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Abstract. We consider two different methods of associating vertex algebraic struc-

tures with the level 1 principal subspaces for Uq(ŝl2). In the first approach, we introduce

certain commutative operators and study the corresponding vertex algebra and its mod-

ule. We find combinatorial bases for these objects and show that they coincide with

the principal subspace bases found by B. L. Feigin and A. V. Stoyanovsky. In the sec-

ond approach, we introduce the, so-called nonlocal q-vertex algebras, investigate their

properties and construct the nonlocal q-vertex algebra and its module, generated by

Frenkel-Jing operator and Koyama’s operator respectively. By finding the combinatorial

bases of their suitably defined subspaces, we establish a connection with the Rogers-

Ramanujan identities. Finally, we discuss further applications to quantum quasi-particle

relations.

Introduction

In [FS], B. L. Feigin and A. V. Stoyanovsky associated with every standard ŝl2-module

L the principal subspace – a subspace of L obtained by the action of the universal

enveloping algebra U(n̂+) on the highest weight vector of L, where n̂+ is a subalgebra of ŝl2
corresponding to a certain triangular decomposition. The authors constructed monomial

bases for the principal subspaces and computed the character formulas, which are related

to the Rogers-Ramanujan-type identities. This led to an intensive research of the principal

subspaces and related structures.

Generalizing their work, G. Georgiev in [G] constructed similar bases for the principal

subspaces corresponding to certain standard ŝln+1-modules. More recently, the problem

of finding such combinatorial bases in types (BC)(1) was solved by M. Butorac ([Bu1]-

[Bu2]) for certain highest weights. In [CLM1]–[CLM2], S. Capparelli, J. Lepowsky and A.

Milas applied the theory of vertex algebras and intertwining operators to recover Feigin-

Stoyanovsky’s character formulas for principal subspaces associated to ŝl2 and to show

that the corresponding graded dimensions satisfy Rogers-Selberg recursions. Next, in

the papers of C. Calinescu, Lepowsky, Milas and C. Sadowski ([CalLM1]–[CalLM4],[S1]),

natural presentations of certain principal subspaces associated with the affine Lie algebras

of types (ADE)(1) and A
(2)
2 were found.

Another variant of principal subspaces, the so-called Feigin-Stoyanovsky’s type sub-

spaces, was studied by M. Primc. He constructed monomial bases for the subspaces

corresponding to the affine Lie algebras of type A
(1)
n ([P1]) and, for the highest weight Λ0,

to the affine Lie algebras of type (ABCD)(1) ([P2]). Later on, combinatorial bases and

character recurrence relations for Feigin-Stoyanovsky’s type subspaces were studied by I.
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Baranović ([Ba]), M. Jerković and Primc ([J1]–[J2],[JP]) and G. Trupčević ([T1]–[T3]).

For more details on the principal subspaces the reader may consult, for example, the

papers [AKS], [FFJMM], [Ka], [MP], [S2] and references therein.

Using Drinfeld realization of quantum affine algebras ([D]) and Frenkel-Jing realiza-

tion of the integrable highest weight modules ([FJ]), we introduced in [Ko1] the notion

of a principal subspace associated with the integrable highest weight module for the

quantum affine algebra Uq(ŝln+1), which was motivated by [FS] and [G]. We found, for

certain highest weights, combinatorial bases of these subspaces, which were, as in [G], ex-

pressed in terms of monomials of the so-called quasi-particles acting on the highest weight

vector. Two main ingredients in this construction were finding the relations among quasi-

particles and proving the linear independence by using the explicit formulas for certain

vertex operators Y(z) found by Y. Koyama in [Koy]. However, unlike the classical case,

these relations did not seem to have any vertex algebraic interpretation. Although the

considered operators, i.e. quasi-particles, are not local, they do have some properties, such

as q-integrability (see [DM]), which might suggest the existence of an underlying vertex

algebra-like theory.

By now, there were several approaches to the development of the quantum vertex

algebra theory, which led to the construction of some new and important structures: HD-

quantum vertex algebras of I. I. Anguelova and M. J. Bergvelt ([AB]), field algebras of B.

Bakalov and V. G. Kac ([BK]), (different notions of) quantum vertex algebras of R. E.

Borcherds ([B2]) and H.-S. Li ([L1]–[L3]), quantum VOAs of P. Etingof and D. Kazhdan

([EK]) and deformed chiral algebras of E. Frenkel and N. Reshetikhin ([FR]). Even though

we found in [Ko1] an application of Li’s theory on the quasi-particle construction, we

were not able to further develop this correspondence. In this paper we study two different

methods of associating vertex algebraic structures with the level 1 principal subspaces of

Uq(ŝl2).

Denote by L = L0⊕L1 a direct sum of (nonequivalent) level 1 integrable highest weight

Uq(ŝl2)-modules L0, L1 with integral dominant highest weights Λ0, Λ1 respectively. In Sec-

tion 2, motivated by Ding-Feigin construction of commutative operators in [DF], we intro-

duce certain new operators on L, x̂(z) ∈ Hom(L,L((z))) and Ŷ(z) ∈ Hom(L,L((z1/2))).

These operators were designed to satisfy the following equalities:

[x̂(z1), x̂(z2)] = [x̂(z1), Ŷ(z2)] = 0, (0.1)

x̂(z)x̂(z) = x̂(z)x̂′(z) = x̂(z)Ŷ(z) = 0. (0.2)

Furthermore, the classical limit of x̂(z) coincides with the classical limit of the corre-

sponding Frenkel-Jing operator x+(z) (see [FJ]). Commutativity condition (0.1) will al-

low us to easily apply the vertex algebra theory, while the second condition, (0.2) will

be crucial in finding (independent) relations among the operators. Even though Ding-

Feigin operators x̄+(z) have similar properties, their q-integrability relations (cf. [DM]),

x̄+(z)x̄+(zq±2) = 0, seem to be much harder to handle by vertex algebraic methods, than

the (classic) integrability relation (0.2) (cf. [LP]).

First, we construct bases B̂W (Λi), i = 1, 2, of the principal subspaces W (Λi) associ-

ated with Li. The basis elements are expressed as monomials of the operator’s x̂(z) =∑
r∈Z x̂(r)z−r−1 coefficients acting on the highest weight vector vΛi , whose indices satisfy

certain difference and initial conditions. These conditions coincide with the conditions
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found in [G], while the proof relies upon the results in [Ko1]. Next, we consider vertex

algebra W0 ⊂ Hom(L0, L0((z))), generated by (a restriction of) x̂(z), and W0-module

W1 ⊂ Hom(L0, L1((z))), generated by (a restriction of) Ŷ(z). By using relations (0.1),

(0.2) we find bases B̂Wi
, i = 0, 1, of Wi:

B̂Wi
=

{
x̂(z)lm . . . x̂(z)l2x̂(z)l1ai(z)

∣∣∣∣ l1 ≤ −1− i and lr+1 ≤ lr − 2

for all lr ∈ Z, r = 1, 2, . . . ,m− 1, m ∈ Z≥0

}
,

where a0(z) = 1 and a1(z) = Ŷ(z). The form of the both pairs of bases, B̂W (Λi) and B̂Wi
,

allows us to easily see that the characters of W (Λi) and Wi are equal to the sum sides of

the famous Rogers-Ramanujan identities (cf. [A]),∏
r≥0

1

(1− q5r+1+i)(1− q5r+4−i)
=
∑
r≥0

qr
2+ir

(1− q)(1− q2) · · · (1− qr)
.

In the second approach, we work with Frenkel-Jing operator x(z) = x+(z) acting on L.

Since x(z) is not local, our first step is developing an appropriate vertex algebraic setting,

which would allow us to apply similar techniques as in Section 2. In Section 3, we study

the operators a1(z), ..., an(z) ∈ E(L) = Hom(L,L((z))) satisfying the following, so-called

quasi-commutativity property:

a1(z1)a2(z2) · · · an(zn) ∈ Hom(L,L((z1, z2, ..., zn))),

which is a special case of quasi-compatibility (cf. [L1]). Motivated by [BK] and [L1], we

introduce the notion of nonlocal q-vertex algebra, obtained from the notion of vertex

algebra (cf. [LL]) by replacing Jacobi identity with “q-associativity”,

Y (a(z), z0 + z2)Y (b(z), z2)c(z) = Y (Y (a(z), z0)b(z), z2)c(z), (0.3)

where variables z2, z0, z satisfy the following noncommutative constraints

z2z0 = qz0z2, z2z = qzz2, z0z = qz0z

for some transcendental element q over C. In general, the above definition may be given

in a more abstract form, written in terms of states, instead of in terms of fields. However,

in this paper, (0.3) was easier to handle and we did not need a more general definition.

Even though the operators studied in this paper satisfy “q-associativity”, we expect that,

in a more general setting, a weaker form of this axiom should be considered. Finally, we

introduce rth products, r ∈ Z, among quasi-commutative operators in E(L) and prove

the main result of this section:

Theorem 3.13. Let S be a quasi-commutative subset of E(L). There exists a unique

smallest nonlocal q-vertex algebra V ⊂ E(L) such that S ⊆ V .

In Section 4, using Theorem 3.13 we construct nonlocal q-vertex algebra 〈x(z)〉 (for q =

q2), generated by x(z), and a 〈x(z)〉-module 〈Y(z)〉, generated by Y(z). The underlying

vector spaces, obtained in this way, are “much bigger” than their analogues from Section 2,

so we consider only their subspaces Wi,q, i = 0, 1, spanned by the operators

x(z)lm . . . x(z)l1ai(z), lj ≤ −1, j = 1, 2...,m, m ∈ Z≥0, (0.4)
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where a0(z) = 1, a1(z) = Y(z). More precisely, the operators

x̂(z)lm . . . x̂(z)l1 âi(z), lj ≤ −1, j = 1, 2...,m, m ∈ Z≥0,

span the whole Wi, while the operators (0.4) span only the subspace Wi,q of 〈x(z)〉
(when i = 0) or 〈Y(z)〉 (when i = 1). This was caused by the application of the two

crucially different approaches. While in Section 2 we adjusted the operators x̂(z) and

Ŷ(z), so that they can be efficiently handled by vertex algebraic methods, in Sections

3 and 4, we adjusted the (nonlocal) vertex algebra theory, so that it can handle the

original operators x(z) and Y(z). In the end, rth products among quasi-commutative

operators, which were designed to match the q-integrability satisfied by Frenkel-Jing

operators, x(z)x(z) = x(z)x(zq2) = 0, gave rise to a “bigger” structure, than the usual

vertex operator products among local operators satisfying (0.1). Since the definition of

the subspaces Wi,q, given in (0.4), corresponds with the original definition of the principal

subspaces, we proceed to study these subspaces.

The main result in Section 4 is the construction of the monomial bases BWi,q for the

spaces Wi,q,

BWi,q =

{
x(z)lm . . . x(z)l1ai(z)

∣∣∣∣ l1 ≤ −1− i and lr ≤ −3

for all lr ∈ Z, r = 2, 3, . . . ,m, m ∈ Z≥0

}
.

Using the nonlocal q-vertex algebra setting we find a construction which is to a great

extent analogous to the construction of bases B̂Wi
. These bases are not given in terms

of the same different and initial conditions as the bases B̂Wi
. However, by constructing

a bijection between the sets of diagrams corresponding to the elements of BWi,q and

B̂Wi
≡ B̂W (Λi), we show that, for a suitably defined character chq, we get

Theorem 4.13. For i = 0, 1 we have

chqWi,q =
∑
r≥0

qr
2+ir

(1− q)(1− q2) · · · (1− qr)
.

In Section 5, we recall the notions of quasi-particles from [G] and (quantum) quasi-

particles from [Ko1], which were, roughly speaking, the main building blocks of the com-

binatorial bases found in these papers. One of the most important ingredients in such

constructions is finding an appropriate set of relations among quasi-particles. Motivated

by the vertex algebraic interpretation of the quasi-particle relations found by Georgiev

for ŝln+1, as an application of nonlocal q-vertex algebras we find a similar interpretation

of the quasi-particle relations for Uq(ŝln+1).

1. Preliminaries

1.1. Quantum calculus. We briefly recall some elementary notions of quantum calcu-

lus. For more details the reader may consult [KC]. Fix an indeterminate q. First, we define

some elements of the field C(q). For any two integers m and l, l ≥ 0, define q-integers,

[m]q =
qm − 1

q− 1
= 1 + q + ...+ qm−1,
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q-factorials,

[0]q! = 1, [l + 1]q! = [l + 1]q[l]q · · · [1]q,

and q-binomial coefficients,[
m

l

]
q

=
[m]q[m− 1]q · · · [m− l + 1]q

[l]q!
.

Denote by z0 and z two noncommutative variables satisfying

z0z = qzz0. (1.1)

Remark 1.1 In the rest of this paper we shall assume that all formal variables are

commutative, unless stated otherwise (as above).

We have the following q-analogue of the binomial theorem:

Proposition 1.2 For every integer m and variables z0, z satisfying (1.1) we have

(z + z0)m =
∑
l≥0

[
m

l

]
q

zm−lzl0. (1.2)

Let V be a vector space over the field C(q) and let a(z) ∈ V [[z±1]] be an arbitrary

Laurent series. Define q-derivation of a(z) as

dq

dqz
a(z) =

a(zq)− a(z)

z(q− 1)
∈ V [[z±1]]. (1.3)

In order to simplify our notation we will denote the nth q-derivation of a(z) as a[n](z).

Example 1 As an application of (1.3) we calculate q-derivation of a monomial a(z) = zm,

m ∈ Z:

a[1](z) = (zm)[1] =
(zq)m − zm

z(q− 1)
=

qm − 1

q− 1
zm−1 = [m]qz

m−1.

Specially, since [0]q = 0, the q-derivation of a constant equals zero.

The operator
dq

dqz
is obviously a linear operator. Furthermore, it satisfies the general

Leibniz rule:

Proposition 1.3 For every nonnegative integer m and a(z), b(z) ∈ Hom(V, V [[z]]) we

have

(a(z)b(z))[m] =
m∑
l=0

[
m

l

]
q

a[l](z)b[m−l](zql). (1.4)

Proof. Since

(a(z)b(z))[1] = a(z)b[1](z) + a[1](z)b(zq),

formula (1.4) follows by induction over m. �

Remark 1.4 It is easy to see that that (1.4) holds for any a(z), b(z) ∈ Hom(V, V ((z)))

satisfying

a(z1)b(z) ∈ Hom(V, V ((z1, z))).
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Denote by e
z0

∂q

∂qz

q the operator

e
z0

∂q

∂qz

q =
∞∑
l=0

1

[l]q!

∂lq

∂qzl
zl0 : V [[z±1]]→ V [[z±1]][[z0]],

where z0 denotes right multiplication by the variable z0 satisfying (1.1). At the end of

this subsection we recall q-Taylor theorem:

Proposition 1.5 For every a(z) ∈ V [[z±1]] we have

a(z + z0) = e
z0

∂q

∂qz

q a(z), (1.5)

where z0 and z are subject to (1.1).

Proof. Let a(z) =
∑

r∈Z arz
r. By using (1.2) we get

a(z + z0) =
∑
r∈Z

ar(z + z0)r =
∑
r∈Z

∑
l≥0

[
r

l

]
q

arz
r−lzl0 =

∑
r∈Z

∑
l≥0

1

[l]q!

∂lq

∂qzl
arz

rzl0

=
∑
l≥0

1

[l]q!

∂lq

∂qzl

∑
r∈Z

arz
rzl0 = e

z0
∂q

∂qz

q a(z).

�

1.2. Quantum affine algebra Uq(ŝl2). For the simple Lie algebra sl2, with the standard

basis

xα =

(
0 1

0 0

)
, x−α =

(
0 0

1 0

)
, hα =

(
1 0

0 −1

)
,

denote by ŝl2 the associated affine Lie algebra on the underlying vector space

ŝl2 = sl2 ⊗ C[[t, t−1]]⊕ Cc⊕ Cd,

with the bracket relations defined in a usual way (for details see [K]). For a ∈ sl2 set

a(z) =
∑
r∈Z

(a⊗ tr)z−r−1 ∈ ŝl2[[z, z−1]].

Let A = (aij)
1
i,j=0 be the generalized Cartan matrix associated with ŝl2 and ĥ ⊂ ŝl2 a

vector space over C with a basis consisting of simple coroots α∨j , j = 0, 1, and derivation

d. Denote by α0, α1 simple roots, i.e. linear functionals from ĥ∗ such that

αi(α
∨
j ) = aji, αi(d) = δi0, i, j = 0, 1,

and by Λ0,Λ1 fundamental weights, i.e. elements of ĥ∗ such that

Λi(α
∨
j ) = δij, Λi(d) = 0, i, j = 0, 1.

Define a weight lattice P̂ of ŝl2 as a free Abelian group generated by the elements Λ0,Λ1

and δ = α0 + α1. An integral dominant weight is any Λ ∈ P̂ such that Λ(α∨i ) ∈ Z≥0 for

i = 0, 1. Denote by

Q = Zα1 ⊂ h∗ and P = Zλ1 ⊂ h∗

the classical root lattice and the classical weight lattice of sl2 respectively, where λ1 =

α1/2.
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In this paper, we will mostly use q-numbers introduced in the previous subsection.

However, the definition of quantum affine algebra is usually given in terms of (differently

defined) q-numbers, so we recall them as well. Fix an indeterminate q. For any two integers

m and l, l ≥ 0, define q-integers,

[m] =
qm − q−m

q − q−1
,

q-factorials,

[0]! = 1, [l + 1]! = [l + 1][l] · · · [1]

and q-binomial coefficients,[
m

l

]
=

[m][m− 1] · · · [m− l + 1]

[l]!
.

We recall Drinfeld realization of the quantum affine algebra Uq(ŝl2).

Definition 1.6 [D] The quantum affine algebra Uq(ŝl2) is the associative algebra over

C(q1/2) with unit 1 generated by the elements x±(r), a(s), K±1, γ±1/2 and q±d, r, s ∈ Z,

s 6= 0, subject to the following relations:

[γ±1/2, u] = 0 for all u ∈ Uq(ŝl2), (D1)

KK−1 = K−1K = 1, (D2)

[a(k), a(l)] = δk+l 0
[2k]

k

γk − γ−k

q − q−1
, (D3)

[a(k), K±1] = [q±d, K±1] = 0, (D4)

qdx±(k)q−d = qkx±(k), qda(k)q−d = qka(k), (D5)

Kx±(k)K−1 = q±2x±(k), (D6)

[a(k), x±(l)] = ± [2k]

k
γ∓|k|/2x±(k + l), (D7)

x±(k + 1)x±(l)− q±2x±(l)x±(k + 1) = q±2x±(k)x±(l + 1)− x±(l + 1)x±(k), (D8)

[x+(k), x−(l)] =
1

q − q−1

(
γ
k−l
2 ψ(k + l)− γ

l−k
2 φ(k + l)

)
, (D9)

where the elements φ(−r) and ψ(r), r ∈ Z≥0, are given by

φ(z) =
∞∑
r=0

φ(−r)zr = K−1 exp

(
−(q − q−1)

∞∑
r=1

a(−r)zr
)
,

ψ(z) =
∞∑
r=0

ψ(r)z−r = K exp

(
(q − q−1)

∞∑
r=1

a(r)z−r

)
.

Denote by x±(z) the series

x±(z) =
∑
r∈Z

x±(r)z−r−1 ∈ Uq(ŝl2)[[z±1]]. (1.6)

We shall continue to use the notation x±(z) for the action of expression (1.6) on an

arbitrary Uq(ŝl2)-module V :

x±(z) =
∑
r∈Z

x±(r)z−r−1 ∈ (EndV )[[z±1]].
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1.3. Representations of Uq(ŝl2). First, we recall Frenkel-Jing realization of the inte-

grable highest weight Uq(ŝl2)-modules L(Λi), i = 0, 1 (see [FJ]).

Let V be an arbitrary Uq(ŝl2)-module of level c. The Heisenberg algebra Uq(ĥ) of level c

is generated by the elements a(k), k ∈ Z\{0}, and the central element γ±1 = q±c subject

to the relations

[a(r), a(s)] = δr+s 0
[2r][cr]

r
, r, s ∈ Z \ {0} . (1.7)

Algebra Uq(ĥ) has a natural realization on the space Sym(ĥ−) of the symmetric algebra

generated by the elements a(−r), r ∈ Z>0, via the following rule:

γ±1 . . . multiplication by q±c,

a(r) . . . differentiation operator subject to (1.7),

a(−r) . . . multiplication by the element ai(−r).

Denote the resulted irreducible Uq(ĥ)-module as K(c). Define the following operators on

K(c):

E±−(a, z) = exp

(
∓
∑
r≥1

q∓cr/2

[cr]
a(−r)zr

)
,

E±+(a, z) = exp

(
±
∑
r≥1

q∓cr/2

[cr]
a(r)z−r

)
.

Let C {Q} be twisted group algebra of Q generated by eα, α ∈ Q. The space

C {P} = C {Q} ⊕ C {Q} eλ1

is a C {Q}-module. Set

L0 = K(1)⊗ C {Q} , L1 = K(1)⊗ C {Q} eλ1 . (1.8)

For α ∈ Q define an action z∂α on C {P} by

z∂αeβ = z(α,β)eβ.

Theorem 1.7 [FJ] By the action

x±(z) = E±−(−a, z)E±+(−a, z)⊗ e±αz±∂α ,

the space Li, i = 0, 1, becomes the integrable highest weight module of Uq(ŝl2) with the

highest weight Λi.

In [Ko1] and [Ko2], we considered some vertex operators on the space

L = K(1)⊗ C {P} ,

which were based on the explicit formulas for level 1 vertex operators on integrable highest

weight modules of Uq(ŝln+1) found by Koyama in [Koy]. We now briefly recall Koyama’s

construction for n = 1. Define the following operators on the space L:

E−(z) = exp

(
∞∑
r=1

qr/2

[2r]
a(−r)zr

)
,

E+(z) = exp

(
−
∞∑
r=1

qr/2

[2r]
a(r)z−r

)
.
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We define an operator Y(z) ∈ Hom(L,L((z1/2))) by

Y(z) = E−(z)E+(z)⊗ eλ1z∂λ1 . (1.9)

Applying the operator Y(z) on an arbitrary vector v ∈ L, we get a formal power series in

fractional powers z1/2 of the variable z, that has only a finite number of negative powers.

Notice that formula (1.9) also defines an operator L0 → L1((z)).

The relations in the next proposition can be proved by a direct calculation.

Proposition 1.8 The following relations hold on L = K(1)⊗ C {P}:

x+(z1)x+(z2) = (z1 − z2)(z1 − q−2z2) : x+(z1)x+(z2) : (1.10)

x+(z1)Y(z2) = Y(z2)x+(z1) = (z1 − z2) : x+(z1)Y(z2) : (1.11)

x+(z1)E−(z2) =

(
1− z2

z1

)
E−(z2)x+(z1) (1.12)

E+
+(−a, z1)Y(z2) =

(
1− z2

z1

)
Y(z2)E+

+(−a, z1). (1.13)

2. Commutative operators and principal subspaces for Uq(ŝl2)

2.1. Commutative operators. Define the following operators on the space L:

k̂(z) = exp

(
(q − q−1)

∑
r≥1

−qr/2

1 + q2r
a(r)z−r

)
∈ Hom(L,L((z))).

Next, define the operator x̂(z) by

x̂(z) = x+(z)k̂(z) ∈ Hom(L,L((z))). (2.1)

Remark 2.1 Expression (2.1) is well-defined on an arbitrary integrable Uq(ŝl2)-module.

However, since the main results of this section are proved for the level 1 case, we consider

only the space L.

Proposition 2.2 On the space L we have

x̂(z1)x̂(z2) = x̂(z2)x̂(z1) = (z1 − z2)2 : x̂(z1)x̂(z2) : . (2.2)

Both of the above equalities can be proved by a direct calculation, using the relations

(D3). Since the both sides of (2.2) are elements of Hom(L,L((z1, z2))), we can apply the

limit limz1,z2→z on (2.2), thus getting

Proposition 2.3

x̂(z)2 = 0. (2.3)

Define the following operators on L:

Ê−(z) = exp

(∑
r≥1

q−r/2

2[r]
a(−r)zr

)
∈ Hom(L,L((z))),

Ê+(z) = exp

(∑
r≥1

−qr/2

[2r]
a(r)z−r

)
∈ Hom(L,L((z))),

Ŷ(z) = Ê−(z)Ê+(z)⊗ eλz∂λ ∈ Hom(L,L((z1/2))). (2.4)

9



Notice that formula (2.4) also defines an operator L0 → L1((z)). Set Ê−,λ(z) = Ê−(z)⊗eλ.
By a direct calculation one can prove

Proposition 2.4 On the space L we have

x̂(z1)Ŷ(z2) = Ŷ(z2)x̂(z1) = (z1 − z2) : x̂(z1)Ŷ(z2) :, (2.5)

x̂(z1)Ê−,λ(z2) = −(z1 − z2)Ê−,λ(z2)x̂(z1). (2.6)

For a nonnegative integer n set

x̂(n)(z) =
∂n

∂zn
x̂(z) and Ê (n)

−,λ(z) =
∂n

∂zn
Ê−,λ(z).

By applying partial derivatives on (2.6) we get

Proposition 2.5 For nonnegative integers n and k we have

x̂(n)(z1)Ê (k)
−,λ(z2) = kÊ (k−1)

−,λ (z2)x̂(n)(z1)− nÊ (k)
−,λ(z2)x̂(n−1)(z1)− (z1 − z2)Ê (k)

−,λ(z2)x̂(n)(z1).

(2.7)

2.2. Basis for level 1 principal subspaces. Denote by Uq(n̂
±) a subalgebra of Uq(ŝl2)

generated by the elements x±(r), r ∈ Z, and denote by Uq(ĥ)0 a subalgebra of Uq(ŝl2)

generated by the elements a(s), K±1, γ±1/2 and q±d for s ∈ Z, s 6= 0. It is well known

that multiplication establishes an isomorphism of C(q1/2)-vector spaces:

Uq(ŝl2) ∼= Uq(n̂
−)⊗ Uq(ĥ)0 ⊗ Uq(n̂+).

We recall the notion of a principal subspace from [Ko1]. Let Λ be an integral dominant

weight. Denote by vΛ the highest weight vector of the integrable highest weight module

L(Λ). We define a principal subspace W (Λ) of L(Λ) as

W (Λ) = Uq(n̂
+)vΛ.

In this subsection, we construct combinatorial bases for the principal subspaces W (Λi),

i = 0, 1, corresponding to the bases found in [Ko1]. Each basis vector will be written as

a monomial of endomorphisms x̂(r) acting on the highest weight vector vΛi .

Denote by Ŵ (Λi) a subspace of L(Λi) spanned by the vectors

x̂(rm) · · · x̂(r1)vΛi , where m ∈ Z≥0, rj ∈ Z.

The next Lemma can be proved in the same way as Lemma 9 in [Ko1].

Lemma 2.6 For i = 0, 1

Ŵ (Λi) = W (Λi).

Equalities (2.2) and (2.3) allow us to directly apply Georgiev’s arguments (see [G]).

Hence, for i = 0, 1 we get the spanning set B̂W (Λi) of the principal subspace W (Λi), where

B̂W (Λi) =

{
x̂(lm) · · · x̂(l2)x̂(l1)vΛi

∣∣∣∣ l1 ≤ −1− δ1i and lr+1 ≤ lr − 2 (2.8)

for all lr ∈ Z, r = 1, 2, . . . ,m− 1, m ∈ Z≥0

}
.

Since the difference and initial conditions in (2.8) coincide with the difference and initial

conditions satisfied by the elements of BW (Λi) · vΛi , the basis of the principal subspace

W (Λi) found in [Ko1], we conclude

Theorem 2.7 The set B̂W (Λi) forms a basis for the principal subspace W (Λi).
10



2.3. Vertex algebra W0. Let W0 ⊂ Hom(L0, L0((z))) be the vertex algebra generated

by x̂(z) ∈ Hom(L0, L0((z))). Denote by

Y (·, z0) : W0 → (EndW0)[[z0, z
−1
0 ]]

the corresponding vertex operator map. Details about construction theorems for vertex

algebras and their modules can be found in [LL]. For every a(z), b(z) ∈ W0 we have

Y (a(z), z0)b(z) =
∑
r∈Z

a(z)rb(z)z−r−1
0 = a(z + z0)b(z)

and, therefore,

a(z)rb(z) =

{
0 if r ≥ 0,

1
(−r−1)!

a(−r−1)(z)b(z) if r < 0.
(2.9)

Remark 2.8 Since the operator x̂(z) is commutative, we can consider the smallest com-

mutative, associative algebra A0 with unit 1 and derivation d
dz

, which contains x̂(z). The

algebra A0 obviously coincides with W0 (as a vector space). Furthermore, the vertex

algebra structure on W0 can be recovered from A0 by Borcherds’ construction (see [B1]).

The space W0 is spanned by the vectors

x̂(z)lm . . . x̂(z)l2x̂(z)l11, lm ≤ . . . ≤ l2 ≤ l1 ≤ −1, m ∈ Z≥0. (2.10)

By applying Leibniz rule on

dn

dzn
(x̂(z)x̂(z)) =

dn

dzn
0 = 0

we get
n∑
l=0

(
n

l

)
x̂(l)(z)x̂(n−l)(z) = 0. (2.11)

This equality, together with (2.2), allows us to express a product

x̂(z)sx̂(z)r, s− r = 0,±1,

as a linear combination of products

x̂(z)tx̂(z)u, u− t ≥ 2, u+ t = s+ r.

Therefore, we can reduce spanning set (2.10), thus getting a smaller spanning set of W0:

B̂W0 =

{
x̂(z)lm . . . x̂(z)l2x̂(z)l11

∣∣∣∣ l1 ≤ −1 and lr+1 ≤ lr − 2 (2.12)

for all lr ∈ Z, r = 1, 2, . . . ,m− 1, m ∈ Z≥0

}
.

Remark 2.9 Notice that equality (2.2) implies

x̂(z)−1x̂(z)−11 = x̂(z)−2x̂(z)−11 = x̂(z)−2x̂(z)−11 = 0, (2.13)

while (2.11) can be written as

n!
n∑
l=0

x̂(z)−l−1x̂(z)−n+l−11 = 0. (2.14)

Our next goal is to prove the linear independence of B̂W0 .
11



Lemma 2.10 For every positive integer m and ε = 0, 1

x̂(z)−2m+1−εx̂(z)−2m+1 . . . x̂(z)−3x̂(z)−11 = 0.

Proof. The Lemma is a consequence of equalities (2.2) and it can be proved by induction

on m. �

Lemma 2.11 For every positive integer m

x̂(z)−2m+1 . . . x̂(z)−3x̂(z)−11 6= 0.

Proof. Set

c0 =
1

(2m− 2)! · · · 4!2!
, d0 =

∂2m−2

∂z2m−2
m

· · · ∂
2

∂z2
2

 m∏
j,k=1
j>k

(zj − zk)2

 ∈ Z \ {0} .

We have

x̂(z)−2m+1 . . . x̂(z)−3x̂(z)−11 = c0x̂
(2m−2)(z) . . . x̂(2)(z)x̂(z)

= c0 lim
zm,...,z2,z1→z

(
x̂(2m−2)(zm) · · · x̂(2)(z2)x̂(z1)

)
= c0 lim

zm,...,z2,z1→z

(
∂2m−2

∂z2m−2
m

· · · ∂
2

∂z2
2

(x̂(zm) · · · x̂(z2)x̂(z1))

)

= c0 lim
zm,...,z2,z1→z

 ∂2m−2

∂z2m−2
m

· · · ∂
2

∂z2
2


 m∏
j,k=1
j>k

(zj − zk)2

 : x̂(zm) . . . x̂(z2)x̂(z1) :




= c0 lim
zm,...,z2,z1→z


 ∂2m−2

∂z2m−2
m

· · · ∂
2

∂z2
2

 m∏
j,k=1
j>k

(zj − zk)2


 : x̂(zm) . . . x̂(z2)x̂(z1) :


= c0d0 lim

zm,...,z2,z1→z
: x̂(zm) . . . x̂(z2)x̂(z1) :

= c0d0 : x̂(z) . . . x̂(z)x̂(z)︸ ︷︷ ︸
m

: 6= 0.

�

Lemma 2.12 The elements of the set B̂W0 are nonzero.

Proof. Suppose that there exists

b(z) = x̂(z)lm . . . x̂(z)l2x̂(z)l11 ∈ B̂W0 (2.15)

such that b(z) = 0, i.e.

x̂(−lm−1)(z) · · · x̂(−l2−1)(z)x̂(−l1−1)(z) = 0. (2.16)

We can assume that

(−lm − 1, . . . ,−l2 − 1,−l1 − 1) (2.17)

is a minimal m-tuple in the lexicographic ordering such that x̂(z)lm . . . x̂(z)l2x̂(z)l11 = 0,

so if

c(z) = x̂(z)km . . . x̂(z)k2x̂(z)k11 = 0
12



and c(z) ∈ B̂W0 , then

(−km − 1, . . . ,−k2 − 1,−k1 − 1) ≥ (−lm − 1, . . . ,−l2 − 1,−l1 − 1).

Notice that Lemma 2.11 implies

(−lm − 1, . . . ,−l2 − 1,−l1 − 1) > (2m− 2, . . . , 2, 0).

Therefore, there exists an integer k ∈ {1, 2, . . . ,m} such that −lk − 1 > 2(k − 1). Let

j ∈ {1, 2, . . . ,m} be the minimal integer such that −lj − 1 > 2(j − 1). Equality (2.16)

implies

Ê−,λ(z1)−1x̂(−lm−1)(z) · · · x̂(−l2−1)(z)x̂(−l1−1)(z)Ê (j−1)
−,λ (z1) = 0,

where

Ê−,λ(z1)−1 = Ê−(z1)−1 ⊗ e−λ.
Therefore,

0 = lim
z1→z
Ê−,λ(z1)−1x̂(−lm−1)(z) · · · x̂(−l2−1)(z)x̂(−l1−1)(z)Ê (j−1)

−,λ (z1).

Now, we use (2.7) and Lemma 2.10 in order to move the operator Ê (j−1)
−,λ (z1) to the left:

0 = lim
z1→z

(j − 1)!Ê−,λ(z1)−1x̂(−lm−1)(z) · · · x̂(−lj−1)(z)Ê−,λ(z1)x̂(−lj−1−1)(z) · · · x̂(−l1−1)(z).

Finally, we have

0 = lim
z1→z

c0Ê−,λ(z1)−1Ê−,λ(z1)x̂(−lm−2)(z) · · · x̂(−lj−2)(z)x̂(−lj−1−1)(z) · · · x̂(−l1−1)(z)

= lim
z1→z

c0x̂
(−lm−2)(z) · · · x̂(−lj−2)(z)x̂(−lj−1−1)(z) · · · x̂(−l1−1)(z)

= c0x̂
(−lm−2)(z) · · · x̂(−lj−2)(z)x̂(−lj−1−1)(z) · · · x̂(−l1−1)(z),

where

c0 = (−lm − 1) · · · (−lj+1 − 1)(−lj − 1) · (j − 1)! 6= 0.

Hence, we have

x̂(−lm−2)(z) · · · x̂(−lj−2)(z)x̂(z)(−lj−1−1) · · · x̂(z)(−l2−1)x̂(−l1−1)(z) = 0.

Since

x̂(z)lm+1 . . . x̂(z)lj+1x̂(z)lj−1
. . . x̂(z)l2x̂(z)l11 ∈ B̂W0

and

(−lm − 1, . . . ,−lj − 1,−lj−1, . . . ,−l2 − 1,−l1 − 1)

> (−lm − 2, . . . ,−lj − 2,−lj−1 − 1, . . . ,−l2 − 1,−l1 − 1),

we have a contradiction to a minimality of j. �

Now, we can prove the main result of this section.

Theorem 2.13 The set B̂W0 forms a basis for W0.

Proof. Consider the linear combination

n∑
j=1

αjbj(z) = 0, (2.18)

13



where αj are nonzero scalars and

bj(z) = x̂(z)
l
(j)
mj

. . . x̂(z)
l
(j)
2
x̂(z)

l
(j)
1

1 ∈ B̂W0 .

We can assume that n is the smallest positive integer for which such a linear combination

exists. Lemma 2.12 implies that n ≥ 2. Furthermore, we can assume that mj = mk for all

j, k = 1, 2, ..., n. Indeed, if mj 6= mk for some j, k = 1, 2, ..., n, by applying the operator

1⊗ qα on (2.18) we get
n∑
j=1

q2mjαjbj(x) = 0,

which, together with (2.18), contradicts to minimality of n. Therefore, without loss of

generality we can assume that mj = mk for all j, k = 1, 2, . . . , n.

In the proof of Lemma 2.12 we described a procedure of reducing an element

x̂(z)lm . . . x̂(z)lj x̂(z)lj−1
. . . . . . x̂(z)l2x̂(z)l11 ∈ B̂W0

up to an element

x̂(z)lm+1 . . . x̂(z)lj+1x̂(z)lj−1
. . . x̂(z)l2x̂(z)l11 ∈ B̂W0 .

We can continue to apply such a procedure until we get the ”minimal element”

x̂(z)−2m+1 . . . x̂(z)−2j+1x̂(z)−2(j−1)+1 . . . x̂(z)−3x̂(z)−11 ∈ B̂W0 . (2.19)

In the same proof we also associated with element (2.15) of B̂W0 m-tuple (2.17). For two

such elements b(z), c(z) ∈ B̂W0 we shall write b(z) < c(z) if such an inequality holds for

their corresponding m-tuples.

Suppose that for the operators bj(z) in (2.18) we have bn(z) < . . . < b1(z). We can

keep applying our reduction procedure on (2.18), not stopping until b1(z) does not become

minimal (nonzero) element (2.19). Notice that all the other elements bj(z), j > 1, were

already annihilated at some intermediate stage, so we get

c0α1b1(z) = 0

for some nonzero scalar c0. This implies α1 = 0. Contradiction. �

The space

W1 =
{
a(z)Ŷ(z)

∣∣ a(z) ∈ W0

}
⊂ Hom(L0, L1((z)))

can be equipped with a W0-module structure by choosing a linear map

YW1(·, z0) : W0 → (EndW1) [[z±1
0 ]]

such that

YW1(a(z), z0)b(z) = a(z + z0)b(z)

for all a(z) ∈ W0, b(z) ∈ W1. Set

B̂W1 =

{
x̂(z)lm . . . x̂(z)l2x̂(z)l1Ŷ(z)

∣∣∣∣ l1 ≤ −2 and lr+1 ≤ lr − 2 (2.20)

for all lr ∈ Z, r = 1, 2, . . . ,m− 1, m ∈ Z≥0

}
.

Condition l1 ≤ −2 is a consequence of (2.5) because by applying the limit limz2,z1→z on

this relation we get

x̂(z)−1Ŷ(z) = x̂(z)Ŷ(z) = 0.
14



Theorem 2.14 The set B̂W1 forms a basis for W1.

Proof. The proof is similar to the proof of Theorem 2.13, so we only briefly outline it.

First, B̂W1 obviously spans W1. Next, relations (2.2) and (2.5) imply

x̂(zm) · · · x̂(z1)Ŷ(z) =
m∏

j,k=1
j>k

(zj − zk)2

m∏
j=1

(zj − z) : x̂(zm) . . . x̂(z1)Ŷ(z) :,

so we can proceed similarly as in the proofs of Lemmas 2.11, 2.12 and Theorem 2.13.

However, since

Ŷ(z)Ê−,λ(z1) =
(

1− z1

z

)1/2

z1/2Ê−,λ(z1)Ŷ(z),

the operator Ê (j−1)
−,λ (z1), which was used in the proof of Lemma 2.12, should be replaced

by

∂j−1

∂zj−1
1

((
1− z1

z

)−1/2

z−1/2Ê−,λ(z1)

)
.

�

3. Nonlocal q-vertex algebras

3.1. Definition. Let L be an arbitrary vector space over the field F ⊇ C(q) of charac-

teristic zero. Denote by 1 = 1L the identity L → L. In this section we consider certain

vertex algebra-like structures on subspaces of

E(L) = Hom(L,L((z))).

Definition 3.1 A nonlocal q-vertex algebra is a 3-tuple (V, Y, 1), where V ⊆ E(L) is a

vector space equipped with a linear map

Y (·, z0) : V → (EndV )[[z±1
0 ]]

a(z) 7→ Y (a(z), z0) =
∑
r∈Z

a(z)rz
−r−1
0 (v0)

and with a distinguished vector 1 ∈ V such that the following conditions hold: For every

a(z), b(z), c(z) ∈ V

a(z)rb(z) = 0 for r sufficiently large; (v1)

Y (1, z0) = 1V ; (v2)

Y (a(z), z0)1 ∈ V [[z0]] and lim
z0→0

Y (a(z), z0)1 = a(z); (v3)

Y (a(z), z0 + z2)Y (b(z), z2)c(z) = Y (Y (a(z), z0)b(z), z2)c(z), (v4)

where

z2z0 = qz0z2, z2z = qzz2, z0z = qz0z. (v5)

The definition requires some further explanations. In (v0), by z0 is denoted right mul-

tiplication by z0, i.e. for a(z), b(z) ∈ V we have

Y (a(z), z0)b(z) =
∑
r∈Z

a(z)rb(z)z−r−1
0 ∈ V ((z0)).

15



Since the variables z2, z0, z do not commute, we use the following conventions in (v4).

On the left-hand side of the equality we assume that z0 + z2 appears to the right of z2:

Y (a(z), z0 + z2)Y (b(z), z2)c(z) =
∑
r∈Z

∑
s∈Z

a(z)r(b(z)sc(z))z−s−1
2 (z0 + z2)−r−1.

Of course, we expand (z0 + z2)−r−1 in nonnegative powers of z2 as in Proposition 1.2.

When expanding the right-hand side of (v4), we assume that variable z0 appears to

the left of c(z):

Y (Y (a(z), z0)b(z), z2)c(z) = Y (
∑
r∈Z

a(z)rb(z)z−r−1
0 , z2)c(z)

=
∑
s∈Z

∑
r∈Z

(a(z)rb(z))sz
−r−1
0 c(z)z−s−1

2

=
∑
s∈Z

∑
r∈Z

(a(z)rb(z))sc(zq
−r−1)z−r−1

0 z−s−1
2 .

Definition 3.2 Let (V, Y, 1) be a nonlocal q-vertex algebra and K1, K2 vector spaces over

the field F. A V -module is a vector space W ⊂ Hom(K1, K2((z))) equipped with linear

map YW : V → Hom(W,W ((z0))) such that for every a(z), b(z) ∈ V , c(z) ∈ W we have

YW (1, z0) = 1W ; (m1)

YW (a(z), z0 + z2)YW (b(z), z2)c(z) = YW (Y (a(z), z0)b(z), z2)c(z), (m2)

where z2, z0, z satisfy (v5).

Relation (m2) should be understood in the same way as (v4).

3.2. Construction of nonlocal q-vertex algebras. The main goal of this subsection

is providing a construction method of nonlocal q-vertex algebras and their modules. Even

though the main result, together with its proof, is motivated by the results in [L1], we

are studying some different products among operators, which will prove to be useful in

dealing with principal subspaces. Unless stated otherwise, we assume that all the variables

z, z0, z1, z2, ... are commutative. Denote by R = Rq the operator E(L)→ E(L) given by

Ra(z) = a(zq).

We shall consider only vertex operators satisfying the following special case of quasi-

compatibility:

Definition 3.3 A sequence (a1(z), . . . , am(z)) in E(L) is said to be quasi-commutative if

a1(z1)a2(z2) · · · am(zm) ∈ Hom(L,L((z1, z2, . . . , zm))). (3.1)

Let a(z), b(z) be operators in E(L) such that

[a(z1), b(z)] = 0.

Then the pairs (a(z), b(z)) and (b(z), a(z)) are quasi-commutative.

Definition 3.4 Let (a(z), b(z)) be a quasi-commutative pair in E(L). For r ∈ Z we define

a(z)rb(z) ∈ (EndL)[[z±1]] by

a(z)rb(z) =

{
0 if r ≥ 0,

1
[−r−1]q!

a[−r−1](z)b(zq−r−1) if r < 0.
(3.2)
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Recall (2.9) and notice that, for commutative operators, the limit q → 1 of the rth

products given by Definition 3.4 coincides with the standard rth products of local vertex

operators.

First, we notice that the space E(L) is closed under the operations given by the pre-

ceding definition:

Proposition 3.5 Let (a(z), b(z)) be a quasi-commutative pair in E(L). Then

a(z)rb(z) ∈ E(L) for every integer r.

Next, we list some elementary properties of the rth products:

Proposition 3.6 Let (a(z), b(z)) be a quasi-commutative pair in E(L).

(a) For every α, β ∈ F the pair (a(zα), b(zβ)) is quasi-commutative.

(b) For every r, s ≥ 0 the pair (a[r](z), b[s](z)) is quasi-commutative.

(c) Pair (1L, a(z)) is quasi-commutative and for every integer r we have

(1L)ra(z) = δr+1 0a(z). (3.3)

(d) Pair (a(z), 1L) is quasi-commutative and we have

a(z)−11L = a(z). (3.4)

For the operator a(z) ∈ E(L) we write

Y (a(z), z0) =
∞∑
r=0

a(z)−r−1z
r
0 =

∞∑
r=0

1

[r]q!
a[r](z)zr0, (3.5)

where, as before, by z0 we denote the right multiplication with variable z0 satisfying

z0z = qzz0. (3.6)

By applying (3.5) on an operator b(z) ∈ E(L), such that the pair (a(z), b(z)) is quasi-

commutative, we get

Y (a(z), z0)b(z) =
∞∑
r=0

a(z)−r−1b(z)zr0 =
∞∑
r=0

1

[r]q!
a[r](z)b(zqr)zr0 ∈ E(L)[[z0]]. (3.7)

Proposition 3.7 For every quasi-commutative pair (a(z), b(z)) in E(L) we have

Y (1L, z0) = 1E(L); (3.8)

Y (a(z), z0)1L ∈ E(L)[[z0]] and lim
z0→0

Y (a(z), z0)1L = a(z); (3.9)

Y (a[1](z), z0)b(zq) =
∂q

∂qz0

(Y (a(z), z0)b(z)) . (3.10)

Proof. Equalities (3.8) and (3.9) follow from (3.2), (3.3) and (3.4), while equality (3.10)

can be easily verified by a direct calculation. �

Using statement (a) of Proposition 3.6 one can prove:

Lemma 3.8 Let (a1(z), a2(z), ..., am(z)) and (aj(z), aj+1(z)), j = 1, 2, ...,m−1, be quasi-

commutative sequences in E(L). Then, for every integer r the sequence

(a1(z), ..., aj−1(z), aj(z)raj+1(z), aj+2(z), ..., am(z))

is quasi-commutative.
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Remark 3.9 The operator aj(z)raj+1(z) can be expressed as a F[z±1]-linear combination

of certain minus first products, introduced in [L1], of the operators aj(zq
m),m ∈ Z, and

the operator aj+1(z). Therefore, Lemma 3.8 is a consequence of [L1, Proposition 2.18.].

Let S be a subset of E(L). We shall say that S is quasi-commutative if every finite

sequence in S is quasi-commutative. We shall say that S is closed if

a(z)rb(z) ∈ S for all a(z), b(z) ∈ S, r ∈ Z.

Theorem 3.10 Let V be a closed and quasi-commutative subspace of E(L) such that

1L ∈ V . Then (V, Y, 1L) is a nonlocal q-vertex algebra.

Proof. Assertion (v1) follows from (3.7), while (v2) and (v3) have already been proved

in Proposition 3.7. Suppose that variables z2, z0, z satisfy (v5). For a(z), b(z), c(z) ∈ V ,

using (1.2) and (1.4), we get

Y (Y (a(z), z0)b(z), z2)c(z) = Y (
∞∑
r=0

1

[r]q!
a[r](z)b(zqr)zr0, z2)c(z)

=
∞∑
s=0

∞∑
r=0

1

[r]q![s]q!
(a[r](z)b(zqr))[s]zr0c(zq

s)zs2

=
∞∑
s=0

∞∑
r=0

1

[r]q![s]q!

(
s∑
l=0

[
s

l

]
q

qr(s−l)a[r+l](z)b[s−l](zqr+l)

)
c(zqs+r)zr0z

s
2

=
∞∑
s=0

∞∑
r=0

s∑
l=0

qr(s−l)

[r]q![l]q![s− l]q!
a[r+l](z)b[s−l](zqr+l)c(zqs+r)zr0z

s
2; (3.11)

Y (a(z), z0 + z2)Y (b(z), z2)c(z) = Y (a(z), z0 + z2)
∞∑
t=0

1

[t]q!
b[t](z)c(zqt)zt2

=
∞∑
u=0

∞∑
t=0

1

[u]q![t]q!
a[u](z)b[t](zqu)c(zqt+u)zt2(z0 + z2)u

=
∞∑
u=0

∞∑
t=0

1

[u]q![t]q!
a[u](z)b[t](zqu)c(zqt+u)zt2

(
u∑
l=0

[
u

l

]
q

zu−l0 zl2

)

=
∞∑
u=0

∞∑
t=0

u∑
l=0

qt(u−l)

[u− l]q![l]q![t]q!
a[u](z)b[t](zqu)c(zqt+u)zu−l0 zt+l2 . (3.12)

Finally, by applying substitutions r = u − l and s = t + l to (3.12) we get (3.11), thus

proving (v4). �

Lemma 3.11 Every maximal quasi-commutative subspace of E(L) is closed.

Proof. Let V be a maximal quasi-commutative subspace of E(L) and suppose that there

exist operators a(z), b(z) ∈ V and an integer r such a(z)rb(z) /∈ V . Then Lemma 3.8

implies that V is not maximal. Contradiction. �

Notice that every maximal quasi-commutative subspace of E(L) contains identity 1L.

The following lemma is a consequence of Theorem 3.10 and Lemma 3.11.

Lemma 3.12 Every maximal quasi-commutative subspace of E(L) is a nonlocal q-vertex

algebra.
18



Finally, we formulate the main result of this section.

Theorem 3.13 Let S be a quasi-commutative subset of E(L). There exists a unique

smallest nonlocal q-vertex algebra V ⊂ E(L) such that S ⊆ V .

Proof. By Zorn’s lemma, S is a subset of some maximal quasi-commutative subspace W

of E(L). By Lemma 3.12, W is a nonlocal q-vertex algebra. Now, we construct V as the

intersection of all nonlocal q-vertex algebras containing S. �

Denote the resulted nonlocal q-vertex algebra V by 〈S〉. We can use Theorem 3.13 to

construct modules for q-vertex algebras as well.

Corollary 3.14 Let V ⊂ E(L) be a nonlocal q-vertex algebra and let a(z) be an operator

in Hom(K,L((z))), where K is an arbitrary vector space over the field F, such that

b1(z1) · · · bm(zm)a(z) ∈ Hom(K,L((z1, ..., zm, z)))

for all b1(z), ..., bm(z) ∈ V , m ∈ Z≥0. There exists a unique smallest V -module W such

that a(z) ∈ W .

Denote the resulted 〈S〉-module by 〈a(z)〉.

Remark 3.15 By setting

a(z) · b(z) = a(z)−1b(z) for all a(z), b(z) ∈ V,

the nonlocal q-vertex algebra V , constructed in Theorem 3.13, becomes an associative

algebra with unit 1. Even though this algebra may not be commutative, the underlying

nonlocal q-vertex algebraic structure can be recovered similarly as in Borcherds’ construc-

tion (see [B1]). More precisely, for a(z), b(z) ∈ V we have

Y (a(z), z0)b(z) =
∑
r≥0

1

[r]!
a[r](z)b(zqr)zr0 =

(∑
r≥0

1

[r]!
a[r](z)zr0

)
b(z) =

(
e
z0

∂q

∂qz

q a(z)

)
· b(z),

where, on the right side, z0 denotes the right multiplication with variable z0 satisfying

(3.6).

4. Principal subspaces for Uq(ŝl2) and Frenkel-Jing operators

4.1. Nonlocal q-vertex algebra 〈x(z)〉. Set q = q2. In order to simplify our notation,

we shall omit superscript “+” and write x(z) instead of x+(z). This should not cause any

confusion because the operator x−(z) will not be used in the rest of the paper.

Recall (1.8). By (1.10) and Theorem 3.13 there exists a unique smallest nonlocal q-

vertex algebra 〈x(z)〉 ⊂ E(L0), with the vacuum vector 1 = 1L0 : L0 → L0, which is

generated by S = {x(z)}.

Remark 4.1 Although a(z)mb(z) = 0 for all a(z), b(z) ∈ 〈x(z)〉, m ≥ 0, in general,

the operators Y (a(z), z1) and Y (b(z), z2) do not commute. For example, consider the

operators x(z), x[1](z) = x(z)−21 ∈ 〈x(z)〉. We have

lim
z1,z2→0

[
Y (x(z), z1), Y (x[1](z), z2)

]
1

= x(z)−1x
[1](z)−11− x[1](z)−1x(z)−11 =

x(zq)x(z)

z(1− q)
6= 0.

Specifically, the associative algebra 〈x(z)〉 is not commutative.
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Denote by W0,q the subspace of 〈x(z)〉 spanned by the operators

x(z)lm . . . x(z)l11 ∈ 〈x(z)〉 , lj ≤ −1, j = 1, 2...,m, m ∈ Z≥0. (4.1)

Remark 4.2 Spaces W0,q and 〈x(z)〉 do not coincide. Set

a(z) = (x(z)−21)−1(x(z)−11) =
x(zq)− x(z)

z(q− 1)
x(z) = x(z)−2x(zq−1)−11 ∈ 〈x(z)〉 .

By using the techniques from the proof of Theorem 4.8 one can prove that a(z) /∈ W0,q.

Equality (1.11) and Corollary 3.14 imply that there exists a unique smallest 〈x(z)〉-
module 〈Y(z)〉 ⊂ Hom(L0, L1((z))) such that Y(z) ∈ 〈Y(z)〉. Denote by W1,q the subspace

of 〈Y(z)〉 spanned by the operators

x(z)lm . . . x(z)l1Y(z) ∈ 〈Y(z)〉 , lj ≤ −1, j = 1, 2...,m, m ∈ Z≥0. (4.2)

4.2. Basis for Wi,q. Spanning set (4.1) is an analogue of spanning set (2.10). However,

since the operator x(z) is not commutative, we can not assume that the sequence of

indices (lm, ..., l1) in (4.1) is decreasing from right to left. We proceed similarly as in

Subsection 2.3. First, we use nonlocal q-vertex algebra structure to obtain some relations

among the monomials in (4.1). Next, using these relations we reduce the spanning set up

to a basis.

The following Lemma is a special case of quantum integrability (cf. [DM]).

Lemma 4.3 On 〈x(z)〉 we have

x(z)x(z) = x(z)−1x(z)−1 = 0; (4.3)

x(z)x[1](z) = x(z)−1x(z)−2 = 0; (4.4)

x[1](z)x(zq) = x(z)−2x(z)−1 = 0. (4.5)

Proof. The relations can be easily verified by applying lim
z1→z
z2→z

and lim
z1→z
z2→zq2

to (1.10). �

Applying the q-derivation
dnq

dqzn
on (4.3), q-derivation

dn−1
q

dqzn−1 on (4.4) and using Propo-

sition 1.3 we get:

Lemma 4.4 On 〈x(z)〉 we have

n∑
l=0

[
n

l

]
q

x[l](z)x[n−l](zql) = [n]q!
n∑
l=0

x(z)−l−1x(z)−n+l−1 = 0; (4.6)

n−1∑
l=0

[
n− 1

l

]
q

x[l](z)x[n−l](zql) = [n− 1]q!
n−1∑
l=0

[n− l]qx(z)−l−1x(z)−n+l−1 = 0. (4.7)

Remark 4.5 Using the nonlocal q-vertex algebra structure we were able to derive the re-

lations among operators x(z), which are analogous to the relations among commutative

operators x̂(z) found earlier. More precisely, relations (4.3)–(4.5) coincide with (2.13),

while (4.6) coincides with (2.14). Even though the analogue of (4.7) can be easily derived

for the operators x̂(z) as well, we did not needed it in Section 2 because, in that construc-

tion, we implicitly used another relation - commutativity. In the rest of this subsection,

we use similar techniques as in the proofs of Lemma 2.12 and Theorem 2.13.
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Set

BW0,q =

{
x(z)lm . . . x(z)l11

∣∣∣∣ l1 ≤ −1 and lr ≤ −3 (4.8)

for all lr ∈ Z, r = 2, 3, . . . ,m, m ∈ Z≥0

}
.

Lemma 4.6 The set BW0,q spans W0,q.

Proof. By rewriting (4.6) and (4.7) we get

x(z)−1x(z)−n−1 + x(z)−2x(z)−n = −
n∑
l=2

x(z)−l−1x(z)−n+l−1; (4.9)

x(z)−1x(z)−n−1 +
[n− 1]q

[n]q
x(z)−2x(z)−n = −

n−1∑
l=2

[n− l]q
[n]q

x(z)−l−1x(z)−n+l−1. (4.10)

Consider the operator aj(z) = x(z)lm . . . x(z)l11, where lj = −1,−2 for some j > 1 and

lk ≤ −3 for k ≥ j + 1. Relations (4.9) and (4.10) allow us to express aj(z) as a linear

combination of the following (finite) families of operators:

• Operators b(z) = x(z)km . . . x(z)k11 ∈ BW0,q ;

• Operators aj−1(z) = x(z)tm . . . x(z)t11, where tp ≤ −3 for p ≥ j.

Applying the same argument on every operator aj−1(z), then on every operator aj−2(z),

etc. we conclude that the original operator aj(z) can be expressed as a linear combination

of the operators in BW0,q and the operators x(z)um . . . x(z)u11 satisfying the following

condition:

there exists l = 0, 1, ...,m such that uj ≤ −3 for j ≥ l and uj = −1,−2 for j ≤ l.

(4.11)

Finally, relations (4.3)–(4.5), together with the fact that x(z)−2x(z)−21 is proportional

to x(z)−3x(z)−11, imply that in condition (4.11) we can assume l = 0, 1. �

Now, we proceed towards proving linear independence of the set BW0,q .

Lemma 4.7 The set{
: x(zqlm) . . . x(zql1) : | lm < lm−1 < . . . < l1, lj ∈ Z, j = 1, 2, ...,m, m ∈ Z>0

}
(4.12)

is linearly independent.

Proof. Let
n∑
j=1

αj : x(zqlmj,j) . . . x(zql1,j) := 0

for some nonzero scalars αj, j = 1, 2, ..., n. Without loss of generality we can assume that

n is a minimal integer for which such a nontrivial linear combination exists. Since all

the elements of the given set are nonzero, we have n > 1. Furthermore, we can assume

that mj = mk for all j, k = 1, 2, ..., n. Indeed, if mj 6= mk for some j, k = 1, 2, ..., n, by

applying the operator 1⊗ qα on the linear combination we get

n∑
j=1

αjq
2mj : x(zqlmj,j) . . . x(zql1,j) := 0,
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which, together with the original linear combination, contradicts to minimality of n.

Therefore, by setting m = mj, we have a linear combination

n∑
j=1

αj : x(zqlm,j) . . . x(zql1,j) := 0

Naturally, we can also assume that all the summands : x(zqlm,j) . . . x(zql1,j) : are dif-

ferent. Then, there exist p, r = 1, 2, ..., n and k = 1, 2, ...,m such that

lk,p 6= lj,r for j = 1, 2, ...,m.

Recall (1.12). Multiplying the linear combination from the right side with E−(z1q
lk,p) and

from the left side with E−(z1q
lk,p)−1 and applying the limit limz1→z we get

n∑
j=1

βj : x(zqlm,j) . . . x(zql1,j) := 0

for some scalars βj such that βp = 0 and βr 6= 0. This is a contradiction to minimality of

n. �

Theorem 4.8 The set BW0,q forms a basis for W0,q.

Proof. Notice that every element of BW0,q is nonzero because it can be written as a

C(q1/2)[z±1]-linear combination of linearly independent elements (4.12). For example,

x(z)−3x(z)−21 is a C(q1/2)[z±1]-linear combination of

: x(z)x(zq2) :, : x(z)x(zq3) :, : x(zq)x(zq3) : .

Let
n∑
j=1

αjx(z)lmj,j . . . x(z)l1,j1 = 0

be a linear combination such that all the summands x(z)lmj,j . . . x(z)l1,j1 are different

elements of BW0,q and αj 6= 0 for j = 1, 2, ..., n. Without loss of generality we can assume

that n is a minimal integer for which such a nontrivial linear combination exists. Using

the same argument as in the proof of Lemma 4.7 we can assume that mj = mk for all

j, k = 1, 2, ..., n. Therefore, by setting m = mj, we have a linear combination

n∑
j=1

αjx(z)lm,j . . . x(z)l1,j1 = 0.

For k = 1, 2, ...,m set

Dk(j) = Dk(x(z)lm,j . . . x(z)l1,j1) =
k∑
p=1

lp,j + k − 1; (4.13)

D∗k(j) = Dk(j)−Dm(j). (4.14)

Recall that every x(z)lm,j . . . x(z)l1,j1 can be written as a C(q1/2)[z±1]-linear combination

of elements (4.12). The integer −Dm(j)− 1 is the maximal integer for which at least one

element of this linear combination contains x(zq−Dm(j)−1). For example,

D2(x(z)−3x(z)−21) = (−3) + (−2) + 2− 1 = −4.
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Also, applying the operator x(z)lm,j . . . x(z)l1,j1 on the vector 1⊗1 ∈ L0 we get a Laurent

series aj(z) ∈ zDm(j)+1+m(m−1)L0[[z]]. The lowest power of the variable z in aj(z) is exactly

zDm(j)+1+m(m−1).

We can express every summand x(z)lm,j . . . x(z)l1,j1 in the following way:

x(z)lm,j . . . x(z)l1,j1 = βjbj(z)zm(m−1) + some other summands,

where

bj(z) =
: x(zqD

∗
m(j))x(zqD

∗
m−1(j))...x(zqD

∗
1(j)) :

z−Dm(j)−1

and βj is a nonzero scalar. Lemma 4.7 implies that the set {b1(z), ..., bn(z)} is linearly

independent, so we conclude that the set
{
x(z)lm,j . . . x(z)l1,j1 | j = 1, 2, ..., n

}
is linearly

independent as well. Hence, αj = 0 for j = 1, 2, .., n, so Lemma 4.6 implies the statement

of the theorem. �

In the rest of this subsection, we briefly explain how to construct a similar basis for

W1,q. First, we notice that Lemmas 4.3 and 4.4 can be applied in this case as well. Next,

we define

BW1,q =

{
x(z)lm . . . x(z)l1Y(z)

∣∣∣∣ l1 ≤ −2 and lr ≤ −3 (4.15)

for all lr ∈ Z, r = 2, 3, . . . ,m, m ∈ Z≥0

}
.

Condition l1 ≤ −2 is a consequence of (1.11) because by applying the limit limz2,z1→z to

this relation we get

x(z)−1Y(z) = x(z)Y(z) = 0.

Therefore,

Lemma 4.9 The set BW1,q spans W1,q.

The following result can be proved in the same way as Lemma 4.7.

Lemma 4.10 For every integer l0 the set

S =
{

: x(zqlm) . . . x(zql1)Y(zql0) : | lm < . . . < l1 < l0, lj ∈ Z, j = 1, 2, ...,m, m ∈ Z>0

}
is linearly independent.

By right multiplying : x(zqlm) . . . x(zql1)Y(zql0) :∈ S by E+
+(−a, z1q

l)−1, left multiply-

ing by E+
+(−a, z1q

l) and applying the limit limz1→z we get (recall (1.13))

βδll0 : x(zqlm) . . . x(zql1)Y(zql0) :

for some nonzero scalar β. Hence, using the same technique as in the proof of Lemma 4.7

we can prove:

Lemma 4.11 The set{
: x(zqlm) . . . x(zql1)Y(zql0) : | lm < . . . < l1 < l0, lj ∈ Z, j = 0, 1, ...,m, m ∈ Z>0

}
(4.16)

is linearly independent.

Theorem 4.12 The set BW1,q forms a basis for W1,q.
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Proof. The proof goes analogously to the proof of Theorem 4.8, but, at the end, we express

every summand x(z)lm,j . . . x(z)l1,jY(z) in the following way:

x(z)lm,j . . . x(z)l1,jY(z) = βjbj(z)zm
2

+ some other summands,

where

bj(z) =
: x(zqD

∗
m(j))x(zqD

∗
m−1(j))...x(zqD

∗
1(j))Y(zq−Dm(j)−1) :

z−Dm(j)−1

and βj is a nonzero scalar. Now, Lemma 4.11 implies linear independence, so the statement

of the theorem follows from Lemma 4.9. �

4.3. On the sum side of Rogers-Ramanujan identities. The bases B̂W (Λi), i = 0, 1,

found in Section 2.2, as well as the bases B̂Wi
, i = 0, 1, found in Section 2.3, correspond

to the sum side of Rogers-Ramanujan identities∏
r≥0

1

(1− q5r+1+i)(1− q5r+4−i)
=
∑
r≥0

qr
2+ir

(1− q)(1− q2) · · · (1− qr)
. (4.17)

However, the bases BWi,q , i = 0, 1, found in Section 4.2 are defined in terms of different

conditions among monomial indices, so it is not clear whether they are related to (4.17).

In this subsection, we show that they in fact correspond to the same identities.

Recall (4.13) and for an arbitrary basis element

a(z) = x(z)lm . . . x(z)l11 ∈ BW0,q or a(z) = x(z)lm . . . x(z)l1Y(z) ∈ BW1,q

define

degq a(z) = −
m∑
k=1

Dk(x(z)lm . . . x(z)l11).

For an integer r ≥ 0 and i = 0, 1 set(
Wi,q

)
r

=
{
a(z) ∈ Wi,q | degq a(z) = r

}
.

We have the direct sum decomposition

Wi,q =
⊕
r≥0

(
Wi,q

)
r

and the subspaces
(
Wi,q

)
r

are finite-dimensional. Hence, we can introduce a character

chq by

chqWi,q =
∑
r≥0

dim
(
Wi,q

)
r
qr.

Naturally, parameters q and q in the above formula are not related.

Theorem 4.13 For i = 0, 1 we have

chqWi,q =
∑
r≥0

qr
2+ir

(1− q)(1− q2) · · · (1− qr)
.

The statement of the Theorem can be easily verified by a convenient visualization of the

basis elements. We can represent elements of BWi,q by diagrams. For example, elements

x(z)−11 = x(z), x(z)−21 =
x(zq)− x(z)

z(q− 1)
, x(z)−31 =

x(zq2)− (1 + q)x(zq) + qx(z)

qz2(q− 1)2
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are shown in Figure 1.

x(z) x(z)

x(zq)

x(z)

x(zq)

x(zq2)

x(z)−11 x(z)−21 x(z)−31

Figure 1. Elements of basis BW0,q represented by Young diagrams

We can join multiple diagrams, thus obtaining more complicated elements. For example,

elements

x(z)−3x(z)−11 =
x(zq2)− (1 + q)x(zq) + qx(z)

qz2(q− 1)2
· x(zq2);

x(z)−3x(z)−21 =
x(zq2)− (1 + q)x(zq) + qx(z)

qz2(q− 1)2
·
x(zq3)− x(zq2)

zq2(q− 1)
;

x(z)−3x(z)−31 =
x(zq2)− (1 + q)x(zq) + qx(z)

qz2(q− 1)2
·
x(zq4)− (1 + q)x(zq3) + qx(zq2)

q5z2(q− 1)2

are represented in Figure 2.

x(zq2)

x(z)

x(zq)

x(zq2)

x(z)

x(zq)

x(zq2) x(zq2)

x(zq3)

x(z)

x(zq)

x(zq2) x(zq2)

x(zq3)

x(zq4)

x(z)−3x(z)−11 x(z)−3x(z)−21 x(z)−3x(z)−31

Figure 2. Elements x(z)−3x(z)−11, x(z)−3x(z)−21, x(z)−3x(z)−31 ∈ BW0,q

The diagrams corresponding to the elements of BWi,q can be ”completed” by adding

the minimal (nonnegative) number of ”empty boxes”, thus getting a Young diagram. In

Figure 3 we can see completed diagrams for x(z)−3x(z)−21, x(z)−3x(z)−31 ∈ BW0,q . Notice

that the diagram for x(z)−3x(z)−11 is already a Young diagram, so we do not need to

add any empty boxes.
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x(z)

x(zq)

x(zq2) x(zq2)

x(zq3)

x(z)

x(zq)

x(zq2) x(zq2)

x(zq3)

x(zq4)

x(z)−3x(z)−21 x(z)−3x(z)−31

Figure 3. Completed diagrams for x(z)−3x(z)−21, x(z)−3x(z)−31 ∈ BW0,q

Such a completed diagram is equal to the Young diagram of some vector b ∈ B̂W (Λi).

More precisely, the completed diagram of the element

a0(z) = x(z)lm . . . x(z)l11 ∈ BW0,q or a1(z) = x(z)lm . . . x(z)l1Y(z) ∈ BW1,q

is equal to the Young diagram of the element

b0 = x̂(Dm) · · · x̂(D1)vΛ0 ∈ B̂W (Λ0) or b1 = x̂(Dm) · · · x̂(D1)vΛ1 ∈ B̂W (Λ1)

respectively, where Dj = Dj(a0(z)) for j = 1, 2, ...,m. Furthermore, we have

degq ai(z) = −(Dm + ...+D2 +D1) = deg bi, i = 0, 1.

Denote by D(B) a family of diagrams corresponding to the elements of a basis B.

By considering defining conditions (4.8) and (4.15) for BWi,q and difference conditions

(2.8) for B̂W (Λi), we see that the above ”completion of diagrams” establishes a bijection

D(BWi,q)→ D(B̂W (Λi)) for i = 0, 1, so the statement of Theorem 4.13 clearly follows.

Example 2 The completed diagram of x(z)−4x(z)−3x(z)−5x(z)−2Y(z)BW1,q is equal to

the Young diagram of x̂(−11)x̂(−8)x̂(−6)x̂(−2)vΛ1 ∈ B̂W (Λ1) (Figure 4).

5. Relations among quantum quasi-particles

5.1. Quasi-particles. Let V be an integrable highest weight ŝln+1-module of level c. In

[G], Georgiev defined quasi-particles of charge m ∈ Z>0 as coefficients of the operator

xmα(z) =
∑
r∈Z

xmα(r)z−r−m = (xα(z))m ∈ Hom(V, V ((z))), (5.1)

where α is a simple root of the simple Lie algebra sln+1. Furthermore, for positive integers

m and k, m ≤ k, he found 2m relations among xmα(z) and xkα(z). Using the relations

he expressed, for an arbitrary v ∈ V , 2m vectors

xmα(r + l)xkα(N − (r + l))v, l = 0, 1, . . . , 2m− 1,

as a linear combination of vectors

xmα(s)xkα(N − s)v, s ∈ Z \ {r, r + 1, . . . , r + 2m− 1} ,
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x(z)

x(zq)

x(zq2)

x(zq3) x(zq3)

x(zq4)

x(zq5) x(zq5)

x(zq6)

x(zq7)

x(zq8)

x(zq9) x(zq9)

x(zq10)

x(z)−4x(z)−3x(z)−5x(z)−2Y(z) x̂(−11)x̂(−8)x̂(−6)x̂(−2)vΛ1

D(BW1,q) D(B̂W (Λ1))

Figure 4. Bijection D(BW1,q)→ D(B̂W (Λ1))

and vectors

xm′α(t)xk′α(N − t)v, 0 ≤ m′ < m, m+ k = m′ + k′, t ∈ Z.

These relations can be written as(
dl

dzl
xmα(z)

)
xkα(z) =

(
Al(z) +Bl(z)

dl

dzl

)
x(k+1)α(z), (5.2)

where l = 0, 1, . . . , 2m−1 and Al(z), Bl(z) are some formal power series (see [JP, Lemma

4.2.] for details). The above formulae have the following vertex-operator theoretic inter-

pretation. Relation (5.1) can be written as

xmα(z) = xα(z)−1 . . . xα(z)−1xα(z)−1︸ ︷︷ ︸
m

1, (5.3)

while the left side in (5.2) equals

xmα(z)−l−1xkα(z), l = 0, 1, . . . , 2m− 1 (5.4)

(up to a multiplication scalar). In the next subsection we provide a similar vertex-operator

theoretic interpretation of the relations among quantum quasi-particles.
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5.2. Quantum quasi-particles. As in the previous section, set q = q2. Let L be an

arbitrary integrable highest weight Uq(ŝln+1)-module of level c ∈ Z>0. We denote by

x̄+
αi

(z) ∈ E(L), i = 1, 2, ..., n, Ding-Feigin operators introduced in [DF]. They satisfy

[x̄+
αi

(z1), x̄+
αi

(z2)] = 0, (5.5)

x̄+
αi

(z)x̄+
αi

(zq2) · · · x̄+
αi

(zq2m) = 0 for m ≥ c. (5.6)

Motivated by [G], we defined in [Ko1] (type 2) quantum quasi-particles of charge m ∈ Z>0

and color i = 1, 2, ..., n as coefficients of the operators

x̄+
mαi

(z) = x̄+
αi

(z)x̄+
αi

(zq2) · · · x̄+
αi

(zq2(m−1)) =
∑
r∈Z

x̄+
mαi

(r)z−r−m ∈ E(L).

Fix i = 1, 2, ..., n. Let Si be a set

Si =
{
x̄+
αi

(zql) | l ∈ Z≥0

}
⊂ E(L).

Proposition 5.1 There exists a unique smallest nonlocal q-vertex algebra 〈Si〉 ⊂ E(L)

such that Si ⊂ 〈Si〉.

Proof. Relation (5.5) implies

x̄+
αi

(z1q
l1)x̄+

αi
(z2q

l2) · · · x̄+
αi

(zmq
lm) ∈ Hom(L,L((z1, z2, . . . , zm)))

for every positive integer m and l1, ..., lm ≥ 0, so the statement follows directly from

Theorem 3.13. �

Remark 5.2 For i = 1, 2, ..., n−1 the pair (x̄+
αi

(z), x̄+
αi+1

(z)) is not quasi-commutative, so

we can not use the results of Section 3 to construct a nonlocal q-vertex algebra containing

x̄+
αi

(z) and x̄+
αi+1

(z).

In the next two propositions we show that nonlocal q-vertex algebra 〈Si〉 provides an

appropriate setting for studying relations among quantum quasi-particles. Recall (5.3).

The following proposition is a direct consequence of (3.2) and (5.5).

Proposition 5.3 For every positive integer m we have

x̄+
mαi

(z) = x̄+
αi

(z)−1x̄
+
αi

(zq)−1 . . . x̄
+
αi

(zqm−1)−11 ∈ 〈Si〉 . (5.7)

Let m and k be positive integers such that m ≤ k ≤ c. First, we list 2m relations found

in [Ko1]:

x̄+
mαi

(z)x̄+
kαi

(zq2m) = x̄+
(m+k)αi

(z), (1)

x̄+
mαi

(zq2)x̄+
kαi

(zq2m) = x̄+
αi

(zq2m)x̄+
(m+k−1)αi

(zq2), (2)

...
...

x̄+
mαi

(zq2(m−1))x̄+
kαi

(zq2m) = x̄+
(m−1)αi

(zq2m)x̄+
(k+1)αi

(zq2(m−1)), (m)

x̄+
mαi

(zq2k)x̄+
kαi

(z) = x̄+
(m+k)αi

(z), (m+ 1)

x̄+
mαi

(zq2(k−1))x̄+
kαi

(z) = x̄+
αi

(zq2(k−1))x̄+
(m+k−1)αi

(z), (m+ 2)

...
...

x̄+
mαi

(zq2(k−(m−1)))x̄+
kαi

(z) = x̄+
(m−1)αi

(zq2(k−(m−1)))x̄+
(k+1)αi

(z). (2m)
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It was proved in [Ko1] that these relations are independent. More precisely, for any two

integers r,N and a vector v ∈ L we can express 2m vectors

x̄+
mαi

(r + l)x̄+
kαi

(N − (r + l))v, l = 0, 1, . . . , 2m− 1, (5.8)

as a linear combination of vectors

x̄+
mαi

(s)x̄+
kαi

(N − s)v, s ∈ Z \ {r, r + 1, . . . , r + 2m− 1} , (5.9)

and vectors

x̄+
m′αi

(t)x̄+
k′αi

(N − t)v, 0 ≤ m′ < m, m+ k = m′ + k′, t ∈ Z. (5.10)

We shall say that a family F of equalities in 〈Si〉 is equivalent to equalities (1)–(2m) if

for every v ∈ L and r,N ∈ Z we can, using only F , express vectors (5.8) as a linear

combination of vectors (5.9) and (5.10).

We now formulate a vertex-operator theoretic interpretation of (1)–(2m), which is anal-

ogous to relations (5.2) and (5.4). The proposition can be verified by a direct calculation.

Proposition 5.4 For any two positive integers m and k, m ≤ k ≤ c, there exist scalars

cl,j, dl,j ∈ C(q), where j = 0, 1, . . . , l, l = 0, 1, . . . ,m−1, such that the following equalities

hold for every l = 0, 1, ...,m− 1:

x̄+
mαi

(z)−l−1x̄
+
kαi

(zq) = z−l
l∑

j=0

cl,jx̄
+
(m−1−j)αi(zq

l+1)x̄+
(k+1+j)αi

(zql−j) ∈ 〈Si〉 , (5.11)

x̄+
mαi

(zqk)−l−1x̄
+
kαi

(z) = z−l
l∑

j=0

dl,jx̄
+
jαi

(zqk+l−j)x̄+
(m+k−j)αi(zq

l) ∈ 〈Si〉 , (5.12)

where x̄+
0αi

(z) = 1. Furthermore, these 2m equalities in 〈Si〉 are equivalent to (1)–(2m).

Acknowledgement

The author would like to acknowledge the support of the Australian Research Council

and of the Croatian Science Foundation under the project 2634.

The author would like to thank Mirko Primc for his valuable comments and suggestions.

References

[A] G. E. Andrews, The theory of partitions, Encyclopedia of Mathematics and Its Applications, Vol. 2,

Addison-Wesley, 1976.

[AB] I. I. Anguelova, M. J. Bergvelt, HD-Quantum vertex algebras and bicharacters, Commun. Contemp.

Math. 11 (2009) 937–991; arXiv:0706.1528 [math.QA].

[AKS] E. Ardonne, R. Kedem and M. Stone, Fermionic characters of arbitrary highest-weight integrable
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