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Abstract

We generalise and sharpen several recent results in the literature regarding the existence and complete classification
of the isolated singularities for a broad class of nonlinear elliptic equations of the form

−div (A(|x|) |∇u|p−2∇u) + b(x) h(u) = 0 in B1 \ {0}, (0.1)

where Br denotes the open ball with radius r > 0 centred at 0 in RN (N ≥ 2). We assume that A ∈ C1(0, 1],
b ∈ C(B1 \ {0}) and h ∈ C[0,∞) are positive functions associated with regularly varying functions of index ϑ, σ
and q at 0, 0 and ∞ respectively, satisfying q > p − 1 > 0 and ϑ − σ < p < N + ϑ. We prove that the condition
b(x) h(Φ) < L1(B1/2) is sharp for the removability of all singularities at 0 for the positive solutions of (0.1), where Φ

denotes the “fundamental solution” of −div (A(|x|) |∇u|p−2∇u) = δ0 (the Dirac mass at 0) in B1, subject to Φ|∂B1 = 0.
If b(x) h(Φ) ∈ L1(B1/2), we show that any non-removable singularity at 0 for a positive solution of (0.1) is either weak
(i.e., lim|x|→0 u(x)/Φ(|x|) ∈ (0,∞)) or strong (lim|x|→0 u(x)/Φ(|x|) = ∞). The main difficulty and novelty of this paper,
for which we develop new techniques, come from the explicit asymptotic behaviour of the strong singularity solutions
in the critical case, which had previously remained open even for A = 1. We also study the existence and uniqueness
of the positive solution of (0.1) with a prescribed admissible behaviour at 0 and a Dirichlet condition on ∂B1.
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1. Introduction and main results

The local behaviour of solutions for nonlinear partial differential equations of second order has been studied exten-
sively in the last fifty years (see, for example, Véron [31] for relevant background). The topic of isolated singularities
represents an extremely active area of research concerning many different classes of nonlinear elliptic equations. Re-
cent contributions include, on the one hand, boundary singularities (see, for example, [16, 18]) and, on the other hand,
interior singularities for the fractional Laplacian [5, 6], the weighted p-Laplacian [32], non-homogeneous operators
in divergence form [17], nonlinear equations with singular potentials [9, 13] or with nonlinearities depending on the
gradient [1, 7] to name only a few.

Motivated by previous articles such as [3, 9, 10, 14, 27], we aim to obtain a complete understanding of the isolated
singularities for nonlinear elliptic equations of the form (1.4) in the punctured unit ball B1\{0} in RN (N ≥ 2) under the
Assumptions (A1)–(A3) given later. A prototype model is A(|x|) = |x|ϑ, b(x) = |x|σ and h(t) = |t|q−1t for q > p − 1 > 0
and ϑ − σ < p ≤ N + ϑ. In the standard case A = b = 1, the profile of all positive solutions of p-Laplacian type
equations with pure power nonlinearities, namely div (|∇u|p−2∇u) = |u|q−1u in B1 \ {0}, is well clarified (see [14, 27]),
depending on the position of q relative to the critical exponent q∗ =

N(p−1)
N−p (with q∗ = ∞ for p = N):

(a) If p − 1 < q < q∗, then as |x| → 0, exactly one of the following holds (see Friedman–Véron [14]):
(i) u can be extended as a continuous solution of the same equation in B1 (removable singularity);

(ii) There exists a positive number λ such that u(x)/µ(x)→ λ (weak singularity) and, moreover,

−div (|∇u|p−2∇u) + |u|q−1u = λp−1δ0 in D′(B1).

Here, δ0 denotes the Dirac mass at 0, whereas µ stands for the fundamental solution of the p-harmonic
equation −div (|∇u|p−2∇u) = δ0 in D′(RN) (in the sense of distributions).

(iii) |x|p/(q−p+1)u(x)→ γN,p,q, where γN,p,q :=
[(

p
q−p+1

)p−1 (
pq

q−p+1 − N
)]1/(q−p+1)

(strong singularity).
(b) If, in turn, q ≥ q∗ (for 1 < p < N), then only (a)(i) occurs, (see Vázquez–Véron [27]).

The alternatives (i)–(iii) in (a) correspond respectively to a positive solution u with lim sup|x|→0 u(x)/µ(x) equal to
zero, a positive finite number, and infinity. Furthermore, if g ∈ C1(∂B1) is a non-negative function and λ ∈ (0,∞),
then the singular Dirichlet problem div (|∇u|p−2∇u) = |u|q−1u in B1 \ {0}, with lim|x|→0 u(x)/µ(x) = λ and u = g on
∂B1 admits a unique non-negative solution if and only if q < q∗ (see [14, Theorems 1.1 and 1.2]). The positive
solutions with a strong singularity at 0 are all obtained as limits of solutions with a weak singularity at 0. However,
going beyond the power nonlinearities, the understanding of strong singularities had until now remained elusive.
The removability of the strong singularity solutions is not completely clear even for Laplacian-type equations. The
following question formulated by Vázquez and Véron [28] is still open: What is the weakest condition on a continuous
non-decreasing function h such that any isolated singularity of a non-negative solution of ∆u = h(u) in B1 \ {0} with
N ≥ 3 is removable? By [28, Remark 2.2], there are examples of continuous non-decreasing functions h satisfying∫ ∞

1
t−

2(N−1)
N−2 h(t) dt = ∞ and

∫ ∞

1

dt
√

th(t)
= ∞ (1.1)

for which there exist no positive solutions with a weak singularity at 0, but infinitely many positive solutions with a
strong singularity at 0. It is known (see [28] or [30]) that a necessary and sufficient condition for the removability
of the weak singularities of the positive solutions is that h satisfies the first integral condition in (1.1). Recently, the
above question, together with a complete classification of the isolated singularities, has been settled by Cîrstea [9] in
the framework of regular variation theory for more general semilinear elliptic equations.

In two pioneering works, Serrin [21, 22] studied a priori estimates of solutions, the nature of removable singular-
ities, and the behaviour of a positive solution in the neighbourhood of an isolated singularity for quasi-linear elliptic
equations of the general form

div A(x, u,∇u) = B(x, u,∇u). (1.2)

For a domain Ω in RN with 0 ∈ Ω, it is assumed that A(x, u, ξ) and B(x, u, ξ) are, respectively, vector and scalar
measurable functions defined in Ω × R × RN satisfying the following growth conditions:

|A(x, u, ξ)| ≤ β0|ξ|
p−1 + β1|u|p−1 + β2,

ξ · A(x, u, ξ) ≥ |ξ|p − β3|u|p − β4,

|B(x, u, ξ)| ≤ β6|ξ|
p−1 + β3|u|p−1 + β5 for all (x, u, ξ) ∈ Ω × R × RN ,

(1.3)
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where 1 < p ≤ N is a fixed exponent, β0 is a positive constant and βi (1 ≤ i ≤ 6) are measurable functions on Ω

belonging to suitable Lebesgue classes: β1, β2 ∈ LN/(p−1−ε), β6 ∈ LN/(1−ε) and β j ∈ LN/(p−ε) for j = 3, 4, 5, where ε > 0.
By [22, Theorem 1], if u is a non-negative continuous solution of (1.2) in Ω \ {0}, then the following dichotomy holds:

1. either u has a removable singularity at 0;
2. or there exist positive constants c1 and c2 such that c1 ≤ u(x)/µ(|x|) ≤ c2 in a neighbourhood of zero.

In this paper, we address the singularity problem for quasi-linear elliptic equations in divergence form related to
(1.2) when the growth of B is bigger than that of A, which is a challenge formulated by Véron [31]. In this case, the
main difficulty lies in the fact that solutions with strong singularities may appear.

The main feature of our study is to reveal a sharp and complete classification of the isolated singularities of

div (A(|x|) |∇u|p−2∇u) = b(x) h(u) in B∗ := B1 \ {0} (1.4)

for a large class of nonlinearities, including model cases departing from power functions such as in Table 1 below.

Example A(|x|) as |x| → 0 b(x) as |x| → 0 h(t) as t → ∞

1 |x|ϑ
(
ln

1
|x|

)α
|x|σ

(
ln

1
|x|

)β
tq(ln t)γ

2 |x|ϑ
(
ln

1
|x|

)α
|x|σ

(
ln

1
|x|

)β
tq exp {−(ln t)ν}

3 |x|ϑ
(
ln

1
|x|

)α
exp

− p − 1
q

√
ln

1
|x|

 |x|σ exp

−
√

ln
1
|x|

 tq exp {−(ln t)ν}

Table 1: Examples

In Examples 1–3 above, we take α, β, γ ∈ R and ν ∈ (0, 1/2), 1 < p < N + ϑ and q + 1 > p > ϑ − σ (see
Corollary 2.1 for the classification). More generally, we work in the setting of regular variation theory inspired by
Cîrstea and Du [10], whose results (with A = 1) are here generalised and sharpened. The introduction of the weight
function A in the operator in (1.4) adds non-trivial difficulties. The first two conditions in (1.3) are no longer satisfied
for A(x, u, ξ) = A(|x|) |ξ|p−2ξ since if ϑ > 0 (resp., ϑ < 0), then limr→0+ A(r) = 0 (resp., ∞). A clear influence of
A is felt in the behaviour of a positive solution of (1.4) being compared not with µ but with a suitable “fundamental
solution” Φ of the divergence-form operator div (A(|x|) |∇(·)|p−2∇(·)) in B1, see (1.8).

We assume the following structural conditions:

(A1) The function A ∈ C1(0, 1] is positive such that A(t) = tϑLA(t) with 1 < p < N + ϑ and LA satisfies

lim
t→0+

tL′
A

(t)
LA(t)

= 0. (1.5)

(A2) The function h is continuous on R and positive on (0,∞) with h(0) = 0 and h(t)/tp−1 bounded for small t > 0,
whereas b is a positive continuous function on B1 \ {0}.

(A3) There exist q, σ ∈ R and functions Lh, Lb that are slowly varying at∞ and at 0 respectively, such that

lim
t→∞

h(t)
tqLh(t)

= 1 and lim
|x|→0

b(x)
|x|σLb(|x|)

= 1 with q + 1 > p > ϑ − σ. (1.6)

The condition in (1.5) implies that LA is slowly varying at 0 (see Definition 2 and Remark A.2 in Appendix A).
A complete characterisation of slowly varying function at 0 is provided by Theorem A.2. Without loss of generality,
we assume that Lh and Lb satisfy the properties in (A.2) (see Remark A.4 in Appendix A). For instances of Lh, one
could choose any of the slowly varying functions at∞ gathered in Example 1 of Appendix A. We note that the results
of this paper can be extended for the case p = N + ϑ for certain cases of LA, see Remark 1.5.
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Definition 1. A function u is said to be a solution (sub-solution, super-solution) of (1.4) if u(x) ∈ C1(B∗) and∫
B1

A(|x|) |∇u|p−2∇u · ∇ϕ dx +

∫
B1

b(x) h(u)ϕ dx = 0 (≤ 0, ≥ 0) (1.7)

for all functions (non-negative functions) ϕ(x) in C1
c (B∗), the space of all C1(B∗)-functions with compact support in

B∗. Furthermore, a positive solution u of (1.4) is said to be extended as a positive continuous solution of (1.4) in B1 if
there exists lim|x|→0 u(x) ∈ (0,∞), the function A(|x|) |∇u|p−1 belongs to L1

loc(B1) and (1.7) holds for every ϕ ∈ C1
c (B1).

If u is a positive solution of (1.4) with lim sup|x|→0 u(x) < ∞, then both integrals in (1.7) are well-defined for every
ϕ ∈ C1

c (B1). Indeed, b ∈ L1
loc(B1) since σ > −N (from (A1) and (A3)), whereas the gradient estimates in Lemma 5.3

give that A(|x|) |∇u|p−1 ∈ L1
loc(B1) since t1−pA(t) is regularly varying at 0 with index ϑ − p + 1 (greater than −N).

Throughout this paper, we are concerned with non-negative solutions of (1.4). By the strong maximum principle,
any non-negative solution of (1.4) is either identically zero or positive in B∗. Indeed, the conditions in Theorem 2.5.1
of [19] are satisfied on any subset Ω ⊂⊂ B1 \ {0} with Ã(x, u,∇u) = A(|x|) |∇u|p−2∇u and B̃(x, u,∇u) = −b(x) h(u)
since A ∈ C(0, 1] is a positive function, while h and b satisfy the properties in Assumption (A2).

Fundamental Solution Φ. Let CN,p := (NωN)−1/(p−1), where ωN denotes the volume of the unit ball in RN .
Assuming (A1), we can define the “fundamental solution” of the operator div (A(|x|) |∇(·)|p−2∇(·)) in D′(B1), namely

Φ(r) := CN,p

∫ 1

r

(
t1−N−ϑ

LA(t)

) 1
p−1

dt for all r ∈ (0, 1]. (1.8)

Note that −div (A(|x|) |∇Φ|p−2∇Φ) = δ0 in D′(B1) and Φ = 0 on ∂B1. Moreover, limr→0+ Φ(r) = ∞ since 1 < p < N+ϑ.
We note that both r 7→ Φ(r) and r 7→ −r Φ′(r) are regularly varying at 0+ of index −m2, where m2 is defined in (1.10).
Under Assumption (A1), using Karamata’s Theorem (see Theorem A.3), we find that

lim
r→0+

ln Φ(r)
ln (1/r)

= lim
r→0+

Υ(r) = m2, where Υ(r) :=
r |Φ′(r)|

Φ(r)
=

CN,pr−m0 [LA(r)]−
1

p−1

Φ(r)
. (1.9)

We provide in Theorem 1.1(b) the sharp criteria, namely b(x) h(Φ) < L1(B1/2), for the removability of all singu-
larities of the positive solutions of (1.4). In the case of non-removable singularities, that is b(x) h(Φ) ∈ L1(B1/2), we
give a complete classification of the singularities of (1.4) in Theorem 1.1(a), accompanied by corresponding existence
results in Theorem 1.2. Our analysis brings new understanding of the behaviour of the solutions to (1.4) with strong
singularities at zero as the perturbation technique introduced in [10] for the subcritical case is not applicable in the
critical case. The main innovation we develop is a perturbation technique which enables us to give precise explicit
asymptotic formulas for the behaviour of the strong singular solutions. Our Theorems 1.1 and 1.2 extend the corre-
sponding optimal results in [3] where p = 2, b = 1 and h(t) = |t|q−1t in (1.4). While the understanding of strong
singularity solutions for Laplacian-type equations with power-like non-linearities in [3] relied on the earlier work of
Taliaferro [23], this is no longer possible in our general context of quasi-linear equations such as (1.4).

From Assumptions (A1)–(A3), it follows that m0, m1 and m2 are all positive, where we define

m0 :=
p + σ − ϑ

q − p + 1
, m1 :=

q − p + 1
p − 1

, m2 :=
N + ϑ − p

p − 1
. (1.10)

Let us now define q∗, which shall be henceforth referred to as a critical exponent, namely

q∗ =
N + σ

m2
. (1.11)

Remark 1.1. Assuming (A1)–(A3), we note that b(x) h(Φ) ∈ L1(B1/2) is equivalent to∫
0+

rN−1+σLb(r) h(Φ(r)) dr < ∞. (1.12)

The integrand in (1.12) varies regularly at 0 with index N −1 +σ−m2q. Hence, if q , q∗ then (1.12) holds if and only
if q < q∗, where q∗ is given by (1.11). If q = q∗, then (1.12) may hold in some cases and fail in others. For example, if
LA = Lb = 1 and h(t) = tq∗ (ln t)α for t > 0 large, then (1.12) holds if and only if α < −1.
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Later in Corollary 2.1, we illustrate Theorem 1.1 on the Examples of Table 1. Note that Lh in Example 1 satisfies

t 7−→ Lh(et) is regularly varying at∞ with index γ ∈ R. (1.13)

In Example 3, we see that LA and Lb satisfy the following property

t 7−→
[
LA(e−t)

]− q
p−1 Lb(e−t) is regularly varying at∞ with index j ∈ R. (1.14)

From a practical viewpoint, we thus need to check b(x) h(Φ) ∈ L1(B1/2) only for q = q∗. In such a critical case,
assuming either (1.13) or (1.14), then b(x) h(Φ) ∈ L1(B1/2) if and only if F(r) < ∞, where we define

F(r) :=
∫ r

0
ξ−1 [

LA(ξ)
]− q∗

p−1 Lb(ξ) Lh(1/ξ) dξ for r > 0 small. (1.15)

The function F plays an important role in the asymptotic behaviour at zero for a strong singularity solution of (1.4).

We now state our first main result.

Theorem 1.1 (Classification of singularities and sharp removability results). Let Assumptions (A1)–(A3) hold.

(a) If b(x) h(Φ) ∈ L1(B1/2), then for every positive solution u of (1.4), exactly one of the following cases occurs:
(i) u can be extended as a positive continuous solution of (1.4) in the whole ball B1.

(ii) u has a weak singularity at 0, that is lim|x|→0 u(x)/Φ(x) = λ ∈ (0,∞) and, moreover, u verifies

−div (A(|x|) |∇u|p−2∇u) + b(x) h(u) = λp−1δ0 in D′(B1). (1.16)

(iii) u has a strong singularity at 0. Moreover, lim|x|→0 u(x)/ũ(|x|) = 1, where ũ is given by

∫ ∞

ũ(r)

t−
q+1

p

[Lh(t)]
1
p

dt =

∫ r

0

[
M
ξσ−ϑLb(ξ)

LA(ξ)

] 1
p

dξ with
1
M

:= q −
N + σ

m0
if q < q∗. (1.17)

On the other hand, in the critical case q = q∗, then lim|x|→0 u(x)/ũ(|x|) = 1 for ũ given by
ũ(r) =

[
m1mγ+1−p

0 F(r)
]− 1

q∗−p+1 L
− 1

p−1

A
(r) r−m0 if (1.13) holds,∫ ũ(r)

c
[F(1/t)]

1
q∗−p+1 dt =

(
m1m−p− j

0

)− 1
q∗−p+1 L

− 1
p−1

A
(r) r−m0 if (1.14) holds,

(1.18)

where m0,m1 and F are prescribed by (1.10) and (1.15), respectively. In (1.18), c > 0 is a large constant.
(b) If b(x) h(Φ) < L1(B1/2), then q ≥ q∗ and every positive solution of (1.4) satisfies (a)(i).

Remark 1.2. (i) When A = b = 1 and h(t) = |t|q−1t, our Theorem 1.1(a) recovers [14, Theorem 2.1]. Moreover,
Theorem 1.1(a) generalises and sharpens [10, Theorem 1.1], which analysed the case A = 1 and q < q∗. Our
Theorem 1.1 is also established under the optimal condition for the existence of solutions with singularities at
0 for (1.4). Even for A = 1, the behaviour of the strong singularity solutions in the critical case q = q∗ is new,
being obtained via a perturbation technique we devise in this paper (see §3.1).

(ii) When A = b = 1 and h(t) = tq, Theorem 1.1(b) recovers the removability result of [4] for p = 2 and [27] for
1 < p < N. By letting A = 1 in Theorem 1.1(b), we also obtain a sharp version of [10, Theorem 1.3].

Notation. By f1(t) ∼ f2(t) as t → t0 for t0 ∈ R ∪ {∞}, we mean that limt→t0 f1(t)/ f2(t) = 1.

In Theorem 1.1 for q < q∗, the function ũ in (1.17) is well-defined, regularly varying at 0 with index −m0 and

ũ(r) [Lh(ũ(r))]
1

q−p+1 ∼

mp
0

M
LA(r)
Lb(r)

 1
q−p+1

r−m0 as r → 0+. (1.19)
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Indeed, the integral in the left-hand side of (1.17) is well-defined since the integrand is regularly varying at ∞ with
index −(q + 1)/p < −1 from the assumption q > p − 1. The right-hand side of (1.17) also exists since the integrand is
regularly varying at 0+ with index (σ − ϑ)/p > −1 by virtue of σ > ϑ − p. By Karamata’s Theorem in Appendix A,
(1.17) implies (1.19). Furthermore, if (1.13) holds, then Lh(ũ(r)) ∼ mγ

0Lh(1/r) as r → 0+ so that (1.19) is refined by

ũ(r) ∼
[
mγ−p

0 M
Lh(1/r) Lb(r)

LA(r)

]− 1
q−p+1

r−m0 as r → 0+. (1.20)

Remark 1.3. A prototype model for (1.13) is Lh(t) ∼ (ln t)γ as t → ∞, where γ ∈ R. More generally, (1.13) holds if
Lh(T ) ∼ L(T ) as T → ∞ and L(T ) = Πk

i=1(lnmi T )βi for T > 0 large, where k and mi are positive integers and βi ∈ R
for every 1 ≤ i ≤ k. We use the notation lnmi for the mi-iterated natural logarithm. Without loss of generality, we can
take 1 ≤ m1 < m2 < . . . < mk. Then t 7−→ Lh(et) is regularly varying at ∞ with index equal to β1 (respectively, 0) if
m1 = 1 (respectively, m1 > 1). Similarly, (1.14) is verified if [LA(1/T )]−

q
p−1 Lb(1/T ) ∼ L(T ) as T → ∞.

Next, in our second main result, under suitable conditions, we show that there exist positive solutions of (1.4) in
any of the categories appearing in the complete classification of Theorem 1.1. Furthermore, we obtain a uniqueness
result for (1.4) subject to a Dirichlet condition on ∂B1 with a prescribed, admissible behaviour at zero.

Theorem 1.2 (Existence and uniqueness). Let Assumptions (A1)–(A3) hold. Assume that h is a non-decreasing
function on (0,∞) and g ∈ C1(∂B1) is an arbitrary non-negative function. We consider the following problem

div (A(|x|) |∇u|p−2∇u) = b(x) h(u) in B∗ := B1 \ {0},

lim
|x|→0

u(x)
Φ(x)

= λ, u
∣∣∣
∂B1

= g, u > 0 in B∗.
(1.21)

(i) If λ = 0 and g . 0 on ∂B1, then (1.21) has a unique solution.
(ii) If λ ∈ (0,∞], then (1.21) admits solutions if and only if b(x) h(Φ) ∈ L1(B1/2).

(iii) Assume that b(x) h(Φ) ∈ L1(B1/2) and h(t)/tp−1 is non-decreasing for t > 0.
(a) For λ ∈ (0,∞), then (1.21) has a unique solution. The same conclusion holds for λ = ∞ and q < q∗.
(b) For λ = ∞ and q = q∗, then (1.21) has a unique solution provided that either (1.13) or (1.14) holds.

Remark 1.4. When b = 1 and h(t) = |t|q−1t, our Theorem 1.2 recovers previous results such as [14, Theorems 1.2]
(with A = 1) and [3, Theorem 2] (with p = 2). Moreover, in Theorem 1.2, we generalise [10, Theorem 1.2] (where
A = 1) by sharpening the condition under which there exists a unique singular solution to (1.21).

Remark 1.5. In this paper, we focus on the case p < N + ϑ in Assumption (A1). We mention that Theorem 1.1 and
Theorem 1.2 remain valid also for p = N + ϑ provided that lim supr→0+ LA(r) < ∞ (which ensures that Φ(r)→ ∞ as
r → 0+). Since m2 in (1.10) becomes zero for p = N + ϑ, we must understand q∗ = ∞ in connection with the fact that
b(x) h(Φ) ∈ L1(B1/2) holds for any q ∈ (p − 1,∞) and thus in Theorem 1.1 only the assertion of (a) is meaningful in
which the strong singularity behaviour of (iii) is given by (1.17).

Structure of the paper. We shall always assume (A1)–(A3). In Section 2, we apply our main results, specifically on
the Examples given by Table 1. In Section 3 we prove Theorem 1.1(a), which fully classifies the nature of all possible
singularities at 0 for the positive solutions of (1.4) when b(x) h(Φ) ∈ L1(B1/2). We emphasise that this is an optimal
condition under which, besides weak singularity solutions, there can arise strong singularity solutions of (1.4) (that
is lim|x|→0 u(x)/Φ(x) = ∞) as stated by Theorem 1.2 to be proved in Section 6. The proof of Theorem 1.1(a), and in
particular, the analysis of (radial) solutions with strong singularities at 0 in Theorem 3.1, represent the crux of this
paper. Even in the case A = 1, Theorem 1.1(a) is new with regard to the explicit derivation of the asymptotic behaviour
near 0 of solutions with strong singularities in the critical case q = q∗. To establish Theorem 1.1(a), we need to invoke
some auxiliary results such as a priori estimates, a spherical Harnack-type inequality and regularity results, whose
proofs are deferred until Section 5. In Section 4, we prove Theorem 1.1(b), which establishes b(x) h(Φ) < L1(B1/2)
as a sharp condition such that all positive solutions of (1.4) have a removable singularity at zero, that is, they can be
extended as positive continuous solutions of (1.4) in the whole ball B1. For the reader’s convenience, we gather in
Appendix A the necessary concepts and properties related to the regular variation theory.
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2. Applications

Corollary 2.1. Let Assumptions (A1)–(A3) hold. Let α, β, γ ∈ R and ν ∈ (0, 1/2) be arbitrary.

Example LA(r) as r → 0+ Lb(r) as r → 0+ Lh(t) as t → ∞

1
(
ln

1
r

)α (
ln

1
r

)β
(ln t)γ

2
(
ln

1
r

)α (
ln

1
r

)β
exp {−(ln t)ν}

3
(
ln

1
r

)α
exp

− p − 1
q

√
ln

1
r

 exp

−
√

ln
1
r

 exp {−(ln t)ν}

Table 2: Examples (corresponding to those in Table 1)

(A) If q < q∗ in Examples 1–3, then for any positive solution u of (1.4) exactly one of the following holds:
(i) u can be extended as a positive continuous solution of (1.4) in B1.

(ii) u has a weak singularity at 0, that is lim|x|→0 u(x)/Φ(x) = λ ∈ (0,∞) and, moreover, u satisfies (1.16).
(iii) u has a strong singularity at 0 and, moreover, as |x| → 0, the behaviour of u is given by Table 3 below.

Example u(x) is asymptotically equivalent to

1 |x|−m0

mp−γ
0

M

(
ln

1
|x|

)α−β−γ 1
q−p+1

2 |x|−m0

mp
0

M

(
ln

1
|x|

)α−β 1
q−p+1

exp
{

1
q − p + 1

(
m0 ln

1
|x|

)ν}

3 |x|−m0

mp
0

M

(
ln

1
|x|

)α 1
q−p+1

exp

1
q

(
ln

1
|x|

) 1
2

+
1

q − p + 1

(
m0 ln

1
|x|

)ν
Table 3: Strong singularity behaviour for q < q∗

(B) If q = q∗ (and, in addition, αq∗/(p − 1) > β + γ + 1 for Example 1), then the trichotomy in (A) remains valid
except (iii) which is replaced by the behaviour in Table 4 below.

Example u(x) is asymptotically equivalent to

1 |x|−m0

mp−1−γ
0

(
αq∗
p−1 − β − γ − 1

)
m1

(
ln

1
|x|

)α−β−γ−1


1
q−p+1

2 |x|−m0

νmp−1+ν
0

m1

(
ln

1
|x|

)α−β+ν−1
1

q−p+1

exp
{

1
q − p + 1

(
m0 ln

1
|x|

)ν}

3 |x|−m0

νmp−1+ν
0

m1

(
ln

1
|x|

)α+ν−1
1

q−p+1

exp

1
q

(
ln

1
|x|

) 1
2

+
1

q − p + 1

(
m0 ln

1
|x|

)ν
Table 4: Strong singularity behaviour for q = q∗

(C) If q > q∗, then any positive solution u of (1.4) can be extended as a positive continuous solution of (1.4) in B1.
For Example 1, this conclusion also holds for q = q∗ and αq∗/(p − 1) ≤ β + γ + 1.
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Our next application illustrates how weighted divergence-form equations such as (1.4) arise naturally in the study
of p-Laplacian type equations in exterior domains.

Corollary 2.2. Assuming 2 ≤ N ≤ p < a and q > p − 1, we consider the problem

div
(
|∇v(x̃)|p−2∇v(x̃)

)
= |x̃|−a[v(x̃)]q in RN \ B1. (2.1)

By a modified Kelvin transform where u(x) = v(x̃) with x = x̃/|x̃|2 (see [12, Appendix A]), the behaviour near ∞
of the positive solutions of (2.1) can be obtained from the behaviour near 0 of the positive solutions of (1.4) with
A(x) = |x|2(p−N), b(x) = |x|a−2N and h(u) = [u(x)]q. Hence, by applying our Theorem 1.1, we find that:

(1) If p > N, then the following classification holds for the positive solutions v(x̃) of (2.1):
(a) If q < (a−N)(p−1)

p−N , then as |x̃| → ∞, exactly one of the following holds
(i) v(x̃) converges to a positive number;

(ii) |x̃|−
p−N
p−1 v(x̃) converges to a positive number;

(iii) |x̃|−(a−p)/(q−p+1)v(x̃)→
[(

a−p
q−p+1

)p−1 (
−pq+ap−a

q−p+1 − N
)]1/(q−p+1)

.

(b) If, in turn, q ≥ (a−N)(p−1)
p−N , then for every positive solution of (2.1), only (i) holds.

(2) If p = N, then for all q > p − 1, only (1)(a) holds in which (ii) should read as lim|x̃|→∞ v(x̃)/ ln(|x̃|) ∈ (0,∞).

3. Proof of Theorem 1.1(a): Classification of singularities

Let u be any positive solution of (1.4). Before proving Theorem 1.1(a), we state some preliminary results to be
established later in Section 5, under Assumptions (A1)–(A3). Fix r0 ∈ (0, 1/2). Then the following holds:
• An a priori estimate (see Lemma 5.1): There exists a positive constant C, depending on r0 such that

|x|pb(x)
A(|x|)

h(u(x))
[u(x)]p−1 ≤ C for every 0 < |x| ≤ r0. (3.1)

• A Harnack-type inequality (see Lemma 5.2): There exists a constant K > 0 (depending on p, N and r0) such that

max
|x|=r

u(x) ≤ K min
|x|=r

u(x) for all 0 < r ≤ r0/2. (3.2)

Using (3.2) and the same argument as in [3, Corollary 4] and [9, Corollary 4.5], the following can be shown:
If lim sup

|x|→0

u(x)
[Φ(x)] j = ∞, then lim

|x|→0

u(x)
[Φ(x)] j = ∞ for j ∈ {0, 1}.

If lim inf
|x|→0

u(x)
Φ(x)

= 0, then lim
|x|→0

u(x)
Φ(x)

= 0.
(3.3)

Consequently, we either have lim sup|x|→0 u(x) < ∞ or lim|x|→0 u(x) = ∞. In the latter case, the a priori estimate in
(3.1), together with Assumptions (A1) and (A3), give that

lim sup
|x|→0

Lb(|x|)
LA(|x|)

|x|p+σ−ϑ [u(x)]q−p+1 Lh(u(x)) < ∞. (3.4)

In particular, (3.4) yields that lim sup|x|→0 u(x)/T (|x|) < ∞ for some function T regularly varying at 0 with index −m0.
Since limr→0+ ln T (r)/ ln(1/r) = m0, we find that lim sup|x|→0 ln u(x)/ ln(1/|x|) ≤ m0.

Remark 3.1. If q = q∗, then m0 = m2 and any positive solution u of (1.4) with a strong singularity at zero satisfies

lim
|x|→0

ln u(x)
ln (1/|x|)

= m0. (3.5)
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• A regularity result (see Lemma 5.3).
• If lim|x|→0 u(x)/Φ(x) = 0, then u can be extended as a continuous positive solution of (1.4) in B1 (see Lemma 4.1).

Proof of Theorem 1.1(a). Let b(x) h(Φ) ∈ L1(B1/2) and u be a positive solution of (1.4). Let λ := lim sup|x|→0
u(x)

Φ(|x|) .
Then the categories (i)–(iii) of Theorem 1.1(a) correspond respectively to:

(i) λ = 0. Then the assertion of (i) in Theorem 1.1(a) follows from Lemma 4.1.
(ii) λ ∈ (0,∞). One can show that u has a weak singularity at 0 and can verify (1.16) by using the same argument

as in [10, Theorem 5.1] (see also [3, Proposition 6]). We thus omit the details.
(iii) λ = ∞. Then (3.3) yields that lim|x|→0 u(x)/Φ(x) = ∞. We show below how to reduce the proof of (iii) in

Theorem 1.1(a) to the case of strong singularities for radial solutions of an approximate problem (3.6) treated in
Theorem 3.1. We reason as in [9, Lemma 4.12], using Lemmas 5.1 and 5.3 to deduce that for every ε ∈ (0, 1),
there exists rε ∈ (0, 1) and a function vε satisfying (1 − ε) u ≤ vε ≤ (1 + ε) u in B∗rε with vε a positive solution of

−div (A(|x|) |∇v|p−2∇v) + |x|σ vqLb(|x|) Lh(v) = 0 in B∗rε := Brε \ {0}. (3.6)

Moreover, if v is any positive solution of (3.6), then as in [3, Lemma 4], we can obtain two positive radial
solutions of (3.6) in B∗rε/2, say v∗ and v∗, such that for a sufficiently large constant K > 1, we have

K−1v ≤ v∗ ≤ v ≤ v∗ ≤ Kv in B∗rε/2. (3.7)

We observe that any positive radial solution of (3.6) in B∗ satisfies

d
dr

(
rN−1+ϑLA(r)|v′(r)|p−2v′(r)

)
= rN−1+σLb(r) Lh(v(r)) vq(r) for r = |x| ∈ (0, 1). (3.8)

In view of (3.7), to conclude the assertion of (iii) in Theorem 1.1(a), it is enough to prove Theorem 3.1 below.

Theorem 3.1. Let Assumptions (A1)–(A3) hold. Suppose that b(x) h(Φ) ∈ L1(B1/2). Let v be any positive solution of
(3.8) with a strong singularity at 0.

(a) If q < q∗, then v(r) ∼ ũ(r) as r → 0, where ũ is given by (1.17).
(b) If q = q∗, then assuming either (1.13) or (1.14), we have v(r) ∼ ũ(r) as r → 0, where ũ is given by (1.18).

A major advance in this paper compared with Cîrstea and Du [10] (where A = 1) is the analysis of the critical case
and the derivation of the asymptotic behaviour of the strong singularities. Our contribution here is the development
of a perturbation technique suitable for the critical case q = q∗. Unlike the subcritical case, where the power model
corresponding to A = b = 1 and h(t) = |t|q−1t was completely understood due to Friedman and Véron [14] (see also
Remark 1.2), in the critical case we had no model in the literature to provide us with intuition on the asymptotics of
strong singularity solutions. As we reveal in our paper, the critical case is important in the non-power nonlinearity
case as it represents the threshold between having a trichotomy classification (as in Theorem 1.1(a)) or no singularities
at all as in Theorem 1.1(b), all depending on whether or not b(x) h(Φ) belongs to L1(B1/2).

The proofs of Theorem 3.1(a) and (b) are intricate, each being composed of three main steps. First, we shall prove
here the critical case q = q∗ < ∞, while also pointing out the major differences between the subcritical and critical
cases. Under the assumptions of Theorem 3.1, let v be any positive solution of (3.8) with a strong singularity at 0. A
change of variable y(s) = v(r) with s = Φ(r) moves the singularity from r = 0 to s = ∞ for the equation

(p − 1)
∣∣∣y′(s)

∣∣∣p−2
y′′(s) = C−p+1

N,p rN−1+σLb(r) Lh(y(s))
[
y(s)

]q
∣∣∣∣∣dr
ds

∣∣∣∣∣ for s ∈ (0,∞), (3.9)

where, for simplicity, we denote y′(s) = dy/ds and y′′(s) = d2y/ds2.

Step 1. Fix η0 > 0 small. For every ε ∈ (0, 1) small, there exists rε ∈ (0, 1) such that (1 − ε) v−η and (1 + ε) vη is
a sub-solution and super-solution of (3.8) for 0 < r < rε, respectively, for every η ∈ [0, η0]. Moreover, it holds that
limη→0+ v±η(r) = ũ(r) for every r ∈ (0, rε], where ũ is as in Theorem 3.1.
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The local one-parameter family v±η of sub- and super-solutions of (3.8) is constructed such that v±η(r) converges
to ũ(r) as η approaches 0+. The function ũ in Theorem 3.1 is regularly varying at 0 with index −m0, where m0 and m2
are given by (1.10). The definition of v±η in the subcritical case is different from that of the critical case as follows.

In the subcritical case q < q∗, we define v±η in (3.30) as a regularly varying function at 0 with index − (1 ± η) m0
(here m0 > m2). We shall check the assertion of Step 1 in §3.2.

In the critical case q = q∗ < ∞, we have m0 = m2, that is, ũ has the same index of regular variation at 0 as the
fundamental solution Φ in (1.8), namely −m2. In this case, v±η is defined by (3.23) as a regularly varying function at
0 with index −m2. We shall verify Step 1 in §3.1 with the change of variable y±η(s) = v±η(r) where s = Φ(r). Notice
that when either (1.13) holds or (1.14) holds, by the definitions of ũ in (1.18) and v±η in (3.23), we infer that

lim
r→0+

ũ(r)
vη(r)

= 0 and lim
r→0+

ũ(r)
v−η(r)

= ∞ for every η ∈ [0, η0]. (3.10)

Step 2. The functions vη and v−η constructed in Step 1 satisfy the following property:

lim
r→0+

v(r)
vη(r)

= 0 and lim
r→0+

v(r)
v−η(r)

= ∞. (3.11)

In both the subcritical and critical cases, since v has a strong singularity at 0, that is v(r)/Φ(r) → ∞ as r → 0+,
then we have y(s)/s → ∞ as s → ∞. Using that y′′(s) ≥ 0, we find that y′(s) is increasing so that lims→∞ y′(s) = ∞.
As the function s 7−→ sy′(s) − y(s) is increasing on (0,∞) and lims→∞ y(s) = ∞, we see that

lim inf
s→∞

sy′(s)
y(s)

≥ 1. (3.12)

In the subcritical case, we shall use (3.12) in Lemma 3.3(b) of §3.2 to improve the behaviour of the solution v of
(3.8) from dominating near zero the fundamental solution Φ (of index −m2) to dominating any function f regularly
varying at zero with index −κ, where m2 < κ < m0. We deduce (3.11) by using Lemma 3.3 with f = v±η since the
index of regular variation at 0 for the function vη (respectively, v−η) is smaller (respectively, bigger) than −m0. We
point out that Lemma 3.3 relies essentially on the assumption that q < q∗ and cannot be adapted to the critical case.

Hence, in the critical case, we need a new argument that takes into account that v±η varies regularly at 0 with the
same index as ũ. We now prove Step 2 in the critical case.

Proof of Step 2 for the critical case q = q∗.

The main ingredient in the proof of (3.11) is given by the following

0 < lim inf
r→0+

v(r)
ũ(r)

≤ lim sup
r→0+

v(r)
ũ(r)

< ∞. (3.13)

By combining (3.10) and (3.13), we conclude (3.11) in the critical case.

Proof of (3.13). Using (3.4) and (3.12), we infer that lim sups→∞ sy′′(s)/y′(s) < ∞. Indeed, by (3.9), we have

sy′′(s)
y′(s)

=
1

p − 1

[
y(s)

sy′(s)

]p−1

[Υ(r)]−p Lb(r)
LA(r)

rp+σ−ϑLh(y(s))
[
y(s)

]q∗−p+1 , (3.14)

where Υ is given by (1.9). For s0 > 0, there exists a large constant C > 0 so that s 7→ sy′(s) −Cy(s) is non-increasing
for all s > s0. It follows that ` = lim sups→∞ sy′(s)/y(s) < ∞. From (3.12), we can take s0 > 0 large such that

1
2
≤

s y′(s)
y(s)

≤ 2` for all s ≥ s0. (3.15)

In view of Remark 3.1, we find that ln y(s) ∼ ln s as s→ ∞. Consequently, as s→ ∞, we obtain that
mγ

0Lh(1/r) ∼ Lh(s) ∼ Lh(y(s)) if (1.13) holds;

(m0)− j [LA(1/y(s))
]− q∗

p−1 Lb(1/y(s)) ∼
[
LA(Φ−1(s))

]− q∗
p−1 Lb(Φ−1(s)) if (1.14) holds.

(3.16)
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For all s ≥ s0, by using (3.15) and (3.16) in (3.9), we find positive constants c1 and c2 so that
c1rN−1+σLb(r) h(Φ(r)) ≤

[
y′(s)

]−q∗+p−2 y′′(s)
∣∣∣∣∣ds
dr

∣∣∣∣∣ ≤ c2rN−1+σLb(r) h(Φ(r)) if (1.13) holds;

c1
d
ds

[F(1/y(s))] ≤
[
y′(s)

]−q∗+p−2 y′′(s) ≤ c2
d
ds

[F(1/y(s))] if (1.14) holds,
(3.17)

where F is defined by (1.15).

Case 1: Assume that (1.13) holds.

Since y′(s)→ ∞ as s→ ∞, by integrating (3.17), we obtain that

c3F(Φ−1(s)) ≤
[
y′(s)

]−q∗+p−1
≤ c4F(Φ−1(s)) for all s > s0, (3.18)

where c3 and c4 are positive constants. Using (3.15) in (3.18), then reversing the change of variable y(s) = v(r) with
s = Φ(r), we infer that there exist positive constants c5 and c6 such that

c5 [F(r)]−
1

q∗−p+1 Φ(r) ≤ v(r) ≤ c6 [F(r)]−
1

q∗−p+1 Φ(r) for all r ∈ (0,Φ−1(s0)). (3.19)

Hence, using (1.9) and the definition of ũ in (1.18), we conclude Step 2 in Case 1.

Remark 3.2. Notice that when (1.13) holds, the existence of a solution v of (3.8) with a strong singularity at zero
implies that b(x) h(Φ(|x|)) ∈ L1(B1/2). Indeed, fixing r0 ∈ (0,Φ−1(s0)), then for every ε ∈ (0, r0), by integrating the
first inequality in (3.17) with respect to r from ε to r0, and letting ε → 0, we conclude the claim (using Remark 1.1).
A more general statement is proven later in Lemma 4.2.

Case 2: Assume that (1.14) holds.

By twice integrating (3.17), we find positive constants c3 and c4 such that

c3 ≤
d
ds

(∫ y(s)

y(s0)
[F(1/t)]

1
q∗−p+1 dt

)
≤ c4 for every s > s0.

We thus conclude that

0 < lim inf
s→∞

∫ y(s)
y(s0) [F(1/t)]

1
q∗−p+1 dt

s
≤ lim sup

s→∞

∫ y(s)
y(s0) [F(1/t)]

1
q∗−p+1 dt

s
< ∞.

This, jointly with (1.9) and the definition of ũ in (1.18), proves the assertion of Step 2 in Case 2.

Step 3. Proof of Theorem 3.1 concluded.

Proof of Step 3. The reasoning is the same for the subcritical and critical case. It is based on the previous two
steps and the following comparison principle to be used frequently in the paper.

Lemma 3.2 (Comparison principle, see Theorem 2.4.1 in [19]). Let Ω be a bounded domain in RN with N ≥ 2. Let
u, v ∈ C1(Ω) satisfy (in the sense of distributions in D′(Ω)) the pair of differential inequalities

−div A(x,∇u) + B(x, u) ≤ 0 and − div A(x,∇v) + B(x, v) ≥ 0 in Ω.

Suppose that A : Ω × RN → RN is in L∞loc(Ω × RN) and B : Ω × R → R is in L∞loc(Ω × R) such that B = B(x, z) is
independent of ξ and non-decreasing in z, whereas A = A(x, ξ) is independent of z and monotone in ξ, that is

〈A(x, ξ) − A(x, η), ξ − η〉 > 0 when ξ , η.

If u ≤ v on ∂Ω, then u ≤ v in Ω.
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Let ε ∈ (0, 1) be small and rε ∈ (0, 1) be as in Step 1. Fix η ∈ [0, η0] arbitrarily. Then, (1 + ε) vη(r) + v(rε) and
v(r) + ũ(rε) are super-solutions of (3.8) for r ∈ (0, rε). By (3.11) and Lemma 3.2, we have

v(r) ≤ (1 + ε) vη(r) + v(rε) and (1 − ε) v−η(r) ≤ v(r) + ũ(rε) for all 0 < r ≤ rε. (3.20)

Since rε is independent of η ∈ [0, η0], by letting η→ 0+ in (3.20), we find that

v(r) ≤ (1 + ε) ũ(r) + v(rε) and (1 − ε) ũ(r) ≤ v(r) + ũ(rε) for all 0 < r ≤ rε. (3.21)

By letting r → 0+ in (3.21), we deduce that

1 − ε ≤ lim inf
r→0+

v(r)
ũ(r)

≤ lim sup
r→0+

v(r)
ũ(r)

≤ 1 + ε. (3.22)

Finally, by passing to the limit ε→ 0+ in (3.22), we conclude that v(r) ∼ ũ(r) as r → 0+.

3.1. Proof of Step 1 in the critical case q = q∗ of Theorem 3.1

In this subsection, it remains only for us to establish the claim of Step 1 as outlined in the proof of Theorem 3.1.
We first give the construction of a local family of sub- and super-solutions of (3.8). Let F be given by (1.15) and c > 0
be a large constant. Fix η0 ∈ (0, 1) small. Then for any η ∈ [0, η0], we define v±η(r) for r > 0 small, as follows

v±η(r) := C−1
N,p

m1mγ−q
0

1 ± η

− 1
q−p+1 ∫ Φ(r)

c

[
F(Φ−1(t))

]− 1±η
q−p+1 dt if (1.13) holds,

∫ v±η(r)

c
[F(1/t)]

1±η
q∗−p+1 dt = C−1

N,p

m1m−q−1− j
0

1 ± η

−
1

q−p+1

Φ(r) if (1.14) holds.

(3.23)

We set y±η(s) = v±η(r) with s = Φ(r). Using y′±η(s) and y′′±η(s) to denote dy±η/ds and d2y±η/ds2, respectively, then

(p − 1)
(
y′±η(s)

)p−2
y′′±η(s) =

1
m1

(
y′±η(s)

)q∗
∣∣∣∣∣ d
ds

[(
y′±η(s)

)−q∗+p−1
]∣∣∣∣∣ . (3.24)

Step 1. For every ε ∈ (0, 1) small, there exists sε > 0 large such that (1 − ε) y−η and (1 + ε) yη is a sub-solution
and super-solution of (3.9) for s > sε, respectively, for every η ∈ [0, η0].

From (3.23), we find that

y′±η(s) =


C−1

N,p

m1mγ−q∗
0

1 ± η

− 1
q∗−p+1

[F(r)]−
1±η

q∗−p+1 if (1.13) holds,

C−1
N,p

m1m−q∗−1− j
0

1 ± η

−
1

q∗−p+1 [
F(1/y±η(s))

]− 1±η
q∗−p+1 if (1.14) holds.

(3.25)

Moreover, we obtain the following asymptotic equivalence (uniform with respect to η)

ln y±η(s) ∼ ln s and sy′±η(s) ∼ y±η(s) as s→ ∞. (3.26)

From (3.26), we deduce the following asymptotic equivalence as s→ ∞ (uniform with respect to η)
mγ

0Lh(1/r) ∼ Lh(s) ∼ Lh(y±η(s)) if (1.13) holds;

(m0)− j
[
LA(1/y±η(s))

]− q∗
p−1 Lb(1/y±η(s)) ∼

[
LA(Φ−1(s))

]− q∗
p−1 Lb(Φ−1(s)) if (1.14) holds.

(3.27)
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We introduce the notation K±η(s) :=
Υ(r)
m0

s y′±η(s)

y±η(s)
, where Υ is given by (1.9). We also denote R±η(s) as follows

R±η(s) =


mγ

0 Lh(1/r)
Lh(y±η(s))

[F(r)]±η
[
K±η(s)

]q∗
if (1.13) holds,

m− j
0

[
LA(1/y±η(s))
LA(Φ−1(s))

]− q∗
p−1 Lb(1/y±η(s))

Lb(Φ−1(s))

[
F(1/y±η(s))

]±η [
K±η(s)

]q∗+1
if (1.14) holds.

(3.28)

Since m0 = m2 for q = q∗, using (1.9) and (3.26), we infer that lims→∞K±η(s) = 1 uniformly with respect to η. Hence,
using (3.27), we derive the following asymptotics as s→ ∞ (uniform with respect to η)

R±η(s) ∼

 [F(r)]±η if (1.13) holds,[
F(1/y±η(s))

]±η
if (1.14) holds.

(3.29)

The right-hand side of (3.24) equals the product between R±η(s) and the right-hand side of (3.9) for y = y±η. By the
definition of F in (1.15), we have limr→0+ F(r) = 0. Since q > p − 1, using (3.29), we conclude Step 1.

3.2. Proof of Steps 1 and 2 in the subcritical case q < q∗ of Theorem 3.1
We need only to justify the first two steps in the outline of the proof of Theorem 3.1. We shall adapt the perturbation

method initiated by Cîrstea and Du in [10]. We construct a local family of sub-and super-solutions of (3.8). Fix
η0 ∈ (0, 1) such that 2η0(p − 1)M < 1, where M is the positive constant given by (1.17). For every η ∈ [0, η0], we
define the function v±η and the constant C±η > 0 as

v±η(r) = C±η[ũ(r)]1±η for r ∈ (0, 1) where Cq−p+1
±η := (1 ± η)p−1 [

1 ± ηM(p − 1)
]
. (3.30)

From this definition, we have that limη→0+ v±η(r) = ũ(r) for every r ∈ (0, 1) and limη→0 C±η = 1.

Step 1. For every ε ∈ (0, 1) small, there exists rε ∈ (0, 1) such that (1 − ε) v−η and (1 + ε) vη is a sub-solution and
super-solution of (3.8) for 0 < r < rε, respectively, for every η ∈ [0, η0].

Claim. We see that ũ satisfies (3.8) asymptotically as r → 0+.

Proof of Claim. Let r0 ∈ (0, 1) be small so that ũ(r0) > t0, where t0 is as in Remark A.4. For all r ∈ (0, r0), we set
Q±η(r) := rN−1+ϑLA(r)

∣∣∣v′±η(r)
∣∣∣p−2

v′±η(r),

P(r) := M
[
q + 1 +

ũ(r) L′h(ũ(r))
Lh(ũ(r))

−
ũ(r) ũ′′(r)
[ũ′(r)]2 +

(
N − 1 + σ +

rL′b(r)
Lb(r)

)
ũ(r)

r ũ′(r)

]
.

(3.31)

One can verify that limr→0+ P(r) = 1 using the definition of M in (1.17). By differentiating (1.17), we find that

Q0(r) = MrN−1+σLb(r)
[ũ(r)]q+1

ũ′(r)
Lh(ũ(r)) for all r ∈ (0, r0). (3.32)

The claim follows since Q′0(r) equals the product between P(r) in (3.31) and the right-hand side of (3.8) for v = ũ.

By twice differentiating (3.30), we obtain that
Q±η(r) =

[
C±η(1 ± η)

]p−1
[ũ(r)]±η(p−1) Q0(r),

dQ±η
dr

=
[
C±η(1 ± η)

]p−1
[ũ(r)]±η(p−1)

{
±η (p − 1)M [ũ(r)]q Lh(ũ(r)) Lb(r) rN−1+σ +

dQ0

dr

}
.

(3.33)

Hence, using (3.30) and the above claim, we find the following asymptotics (uniform with respect to η)

dQ±η
dr
∼ Cq

±ηr
N−1+σ Lb(r) Lh(ũ(r)) [ũ(r)]q±η(p−1) as r → 0+. (3.34)
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From Remark A.4 in Appendix A, the function t 7−→ tq−p+1 Lh(t) is increasing on (0,∞) so that

Lh(ũ1−η) [ũ(r)]−η (q−p+1)
≤ Lh(ũ(r)) ≤ Lh(ũ1+η) [ũ(r)]η (q−p+1)

for every r ∈ (0, r0) and all η ∈ [0, η0]. This, together with (3.30), implies that for every r ∈ (0, r0) and all η ∈ [0, η0]

±Cq
±η Lh(ũ(r)) [ũ(r)]q±η(p−1) ≤ ±Lh(v±η(r)/C±η)

[
v±η(r)

]q
. (3.35)

Since q > p − 1, from (3.34), (3.35) and Proposition A.1 in Appendix A, we conclude the proof of Step 1.

Step 2. Any positive solution v of (3.8) with a strong singularity at 0 satisfies (3.11).

Since v±η is regularly varying at 0 with index − (1 ± η) m0, we conclude Step 2 based on Lemma 3.3 with f = v±η.

Lemma 3.3. Let (A1)–(A3) hold and q < q∗. Suppose that v is a positive solution of (3.8) with a strong singularity at
zero. Let f be a regularly varying function at zero with real index −κ. With m0 given by (1.10), the following hold:

(a) If κ > m0, then limr→0+ v(r)/ f (r) = 0.
(b) If κ < m0, then limr→0+ v(r)/ f (r) = ∞.

Proof. We adapt ideas from Cîrstea and Du [10, Theorem 1.4].

(a) The a priori estimates in (3.1) (see Lemma 5.1 for a proof) show that v is bounded from above near zero by
a regularly varying function at 0 with index −m0. The assertion now follows easily since every regularly varying
function at 0 with positive (respectively, negative) index must converge to 0 (respectively,∞).

(b) Since κ < m0, we can choose q1 ∈ (q, q∗) sufficiently close to q such that κ < (p + σ − ϑ)/(q1 − p + 1). Then,
limt→∞ tq−q1 Lh(t) = 0 (see Remark A.1 in Appendix A) and using (3.12), we can let s0 > 0 large and find that

Lh(y(s)) [y(s)]q ≤ [y(s)/2]q1 ≤ sq1 [y′(s)]q1 for all s ≥ s0. (3.36)

We set fq1 (r) := rN−1+σLb(r)[Φ(r)]q1 for r ∈ (0, 1). Since Φ is regularly varying at 0 with index −m2 (see (1.9)),
we find that fq1 is regularly varying at 0 with index N + σ − q1m2 − 1, which is greater than −1. This gives that∫

0+ fq1 (ξ) dξ < ∞. Moreover, the function Fq1 (r) =
∫ Φ−1(s0)

r

[∫ τ

0 fq1 (ξ) dξ
]− 1

q1−p+1
|Φ′(τ)| dτ is regularly varying at zero

with index −(p+σ−ϑ)(q1− p+1), which is less than −κ from our choice of q1. We thus have limr→0+ Fq1 (r)/ f (r) = ∞.
We conclude that limr→0+ v(r)/ f (r) = ∞ by showing that lim infr→0+ v(r)/Fq1 (r) > 0. Indeed, we see that

lim inf
r→0+

v(r)
Fq1 (r)

= lim inf
s→∞

y(s)∫ s
s0

[∫ Φ−1(t)
0 fq1 (ξ) dξ

]− 1
q1−p+1

dt

. (3.37)

From (3.9) and (3.36), we deduce that

[
y′(s)

]p−2−q1 y′′(s) ≤ −
C−p+1

N,p

p − 1
fq1 (Φ−1(s))

d(Φ−1(s))
ds

for all s > s0. (3.38)

Recall that lims→∞ y′(s) = ∞ since v has a strong singularity at 0. Thus, by integrating (3.38), we obtain that

y′(s) ≥

 (q1 − p + 1) C−p+1
N,p

p − 1

∫ Φ−1(s)

0
fq1 (ξ) dξ


− 1

q1−p+1

for all s > s0,

which shows that the right-hand side of (3.37) is positive. This concludes the assertion of Lemma 3.3(b).
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4. Proof of Theorem 1.1(b): Removability of singularities

Throughout this section, we let Assumptions (A1)–(A3) hold. The proof of Theorem 1.1(b) relies on two main
ingredients, whose verification is postponed to the end of this section.

Lemma 4.1. If u is a positive solution of (1.4) such that lim|x|→0 u(x)/Φ(x) = 0, then there exists lim|x|→0 u(x) ∈ (0,∞)
and lim|x|→0 |x||∇u(x)| = 0. Moreover, u can be extended as a continuous positive solution of (1.4) in B1.

This result, which was also invoked in the proof of Theorem 1.1(a)(i), generalises [10, Lemma 3.2(ii)] (where
A = 1) and [3, Proposition 3] (where p = 2, b = 1 and h(u) = uq).

Lemma 4.2. If (3.8) has a positive solution with either a weak or a strong singularity at 0, then b(x) h(Φ) ∈ L1(B1/2).

We show how to use Lemma 4.1 and Lemma 4.2 to finish the proof of Theorem 1.1(b). We thus assume that
b(x) h(Φ) < L1(B1/2) and prove that any positive solution of (1.4) can be extended as a positive solution of (1.4) in B1.
By Remark 1.1, we have q ≥ q∗, with q∗ as in (1.11). Our argument is twofold:

Case 1: q > q∗.

Since m0 < m2, the claim follows from Lemma 4.1 and the a priori estimates in (3.4). Indeed, we have
lim sup|x|→0 u(x)/T (|x|) < ∞ for a function T regularly varying at 0 with index −m0. Using that Φ ∈ RV−m2 (0+),
by Remark A.1 and Definition 2 in Appendix A, we find that limr→0+ T (r)/Φ(r) = 0 so that lim|x|→0 u(x)/Φ(x) = 0 for
any positive solution u of (1.4). Then, by Lemma 4.1, we conclude the proof of Theorem 1.1(b).

Case 2: q = q∗.

The previous argument no longer applies since T and Φ are now regularly varying at 0 with the same index −m0.
Hence, T/Φ is slowly varying at 0, whose behaviour at 0 is, in general, undetermined as illustrated by Example 1 in
Appendix A. In view of Lemma 4.1, we conclude the proof by showing that lim|x|→0 u(x)/Φ(x) = 0.

Assuming the contrary and using (3.3), we deduce lim|x|→0 u(x) = ∞. Then there exists k ∈ (0, 1/2) and a positive
solution v∗ of (3.8) for 0 < r < k such that C1u ≤ v∗ ≤ C2 in B∗k, where C1 and C2 are positive constants. Thus, by
Lemma 4.2, we cannot have lim sup|x|→0 u(x)/Φ(x) ∈ (0,∞]. This completes the proof of Theorem 1.1(b).

Proof of Lemma 4.1. Let u be a positive solution of (1.4) such that lim|x|→0 u(x)/Φ(x) = 0. For convenience, we define

θ := lim sup
|x|→0

u(x).

By the comparison principle (Lemma 3.2), we find as in [10, Lemma 3.2] that θ < ∞. Since (1.3) fails for our general
assumption (A1), we cannot invoke [22, Theorem 1] to conclude the proof, unlike the case A = 1 treated in [10].

We show below that θ > 0. In the special case p = 2 and h(t) = tq of [3], the claim follows by a reduction to radial
solutions, coupled with a change of variable and [23, Theorem 1.1]. For our general divergence-form equation, we
require different ideas that are inspired by [9, Lemma 5.2].

Since Assumptions (A1)–(A3) hold and θ < ∞, there exists a positive constant C such that

b(x) h(u) ≤ C|x|σLb(|x|) up−1 for all 0 < |x| ≤ 1/2.

Similar to Step 2 of [9, Lemma 5.2], we construct a positive radial solution v∞ of

−div (A(|x|) |∇v|p−2∇v) + C|x|σLb(|x|) vp−1 = 0 for 0 < |x| < 1/2 (4.1)

such that v∞(|x|) ≤ u(x) for 0 < |x| ≤ 1/2. By a contradiction argument and Lemma 3.2, we find that the radial
solution v∞ of (4.1) has a non-negative limit at 0. To conclude that θ > 0, it suffices to show that limr→0+ v∞(r) > 0.
By assuming that limr→0+ v∞(r) = 0, we arrive at a contradiction as follows. We use the change of variable z(s) = v∞(r)
with s = Φ(r). Then, we have lims→∞ z(s) = 0. Moreover, z is a positive solution of the ordinary differential equation∣∣∣∣∣dz

ds

∣∣∣∣∣p−2 d2z
ds2 = C1rN−1+σLb(r) [z(s)]p−1

∣∣∣∣∣dr
ds

∣∣∣∣∣ for s ∈ (Φ(1/2),∞), (4.2)
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where C1 denotes a positive constant. Since z′′(s) > 0, then z′(s) is increasing on (Φ(1/2),∞) with lims→∞ z′(s) = 0.
Therefore, using (4.2), we find that

z(s) = C2

∫ ∞

s

∫ Φ−1(t)

0
ξN−1+σLb(ξ)

[
z(Φ(ξ))

]p−1 dξ


1

p−1

dt for s > Φ(1/2),

where C2 is a positive constant. Since z is decreasing, we infer that

1/C2 ≤

∫ ∞

s

∫ Φ−1(t)

0
ξN−1+σLb(ξ) dξ


1

p−1

dt for every s > Φ(1/2). (4.3)

Let V(s) denote the right-hand side of (4.3). We claim that V(s) is well-defined and V(s) → 0 as s → ∞. Indeed, we
have Φ ∈ RV−m2 (0+) and thus Φ−1 ∈ RV−1/m2 (∞). Note that r 7−→

∫ r
0 ξ

N−1+σLb(ξ) dξ is regularly varying at 0+ with
positive index given by σ+ N. Consequently, V is regularly varying at∞ with negative index (p +σ−ϑ)/(p−N −ϑ)
so that the claim follows. Then, (4.3) leads to a contradiction, which proves that limr→0+ v∞(r) > 0 and, hence, θ > 0.

To obtain that lim|x|→0 u(x) = θ, lim|x|→0 |x||∇u(x)| = 0 and (1.7) holds for all ϕ ∈ C1
c (B1), we proceed as in the

special case of [3, Proposition 3]. Since the ideas are very similar, we skip the details.

Proof of Lemma 4.2. We show that b(x) h(Φ) ∈ L1(B1/2) is a necessary condition for the existence of a positive solu-
tion of (3.8) with a weak or strong singularity at 0. Let v be a positive solution of (3.8) with limr→0+ v(r)/Φ(r) = λ , 0.

First, we consider the case λ ∈ (0,∞). Let Φ−1(t) denote the inverse of Φ, which exists for any t > 0. By the
change of variable y(s) = v(r) with s = Φ(r), we find (3.9). Since v(r) ∼ λΦ(r) as r → 0+, we have y(s) ∼ λs as
s→ ∞. Using that d2y/ds2 ≥ 0, we get that dy/ds is increasing on (0,∞) so that lims→∞ dy/ds = λ. We define Λ by

Λ(s) :=
C−p+1

N,p

p − 1
[Φ−1(s)]N−1+σLb(Φ−1(s)) Lh(s) sp−2

∣∣∣∣∣dr
ds

∣∣∣∣∣ for s > 0 large. (4.4)

Since Lh ∈ RV0(∞) and y(s) ∼ λs as s→ ∞, we have Lh(y(s)) ∼ Lh(s) as s→ ∞. We apply (3.26) to (3.9) to get that
d2y
ds2 ∼ Λ(s)[y(s)]q−p+2 as s→ ∞,

y′(s)→ λ as s→ ∞.
(4.5)

By Taliaferro [23, p. 96], we get that
∫ ∞

tq−p+2Λ(t) dt < ∞. Then applying a change of variable r = Φ−1(t) and using
Remark 1.1, we obtain that b(x) h(Φ) ∈ L1(B1/2).

Secondly, let λ = ∞. We adapt ideas from the proof of [9, Lemma 5.8]. Choose m ∈ (p − 1, q∗) and for t > 0, set
χ(t) = tq∗−mLh(t). By the property in (A.2) in the Appendix A, we have limt→∞ tχ′(t)/χ(t) = q∗ − m > 0 and, hence,
χ(t) is increasing for t > 0 sufficiently large. Since limr→0+ v∗(r)/Φ(r) = ∞, there exists a constant a0 > 0 such that
v∗(r) ≥ a0Φ(r) for all 0 < r ≤ 1/2. Then there exists a constant c > 0 such that

Lh(v∗) vq∗
∗ ≥ cχ(Φ(r)) vm

∗ for all r ∈ (0, 1/2]. (4.6)

Define a function b̃(r) := c rσLb(r) χ(Φ(r)) for r ∈ (0, 1/2]. We construct a positive radial solution v∞ of

−div (A(|x|) |∇v|p−2∇v) + b̃(|x|) vm = 0 in B∗1/2 (4.7)

such that v∗ ≤ v∞ in B∗1/2. Then, v∞ has a strong singularity at 0+. Since χ ∈ RVq∗−m(∞), we find that b̃ ∈ RVσ̃(0+)
with σ̃ given by m(N + σ)/q∗ − N, which is greater than ϑ − p from our choice of m. We note that (4.7) corresponds
to (3.8) in the critical case with rσLb(r) = b̃(r), Lh ≡ 1 and q = m, where (1.13) holds. Using Remark 3.2 on (4.7),
and the definition of b̃, we conclude that b(x) h(Φ) ∈ L1(B1/2). This completes the proof of Lemma 4.2.
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5. Basic tools

Throughout this section, let Assumptions (A1)–(A3) hold. Our aim is to prove the basic tools used in this paper: a
priori estimates (Lemma 5.1), a spherical Harnack-type inequality (Lemma 5.2) and a regularity result (Lemma 5.3).

Lemma 5.1 (A priori estimates). For any r0 ∈ (0, 1/2), there exists a positive constant C, depending on r0, such that
(3.1) holds for every positive (sub-)solution of (1.4).

Proof. Fix x0 ∈ RN with 0 < |x0| ≤ r0. We denote ρ := |x0|/2 and p′ := p/(p − 1). Let

ζ(r) := r
σ−ϑ+p

p

[
Lb(r)
LA(r)

] 1
p

for r ∈ (0, r0] and f (t) :=
t1− q+1

p [Lh(t)]−
1
p∫ ∞

t ξ−
q+1

p [Lh(ξ)]−
1
p dξ

for t > 0 large. (5.1)

Let c > 0 be a positive constant. We define S = S x0 : Bρ(x0)→ R by∫ ∞

S (x)
t−

q+1
p [Lh(t)]−

1
p dt = cζ(|x0|)

1 − (
|x − x0|

ρ

)p′ for every x ∈ Bρ(x0). (5.2)

Claim: There exists a small positive constant c depending on r0, but independent of x0 such that the function S
defined by (5.2) is a super-solution of (1.4) in Bρ(x0), namely for h1 as in Remark A.4, it holds

div (A(|x|) |∇S |p−2∇S ) ≤ b(x) h1(S ) in Bρ(x0). (5.3)

Suppose the claim holds. Since S (x) → ∞ as |x − x0| → ρ, by the comparison principle of Lemma 3.2, we find
that u ≤ S in Bρ(x0). In particular, we have u(x0) ≤ S (x0). Since ζ is regularly varying at 0+ with positive index
(p +σ−ϑ)/p, we have limr→0+ ζ(r) = 0 so that sup0<r≤r0

ζ(r) < ∞. Since the right-hand side of (5.2) is bounded from
above by c sup0<r≤r0

ζ(r), for every M > 0 there exists a small positive constant c (depending on M and r0) such that
S ≥ M in Bρ(x0) for every 0 < |x0| ≤ r0. Using (5.1) and (5.2), we find that

[S (x0)]q−p+1 Lh(S (x0)) =
[
cζ(|x0|) f (S (x0))

]−p . (5.4)

We fix M > 0 as large as needed. Let h1 and h2 be as in Remark A.4 of Appendix A. We can thus assume that
h2(t) ≤ 2tqLh(t) for all t ≥ M. By Karamata’s Theorem in Appendix A, we have limt→∞ f (t) = (q − p + 1)/p > 0.
Since u(x0) ≤ S (x0), using (5.4) and (A.1), we can find a positive constant C1 = C1(r0) independent of x0 such that

|x0|
pb(x0)

A(|x0|)
h(u(x0))

[u(x0)]p−1 ≤
|x0|

pb(x0)
A(|x0|)

h2(S (x0))
[S (x0)]p−1 ≤

2
[c f (S (x0))]p

b(x0)
|x0|

σLb(|x0|)
≤ C1. (5.5)

Since (5.5) holds for every 0 < |x0| ≤ r0, we conclude the assertion of Lemma 5.1.

Proof of Claim. By (5.2), we find that

|∇S (x)|p−2∇S (x) =
(
cp′

)p−1 ρ−p [
ζ(|x0|)

]p−1
[
S q+1(x) Lh(S (x))

] 1
p′ (x − x0) in Bρ(x0). (5.6)

Using f given by (5.1), we denote by Tx0 (x) the following quantity(
|x − x0|

ρ

)p′ (
q + 1 +

S (x)L′h(S (x))
Lh(S (x))

)
+ f (S (x))

1 − (
|x − x0|

ρ

)p′ (N +
|x|A′(|x|)
A(|x|)

(x − x0) · x
|x|2

)
. (5.7)

With Tx0 (x) given by (5.7), we derive that

div (A(|x|) |∇S |p−2∇S ) =
(
p′

)p−1 (2c)p
(
|x|
|x0|

)ϑ LA(|x|)
LA(|x0|)

|x0|
σLb(|x0|) S qLh(S ) Tx0 (x). (5.8)
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By Assumption (A1) and Remark A.4 in Appendix A, we have limr→0+ rA′(r)/A(r) = ϑ and limt→∞ tL′h(t)/Lh(t) = 0.
Recall that limt→∞ f (t) = (q − p + 1)/p. Moreover, by Proposition A.1 in Appendix A, there exist positive constants
ci (0 ≤ i ≤ 3) depending on r0, but independent of x0 such that

c0 LA(|x0|) ≤ LA(|x|) ≤ c1 LA(|x0|) and c2 Lb(|x|) ≤ Lb(|x0|) ≤ c3 Lb(|x|)

for every x, x0 such that 0 < |x0| ≤ r0 and |x|/|x0| ∈ [1/2, 3/2]. Thus, using (1.6) and (5.8), we conclude (5.3) by taking
in (5.2) a small constant c > 0 depending on r0, but independent of x0. This completes the proof of Lemma 5.1.

Lemma 5.2 (Harnack-type inequality). Fix r0 ∈ (0, 1/2). There exists a positive constant K (depending on p, N and
r0) such that for every positive solution u of (1.4), we have (3.2).

Proof. We first observe that (1.4) is equivalent to

−div (|∇u|p−2∇u) +
A′(|x|)
A(|x|)

|∇u|p−2∇u · x
|x|

+
b(x) h(u)
A(|x|) up−1 up−1 = 0 in B∗. (5.9)

Let b1 and b2 denote two non-negative functions as follows

b1(x) :=
|A′(|x|)|
A(|x|)

and [b2(x)]p :=
b(x) h(u)
A(|x|) up−1 for 0 < |x| ≤ r0. (5.10)

By (1.5) and Lemma 5.1, there exists a positive constant C1, depending on r0, such that

|x| b1(x) ≤ C1 and |x| b2(x) ≤ C1 for all 0 < |x| ≤ r0. (5.11)

Fix x0 ∈ RN such that 0 < |x0| ≤ r0/2 and set ρ := |x0|/2. We use µ to denote

µ = µx0 := max{‖b1‖L∞(Bρ(x0)), ‖b2‖L∞(Bρ(x0))}.

Since ρ ≤ |x| for every x ∈ Bρ(x0), from (5.11) it follows that

ρµ ≤ C1 for every x ∈ Bρ(x0). (5.12)

We apply the Harnack inequality of [25, Theorem 1.1] for (5.9) on B|x0 |/2(x0) where the structure conditions in (1.2)
and (1.3) of [25] are satisfied with a0 = 1 and ai = b0 = b3 = 0 for i ∈ {1, 2, 3, 4}. Hence, there exists a positive
constant k, depending only on p, N and ρµ, such that

sup
x∈Bρ/3(x0)

u(x) ≤ k inf
x∈Bρ/3(x0)

u(x). (5.13)

By the covering argument in [14], any two points x1 and x2 in RN such that 0 < |x1| = |x2| ≤ r0/2 can be joined by
ten overlapping balls of radius |x1|/6 with centres positioned on ∂B|x1 |(0). Thus, by (5.12) and (5.13), we obtain (3.2)
with K = k10, where K is a positive constant depending on p, N and r0.

Lemma 5.3 (A regularity result). Fix r0 ∈ (0, 1/4) and δ ≥ 0. Let g ∈ C(0, 1) be a positive function such that g is
regularly varying at 0 with index −δ. Suppose that u is a positive solution of (1.4) and C0 > 0 is a constant such that

0 < u(x) ≤ C0 g(|x|) for 0 < |x| < 2r0. (5.14)

Then there exist positive constants C > 0 and α ∈ (0, 1) such that

|∇u(x)| ≤ C
g(|x|)
|x|

and |∇u(x) − ∇u(x′)| ≤ C
g(|x|)
|x|1+α

|x − x′|α (5.15)

for any x, x′ in RN satisfying 0 < |x| ≤ |x′| < r0.
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Proof. We use an argument close to [10, Lemma 4.1], which is similar to [14, Lemma 1.1] (see also [3, Lemma 3]).
There is, however, one essential difference with respect to the derivation of the first inequality in (5.15). We show
below the main modifications compared with [10, Lemma 4.1].

Using (5.9) and defining Ψβ as in (4.5) of [10], that is Ψβ(ξ) := u(βξ)/g(β) for ξ ∈ Γ̄, where β ∈ (0, r0/6) is fixed,
we see that Ψβ satisfies an equation of the form (4.3) of [10], namely

−div (|∇Ψβ|
p−2∇Ψβ) + Bβ = 0 in Γ, where Γ := {y ∈ RN : 1 < |y| < 7}. (5.16)

However, instead of (4.7) in [10], the expression of Bβ is more complicated here, involving a gradient term, namely

Bβ(ξ) :=
βp

[g(β)]p−1 b(βξ)
h(u(βξ))
A(β|ξ|)

−
βA′(β|ξ|)
A(β|ξ|)

|∇Ψβ|
p−2 ∇Ψβ(ξ) · ξ

|ξ|
for ξ ∈ Γ. (5.17)

Claim: The functions Ψβ and Bβ are in L∞(Γ) with their L∞-norms bounded above by a positive constant indepen-
dent of β ∈ (0, r0/6).

Proof of claim. For Ψβ, we can proceed exactly as in [10]. We thus need to prove the claim only for Bβ. Using
Lemma 5.1 and (5.14), jointly with (4.10) in [10], we find that the L∞(Γ)-norm of the first term in the right-hand side
of (5.17) is bounded above by a constant independent of β.

Assume for now that the first inequality in (5.15) is proved. Then we can infer that |∇Ψβ(ξ)| ≤ Cg(β|ξ|)/g(β) for
every ξ ∈ Γ. Hence, using (5.11), as well as (4.10) in [10], we could conclude the claim for Bβ given by (5.17).

Since B ∈ L∞(Γ) and Ψ ∈ L∞(Γ)∩W1,p(Γ) is a weak solution of (5.16), from the C1,α-regularity result of Tolksdorf
[24], we conclude that there exist constants α = α(N, p) ∈ (0, 1) and C̃ = C̃

(
N, p, ‖Ψ‖L∞(Γ), ‖B‖L∞(Γ)

)
> 0 such that

‖∇Ψ‖C0,α(Γ∗) ≤ C̃, where Γ∗ := {y ∈ RN : 2 < |y| < 6}. (5.18)

This fact is then used to derive the second inequality in (5.17) (see [10] for details).

Proof of the first inequality in (5.15). Our proof here is different from both [10, Lemma 4.1] and [3, Lemma 3]. We
require a new argument to that of [10] as we used the first inequality in (5.15) to derive (5.18). The ideas in [3] work
for the special case p = 2. In our general situation, we apply Theorem 1 in Tolksdorf [24] for the function v in (5.19).
More precisely, let x0 ∈ RN be fixed such that 0 < |x0| ≤ r0 and set ρ := |x0|/2. We define v = vx0 : B1 → (0,∞) by

v(y) :=
u(x0 + ρy)

g(|x0|)
for every y ∈ B1. (5.19)

Since u satisfies (5.9), by using the formula for ∇v derived from (5.19), that is

∇v(y) =
ρ

g(|x0|)
(∇u)(x0 + ρy) for y ∈ B1, (5.20)

we obtain that v is a positive solution of the following equation

−div (|∇v|p−2∇v) + B̃(y, v,∇v) = 0 in B1,

where we define B̃(y, v,∇v) to be

B̃(y, v,∇v) = −
ρA′(|x0 + ρy|)
A(|x0 + ρy|)

|∇v|p−2∇v(y) · (x0 + ρy)
|x0 + ρy|

+ ρ p b(x0 + ρy) h(v)
A(|x0 + ρy|) vp−1 vp−1.

Since |x0 + ρy| ∈ [ρ, 3ρ] for all y ∈ B1, in view of (1.5) and (5.11), we find that

|B̃(y, v,∇v)| ≤ A1|∇v|p−1 + A2 vp−1 (5.21)

for some positive constants A1 and A2, which depend on r0, but are independent of x0. Using the assumptions on g,
namely g is regularly varying at 0, we obtain (similar to (4.10) in [10]) that

c g(|x0|) ≤ g(|x0 + ρy|) ≤ c g(|x0|) for all y ∈ B1,
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where c and c are positive constants, which depend on r0, but are independent of x0 satisfying 0 < |x0| < r0. Moreover,
from (5.14) and (5.19), we deduce that

v(y) ≤ c C0 for every y ∈ B1.

Thus, in view of (5.21), we can find a positive constant A3 = A3(r0), which is independent of x0 such that

|B̃(y, v, η)| ≤ A3(1 + |η|)p for all y ∈ B1 and η ∈ RN .

Hence, we can apply Theorem 1 in Tolksdorf [24] to obtain a constant A4, which depends on N, p and A3, but is
independent of x0, such that |∇v(0)| ≤ A4. This, jointly with (5.20), proves that

|∇u(x0)| ≤ 2A4
g(|x0|)
|x0|

for every 0 < |x0| < r.

This completes the proof of Lemma 5.3.

6. Proof of Theorem 1.2: Existence and uniqueness

Let Assumptions (A1)–(A3) hold. Let h be non-decreasing on [0,∞) and g ∈ C1(∂B1) be a non-negative function.
We study the existence of solutions for the following problem

div (A(|x|) |∇u|p−2∇u) = b(x) h(u) in B∗ := B1 \ {0},

lim
|x|→0

u(x)
Φ(x)

= λ, u
∣∣∣
∂B1

= g, u > 0 in B∗.
(6.1)

We treat separately the following cases: λ = 0, λ ∈ (0,∞) and λ = ∞. For the construction of a solution of (6.1),
we adapt ideas from [10, Theorem 1.2] (where A = 1), see also [3, Proposition 5], where p = 2, b = 1 and h(t) = tq.
We denote C0 := max|x|=1 g(x). For every n ≥ 2 and 0 ≤ λ < ∞, we consider the auxiliary problem

div (A(|x|) |∇u|p−2∇u) = b(x) h(u) in Dn := B1 \ B1/n,

u(x) = λΦ(|x|) + C0 for |x| = 1/n,
u
∣∣∣
∂B1

= g.
(6.2)

For λ = 0, we further assume that g . 0 on ∂B1. By the method of sub-super-solutions and Lemma 3.2, the problem
(6.2) admits a unique non-negative solution un,λ,g, which is continuous on Dn. For simplicity, whenever λ and g are
fixed, we simply write un instead of un,λ,g. By the strong maximum principle (see Theorem 2.5.1 of [19]), we see that
un positive in Dn. Moreover, by Lemma 3.2, we infer that

0 < un+1 ≤ un ≤ λΦ(|x|) + C0 in Dn. (6.3)

By Lemma 5.3, we have that, up to a subsequence, un → uλ,g in C1
loc(B∗) and, moreover, for some α ∈ (0, 1), we find

that uλ,g is a non-negative C1,α
loc (B∗) ∩C(B1 \ {0})-solution of the problem div (A(|x|) |∇u|p−2∇u) = b(x) h(u) in B∗ := B1 \ {0},

u
∣∣∣
∂B1

= g.
(6.4)

By the strong maximum principle, uλ,g is positive in B∗ (using here that g . 0 on ∂B1 when λ = 0). From (6.3), we
find that lim sup|x|→0 uλ,g(x)/Φ(|x|) ≤ λ. In particular, the problem (6.1) with λ = 0 admits uλ,g as a solution.

Proof of Theorem 1.2(i). It remains to show the uniqueness of the solution of (6.1) with λ = 0. Let u1 and u2 be
two solutions of (6.1) with λ = 0. To show that u1 = u2 in B∗, we proceed as in Proposition 4 in [3] with modifications
appearing here due to our more general setting. By Lemma 4.1, u1 and u2 can be extended by continuity at 0. Since
u1, u2 ∈ C1(B∗) ∩C(B1) with u1 = u2 = g on ∂B1, then u1 = u2 in B1 would be a consequence of the following claim.
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Claim: We have ∇(u1 − u2)(x) = 0 for all x ∈ B∗.

Proof of Claim. Assume by contradiction that there exists x0 ∈ B∗ such that |∇(u1 − u2)(x0)| > 0. We fix r0 small
such that 0 < r0 < min{1− |x0|, |x0|}, which ensures that Br0 (x0) ⊂ B∗. Since u1 − u2 ∈ C1(B∗), by making r0 smaller if
necessary, we can assume that |∇(u1 − u2)(x)| > 0 on Br0 (x0) and thus |∇u1(x)| + |∇u2(x)| > 0 on Br0 (x0). Hence, there
exists a positive constant c0 such that

(|∇u1(x)| + |∇u2(x)|)p−2 |∇(u1 − u2)(x)|2 ≥ c0 for all x ∈ Br0 (x0). (6.5)

By Proposition 17.3 in [8, p. 235], we know that there exists a positive constant cp such that

(|ξ|p−2ξ − |η|p−2η) · (ξ − η) ≥ cp (|ξ| + |η|)p−2 |ξ − η|2 for every ξ, η ∈ RN . (6.6)

Thus using (6.5) and (6.6), we find for all x ∈ Br0 (x0) that

H(x) := (|∇u1(x)|p−2∇u1(x) − |∇u2(x)|p−2∇u2(x)) · ∇(u1 − u2)(x) ≥ cpc0. (6.7)

For any ε ∈ (0, 1/2), we denote Dε := B1 \ Bε. Let wε be a non-decreasing and smooth function on (0,∞) such that
wε(r) ∈ (0, 1) if ε < r < 2ε,
wε(r) = 1 if r ≥ 2ε,
wε(r) = 0 if 0 < r ≤ ε.

(6.8)

We choose ε > 0 small such that 2ε < |x0| − r0, which yields that Br0 (x0) ⊆ D2ε ⊂ Dε. Since wε(|x|) = 1 for all
x ∈ D2ε, by using (6.7), we arrive at∫

Dε

wε(|x|)A(|x|)H(x) dx ≥
∫

Br0 (x0)
A(|x|)H(x) dx ≥ cp c0 ωNrN

0 min
x∈Br0 (x0)

A(|x|) := cp,A. (6.9)

Since A ∈ C(0, 1] is a positive function and Br0 (x0) ⊂ B∗, we then obtain that cp,A is a positive constant.
Observe that u1, u2 and wε belong to W1,p(Dε) ∩ L∞(Dε). We define ϕε(x) := (u1 − u2)(x) wε(|x|) for all x ∈ B∗.

Since ϕε|∂Dε
= 0, it follows by the product rule that ϕε ∈ W1,p

0 (Dε). Using the density of C1
c (Dε) in W1,p

0 (Dε), we have∫
Dε

A(|x|) |∇u j|
p−2∇u j · ∇ϕε dx +

∫
Dε

b(x) h(u j)ϕε dx = 0 with j = 1, 2. (6.10)

In particular, by subtracting the relation in (6.10) with j = 2 from the one corresponding to j = 1, we obtain that∫
Dε

wε(|x|)A(|x|)H(x) dx +

∫
Dε

b(x) (h(u1) − h(u2)) (u1 − u2) wε(|x|) dx = −Kε, (6.11)

where H is given by (6.7) and Kε is defined by

Kε =

∫
ε<|x|<2ε

|x|ϑ LA(|x|) w′ε(|x|) (u1 − u2)
(
|∇u1|

p−2∇u1 − |∇u2|
p−2∇u2

)
·

x
|x|

dx. (6.12)

Since wε(2ε) = 1 and wε(ε) = 0 (see (6.8)), we observe that

Lε :=
∫
ε<|x|<2ε

|x|ϑ−p+1LA(|x|) w′ε(|x|) dx = |∂B1|

∫ 2ε

ε

rϑ+N−pLA(r) w′ε(r) dr ≤ |∂B1| max
r∈[ε,2ε]

{rϑ+N−p LA(r)}.

Using that ϑ + N − p > 0 and LA is slowly varying at zero, we get that limr→0+ rϑ+N−pLA(r) = 0. (In relation to
Remark 1.5, we note that if ϑ + N − p = 0 and lim supr→0+ LA(r) < ∞, then we get that lim supε→0+ Lε ∈ (0,∞).)
Thus, using (6.12), jointly with |x||∇u j| → 0 as |x| → 0 for j = 1, 2 (see Lemma 4.1), we find that

|Kε| ≤
(
‖u1‖L∞(B1) + ‖u2‖L∞(B1)

)
Lε max

ε≤|x|≤2ε
|x|p−1

(
|∇u1(x)|p−1 + |∇u2(x)|p−1

)
→ 0 as ε→ 0+.
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Hence, we can fix ε > 0 small enough to ensure that |Kε| < cp,A, where cp,A is the positive constant appearing in (6.9).
Since the second term in the left-hand side of (6.11) is non-negative, from (6.9) and (6.11), we get a contradiction.
This proves the claim, which concludes the proof of of the uniqueness of the solution of (6.1) with λ = 0.

Proof of Theorem 1.2(ii). If (6.1) has a solution for λ ∈ (0,∞], then b(x) h(Φ) ∈ L1(B1/2) from Theorem 1.1(b).

Claim 1: If b(x) h(Φ) ∈ L1(B1/2), then uλ,g constructed above for λ ∈ (0,∞) is a solution of (6.1).

Proof of Claim 1. We need only show that lim inf |x|→0 uλ,g(x)/Φ(|x|) ≥ λ. We note that (1.12) is equivalent to∫ ∞
tq−p+2Λ(t) dt < ∞, where Λ is defined by (4.4). Then, by [23, Theorem 2.4], if R > 0 is large, there exists a

positive proper solution of the following problem
d2y
ds2 = Λ(s)[y(s)]q−p+2 for s ∈ (R,∞),

y′(s)→ λ as s→ ∞ and y(R) ∈ (0,∞).
(6.13)

Using the transformation w(r) = y(s) with r = Φ−1(s) and Remark A.4, we obtain that div (A(|x|) |∇w|p−2∇w) ∼ b(x) h2(w(|x|)) as |x| → 0+,

w(r) ∼ λΦ(r) as r → 0+.
(6.14)

Hence, for every ε ∈ (0, 1), there exists rε ∈ (0,Φ−1(R)) such that (1 − ε) w is a sub-solution of

div (A(|x|) |∇v|p−2∇v) = b(x) h2(v) in B∗rε := Brε \ {0}. (6.15)

Recall that un,λ,g, in short un, represents the unique non-negative solution of (6.2). Since w(r) ∼ λΦ(r) as r → 0+ (see
(6.14)), there exists nε ≥ 1 large such that

(1 − ε) w(1/n) ≤ λΦ(1/n) ≤ un(x) for every |x| = 1/n and all n ≥ nε.

Let Cε := maxr=rε w(r). Since un is a positive super-solution of (6.15) due to our choice of h2, by Lemma 3.2, we have

(1 − ε) w ≤ un + Cε for 1/n < |x| < rε and all n ≥ nε.

By letting n→ ∞, we find that (1−ε) w ≤ uλ,g+Cε in B∗rε . Hence, we conclude that lim inf |x|→0 uλ,g(x)/Φ(|x|) ≥ (1−ε)λ.
Since ε ∈ (0, 1) is arbitrary, we obtain that lim inf |x|→0 uλ,g(x)/Φ(|x|) ≥ λ. Since lim sup|x|→0 uλ,g(x)/Φ(|x|) ≤ λ, it
follows that uλ,g is a solution of (6.1) for λ ∈ (0,∞).

Claim 2: If b(x) h(Φ) ∈ L1(B1/2), then there exists a solution of (6.1) with λ = ∞.

Proof of Claim 2. Let k be any positive integer and denote by uk,g the solution we constructed earlier for (6.1)
with λ replaced by k. Then, by the comparison principle (Lemma 3.2), we find that 0 < uk,g ≤ uk+1,g in B∗. We show
that for every fixed x ∈ B1 \ {0}, there exists limk→∞ uk,g(x) ∈ (0,∞). Indeed, since |x| > 0, we can fix ρ = ρx such
that 0 < ρ < min{|x|, 1/4}. Hence, by Lemma 5.1, there exists Cρ > 0 such that uk,g(y) ≤ Cρ for all |y| = ρ and every
k ≥ 1. By Lemma 3.2, it follows that uk,g(y) ≤ max{C0,Cρ} for all ρ ≤ |y| ≤ 1 and all k ≥ 1, where C0 = max|x|=1 g(x).
Hence, for all x ∈ B1 \ {0}, we can define u∞,g(x) := limk→∞ uk,g(x). Moreover, by Lemma 5.3, we have that, up to a
subsequence, uk,g → u∞,g in C1

loc(B∗) and u∞,g is a solution of (6.1) with λ = ∞. This concludes Claim 2 and the proof
of Theorem 1.2(ii).

Proof of Theorem 1.2(iii). Assume that b(x) h(Φ) ∈ L1(B1/2) and h(t)/tp−1 is non-decreasing for t > 0. We show
the uniqueness of the solution of (6.1) in any of the following situations:

(A) λ ∈ (0,∞);
(B) λ = ∞ and q < q∗;
(C) λ = ∞ and q = q∗, assuming also that either (1.13) or (1.14) holds.

Indeed, if u1 and u2 are arbitrary solutions of (6.1) corresponding to the same λ and g, then lim|x|→0 u1(x)/u2(x) = 1.
This is evident in Case (A), while for the Cases (B) and (C), we use Theorem 1.1(a) to obtain the same asymptotic
behaviour near zero for any positive solution of (1.4) with a strong singularity at 0. The uniqueness claim follows
from Lemma 3.2 as in the proof of [10, Theorem 1.2]. This completes the proof of Theorem 1.2.
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A. Regular variation theory

The regular variation theory initiated by Karamata in the 1930’s has been very fruitful in statistics in connection
with extreme value theory (statistical estimation of tails, rates of convergence). It also plays a crucial role in probabil-
ity theory (weak limit theorems such as central limit theorem and the weak law of large numbers; branching processes;
stability and domains of attraction; fluctuation theory; renewal theory). The applications are much broader, includ-
ing areas such as analytic number theory, financial engineering and complex analysis (see [2] for a comprehensive
treatment of regular variation theory and its applications).

We recall below the concepts and properties of regularly varying functions needed in this paper, see [2, 20, 26].

Definition 2 (Regularly varying functions).

(a) A positive measurable function L defined on a neighbourhood of∞ is called slowly varying at∞ if

lim
t→∞

L(ξt)
L(t)

= 1 for every ξ > 0.

(b) The function r 7−→ L(r) is slowly varying at (the right of) zero if t 7−→ L(1/t) is slowly varying at∞.
(c) A function f is regularly varying at ∞ (respectively, 0) with real index m, in short f ∈ RVm(∞) (respectively,

f ∈ RVm(0+)) if f (t)/tm is slowly varying at∞ (respectively, 0).

Example 1. Any positive constant function is trivially slowly varying at ∞. Other non-trivial examples of slowly
varying functions at∞ are given by:

(a) The logarithm ln t, its iterates lnn t (defined as ln lnn−1 t) and powers of lnn t for any integer n ≥ 1.
(b) exp

(
ln t

ln ln t

)
.

(c) exp((ln t)ν) with ν ∈ (0, 1).
(d) exp{(ln t)1/3 cos((ln t)1/3)}.

Remark A.1. Note that limt→∞ f (t) = ∞ (respectively, 0) for any function f ∈ RVm(∞) with m > 0 (respectively,
m < 0). However, the limit at ∞ of a slowly varying function L at ∞ cannot be determined in general, and it may not
even exist (see example (d) above for which lim inft→∞ L(t) = 0 and lim supt→∞ L(t) = ∞).

Proposition A.1 (Uniform Convergence Theorem). If L is a slowly varying function at zero, then L(ξt)/L(t) → 1 as
t → 0, uniformly on each compact ξ-set in (0,∞).

Theorem A.2 (Representation Theorem). The function L is slowly varying at 0 if and only if we have

L(t) = η(t) exp
(∫ c

t

ε(r)
r

dr
)
, 0 < t ≤ c

for some c > 0, where η is a measurable function on (0, c] satisfying limt→0+ η(t) = η ∈ (0,∞) and ε is a continuous
function on (0, c] such that limt→0+ ε(t) = 0.

Remark A.2. If η(t) is replaced by a positive constant η, then the new function η is referred to as a normalised slowly
varying function. In this case, ε(t) = −tL′(t)/L(t) for 0 < t ≤ c. Conversely, any function L̃ ∈ C1(0, c], which is
positive and satisfies limt→0+ tL̃′(t)/L̃(t) = 0, is a normalised slowly varying function.

Remark A.3. Any slowly varying function at zero is asymptotically equivalent to a normalised slowly varying one.

Theorem A.3 (Karamata’s Theorem at 0). Let f vary regularly at zero with index ρ and be locally bounded on (0, c].
The following assertions hold:

(a) For any j ≤ −(ρ + 1), we have

lim
t→0+

t j+1 f (t)∫ c
t r j f (r) dr

= − ( j + ρ + 1) ;
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(b) For any j > −(ρ + 1) (and for j = −(ρ + 1) if
∫

0+ r−ρ−1 f (r) dr < +∞), we have

lim
t→0+

t j+1 f (t)∫ t
0 r j f (r) dr

= j + ρ + 1.

Proposition A.4 (Karamata’s Theorem at∞). If f ∈ RVρ(∞) is locally bounded in [A,∞), then

(a) For any j ≥ −(ρ + 1), we have

lim
t→∞

t j+1 f (t)∫ t
A ξ

j f (ξ) dξ
= j + ρ + 1.

(b) For any j < −(ρ + 1) (and for j = −(ρ + 1) if
∫ ∞

ξ−(ρ+1) f (ξ) dξ < ∞), we have

lim
t→∞

t j+1 f (t)∫ ∞
t ξ j f (ξ) dξ

= −( j + ρ + 1).

As in [20], we denote by f← the (left continuous) inverse of a non-decreasing function f on R, namely

f←(t) = inf{s : f (s) ≥ t}.

Proposition A.5 (see Proposition 0.8 in [20]). We have

1. If f ∈ RVρ(∞), then limt→∞ ln f (t)/ ln t = ρ.
2. If f1 ∈ RVρ1 (∞) and f2 ∈ RVρ2 (∞) with limt→∞ f2(t) = ∞, then

f1 ◦ f2 ∈ RVρ1ρ2 .

3. Suppose f is non-decreasing, f (∞) = ∞, and f ∈ RVρ(∞) with 0 < ρ < ∞. Then

f← ∈ RV1/ρ(∞).

Remark A.4. If (A1)–(A3) hold, then by [10, Lemma A.7], there exist continuous functions h1 and h2 on [0,∞),
positive on (0,∞) with h1(0) = h2(0) = 0 such that

h1(t) ≤ h(t) ≤ h2(t) for t ∈ [0,∞),
h1(t)/tp−1 and h2(t)/tp−1 are both increasing for t ∈ (0,∞),
h1(t) ∼ h2(t) ∼ h(t) as t → ∞.

(A.1)

Therefore, without loss of generality, we can assume that t 7−→ tq−p+1Lh(t) is increasing on (0,∞) so that tqLh(t) is
non-decreasing on (0,∞). Moreover, as in [9, Section 1.2.4], we can take Lh ∈ C2[t0,∞) and Lb ∈ C2(0, r0] for some
large constant t0 > 0 and r0 ∈ (0, 1) such that

lim
t→∞

tL′h(t)
Lh(t)

= lim
t→∞

t2L′′h (t)
Lh(t)

= 0, lim
r→0+

rL′b(r)
Lb(r)

= lim
r→0+

r2L′′b (r)
Lb(r)

= 0. (A.2)
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