applying Proposition 7.1 with (M,M ′) = (M,β(M)) as the replacement pair for (〈J〉, J),
we again see that the elements of M are not intrinsic reflections.

The arguments used in the above proof establish the following fact.

Fact. Let (W,S) be a Coxeter system, and let M be an odd component of S consisting
of a single element s. Suppose that J := C0(M) is of type I2(2n) or Cn, with n odd and
n > 3. Let z := ρJ and let a ∈ C0(M) be the unique element such that o(sa) 6= 2. Then the set
R := (S \ {s}) ∪ {z, sas} is a Coxeter generating set of W, of type A1 + I2(n) or A1 +Dn.
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Thus, the existence of a generator with the properties just described implies that there is
Coxeter generating set of size |S|+ 1. This is a very special situation. Generators with these
properties appear in [13] and [20] in the context of the isomorphism problem for Coxeter groups.
In these references they were called pseudo-transpositions. This way of increasing the rank by 1
was reconsidered in [18] under the name blowing up. Here we adopt this latter terminology and
call the elements s ∈ S satisfying the conditions above blowing up generators for (W,S).

Definition 7.3. Let (W,S) be a Coxeter system. An element s ∈ S is called a blowing up
generator for (W,S) if M = {s} is an odd component of (W,S) such that C0(M) is spherical of
type Cn or I2(2n), where n > 3 is an odd integer.

The question of reversing the blowing up construction for Coxeter generating sets was
addressed by Mihalik and Ratcliffe in [17]. They introduced a blowing down procedure, which
decreases the rank. It is slightly more general than just reversing the blowing up procedure,
because it might involve twists (in the sense of [3]). In [21], in the context of intrinsic reflections,
the blowing down procedure for Coxeter generating sets was reconsidered from a different angle.
In that paper, a blowing down generator for a right-angled generator of a Coxeter system was
defined. However, it seems to be more appropriate to regard the two generators as a pair, in
which neither plays a privileged role.

It is convenient to make the following definition, since it makes the precise definition of
blowing down pairs easier to state.

Definition 7.4. Let (W,S) be a Coxeter system. If J ⊆ S then the simplicial graph ΠJ is
defined by

ΠJ := (J, {{x, y} ⊆ J | 2 6 o(xy) 6=∞}).

The graph ΠS is called the presentation diagram of (W,S).

Recall from Section 2 above that a right-angled generator of (W,S) is an s ∈ S such that
o(st) ∈ {1, 2,∞} for all t ∈ S.

Definition 7.5. Let (W,S) be a Coxeter system. A pair (z, a) ∈ S × S is called a blowing
down pair for (W,S) if the following conditions hold:

(i) z is right-angled in (W,S) and a ∈ z⊥;
(ii) the component C of z⊥ containing a is of type I2(n) or Dn for some n > 3 with n odd,

and b := ρCaρC 6= a;
(iii) for each connected component U of Πz∞ , either U ⊆ a∞ or U ⊆ b∞.

Definition 7.5 is reasonably compatible with the terminology of [21].

In (ii) of Definition 7.5 we identify I2(3) with A2, and D3 with A3 renumbered (with vertex 1
in the middle). Note that C is not of (−1)-type, and so ρC induces the nontrivial symmetry of
order 2 on its Coxeter diagram. Thus, in the I2(n) case, a is one of the two elements of C and b
is the other, while in the Dn case a and b are the elements of C corresponding to vertices n− 1
and n (the tips of the fork).

The symmetry between a and b in the above situation ensures that if (z, a) is a blowing down
pair then so is (z, b).
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Definition 7.6. Let (z, a) be a blowing down pair for (W,S) and let C and b be as in
Definition 7.5 (ii). The type of (z, a) is defined to be the type of (〈C〉, C), and (z, a) is called a
proper blowing down pair for (W,S) if z∞ ⊆ a∞ or z∞ ⊆ b∞.

The point of these definitions is that if (z, a) is a blowing down pair for (W,R) then it is
possible to apply a diagram twist to Γ(W,R) to produce a proper blowing down pair. This is
proved in [21, Proposition 4.8].

Now let (z, a) be a proper blowing down pair for (W,S), let C and b be as in Definition 7.5 (ii),
and assume that z∞ ⊆ b∞ (which implies in fact that z∞ = b∞). Then it is easy to check
(and proved in [21]) that ({z, b}, {zρC}) is a replacement pair for (W,S). Moreover, setting
R := (S \ {z, b}) ∪ {zρC}), it follows that zρC is a blowing up generator for (W,R).

8. C3-neighbours

In this section we consider C3-neighbours of odd components in Coxeter systems. We shall
see that the existence of a C3-neighbour of an odd component M in a Coxeter system (W,S)
implies that the elements of M are not intrinsic reflections of W. The notion of a C3-neighbour
of an odd component was introduced in [11], in order to describe the finite continuation of a
finite order element of W. Finite continuations will be an important tool for us later.

The following lemma describes a remarkable automorphism of the Coxeter group of type C3.
It will play an important role in the theory.

Lemma 8.1. Let (W,S) be a Coxeter system of type C3, where S = {a, b, c} and o(ab) = 2,
o(ac) = 3 and o(bc) = 4. Then there exists an automorphism α of W such that α(a) = ab and
α(b) = b, and α has order 2.

Proof. It is well known and easily checked that abc has order 6; furthermore, (abc)3 = z,
the central involution (and longest element). So if we define ĉ = zc and â = ba then ĉâ = (abc)2

has order 3. Since also ĉb = zcb has order 4 and bâ = a has order 2, it follows from the Coxeter
presentation that W has an endomorphism α mapping a and c to â and ĉ respectively, and
fixing b. We find that α(z) = α((abc)3) = (acz)3 = (ac)3z3 = z, and it follows readily that α2

is the identity.

Remark. With (W,S) as in Lemma 8.1, the set M = {a, c} is an odd component of S, and
it follows from Lemma 6.4 that W has an involutory automorphism ϕ such that ϕ(a) = za and
ϕ(c) = zc, while ϕ(b) = b. For each x ∈W let γx be the corresponding inner automorphism,
given by γx(w) = xwx−1 for all w ∈W, and note that ϕγxϕ = γϕ(x) = γx. Thus γxϕ has order 2
whenever x is an involution. It is readily checked that if x = bcbc then γxϕ is the automorphism
α defined in the proof above. In fact the conditions in Lemma 8.1 do not determine α uniquely,
since γcbcϕ also has the required properties.

Definition 8.2. Let M ⊆ S be an odd component of the Coxeter system (W,S), and let
E(M) be the even closure of M . A C3-neighbour of M is an element b ∈ S \M such that
o(bc) ∈ {2, 4} for all c ∈ E(M) \ {b}, with the case o(bc) = 4 occurring for at least one c, and
such that for each c ∈ E(M) with o(bc) = 4 there is an a ∈M satisfying the following conditions:

(N1) o(ba) = 2 and o(ca) = 3, and o(cd) =∞ for all d ∈M \ {a, c};
(N2) for all e ∈ S \ (M ∪ {b}), either o(ce) =∞ or o(ae) = o(ce) = o(be) = 2.

The set of all C3-neighbours of M is denoted by C3(M).
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In the next lemma we collect some basic observations about C3-neighbours.

Lemma 8.3. Let M be an odd component of (W,S), and let b ∈ S be a C3-neighbour of M .
Put C := {c ∈M | bc 6= cb}. Then the following hold:

(i) b ∈ C0(M) \M , and if t ∈ E(M) does not commute with b then t ∈ C;
(ii) C is nonempty and C 6= M , and every c ∈ C has the property that o(bc) = 4;
(iii) for every c ∈ C there is a unique ac ∈M such that o(cac) 6=∞;
(iv) if c ∈ C and ac are as in (iii), then Jc := {ac, c, b} is of type C3;
(v) b commutes with all elements of C3(M).

Proof. By the C3-neighbour axioms, every c ∈ E(M) such that cb 6= bc satisfies o(bc) = 4,
and there is at least one such c. Moreover, for each such c there is an a ∈M such that o(ba) = 2
and o(ca) = 3. This means that c ∈M , because it is connected to an element of M by an odd
label. Since c ∈M and o(bc) = 4, it follows that b ∈ C0(M). It also follows that c ∈ C, since
bc 6= cb and c ∈M . Note that a /∈ C, since ba = ab. Thus C 6= ∅ and C 6= M .

Since M ⊆ E(M) by definition, M is an odd component of E(M). Since the C3-neighbour
axioms give o(bx) ∈ {1, 2, 4} for all x ∈ E(M) it follows that {b} is an odd component of E(M).
So b /∈M . We have now proved assertions (i) and (ii).

Let c ∈ C. The existence and uniqueness of ac ∈M such that o(cac) 6=∞ is immediate from
(N1) in Definition 8.2, and the fact that Jc is of type C3 then follows from (N1) together with
o(bc) = 4. Thus we are done with (iii) and (iv).

It follows from (i) that C3(M) ⊆ C0(M) \M , and also that b commutes with all elements of
E(M) \M . As C0(M) ⊆ E(M), this proves (v).

Lemma 8.4. Let M be an odd component of the Coxeter system (W,S) and let b ∈ S
be a C3-neighbour of M . Then 〈C0(M)〉 has an automorphism α such that α(e) = e for all
e ∈ C0(M) \M and α(a) = ab for all a ∈M that commute with b.

Proof. Let C = { c ∈M | bc 6= cb } be as in assertion (ii) of Lemma 8.3, and for each c ∈ C
let ac and the subset Jc of C0(M) be as in assertion (iv) of Lemma 8.3.

Let c ∈ C. By Lemma 8.1 there exists an automorphism αc of 〈Jc〉 such that αc(ac) = bac
and αc(b) = b. Put ĉ := αc(c). Obviously ĉ is an involution, since c is an involution and ĉ its
image under the automorphism αc. Moreover, ĉ ∈ 〈Jc〉.

For each a ∈M \ C put â := ab, noting that â is an involution since a and b commute. Note,
moreover, that â = αc(a) for all c ∈ C such that a ∈ Jc.

Finally, for each e ∈ C0(M) \M put ê := e, noting that b̂ = αc(b) for all c ∈ C. We claim
that if s and t are in C0(M) and m := o(st) is finite, then (ŝt̂)m = 1W . This claim is obviously
true when t = s, since ŝ is an involution in every case.

Accordingly, suppose that t 6= s and o(ts) 6=∞, and consider first the case that s ∈ C and
t ∈ C0(M) \ (M ∪ {b}). It then follows from (N2) in Definition 8.2 that t commutes with all
elements of Js = {as, s, b}. In particular, this implies that m = 2, and also that t commutes
with ŝ, since ŝ ∈ 〈Js〉. Since t̂ = t we deduce that (ŝt̂)m = (ŝt)2 = 1W , as required.

Next, suppose that s ∈ C and t ∈M ∪ {b}. By (N1) in Definition 8.2 and our assumption that
o(st) 6=∞, it follows that t ∈ {as, s, b} = Js. Hence t̂ = αs(t), and o(ŝt̂) = o(αs(s)αs(t)) = o(st),
as required.

We have now proved the claim when s ∈ C, and—by symmetry—we are left with the case
C ∩ {s, t} = ∅. So we assume henceforth that s, t ∈ C0(M) \ C. Note that b commutes with
both s and t, by assertion (i) of Lemma 8.3.
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If s and t are both in C0(M) \M then ŝ = s and t̂ = t, and it is obvious that o(ŝt̂) = o(st).
If s and t are both in M \ C then ŝ = sb and t̂ = tb, and since (sb)(tb) = st it is again obvious
that o(ŝt̂) = o(st). The only remaining possibility is that s ∈ C0(M) \M and t ∈M \ C, or
t ∈ C0(M) \M and s ∈M \ C. In both cases ŝt̂ = stb. Furthermore, s and t lie in different odd
components of C0(M), and so m = o(st) must be even. So (ŝt̂)m = (stb)m = (st)mbm = 1W , as
required, and the claim is established.

In view of the Coxeter presentation of 〈C0(M)〉 it follows from the claim that 〈C0(M)〉 has
an endomorphism α such that α(s) = ŝ for all s ∈ C0(M). It remains to show that α has an
inverse. It is clear that for all s ∈ C the restriction of α to 〈Js〉 agrees with the automorphism
αs of 〈Js〉. Since αs has order 2, by Lemma 8.1, we deduce that α2(s) = s for all s ∈ C. For
all s ∈M \ C we have α2(s) = α(sb) = α(s)α(b) = sb2 = s, and for all s ∈ C0(M) \M we have
α2(s) = α(s) = s. So α has order 2. In particular, α is an automorphism, as required.

Proposition 8.5. Let M be an odd component of (W,S), and suppose that M has at least
one C3-neighbour. Then the elements of M are not intrinsic reflections.

Proof. Let b be a C3-neighbour of M . By assertion (ii) of Lemma 8.3, there is an a ∈M
such that ba = ab. Thus, by Lemma 8.4, there is an automorphism α of 〈C0(M)〉 such that
α(t) = t for all t ∈ C0(M) \M and α(a) = ab.

It follows that (M,α(M)) is a replacement pair for J := C0(M). Moreover, as ab = ρ{a,b} it
follows from assertion (i) of Lemma 3.10 that α(a) /∈ SW, and hence α(M) ∩ SW = ∅ (since all
elements of α(M) are conjugate). Thus it follows from Proposition 7.1 that the elements of M
are not intrinsic reflections.

9. On the proof of Theorem 1 and the finite continuation

In the previous sections we have considered several situations in which a generator s ∈ S of a
Coxeter system (W,S) is not an intrinsic reflection of W . We summarize them in the following
proposition.

Proposition 9.1. Let (W,S) be a Coxeter system, let s ∈ S and let M be the odd
component containing s. Then s is not an intrinsic reflection of W if any of the following hold:

(i) E(M) has a subsidiary component of (−1)-type;
(ii) C0(M) is of (−1)-type excluding types C2, H3, E7, and I2(4k) for k > 2;
(iii) C0(M) is of type A5;
(iv) M has at least one C3-neighbour.

Proof. This follows from Proposition 5.3 for (i), from Corollary 7.2 for (ii) and (iii), and,
finally, from Proposition 8.5 for (iv).

The previous proposition finishes the proof of one direction in assertions (ii)–(iv) of Theorem 1.
It is worthwhile pointing out that the rank of (W,S) is not required to be finite in this proposition.
In the following sections we will provide the proof of the other direction, and here it is the case
that our arguments apply only to finitely generated Coxeter groups. This is because we shall
use finite continuations of finite order elements in Coxeter groups. This concept was introduced
in [11] for finitely generated Coxeter groups. The description of the finite continuation of a
generator s ∈ S of a Coxeter system (W,S) is the key tool for the proof of Theorem 1.
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In the remainder of this section we shall give the precise definition of the finite continuation
and explain how it is going to be applied in this paper. We also state and prove a proposition
that is a corollary of the main result in [11]. In this proposition we collect all the material that
is needed from that paper.

Definition 9.2. Suppose that (W,S) is a Coxeter system, with S finite, and let w ∈W be
an element of finite order. The finite continuation of w, written FC(w), is defined to be the
intersection of all maximal finite subgroups of W containing w.

Lemma 9.3. Let (W,S) be a Coxeter system of finite rank and let w ∈W be an element of
finite order. Then the following hold.

(i) The finite continuation FC(w) is defined and is a finite parabolic subgroup of W . In
particular, FC(w) is a finite Coxeter group;

(ii) If w is an intrinsic reflection of FC(w) then it is also an intrinsic reflection of W .

Proof. By Proposition 3.5, each finite subgroup is contained in a finite parabolic subgroup,
and so the maximal finite parabolic subgroups are precisely the maximal finite subgroups
of W. Since S is finite each finite parabolic subgroup is contained in a maximal finite parabolic
subgroup, and it follows from Proposition 3.1 that FC(w) exists and is a finite parabolic
subgroup of W whenever w ∈W is an element of finite order.

The definition of FC(w) does not depend on the Coxeter generating set S. Thus, by (i), the
group FC(w) is a parabolic subgroup with respect to any Coxeter generating set. Suppose that
w is an intrinsic reflection of the Coxeter group FC(w) and let R be a Coxeter generating set
of W . As FC(w) is a parabolic subgroup of (W,R) there exists a v ∈W and a J ⊆ R such that
Jv is a Coxeter generating set for FC(w). As w is an intrinsic reflection of FC(w) the element
w is conjugate in FC(w) to an element of Jv, which is a subset of RW . Hence w ∈ RW .

We are now able to explain in more detail how the finite continuation is used in the proof of
Theorem 1. By Proposition 9.1 the task is to show that s ∈ S is an intrinsic reflection of W
under certain conditions. By Lemma 9.3 (ii) it suffices to show that s is an intrinsic reflection in
its finite continuation. For this, we need enough information about FC(s), and criteria ensuring
that a generator of a finite, possibly reducible, Coxeter group is an intrinsic reflection. The
latter will be presented in the next section. In the remainder of this section we describe the
information on FC(s) that we need, explaining how to obtain it from [11].

Proposition 9.4. Let (W,S) be a Coxeter system of finite rank and let M be an odd
component of (W,S). Then the following hold.

(i) If L is a spherical component of E(M) then 〈L〉 ⊆ FC(s) for each s ∈M .
(ii) There exists an s ∈M such that FC(s) = 〈J〉 for some spherical subset J of S such

that s ∈ J .

Proof. Assertion (i) is Lemma 36 in [11]. The existence of a subset J of S such that
FC(s) = 〈J〉 is the very first assertion of Theorem 7 in [11] and the argument is given in the
first paragraph of Section 4 of that paper. That J is spherical is clear from the finiteness of
FC(s). Finally, as s ∈ FC(s) = 〈J〉 we have s ∈ 〈J〉 ∩ S = J .
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Corollary 9.5. Let (W,S) be a Coxeter system of finite rank, let M be an odd component
of (W,S), and let s ∈M and J ⊆ S be such that FC(s) = 〈J〉. Then each spherical component
of E(M) is a component of J .

Proof. It follows from assertion (ii) of Proposition 9.4 that J is spherical and s ∈ J . Thus
J ⊆ S \ s∞ ⊆ S \M∞ = E(M). Let L be a spherical component of E(M). By assertion (i)
of Proposition 9.4, we have 〈L〉 ⊆ FC(s) = 〈J〉. This yields L ⊆ J , since 〈L〉 ∩ 〈J〉 = 〈L ∩ J〉.
Clearly J \ L ⊆ L⊥, since E(M) \ L ⊆ L⊥, and as L is irreducible we conclude that L is a
component of J .

Notation. If M is an odd component of the Coxeter system (W,S), we let Σ(M) denote
the union of all spherical M -subsidiary components of E(M).

Note that C0(M) and Σ(M) are disjoint direct factors of E(M), and the non-spherical
M -subsidiary components are also direct factors of E(M).

Let (W,S) be a Coxeter system of finite rank and M an odd component of (W,S). Let
s ∈M and J ⊆ S be such that FC(s) = 〈J〉. By Corollary 9.5 we know that Σ(M) is a union
of components of J . Thus, in order to have a precise description of FC(s) it remains to describe
J \ Σ(M). Our next proposition does this.

Recall that the (usually empty) set of all C3-neighbours of an odd component M is denoted
by C3(M).

Proposition 9.6. Let (W,S) be a Coxeter system of finite rank, and let M be an odd
component of (W,S). Choose an element s ∈M such that FC(s) = 〈J〉 for some J ⊆ S, and
put K := J \ Σ(M). Then s ∈ K ⊆ C0(M), and the following hold.

(i) The set K is the whole of C0(M) if and only if C0(M) is spherical.
(ii) If C0(M) is not spherical then one of the following holds:

(a) K = {s} ∪ C3(M) and is of type (k + 1)A1, where k = |C3(M)|;
(b) K is of type C2;
(c) K is of type 2A1 and K ⊆M .

Proof. This follows from Theorem 7 in [11]. In that theorem four cases A, B, C and D
are listed. Assertion (i) corresponds to Case A, while parts (a), (b) and (c) of assertion (ii)
correspond to B, C and D respectively.

Case D of [11, Theorem 7] is distinguished from the other cases by the fact that C0(M) is
non-spherical and K contains two elements of M . The fact that they commute is one of the
assertions of the theorem, in view of [11, Definition 6].

Case C of [11, Theorem 7] is distinguished from the others by the fact that C0(M) is
non-spherical and K = {s, t} for some t such that st 6= ts. The fact that K is of type C2 and
t ∈ C0(M) is an assertion of the theorem, in view of [11, Definition 5].

Case B of [11, Theorem 7] is distinguished from the others by the fact that C0(M) is non-
spherical and the elements of K \M (if any) are C3-neighbours of M . Since FC(s) is visible,
it is one of the assertions of the theorem that s is not adjacent in Γ(〈C0(M)〉, C0(M)) to any
C3-neighbour of M . Hence s commutes with all C3-neighbours of M , by (i) of Lemma 8.3, and
the C3-neighbours all commute with each other, by (v) of Lemma 8.3. Also C3(M) ⊆ C0(M),
by (i) of Lemma 8.3. This justifies all of our claims in (ii) (a).

We shall need the following corollary in the proof of Proposition 11.2.
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Corollary 9.7. Let (W,S) be a Coxeter system of finite rank and let M be an odd
component of (W,S). Choose s ∈M such that FC(s) = 〈J〉 for some J ⊆ S. If the centre of
FC(s) is the subgroup generated by s then each component of (〈J〉, J) of rank at least two is
an M -subsidiary component of E(M).

Proof. Since |Z(〈J〉)| = 2 it follows that J has exactly one component of (−1)-type, and s
is the longest element of the corresponding visible subgroup (see Section 3 above). Thus {s} is
a component of J , and the only component of type A1. By Proposition 9.6 it follows that if
C0(M) is spherical then C0(M) = {s}, while if C0(M) is non-spherical then case (ii) a) holds
with k = 0. In either case every component of J of rank at least two is contained in Σ(M), and
hence is an M -subsidiary component of E(M).

10. Intrinsic reflections in reducible spherical Coxeter systems

In order to analyse reducible spherical Coxeter systems (W,S) it is useful to recall some basic
results on direct product decompositions of groups, and, in particular, the Krull–Remak–Schmidt
Theorem.

Definition 10.1. A group G is called indecomposable if it has order greater than 1 and is
not the inner direct product of two proper subgroups.

A family (Hi)16i6n of subgroups of G is called a Remak decomposition of G if each Hi is
indecomposable and G is the inner direct product H1 ×H2 × · · · ×Hn.

The following is obvious.

Lemma 10.2. Any finite group admits a Remak decomposition.

Definition 10.3. An automorphism α of a group is called a central automorphism of G if
α induces the identity on G/Z(G), that is, if α(g) ∈ gZ(G) for all g ∈ G.

We shall need the following version of the Krull–Remak–Schmidt Theorem.

Proposition 10.4. Let (Hi)16i6n and (Kj)16j6m be Remak decompositions of the finite
group G. Then n = m and there exists a permutation π ∈ Sym(n) and a central automorphism
α of G such that α(Hi) = Kπ(i) for all i ∈ {1, 2, . . . , n}.

Proof. This is a special case of Theorem 3.3.8 in [25].

Corollary 10.5. Suppose that (Hi)16i6m and (Ki)16i6n are Remak decompositions of
the finite group G, and suppose also that Z(G) ⊆ H1. Then H1 = Kj for some j ∈ {1, 2, . . . , n}.
In particular, if the centre of G is trivial, then there exists a permutation π ∈ Sym(n) such that
Ki = Hπ(i) for all i ∈ {1, 2, . . . , n}.

Proof. Since Z(G) is contained in H1, it follows that each central automorphism of G
stabilizes H1. So the assertion follows from Proposition 10.4.
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Lemma 10.6. Let (W,S) be a Coxeter system and J a union of components of (W,S). If
s ∈ J is an intrinsic reflection of W then it is also an intrinsic reflection of 〈J〉.

Proof. Since J is a union of components of (W,S) it follows that W = X × Y , where
X = 〈S \ J〉 and Y = 〈J〉. Suppose that s ∈ J is an intrinsic reflection of W, and let K be any
Coxeter generating set for Y . Then R := (S \ J) ∪K is a Coxeter generating set for W , by
Proposition 4.1, and s ∈ RW since s is an intrinsic reflection of W . But RW = (S \ J)X ∪KY ,
and (S \ J)X ⊆ X. Since s is a non-identity element of Y it follows that s ∈ KY, as required.

Proposition 10.7. Let (W,S) be a spherical Coxeter system, and let s ∈ S. If |Z(W )| > 4
then s is not an intrinsic reflection, and if |Z(W )| = 1 then s is an intrinsic reflection if and
only if the {s}-principal component of S is not of type A5.

Proof. Let M be the odd component of S containing s. Since S is spherical it is clear that
E(M) = S. Observe that C0(M) is the {s}-principal component of S, and the other components
of S are the M -subsidiary components.

If |Z(W )| > 4 then S has at least two components of (−1)-type, and hence at least one
M -subsidiary component of (−1)-type. So s is not an intrinsic reflection of W , by Proposition 5.3.

Now suppose that |Z(W )| = 1, and let J1, J2, . . . , Jn be the components of S, numbered so
that J1 = C0(M). If s is an intrinsic reflection of W then it is an intrinsic reflection of 〈J1〉, by
Lemma 10.6. Thus J1 is not of type A5, by Proposition 6.5.

Conversely, suppose that J1 is not of type A5, and let R be an arbitrary Coxeter generating
set for W . Let K1, K2, . . . , Km be the components of R. Since |Z(W )| = 1, no Ji or Kj is of
(−1)-type, and so the 〈Ji〉 and 〈Kj〉 are all indecomposable, by Lemma 6.3. Thus (〈Ji〉)16i6n
and (〈Kj〉)16j6m are both Remak decompositions of W . Since Z(W ) is trivial there are no
nontrivial central automorphisms of W , and so 〈J1〉 = 〈Kj〉 for some j, by Proposition 10.4.
Thus J1 and Kj have the same type, by Proposition 6.1. Since this type is not A5 it follows from
Corollary 6.6 that all elements of J1 are intrinsic reflections of 〈J1〉. In particular, s is conjugate
to an element of Kj . So s ∈ RW , and hence s is an intrinsic reflection of W , as required.

In view of Proposition 10.7 and the Fact stated after the third paragraph of Section 3, the
remaining task for spherical Coxeter systems is to clarify the situation when |Z(W )| = 2. In
this case, every Coxeter generating set for W includes exactly one component of (−1)-type.

Proposition 10.8. Let (W,S) be a Coxeter system with |Z(W )| = 2, and let s ∈ S. If the
{s}-principal component of S is not of (−1)-type then s is not an intrinsic reflection of W.

Proof. This is immediate from Proposition 5.3, since the component of S of (−1)-type is an
M -subsidiary component of E(M) = S (where M is the odd component containing s).

For finite Coxeter groups W with |Z(W )| = 2, it remains to determine whether or not the
elements of the unique component of (−1)-type are intrinsic reflections.

Proposition 10.9. Let (W,S) be a spherical Coxeter system with |Z(W )| = 2, and let
s ∈ S. If the {s}-principal component of S is of type H4, F4, E8, I2(2n) for n odd, Cn for n > 2,
or Dn for n even and n > 4, then s is not an intrinsic reflection of W.
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Proof. This is an immediate consequence of Propositions 10.6 and 6.5.

Proposition 10.10. Let (W,S) be a spherical Coxeter system with |Z(W )| = 2, and let
s ∈ S. Let Ĵ be the {s}-principal component of S. Then s is an intrinsic reflection of W if Ĵ is
of type C2, H3, E7 or I2(4k), while if Ĵ is of type A1 then s is an intrinsic reflection of W if
and only if S has no component of type I2(n) or Dn with n odd and n > 3.

Proof. Suppose that Ĵ is of type A1, so that Ĵ = {s}, and suppose that S also has a
component of type I2(n) or Dn, where n is odd. Let J be the union of this component with {s},
so that J is of type A1 + I2(n) or A1 +Dn. As we have seen in Lemmas 6.2 and 6.3, it follows
that the group 〈J〉 is isomorphic to an irreducible Coxeter group of type I2(2n) or Cn, and
has no intrinsic reflections (by Proposition 6.5). So s is not an intrinsic reflection of W, by
Proposition 10.6.

It remains to show that if Ĵ is of type C2, H3, E7, I2(4k) or A1 then s is an intrinsic reflection,
provided in the A1 case that S does not also have a component of type I2(n) or Dn with n
odd. Accordingly, we assume that these conditions are satisfied, aiming to show that s ∈ RW
for all subsets R ⊆W such that (W,R) is a Coxeter system.

Suppose that R ⊆W and (W,R) is a Coxeter system. Let Ĵ = J1, J2, . . . , Jh be the
components of S, and let K1, K2, . . . , Km be the components of R. Since |Z(W )| = 2, exactly
one of the Kj is of (−1)-type, and we can choose the numbering so that it is K1. Write
Gi = 〈Ji〉 for 2 6 i 6 h and Hj = 〈Kj〉 for 2 6 j 6 m, and note that all of these groups are
indecomposable (by Lemma 6.3). If the group 〈J1〉 is decomposable then by Lemma 6.3 we can
write 〈J1〉 = G0 × G1 where G0 = Z(〈J1〉) and G1 is indecomposable; if 〈J1〉 is indecomposable
we put G1 = 〈J1〉. Similarly, if the group 〈K1〉 is decomposable we write 〈K1〉 = H0 ×H1 with
H0 = Z(〈K1〉) and H1 indecomposable, and if 〈K1〉 is indecomposable we put H1 = 〈K1〉. We
shall show that 〈J1〉 = 〈K1〉 in every case.

If J1 is of type C2 or I2(4k) then 〈J1〉 is indecomposable (by Lemma 6.3), and (Gi)16i6h is a
Remak decomposition for W with |Gi| > 2 for all i. It follows that 〈K1〉 is indecomposable, or else
(Hj)06j6m would be a Remak decomposition of W with |H0| = 2, contradicting Proposition 10.4.
So 〈J1〉 = 〈K1〉, by Corollary 10.5.

If J1 is of type H3 or E7 then Lemma 6.3 tells us that 〈J1〉 decomposes as G0 × G1, where G0 has
order 2 and G1 is not a Coxeter group, and hence (Gi)06i6h is a Remak decomposition of W with
G0 of order 2 and G1 not a Coxeter group. So 〈K1〉must also decompose, or else (Hj)16j6m would
be a Remak decomposition of W with all factors Coxeter groups. Moreover, the decomposition
of 〈K1〉 must yield a factor that is not a Coxeter group. So 〈K1〉 = H0 ×H1 with H0 of order 2
and H1 not a Coxeter group, and by Proposition 10.4 there is a central automorphism α of W
such that α(G1) = H1 (since the other factors are Coxeter groups). Since G0 = Z(W ) = H0 and
the automorphism α is central, we conclude that 〈J1〉 = G0G1 = G0α(G1) = H0H1 = 〈K1〉.

Finally, if J1 is of type A1 then (Gi)16i6h is a Remak decomposition of W such that G1 has
order 2 and all the Gi are Coxeter groups. Moreover, by our extra information in this case, and
using Proposition 6.1, no Gi is isomorphic to a Coxeter group of type I2(n) or Dn with n odd.
It follows that 〈K1〉 is indecomposable, since, by Lemma 6.3, a decomposition of 〈K1〉 would
produce a Remak decomposition (Hj)06j6m with H1 either not a Coxeter group (if K1 is of
type H3 or E7) or a Coxeter group of type I2(n) or Dn with n odd (if K1 is of type I2(2n) or
Cn with n odd). So in this case we must have 〈J1〉 = Z(W ) = 〈K1〉.

Since 〈J1〉 = 〈K1〉, and s is an intrinsic reflection of 〈J1〉 by Proposition 6.5, it follows that s
is conjugate to an element of K1, and so s ∈ RW, as desired.
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11. Finite continuations and intrinsic reflections

We commence this section with a technical lemma that is needed for the proof of the subsequent
proposition. Note that if W is a Coxeter group then obviously any conjugate of a Coxeter
generating set for W is also a Coxeter generating set for W.

Lemma 11.1. Let (W,S) be a Coxeter system with S finite and let s ∈ S. Let R ⊆W be a
Coxeter generating set for W . Then there exists a Coxeter generating set R1 and L ⊆ K ⊆ R1

such that the following hold:

(i) R1 = Rw for some w ∈W ;
(ii) FC(s) = 〈K〉;
(iii) (〈L〉, L) is of (−1)-type and s = ρL.

Proof. Since the subgroup FC(s) must be parabolic relative any Coxeter generating set
in W , it follows that FC(s) = 〈M〉x for some M ⊆ R and some x ∈W . Let K ′ := Mx and
R′ := Rx, noting that (W,R′) is a Coxeter system. Since s ∈ 〈K ′〉 is an involution it follows
from Proposition 3.8 that there exist y ∈ 〈K ′〉 and L′ ⊆ K ′ such that L′ is of (−1)-type
and s = ρy, where ρ is the element of 〈L′〉 whose length relative to L′ is maximal. Defining
L := (L′)y gives s = ρL. Furthermore, L ⊆ K ⊆ R1, where K := (K ′)y and R1 := (R′)y = Rxy,
and FC(s) = 〈K ′〉 = 〈K ′〉y = 〈K〉.

Proposition 11.2. Let (W,S) be a Coxeter system with S finite, and let s ∈ S. Suppose
that s generates Z(FC(s)). Then one of the following holds:

(i) s is an intrinsic reflection of W,
(ii) s is a right-angled element of S.

Proof. Since FC(s) is a parabolic subgroup of W , there exist a subset J ⊆ S and an element
w ∈W such that FC(s) = w〈J〉w−1. Observe that this gives FC(sw) = 〈J〉. By Lemma 3.3,
since sw ∈ FC(sw), there exist v ∈ 〈J〉 and r ∈ J such that r = swv. Since Z(FC(s)) = 〈s〉
by hypothesis, it follows that Z(FC(r)) = Z(FC(s))wv = 〈s〉wv = 〈r〉. Moreover, r ∈ J , and
FC(r) = FC(sw)v = 〈J〉v = 〈J〉. Note that r and s belong to the same odd component M of S,
since they are conjugate in W .

Since r ∈ J and r ∈ Z(〈J〉) the set {r} is a component of J . Let J ′ = J \ {r}, the union of
the other components. Then FC(r) = 〈r〉 × 〈J ′〉. Note that |Z(〈J ′〉)| = 1, since |Z(FC(r))| = 2.

Suppose that s is not an intrinsic reflection of W . Then r is also not an intrinsic reflection
of W , since it is conjugate to s. Hence W has a Coxeter generating set R such that r /∈ RW. By
Lemma 11.1, replacing R by a conjugate of itself, we may assume that r = ρL and FC(r) = 〈K〉,
where L ⊆ K ⊆ R and L is of (−1)-type.

We now show that every x ∈ K \ L commutes with every y ∈ L. Let x ∈ K \ L be arbitrary.
Since `(x) = 1, where ` is length relative to R, clearly x is the minimal length element of the
double coset 〈L〉x〈L〉. Thus Proposition 3.1 gives 〈L〉 ∩ x〈L〉x−1 = 〈I〉, where I = L ∩ xLx−1,
which is the set of all y ∈ L that commute with x (since `(xyx) = 3 if o(yx) 6= 2). Since r is
central in FC(r) = 〈K〉 by hypothesis, r = xrx−1 ∈ 〈L〉 ∩ x〈L〉x−1 = 〈I〉. If I were a proper
subset of L this would contradict the fact that r is the longest element of 〈L〉. So I = L, and
we have proved our claim that all x ∈ K \ L commute with all y ∈ L. Thus L is a union of
components of K.

Suppose, for a contradiction, that L is not irreducible, and let L1 be a component of L. Since
L is of (−1)-type, so is L1, and the longest element of L1 is in the centre of 〈L〉, and hence
also in the centre of 〈K〉. This contradicts the fact that r is the only nontrivial element of
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Z(FC(r)) = Z(〈K〉). So L is irreducible, and hence is a component of K. Since ρL = r /∈ RW,
it follows that |L| > 1.

Since 〈L〉 is a subgroup of FC(r) and 〈J ′〉 is a normal subgroup of FC(r) of index 2, the group
X := 〈L〉 ∩ 〈J ′〉 is a normal subgroup of 〈L〉 of index at most 2. In fact, the index is exactly 2,
since r = ρL is in L but not in 〈J ′〉. Thus 〈L〉 = 〈r〉 ×X. As (〈L〉, L) is an irreducible spherical
Coxeter system, the group X is indecomposable, by Lemma 6.3. As X is a direct factor of
〈L〉, which is a direct factor of FC(r), the subgroup X is also a direct factor of FC(r). As it
is contained in the subgroup 〈J ′〉 of FC(r), it is a direct factor of 〈J ′〉. The latter is a finite
Coxeter group with trivial centre, and therefore a direct product of indecomposable Coxeter
groups, by Lemma 6.3. By Proposition 10.4 (Krull–Remak–Schmidt) these Coxeter groups are
the only indecomposable direct factors of 〈J ′〉. So X = 〈J1〉, where J1 is a component of J ′.

Note that |J1| > 1, since 〈J ′〉 has trivial centre, and that J1 is a component of J , since J ′

is a union of components of J . It follows now from Corollary 9.7 that J1 is an M -subsidiary
component of E(M), where M is the odd component containing r.

We now show that r is a right-angled element of S, that is, o(rt) ∈ {2,∞} for all t ∈ S \ {r}.
We know already that o(rt) = 2 for all t ∈ J ′ = J \ {r}, since r centralizes 〈J ′〉.

Let t ∈ S \ J be such that o(rt) 6=∞. Then t ∈ E(M), since r ∈M , and t /∈ J1, since J1 ⊆ J .
Since J1 is a component of E(M) it follows that t centralizes 〈J1〉 = X, and since X ⊆ 〈L〉 it
follows that X ⊆ 〈L〉 ∩ t〈L〉t−1, a parabolic subgroup of 〈L〉. Since X has index 2 in 〈L〉, it
follows that 〈L〉 ∩ t〈L〉t−1 is also normal in 〈L〉, and therefore must be the whole of 〈L〉 since
L is irreducible. Thus t normalizes 〈L〉, and hence centralizes ρL = r. So o(rt) = 2, as required.
Thus r is right-angled.

Since r is right-angled, it is clearly the only element of its odd component in S. Hence r = s,
and it follows that s is a right-angled element of S.

Proposition 11.3. Let (W,S) be a Coxeter system of finite rank and let s ∈ S. Suppose
that Z(FC(s)) = 〈s, t〉 for some t 6= s such that t is conjugate to s in W . Then s is an intrinsic
reflection of W .

Proof. By our assumptions the group Z(FC(s)) is elementary abelian of order 4, and its
three non-trivial elements are s, t and st = ts.

Let R ⊆W be a Coxeter generating set of W . We have to show that s ∈ RW , and by
Lemma 11.1 we may assume that FC(s) = 〈K〉 for some K ⊆ R.

Since |Z(FC(s))| = 4, exactly two components of K are of (−1)-type. If we denote these
components by P and Q, then Z(FC(s)) \ {1} = {ρP , ρQ, ρP∪Q} = {s, t, st}.

Since s and t are conjugate in W they must have the same rank relative to (W,R), and since
the rank of ρP∪Q is clearly the sum of the ranks of ρP and ρQ, it follows that {s, t} = {ρP , ρQ}.
Now by Lemma 3.11 we can deduce that 〈P 〉 and 〈Q〉 are conjugate subgroups. Furthermore,
since t 6= s we have ρP 6= ρQ, and it follows from Proposition 3.12 that |P | = |Q| = 1. Hence s
and t are in RW .

12. Proof of Theorem 1

Let (W,S) be a Coxeter system of finite rank, M an odd component of (W,S) and s ∈M . In
Proposition 9.1 we have established that s is not an intrinsic reflection of W if E(M) has a
subsidiary component of (−1)-type, which is the first claim in Theorem 1, and also the “only
if” implications in (ii), (iii) and (iv). That is, s is not an intrinsic reflection of W if C0(M) is
non-spherical and M has a C3-neighbour, or if C0(M) is spherical and is of one of the following
types: Cn (for n > 3), D2n (for n > 2), F4, H4, E8, I2(4n+ 2) (for n > 1), A5.
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Part (i) of Theorem 1 is the main result of [21]: if C0(M) is of type A1 and E(M) has no
subsidiary components of (−1)-type then s is an intrinsic reflection of W if and only if there is
no t ∈ S such that (s, t) is a blowing down pair for (W,S).

Hence it remains to establish the “if” implications of parts (ii), (iii) and (iv): if E(M) has
no subsidiary components of (−1)-type then s is an intrinsic reflection of W if C0(M) is
non-spherical and has no C3-neighbours, or if C0(M) is spherical and not of one of the types
mentioned above.

Accordingly, for the remainder of this section we assume that E(M) has no subsidiary
components of (−1)-type. Recall that s ∈M is an intrinsic reflection of W if and only if the
same holds for each t ∈M . Hence we are free to choose s to be whichever element of M is most
convenient. By Proposition 9.4 (ii) there exist s ∈M and L ⊆ S such that FC(s) = 〈L〉. So for
the remainder of this section we fix s and L so that this condition is satisfied. Recall that s ∈ L
and that L is a spherical subset of S.

Let Σ(M) denote the union of all M -subsidiary spherical components of E(M).

Proof of parts (ii) and (iii) of Theorem 1. Assume that C0(M) is spherical. Then C0(M) is a
component of L, and L = C0(M) ∪ Σ(M), by Proposition 9.6. Since Σ(M) has no components
of (−1)-type, we see that Z(FC(s)) = Z(〈L〉) = Z(〈C0(M)〉). Thus |Z(FC(s))| = 2 if C0(M) is
of (−1)-type, and |Z(FC(s))| = 1 otherwise.

If C0(M) is of type C2, H3, E7 or I2(4k) then applying Proposition 10.10 with (FC(s), L) in
place of (W,S) shows that s is an intrinsic reflection of FC(s), and thus an intrinsic reflection
of W, by Lemma 9.3. This completes the proof of (ii).

If C0(M) is not of (−1)-type and not of type A5 then applying Proposition 10.7 with
(FC(s), L) in place of (W,S) shows that s is an intrinsic reflection of FC(s), and an intrinsic
reflection of W, by Lemma 9.3. This completes the proof of (iii).

Proof of part (iv) of Theorem 1. Suppose that C0(M) is not spherical and that M has
no C3-neighbours. Let K := L ∩ C0(M). It follows from Proposition 9.6 that L = K ∪ Σ(M),
and there are three possibilities for K: either K = {s}, or K is of type C2, or K is of type
2A1 and K ⊆M . Note that Z(FC(s)) = Z(〈L〉) = Z(〈K〉), since E(M) has no M -subsidiary
components of (−1)-type.

Suppose that K = {s}, so that Z(FC(s)) = 〈s〉. Note that if s is a right-angled element of S
then C0(M) = M = {s}, contradicting the hypothesis that C0(M) is non-spherical. It follows
from Proposition 11.2 that s is an intrinsic reflection of W , as desired.

If K is of type C2 then |Z(FC(s))| = |Z(〈K〉)| = 2, and applying Proposition 10.10 with
(FC(s), L) in place of (W,S) shows that s is an intrinsic reflection of FC(s). So s is an intrinsic
reflection of W , as desired.

If K is of type 2A1 and K ⊆M , then there exists t ∈M such that t 6= s and st = ts, and
Z(FC(s)) = 〈s, t〉. Since s is conjugate to all elements of the odd component M , it follows that
t = sw for some w ∈W . Thus Proposition 11.3 applies, and we conclude that s is an intrinsic
reflection of W in this case as well.

13. Twist rigid Coxeter systems

13.1. Definitions and preliminary results

Let (W,S) be a Coxeter system. For each J ⊆ S we define J∗ := S \ (J ∪ J⊥). That is,
J∗ = { t ∈ S \ J | o(st) 6= 2 for some s ∈ J }. Set P(J) := { {x, y} ⊆ J | 2 6 o(xy) 6=∞}, and
recall from Definition 7.4 that P(J) is the edge set of ΠJ , the presentation diagram of (〈J〉, J).
A subset K of S is called an edge of (W,S) if K ∈ P(S).



INTRINSIC REFLECTIONS AND STRONG RIGIDITY Page 29 of 41

Note that if J ⊆ S is irreducible then J∗ = { a ∈ S \ J | J ∪ {a} is irreducible }. In general,
if J ⊆ S and a ∈ J∗ then the number of components of J ∪ {a} is no greater than the number
of components of J .

Definition 13.1. A Coxeter system is called twist rigid if the graph ΠJ∗ is connected for
each irreducible spherical subset J of S.

Remark. It is clear that a Coxeter system that is not twist rigid admits a proper twist.
Thus, by Proposition 4.6, such systems are not strongly rigid.

Proposition 13.2. Let (W,S) be a twist rigid Coxeter system and let K ⊆ S be irreducible
and spherical. Let s ∈ K be such that o(xs) =∞ for all x ∈ K∗. Then the following hold:

(i) S \K ⊆ s⊥ ∪ s∞;
(ii) S \K ⊆ t⊥ for every t ∈ K \ {s}.

Proof. Since K∗ ⊆ s∞ and S \K = K⊥ ∪K∗, it follows that S \K ⊆ s⊥ ∪ s∞. Thus (i)
holds. Since S \K = K⊥ ∪K∗, and clearly K⊥ ⊆ t⊥ for every t ∈ K \ {s}, the remaining task
is to show that K∗ ⊆ t⊥ for every t ∈ K \ {s}.

Assume, for a contradiction, that there exists t ∈ K \ {s} and x ∈ K∗ such that o(tx) 6= 2.
Let K ′ := K \ {s} and let J ⊆ K ′ be the irreducible component of (〈K ′〉,K ′) containing t.
Then clearly J ∪ {s} is irreducible, and therefore s ∈ J∗. As o(tx) 6= 2 and x ∈ S \K ⊆ S \ J ,
it follows that x ∈ J∗ as well. Because J is irreducible and spherical, and the system (W,S) is
twist rigid, the graph ΠJ∗ is connected. Let x = x0, x1, . . . , xk = s be a path of minimal length
from x to s in ΠJ∗ , and put y := xk−1. Note that y ∈ J∗ ⊆ S \ J⊥ ⊆ S \K⊥ (since J ⊆ K).

Assume, for a contradiction, that y ∈ K. Then J ∪ {y} is an irreducible subset of K ′ that
contains J properly, because y ∈ J∗ and y 6= s. As J was chosen as an irreducible component
of (〈K ′〉,K ′), this is a contradiction. So y /∈ K and hence y ∈ K∗, since y /∈ K⊥. Since we are
given that o(xs) =∞ for all x ∈ K∗, it follows that o(ys) =∞, contradicting the fact that y
and s are adjacent in ΠJ∗ .

Definition 13.3. Let (W,S) be a Coxeter system. An element s ∈ S is called a flexible
generator of (W,S) if the component of S \ s∞ containing s is spherical and contained in
(s∞)⊥ ∪ {s}. The flexible factor of a flexible generator s is the (spherical) component of S \ s∞
that contains s, and the type of a flexible generator is the type of its flexible factor.

If J is the flexible factor of a flexible generator s, and s is the i-th vertex of J (in the Bourbaki
numbering of the Coxeter diagram), then we also say that s is a flexible generator of type (X, i)
(where J is of type X).

Note that if J is a component of a Coxeter system (W,S) and J is spherical, then each s ∈ J
is a flexible generator of (W,S) and J is its flexible factor.

The following proposition is a reformulation of Definition 13.3.

Proposition 13.4. Let (W,S) be a Coxeter system, let s ∈ S and let J ⊆ S. Then s is a
flexible generator of (W,S) and J is its flexible factor if and only if the following hold:

(i) J is spherical and irreducible;
(ii) S \ J ⊆ s⊥ ∪ s∞;

(iii) S \ J ⊆ (J \ {s})⊥.
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Proof. Assume first that s is a flexible generator and J its flexible factor.
Since J is a component of S \ s∞ and spherical, it is certainly spherical and irreducible. So

(i) holds.
Since J is a component of S \ s∞ it follows that S \ s∞ ⊆ J⊥ ∪ J . But J⊥ ⊆ s⊥ since s ∈ J ,

and so S \ s∞ ⊆ s⊥ ∪ J . So (ii) holds.
Since J ⊆ (s∞)⊥ ∪ {s} it follows that J \ {s} ⊆ (s∞)⊥, or, equivalently, s∞ ⊆ (J \ {s})⊥.

But S \ s∞ ⊆ J⊥ ∪ J , and so S \ J ⊆ s∞ ∪ J⊥ ⊆ (J \ {s})⊥, since J⊥ ⊆ (J \ {s})⊥ is obvious.
Hence (iii) holds.

Now assume, conversely, that (i), (ii) and (iii) are satisfied. Since s /∈ s⊥ ∪ s∞, it follows
from (ii) that s ∈ J , and since J is spherical it follows from this that J ⊆ S \ s∞. But it
follows from (ii) and (iii) that S \ J ⊆ (s⊥ ∩ (J \ {s})⊥) ∪ s∞, that is, S \ J ⊆ J⊥ ∪ s∞. So
S \ s∞ ⊆ J⊥ ∪ J , and so J is a union of components of S \ s∞. Since J is irreducible, it is a
single component of S \ s∞.

To show that s is a flexible generator with J as its flexible factor, it remains to show
that J ⊆ (s∞)⊥ ∪ {s}. Since J ⊆ S \ s∞ it follows that s∞ ⊆ S \ J ⊆ (J \ {s})⊥, by (iii). So
J \ {s} ⊆ (s∞)⊥, which gives the required result.

In view of Proposition 13.4, Proposition 13.2 can be reformulated as follows.

Corollary 13.5. Let (W,S) be a twist rigid Coxeter system and K ⊆ S an irreducible
spherical subset, and let s ∈ K be such that K∗ ⊆ s∞. Then s is a flexible generator of (W,S)
and K is the flexible factor of s.

Proof. The assumption that K∗ ⊆ s∞ means precisely that o(sx) =∞ for all x ∈ K∗. Hence
we have S \K ⊆ s⊥ ∪ s∞ and S \K ⊆ t⊥ for all t ∈ K \ {s} by Proposition 13.2. So conditions
(ii) and (iii) of Proposition 13.4 are satisfied (with K in place of J), and since (i) is given the
desired conclusion follows.

The following definition simplifies the statement of Theorem 3.

Definition 13.6. Let (W,S) be a Coxeter system. A flexible pair of generators of (W,S)
is a pair (s, t) ∈ S × S such that s 6= t and

(i) s is a right-angled element of S,
(ii) t is a flexible generator of (W,S),
(iii) s∞ = t∞.

The type of the flexible pair (s, t) is the type of the flexible generator t.

Definitions 13.6, 7.6 and 7.5 immediately yield Proposition 13.7, in which types (Dn, n) and
(A3, 3) should be regarded as including types (Dn, n− 1) and (A3, 1).

Proposition 13.7. Let (W,S) be a Coxeter system, and suppose that (s, t) a flexible pair
of generators of (W,S) of type I2(n) or (Dn, n), for n odd and n > 5, or of type A2 or (A3, 3).
Then (s, t) is a proper blowing down pair for (W,S).

13.2. Some observations on twist rigid Coxeter systems

Lemma 13.8. Let (W,S) be a twist rigid Coxeter system and M ⊆ S an odd component of
(W,S) such that M∞ 6= ∅ and C0(M) is spherical. Then M = {s} for some s ∈ S such that s
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is a flexible generator of (W,S) with C0(M) as its flexible factor. In particular, s is either of
type A1 or C2, or else of type (Cn, n) or I2(2n) for some n > 3.

Proof. Since K := C0(M) is the component of S \M∞ that contains M , it follows that
K∗ = M∞. Thus K∗ ⊆ s∞ holds for those s ∈ K such that s ∈M . Since we are given that
(W,S) is twist rigid, it follows from Corollary 13.5 that each s ∈M is flexible with flexible
factor K. So K \ {s} ⊆ (S \K)⊥, by Proposition 13.4 (iii), and since M ⊆ C0(M) = K it follows
that M \ {s} ⊆ (S \ C0(M))⊥ ⊆ (M∞)⊥, since M∞ ⊆ S \ C0(M). This gives o(tx) = 2 for all
t ∈M \ {s} and x ∈M∞, although by definition o(tx) =∞ for all t ∈M and x ∈M∞. Since
M∞ 6= ∅ this forces M \ {s} = ∅, and so |M | = 1. Thus (〈C0(M)〉, C0(M)) is an irreducible
spherical system in which {s} is a singleton odd component. It follows that C0(M) is of type
A1 or I2(2n) (including C2 = I2(4)), or of type Cn with s as vertex number n.

Lemma 13.9. Let (W,S) be a twist rigid Coxeter system, M ⊆ S an odd component of
(W,S), and b ∈ C0(M) a C3-neighbour of M . Suppose that c ∈M and a ∈M satisfy o(bc) = 4
and o(ac) = 3, and let K := {a, c, b}. Then c is a flexible generator of (W,S) of type (C3, 2),
and K is the flexible factor of c.

Proof. By Lemma 8.3 the element a ∈M such that o(ac) = 3 is the only element of M with
o(ac) 6=∞. Furthermore, Lemma 8.3 also says that {a, c, b} is of type C3.

If e ∈ S \K and e ∈M then e ∈M \ {a, c}, and (N1) in Definition 8.2 yields o(ce) =∞.
If e ∈ S \K and e /∈M then e ∈ S \ (M ∪ {b}), and (N2) in Definition 8.2 yields that either
o(ce) =∞ or e ∈ K⊥. So S \K ⊆ c∞ ∪K⊥. That is, K∗ = S \ (K ∪K⊥) ⊆ c∞. By Corollary
13.5 it follows that c is a flexible generator of (W,S) and that K is its flexible factor.

Lemma 13.10. Let (W,S) be a twist rigid Coxeter system and let (z, a) be a blowing down
pair for (W,S). Let C be the component of S \ z∞ that contains a, and let b := ρCaρC . Then
(z, a) is a proper blowing down pair for (W,S). Furthermore, if t ∈ {a, b} is such that z∞ ⊆ t∞,
then (z, t) is a flexible pair of generators of (W,S), and C is the flexible factor of t.

Proof. Since z is right-angled J := z∞ = S \ ({z} ∪ z⊥) = z∗. So the graph ΠJ is connected,
as (W,S) is twist rigid. Therefore z∞ ⊆ a∞ or z∞ ⊆ b∞, by (iii) in Definition 7.5. Thus (z, a)
is a proper blowing down pair for (W,S).

Let t ∈ {a, b} be such that z∞ ⊆ t∞. Note first that S \ z∞ ⊆ C ∪ C⊥, since C is a component
of S \ z∞. Since t ∈ {a, b} ⊆ C, and C is spherical, we see that C ⊆ S \ t∞. Furthermore, t ∈ C
also gives C⊥ ⊆ t⊥ ⊆ S \ t∞. Thus S \ z∞ ⊆ S \ t∞, and so it follows that z∞ = t∞.

As S \ z∞ ⊆ C ∪ C⊥ we have C∗ = S \ (C ∪ C⊥) ⊆ z∞ = t∞. Since C is irreducible and
spherical it follows from Corollary 13.5 that t is a flexible generator of (W,S) with flexible
factor C.

14. Angle compatible Coxeter generating sets

14.1. Definitions and basic observations

We recall that an edge of a Coxeter system (W,S) is an edge of its presentation diagram.
That is, an edge is a set {s, t} ⊆ S such that s 6= t and the visible subgroup 〈s, t〉 is finite.
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Definition 14.1. Let (W,S) be a Coxeter system. A subset X of W is called S-compatible
if Xw ⊆ S for some w ∈W .

Thus x ∈W is a reflection of (W,S) if and only if {x} is S-compatible. Moreover, if R is a
Coxeter generating set for W then R is S-compatible if and only if Rw = S for some w ∈W ,
since no proper subset of S generates W .

Lemma 14.2. Let (W,S) be a Coxeter system. If R ⊆ SW and 〈R〉 = W , then RW = SW .

Proof. Since R ⊆ SW it follows that RW ⊆ SW, and it suffices to prove that S ⊆ RW. Let
s ∈ S and M the odd component of S containing s. It follows from the Coxeter presentation
that there is a homomorphism ϕ : W → {±1} with ϕ(t) = −1 for all t ∈M and ϕ(t) = 1 for
all t ∈ S \M . Clearly ϕ is surjective, since ϕ(s) = −1. Since 〈R〉 = W there must be some
r ∈ R with ϕ(r) = −1. Since R ⊆ SW there is a w ∈W such that s′ := w−1rw ∈ S, and since
ϕ(s′) = ϕ(r) = −1 it follows that s′ ∈M . So s is conjugate to s′, and s ∈ RW , as required.

Lemma 14.3. Let (W,S) be a Coxeter system and let R ⊆W be a Coxeter generating set for
W . If each edge of (W,S) is R-compatible, then SW = RW and each edge of R is S-compatible.

Proof. Let s ∈ S. If s is not contained in an edge of (W,S), then CW (s) = 〈s〉 by the main
result of [2] (or by Lemma 3.2). By Proposition 3.8 every involution has the form w−1ρJw for
some w ∈W and some J ⊆ S of (−1)-type, and thus commutes with all the reflections w−1sw
for s ∈ J . In particular, the centralizer of any involution x that is not a reflection contains 〈x〉
properly, because |J | > 1 if x is not a reflection. Hence s ∈ RW if s is not contained in any edge
of (W,S). If s is contained in an edge {s, t} of (W,S), then s ∈ {s, t} ⊆ RW by the hypothesis.
So s ∈ RW in either case, and so SW = RW by Lemma 14.2. The other assertion follows from
Corollary A.4 in [5].

Definition 14.4. Two Coxeter generating sets R,S of a Coxeter group W are called
reflection equivalent if SW = RW , and angle compatible if each edge of (W,S) is R-compatible.

Our aim is now to collect information about R-compatible edges. We first recall some well
known facts about finite dihedral groups.

Lemma 14.5. Let (W,S) be a Coxeter system of type I2(n), and let S = {s, t}.
(i) Suppose that n ∈ {2, 3, 4, 6} and that a, b ∈ SW satisfy W = 〈a, b〉. Then there exists

an element w ∈W such that {a, b} = Sw.
(ii) Suppose that n = 5 or n > 7. Then W has an automorphism α satisfying α(s) = s and

α(t) ∈ SW, and α(S) /∈ {Sw | w ∈W }.

Proof. If n = 5 or n > 7 then there is a positive integer k such that 1 < k < n− 1 and k
is coprime to n. Hence if we define t′ = s(st)k then t′ is a reflection such that st′ = (st)k has
order n, and there is an automorphism α satisfying α(s) = s and α(t) = t′. We leave it to the
reader to complete the proof of (ii) by checking that α(S) is not conjugate to S, and also to
prove (i).
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Remark. The set {s, t′} defined in the proof of Lemma 14.5 (ii) is a Coxeter generating set
for W that is not angle compatible with S = {s, t}, since the unique edges of the two systems are
not conjugate subsets of W . This example explains our terminology: in the standard geometrical
representation of W the elements s and t are represented by reflections in lines that intersect at
an angle of π/n, while s and t′ are represented by reflections in lines that intersect at an angle
of kπ/n.

Lemma 14.6. Let (W,S) be a Coxeter system and R ⊆W a Coxeter generating set such
that SW = RW . Let J = {s, t} be an edge of (W,S). Then the following hold.

(i) There exists an edge K of (W,R) such that 〈J〉w = 〈K〉 for some w ∈W .
(ii) If o(st) ∈ {2, 3, 4, 6} then J is R-compatible.

Proof. Since 〈J〉 is finite and J ⊆ RW it follows from Proposition 3.7 that there exist a
spherical subset K of R and a w ∈W such that |K| 6 |J | and 〈J〉w ⊆ 〈K〉. Since |J | = 2 and
|〈J〉| > 4 it follows that |K| = 2, and so K is an edge of (W,R).

By a symmetrical argument there is an edge L of (W,S) and a v ∈W such that 〈K〉v ⊆ 〈L〉,
Thus Jwv ⊆ 〈J〉wv ⊆ 〈K〉v ⊆ 〈L〉, and as |J | = |L| = 2 equality must hold, by Lemma 3.3. Hence
〈J〉w = 〈K〉.

Suppose now that o(st) ∈ {2, 3, 4, 6}. By (i) there exist an edge K of (W,R) and a w ∈W
such that 〈J〉w = 〈K〉. Thus 〈wKw−1〉 = 〈J〉, and wKw−1 ⊆ J〈J〉 by Proposition 3.4. By
Lemma 14.5 (i), it follows that there exists v ∈ 〈J〉 such that Jv = wKw−1, and hence Jvw = K.
Thus J is R-compatible.

Proposition 14.7. Let (W,S) be a Coxeter system that is of type H3 or H4, or of type
I2(n) for n = 5 or n > 7. Let a ∈ S and L := S \ {a}. Then W has an automorphism α such
that 〈α(L)〉 = 〈L〉 and α(S) ⊆ SW, and α(S) /∈ {Sw | w ∈W }.

Proof. If (W,S) is of type I2(5) or I2(n) for n > 7 then the claim follows from Lemma 14.5 (ii).
Thus we are left with the case that (W,S) is of type H3 or H4.

By assertions (10) and (11) of [10, Theorem 31], there exists an automorphism β of W such
that β(S) ⊆ SW and β(S) /∈ {Sw | w ∈W }. By Proposition 32 in [10] the group β(〈L〉) is a
parabolic subgroup of W . Thus there exist v ∈W and J ⊆ S such that (γvβ)(〈L〉) = 〈J〉, where
γv is the inner automorphism of W corresponding to v. As 〈J〉 is isomorphic to 〈L〉, and 〈L〉 is
a maximal proper subset of S, it follows that L = J , as is readily checked from the H3 and H4

diagrams. So the automorphism α := γvβ has the required properties.

14.2. Angles in Coxeter systems

We collect here the results from [16] that we need. It is appropriate to point out that the
notation and terminology we use differs slightly from that used in [16]. In particular, if S and
R are reflection equivalent Coxeter generating sets for the group W, then an R-compatible edge
of (W,S) was called sharp-angled with respect to R in [16]. Furthermore, if K ⊆ S then we
shall use the notation K(∞) for the subset of S that was denoted by K∞ in [16].

Notation. If (W,S) is a Coxeter system and K ⊆ S, then K(∞) :=
(⋃

s∈K s
∞) \K.

Recall that by definition K∗ = S \ (K ∪K⊥). Thus K(∞) ⊆ K∗.
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Definition 14.8. Let (W,S) be a Coxeter system. If K is a subset of S then K is called
2-spherical if o(st) 6=∞ for all s, t ∈ K, and is called strongly 2-spherical if it is 2-spherical,
irreducible and not spherical.

Proposition 14.9. Let (W,S) be a Coxeter system, J := {r, s} an edge of (W,S), and
R ⊆ SW another Coxeter generating set for W . Then the following hold.

(i) If there is a strongly 2-spherical subset K of S containing J then J is R-compatible.
(ii) Suppose that J is not R-compatible, that K ⊆ S is an irreducible, spherical subset of

S containing J , and that L is a connected component of ΠM , where M = K(∞). Then
there is an a ∈ K such that L ⊆ a∞.

Proof. Since (i) follows immediately from [16, Theorem 5.9], we have only to prove (ii). So
we assume that J is not R-compatible, and K and L satisfy the hypotheses of (ii).

By (ii) in Lemma 14.6 we have o(rs) > 5. Since K ⊆ S is spherical and irreducible and
contains r and s, it follows from the classification of spherical systems that either |K| = 2, in
which case K = {r, s} = J , or else K is of type H3 or H4.

By [16, Proposition 8.4], the subset J is a ∆-edge of S, in the sense of [16, Definition 8.3].
In the language of [16], the claim in (ii) is that K is a flexible subset of S. (For the definition
of this see [16, Subsection 2.6].)

If K = J and o(rs) > 5 then our claim follows from Proposition 6.1 of [16]. (For the definition
of a Θ-edge see [16, Definition 4.5].)

If K = J and o(rs) = 5 then our claim follows from Lemma 9.1 of [16].
If K is of type H3 or H4 then our claim follows from Proposition 9.3 of [16] or Proposition 9.7

of [16] (respectively).

14.3. Angles in twist rigid Coxeter systems

Lemma 14.10. Let (W,S) be a Coxeter system, let R ⊆ SW be a Coxeter generating set
of W , and let J = {r, s} ⊆ S be an edge that is not R-compatible. Let K be an irreducible
spherical subset of S that contains J and is not contained properly in any irreducible spherical
subset of S. Then the following hold:

(i) K(∞) = K∗;
(ii) if (W,S) is twist rigid, then there is an a ∈ K such that a is flexible generator of (W,S)

with flexible factor K.

Proof. Let x ∈ K∗. As K is irreducible, it follows that L := K ∪ {x} is irreducible, and as
K is a maximal irreducible spherical subset of S it follows that L is not spherical. Therefore
either x ∈ K(∞) or L is strongly 2-spherical. As L contains J the latter is not possible in view
of Proposition 14.9 (i). Thus K∗ ⊆ K(∞), and we conclude that K∗ = K(∞), since the reverse
inclusion is clear from the definitions.

Assume now that (W,S) is twist rigid. As K is irreducible and spherical, it follows from the
definition of twist rigidity that the graph ΠK∗ is connected. Hence, by (i), the graph ΠK(∞)

has only one connected component. Thus it follows from Proposition 14.9 (ii) that there exists
an a ∈ K such that K∗ ⊆ a∞, and an application of Corollary 13.5 completes the proof.

Proposition 14.11. Let (W,S) be a twist rigid Coxeter system and R ⊆ SW a Coxeter
generating set for W . Let J = {r, s} ⊆ S be an edge that is not R-compatible. Then J is
contained in a unique maximal irreducible spherical subset K of S. Moreover, some element
a ∈ K is a flexible generator of (W,S) with flexible factor K.
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Proof. Choose K ⊆ S to be a maximal irreducible spherical subset containing J . By
Lemma 14.10 (ii), some a ∈ K is a flexible generator of (W,S) with flexible factor K.

Let c ∈ K and let d ∈ S be such that 2 < o(cd) <∞. Since S \K ⊆ c∞ ∪ c⊥ it follows that
d is also in K. This shows L ⊆ K for each irreducible spherical subset L of S that contains J .
Thus K is unique.

15. Proof of Theorem 2

Proposition 15.1. Let (W,S) be a Coxeter system, let K ⊆ S, and let s ∈ K be a flexible
generator of (W,S) with flexible factor K. Suppose that α is an automorphism of 〈K〉 such
that α(K) ⊆ K〈K〉 and α(K \ {s}) ⊆ 〈K \ {s}〉. Then there exists an automorphism β of W
such that β |〈K〉= α and β(r) = r for all r ∈ S \K. Moreover, β(S)W = SW , and if α(K) is
not conjugate to K in 〈K〉 then β(S) is not conjugate to S in W .

Proof. Let f : S →W be defined by f(r) = α(r) for all r ∈ K and f(r) = r for all r ∈ S \K.
We show that W has an endomorphism β such that β(r) = f(r) for all r ∈ S. Since S is a
Coxeter generating set for W , it suffices to check that (f(r)f(t))o(rt) = 1 for all r, t ∈ S such
that o(rt) 6=∞. Furthermore, if r and t are both in K or both in S \K then it is obvious that
f(r)f(t) and rt have the same order. Hence we may assume that r ∈ K and t ∈ S \K, so that
f(r) = α(r) and f(t) = t, and our task is to show that if o(rt) 6=∞ then (α(r)t)o(rt) = 1.

Let r ∈ K and t ∈ S \K be such that o(rt) 6=∞. Since K is the flexible factor of s, it follows
from Definition 13.3 and Proposition 13.4 that S \K ⊆ K⊥ ∪ s∞ and that K \ {s} ⊆ (s∞)⊥.
Suppose first that t /∈ s∞, and observe that o(rt) = 2, since t ∈ K⊥ and r ∈ K. Furthermore, t
commutes with all elements of 〈K〉, since it commutes with all elements of K. In particular, t
commutes with α(r), since r ∈ K and α is an automorphism of 〈K〉. So (α(r)t)2 = 1, as required.
On the other hand, suppose that t ∈ s∞. Then r 6= s, since o(rt) 6=∞. So r ∈ K \ {s} ⊆ (s∞)⊥,
and again it follows that o(rt) = 2. Furthermore, t commutes with all elements of 〈K \ {s}〉,
since it commutes with all elements of (s∞)⊥, and, in particular, it commutes with α(r) since
α(K \ {s}) ⊆ 〈K \ {s}〉. So again (α(r)t)2 = 1, as required. Hence W has an endomorphism β
extending the map f .

It is clear that β|〈K〉 = α. As 〈K〉 is finite group, there exists an m > 1 such that αm is the
identity on 〈K〉. Thus βm(r) = r for all r ∈ K, and hence for all r ∈ S. So βm is the identity
on W , and therefore β is an automorphism. As β(S) = β(S \K) ∪ β(K) = S \K ∪ α(K) and
α(K) ⊆ K〈K〉 ⊆ SW , we have β(S) ⊆ SW . Thus β(S)W = SW , by Lemma 14.2. For the final
assertion, suppose that β(S) is conjugate to S, so that β(S) = Sw for some w ∈W . Then
β(K) = Jw for some J ⊆ S, and Jw = α(K) ⊆ 〈K〉. By Proposition 3.3 there exists an element
v ∈ 〈K〉 such that α(K)v = Jwv ⊆ K, and since |α(K)| = |K| it follows that α(K) is conjugate
to K in 〈K〉.

Corollary 15.2. Let (W,S) be a Coxeter system, and suppose that (W,S) has a flexible
generator s of type H3 or H4, or I2(n) for n = 5 or n > 7. Then W has an automorphism β
such that β(S) ⊆ SW and β(S) /∈ {Sw | w ∈W }. Thus (W,S) is not strongly reflection rigid.

Proof. Let K be the flexible factor of s, and let J := K \ {s}. By Proposition 14.7 there is an
automorphism α of 〈K〉 satisfying 〈α(J)〉 = 〈J〉 and α(K) ⊆ K〈K〉, and α(K) /∈ {Kv | v ∈ 〈K〉 }.
Applying Proposition 15.1 completes the proof.

The following result of Caprace and Przytycki is Theorem 1.1 in [5].
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Proposition 15.3. Let R and S be angle compatible Coxeter generating sets for a group W .
If (W,S) is twist rigid, then R = Sw for some w ∈W .

Proof of Theorem 2. Let (W,S) be a twist rigid Coxeter system of finite rank.
If (W,S) has a flexible generator of type H3 or H4, or I2(n) for n = 5 or n > 7, then (W,S)

is not strongly reflection rigid, by Corollary 15.2. Thus if (W,S) is strongly reflection rigid then
(W,S) satisfies conditions (i) and (ii) of Theorem 2.

Conversely, suppose that (W,S) is not strongly reflection rigid. Since it is twist rigid, by
hypothesis, it follows from Proposition 15.3 that W has a Coxeter generating set R ⊆ SW that
is not angle compatible with S. So there is an edge J = {s, t} of (W,S) such that J is not R-
compatible. By Proposition 14.11 it follows that there is a unique maximal irreducible spherical
subset K of S that contains J ; moreover, there is an a ∈ K such that a is a flexible generator
of (W,S) and K is its flexible factor. As J is not R-compatible it follows from Lemma 14.6 (ii)
that o(st) = 5 or o(st) > 7. As K is an irreducible spherical subset of S containing J it follows
that K is of type H3 or H4, or of type I2(n) for n = 5 or n > 7. So either condition (i) of
Theorem 2 is not satisfied, or else condition (ii) of Theorem 2 is not satisfied.

16. Proof of Theorem 3

Lemma 16.1. Let (W,S) be a Coxeter system. Then (W,S) is not strongly rigid if any of
the following hold.

(PT) The system (W,S) admits a proper twist.
(MC) The generating set S has a mutable odd component.

(i) There is a flexible generator of type H3 or H4;
(ii) There is a flexible generator of type I2(n) for some n > 5;
(iii) There is a flexible generator of type (Cn, n) for some n > 3;
(iv) There is a flexible generator of type (C3, 2);
(v) There is a flexible pair of type (Dn, n) or (Dn, n− 1) with n odd and n > 5;

(vi) There is a flexible pair of type A2 or of type (A3, 1) or (A3, 3);
(vii) There is an irreducible component of type A5.
(viii) The system (W,S) is of type F4, E8 or D2n for some n > 2.

Proof. If (W,S) admits a proper twist it is not strongly rigid, by Propositions 4.5 and 4.6.
If S has a mutable odd component M , then the elements of M are not intrinsic reflections of

W , by Proposition 5.3. Thus (W,S) is not strongly rigid in this case.
If there exists a flexible generator of type H3 or H4, or I2(n) for n = 5 or n > 7, then (W,S)

is not strongly reflection rigid by Corollary 15.2. Thus (W,S) is not strongly rigid. If there
exists a flexible generator s of type I2(6), then s is a blowing up generator of (W,S), and by
Corollary 7.2 it follows that s is not an intrinsic reflection of (W,S). Thus (W,S) is not strongly
rigid in this case as well. Thus, if either (i) or (ii) hold, then (W,S) is not strongly rigid.

Suppose that s is a flexible generator of type (Cn, n), with n > 3. Then M := {s} is the odd
component of (W,S) containing s, and C0(M) is the flexible factor of s. As C0(M) is of type
Cn with n > 3, it follows from Theorem 1 (ii) that s is not an intrinsic reflection of (W,S).
Thus if (iii) holds then (W,S) is not strongly rigid.

Suppose that s is a flexible generator of type (C3, 2), and let K = {a, s, b} be the flexible factor
of s, with o(as) = 3 and o(sb) = 4. Then M = {a, s} is the odd component of (W,S) containing
s, and b is a C3-neighbour of M . Note also that s∞ ⊆ C0(M), since s∞ ⊆ (K \ {s})⊥ ⊆ a⊥.
If s∞ = ∅ then K is a component of S, and it follows from Theorem 1 (ii) that s is not an
intrinsic reflection of (W,S). If s∞ 6= ∅ then C0(M) is non-spherical, and Theorem 1 (iv) tells
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us that s is not an intrinsic reflection of (W,S). So, in either case, (W,S) is not strongly rigid.
Thus if (iv) holds then (W,S) is not strongly rigid.

Suppose that (z, s) is a flexible pair of type A2, or of type (A3, 3) or (A3, 1), or of type
(Dn, n) or (Dn, n− 1) for some odd number n > 5. Then (z, s) is a blowing down pair for (W,S),
by Proposition 13.7, and therefore the generator z is not an intrinsic reflection of (W,S), by
Theorem 1 (i). Thus if (v) or (vi) hold then (W,S) is not strongly rigid.

Suppose that there exists an irreducible component J of (W,S) of type A5. Then J is an
odd component of (W,S), and we have J = C0(J). Hence s ∈ J is not an intrinsic reflection of
〈J〉, by Theorem 1 (iii). Thus if (vii) holds then W is not strongly rigid.

If (W,S) is of type F4, E8 or D2n for some n > 2, then no element of S is an intrinsic
reflection of W , by Proposition 6.5. Thus if (viii) holds then (W,S) is not strongly rigid.

Proof of Theorem 3. It follows from Lemma 16.1 that the conditions (TR), (NM) and
(i)–(viii) of Theorem 3 must all hold if (W,S) is strongly rigid, and our remaining task is to
show that if they do all hold then (W,S) is indeed strongly rigid. Accordingly, we assume
throughout this proof that (W,S) is a twist rigid Coxeter system that has no mutable odd
components and satisfies conditions (i)–(viii) of Theorem 3.

As (W,S) is twist rigid and satisfies (i) and (ii), it follows from Theorem 2 that (W,S) is
strongly reflection rigid. Thus it suffices to show that each s ∈ S is an intrinsic reflection of W .

Let s ∈ S and let M be the odd component of S containing s. Since S has no mutable odd
components, M is not mutable. Our aim is to show that s is an intrinsic reflection of W .

We distinguish four cases.

Case 1. Suppose that |C0(M)| = 1, that is, s is a right-angled element of S.
Assume, for a contradiction, that s is not an intrinsic reflection of (W,S). By Theorem 1 (i),

there exists an a ∈ S such that (s, a) is a blowing down pair for (W,S). As (W,S) is twist rigid
by hypothesis, it follows by Lemma 13.10 that (s, a) is a flexible pair. By Definitions 7.5 and 7.6
the flexible pair (s, a) must be of type (Dn, n) (or (Dn, n− 1)) or I2(n) for some odd number
n > 5, or of type (A3, 3) (or (A3, 1)) or A2. If it is of type (Dn, n) or (Dn, n− 1) for n > 5 then
(W,S) does not satisfy condition (v) of Theorem 3, contrary to our hypotheses. Similarly, if it is
of type A2 or of type (A3, 3) or (A3, 1) then condition (vi) of Theorem 3 is not satisfied, contrary
to our hypotheses. If (s, a) is a flexible pair of type I2(n) for some n > 5, then a is a flexible
generator of type I2(n) with n > 5, and condition (ii) of Theorem 3 is not satisfied, contrary to
our hypotheses. Since all cases are impossible, it follows that s is an intrinsic reflection of W .

Case 2. Suppose that C0(M) is spherical of rank at least 2, and M∞ = ∅.
By their definitions, E(M) = S \M∞, and C0(M) is a component of E(M). Thus, by the

hypotheses of this case, C0(M) is a spherical component of S of rank at least 2. Put J := C0(M),
and suppose first that J is of (−1)-type.

Since J is a spherical component of S, it is immediate from Definition 13.3 that every element
of J is a flexible generator of (W,S). Since (i), (ii) and (iii) of Theorem 3 are assumed to hold,
J is not of type H3, H4, I2(n) with n > 5, or Cn with n > 3. Since J is irreducible, of rank at
least 2, and of (−1)-type, the remaining possibilities are C2, F4, E7, E8, and D2n for n > 2.

Our aim is to show that s is an intrinsic reflection of W , and this will follow from (ii) of
Theorem 1 if J is of type C2 or E7. Thus it will suffice to show that J cannot be of type F4,
E8, or D2n for n > 2.

Suppose that J is of type F4, E8, or D2n for n > 2. Suppose, for a contradiction, that J 6= S,
and let r ∈ S \ J . Let M ′ be the odd component of S containing r. Since J ⊆ r⊥ ⊆ E(M ′) it
follows that J is a component of E(M ′) (since it is a component of S), and since r /∈ J it follows
that J is an M ′-subsidiary component of E(M ′). Thus E(M ′) has an M ′-subsidiary component
of (−1)-type, and hence M ′ is mutable, by definition. This contradicts the hypothesis that
(W,S) has no mutable odd components.
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Thus S = J , and so (W,S) is an irreducible spherical system of type F4, E8, or D2n for n > 2.
This contradicts our hypothesis that condition (viii) of Theorem 3 holds. So we have shown
that if J is of (−1)-type then it must be of type C2 or E7, and hence s must be an intrinsic
reflection of W, as required.

If J is not of (−1)-type then the required conclusion that s is an intrinsic reflection of W
follows immediately from Theorem 1 (iii), since our hypothesis that condition (vii) of Theorem 3
is satisfied ensures that J is not of type A5.

Case 3. Suppose that C0(M) is spherical of rank at least 2, and M∞ 6= ∅.
As (W,S) is twist rigid, it follows from Lemma 13.8 that M = {s} and that s is a flexible

generator of (W,S) whose flexible factor is C0(M). As |C0(M)| > 1, it follows that s is of type
I2(2n) for some n > 2 (including C2 = I2(4)) or of type (Cn, n) for some n > 3. In view of
condition (iii) the latter case is not possible, and in view of condition (ii) the former case is not
possible with n > 2. So s is flexible generator of type C2. It follows that C0(M) is of type C2,
and as M is not mutable it follows from Theorem 1 (ii) that s is an intrinsic reflection of W .

Case 4. Suppose that C0(M) is non-spherical.
Suppose that M has a C3-neighbour. As (W,S) is twist rigid, it follows from Lemma 13.9

that there is a flexible generator c of (W,S) of type (C3, 2), contradicting the hypothesis that
condition (iv) of Theorem 3 holds. Thus M has no C3-neighbours, and, as M is not mutable, it
follows from Theorem 1 (iv) that s is an intrinsic reflection of (W,S).

Since the four cases above are exhaustive, this completes the proof that if conditions (TR),
(NM) and (i)–(viii) are satisfied then all elements of S are intrinsic reflections of W. This in
turn completes the proof of Theorem 3.

17. Concluding remarks on strongly rigid Coxeter systems

Our Theorem 3 provides a characterization of strongly rigid Coxeter systems in terms of their
diagrams. In this final section we discuss several results about strong rigidity. For ease of
reference we record those results that concern the most frequently discussed classes of Coxeter
systems. Most of these results were known before, and we mention the relevant references in
these cases. Furthermore, we comment on the logical dependence of some of these results. In
this section all Coxeter systems are assumed to have finite rank.

17.1. Spherical Coxeter systems

The following proposition is a consequence of Theorem 3. Of course, it could be proved at
much lesser cost by deducing it directly from the results in Section 6. We also remark that the
irreducibility assumption in the proposition is not a severe restriction, in view of the discussion
in the next subsection. It is merely convenient for obtaining a concise statement.

Proposition 17.1. Let (W,S) be an irreducible spherical Coxeter system. Then (W,S) is
strongly rigid if and only if one of the following holds:

(i) (W,S) is of type An for some n 6= 5;
(ii) (W,S) is of type Dn for some odd n > 5;
(iii) (W,S) is of type C2, E6 or E7.

17.2. Reducible Coxeter systems

Let (W,S) be a reducible Coxeter system and suppose that J ⊂ S is an irreducible component
of (−1)-type. Let s ∈ S \ J and let M be the odd component of (W,S) containing s. Then J is
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a subsidiary component of E(M) of (−1)-type and therefore s is not an intrinsic reflection of
W by Proposition 5.3. Combining these considerations with Proposition 17.1 one obtains the
following.

Proposition 17.2. Let (W,S) be a Coxeter system such that the centre of W is non-trivial.
Then (W,S) is strongly rigid if and only if (W,S) is of type A1, C2 or E7.

Let (W,S) be a Coxeter system. For investigating strong rigidity of (W,S) it is rather
harmless to assume that W has trivial centre, in view the previous proposition. Suppose now
that W has trivial centre. Then, by the main result of [23], the decomposition of (W,S) into
its irreducible components is a Remak decomposition of W , and by Proposition 8 in [9] the
Remak decomposition is unique. Thus we obtain the following.

Proposition 17.3. Let (W,S) be a Coxeter system such that the centre of W is trivial.
Then (W,S) is strongly rigid if and only if each of its irreducible components is strongly rigid.

17.3. Strongly 2-spherical Coxeter systems

A Coxeter system (W,S) is called 2-spherical if the order of st is finite for all s, t ∈ S. It is
called strongly 2-spherical if it is 2-spherical and irreducible, and W is an infinite group.

Proposition 17.4. A strongly 2-spherical Coxeter system is strongly rigid.

Remark. The proposition follows by combining main results of [4] and [11]. In fact, these
are the references where the result appears in the literature for the first time. A more conceptual
proof of the result is given in [6] and we comment on this in more detail in the subsection on
bipolar Coxeter groups below. Of course, the result would also follow from our Theorem 3. But,
as we already pointed out in Subsection 2.4, Proposition 17.4 is used in the proof of Theorem 3.

17.4. Right-angled Coxeter systems

A Coxeter system (W,S) is called right-angled if o(st) ∈ {1, 2,∞} for all s, t ∈ S. For s ∈ S
let s⊥ := { t ∈ S | o(st) = 2 } and s∞ := { t ∈ S | o(st) =∞}.

Proposition 17.5. A right-angled Coxeter system (W,S) is strongly rigid if and only if
the following conditions are both satisfied for each s ∈ S.

(i) For every t ∈ s⊥ there exists u ∈ s⊥ such that o(tu) =∞.
(ii) For all t, u ∈ s∞ there exist a positive integer k and t = t0, t1, . . . , tk = u in s∞ such

that ti−1ti = titi−1 for all i ∈ {1, 2, . . . , k}.

This follows from [3, Theorem 4.10].

17.5. Affine and compact hyperbolic Coxeter systems

For each positive integer n let En denote n-dimensional Euclidean space and let Hn denote
n-dimensional hyperbolic space.
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Definition 17.6. A Coxeter system (W,S) is called affine if there is a positive integer
n such that W embeds in Isom(En) as a discrete and cocompact reflection subgroup, with
the elements of S as reflections. It is called compact hyperbolic if there is a positive integer n
such that W embeds in Isom(Hn) as a discrete and cocompact reflection subgroup, with the
elements of S as reflections.

Proposition 17.7. Let (W,S) be an affine or a compact hyperbolic Coxeter system. Then
(W,S) is strongly rigid.

Remark. The proposition is a consequence of the Main Theorem stated in the introduction
of [7]. It asserts that any two Coxeter generating sets of a Coxeter group W that admits a
proper and cocompact action on a contractible manifold are conjugate in W . An alternative
proof of the Main Theorem in [7] is given in [6].

There is a well known classification of affine Coxeter systems in terms of their diagrams.
Using this classification, it follows from our Theorem 3 that affine Coxeter systems are strongly
rigid. In the compact hyperbolic case the situation is different. It seems that a classification of
all compact hyperbolic Coxeter systems in terms of their diagrams is out of reach. Thus, in the
compact hyperbolic case Proposition 17.7 cannot deduced from our Theorem 3 in this way.

17.6. Bipolar Coxeter systems

Bipolar Coxeter systems have been introduced by Caprace and Przytycki in [6]. They call a
Coxeter system (W,S) bipolar if its Cayley graph satisfies a certain geometric condition. The
following proposition summarizes some of the results in [6]. It underlines in particular that
bipolar Coxeter systems are most relevant in the context of strong rigidity.

Proposition 17.8. Let (W,S) be a Coxeter system. Then the following hold.
(i) If (W,S) is bipolar, then (W,S) is strongly rigid.

(ii) If (W,S) is strongly 2-spherical, then (W,S) is bipolar.
(iii) If W admits a proper and cocompact action on a contractible manifold, then (W,S) is

bipolar.

We make the following remarks on bipolar Coxeter systems and strong rigidity.

(1) As we have already mentioned, the results in [6] provide alternative proofs for Propositions
17.4 and 17.7. We can now make this more precise: combining assertions (i) and (ii)
of Proposition 17.8 yields Proposition 17.4, while combining assertions (i) and (iii) of
Proposition 17.8 yields the Main Theorem of [7], and hence also Proposition 17.7.

(2) A further major result on bipolar Coxeter systems is Theorem 1.2 in [6]. It provides a
characterization of bipolar Coxeter systems in terms of their diagrams. It is not hard to verify
that the conditions characterizing bipolar Coxeter systems are stronger than the conditions
in our Theorem 3 that characterize strongly rigid Coxeter systems. Thus, assertion (i) of
Proposition 17.8 follow by combining our Theorem 3 with Theorem 1.2 in [6].

(3) As already pointed out at the end of the introduction of [6], the converse of assertion (i)
in Proposition 17.8 does not hold. It is not too hard to produce examples of Coxeter systems
that do satisfy Conditions (TR), (MN) and (i)–(viii) of our Theorem 3 but do not satisfy
conditions (a), (b) and (c) of Theorem 1.2 in [6]. One such example is Example (∗∗) given on
page 37 of [6]. (Note, however, that Example (∗) given on page 37 of [6] is not strongly rigid.)
It would be interesting to find a geometric condition for the Cayley graph of a Coxeter system
that is weaker than bipolarity, but still implies strong rigidity.
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