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Abstract. Let X and Y be the complementary regions of a closed hypersur-

face M in S4 = X ∪M Y . We use the Massey product structure in H∗(M ;Z)

to limit the possibilities for χ(X) and χ(Y ). We show also that if π1(X) 6= 1
then it may be modified by a 2-knot satellite construction, while if χ(X) ≤ 1

and π1(X) is abelian then β1(M) ≤ 4 or β1(M) = 6. Finally we use TOP

surgery to propose a characterization of the simplest embeddings of F × S1.

A closed hypersurface in Sn is orientable and has two complementary compo-
nents, by the higher-dimensional analogue of the Jordan Curve Theorem. There
have been sporadic papers presenting restrictions on the orientable 3-manifolds
which may embed in S4, but little is known about how many distinct embeddings
there may be. (Here and in what follows, “embed” shall mean “embed as a TOP
locally flat submanifold”, unless otherwise qualified.) While the question of which
rational homology 3-spheres embed smoothly in S4 has received considerable at-
tention, work on embeddings of more general 3-manifolds is very limited. Most of
the relevant papers known to us are cited in [1].

The complementary components of embeddings of S3 in S4 are balls, by the
Schoenflies Theorem. A result of Aitchison shows that every embedding of S2×S1

in S4 has one complementary component homeomorphic to S2 × D2 [18]. The
other component is a 2-knot complement, with Euler characteristic χ = 0 and
fundamental group a 2-knot group, and so embeddings of S2×S1 in S4 correspond
to 2-knots. But for 3-manifolds M with β = β1(M) > 1 even the possible Euler
characteristics of the complementary components are not known.

In the first section we make some simple observations on the complementary
components X and Y . We may assume that 1− β ≤ χ(X) ≤ 1 ≤ χ(Y ) ≤ 1 + β. In
§2 we use the Massey product structure inH∗(M ;Z) to show that ifM fibres over an
orientable base surface and the fibration has Euler number 1 then χ(X) = χ(Y ) = 1
is the only possibility. At the other extreme, χ(X) = 1− β is realizable only if the
rational nilpotent completion of π = π1(M) is that of a free group. In the brief
§3 we use a “satellite” construction based on 2-knots to modify the fundamental
group of a complementary component which is not 1-connected, without changing
the other complementary component. In §4 we show that π1(X) can be abelian
only if β ≤ 4 or β = 6, and give examples realizing these possibilities. In §5 we
assume that M is Seifert fibred, with orientable base orbifold. If the generalized
Euler invariant εS is 0 and χ(X) < 0 then the regular fibre has nonzero image in
H1(Y ;Q), and so χ(X) > 1− β. If εS 6= 0 then χ(X) = χ(Y ) = 1.
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When M = F × S1 or when M is the total space of an S1-bundle with non-
orientable base the simplest embeddings of M have one complementary component
X ' F and the other with cyclic fundamental group. In §6 we sketch how surgery
may be used to identify such embeddings (up to s-cobordism). (No such argument
is yet available when M fibres over an orientable base with Euler number 1.)

1. euler characteristic and cup product

Let M be a closed connected orientable 3-manifold with fundamental group
π, and let β = β1(M ;Q). Let TM be the torsion subgroup of H1(M ;Z) and
`M : TM × TM → Q/Z the torsion linking pairing.

Suppose M embeds in S4, with complementary components X and Y . Let jX
and jY be the inclusions of M into X and Y , respectively. Then χ(X) +χ(Y ) = 2.

Lemma 1. Let γ = β1(X;Q). Then χ(X) = 1 + β − 2γ ≡ 1 + β mod (2), and
1− β ≤ χ(X) ≤ 1 + β.

Proof. The Mayer-Vietoris sequence for S4 = X ∪M Y gives isomorphisms

Hi(M ;Z) ∼= Hi(X;Z)⊕Hi(Y ;Z),

for i = 1, 2, while Hj(X;Z) = Hj(Y ;Z) = 0 for j > 2. Moreover, H2(X;Z) ∼=
H1(Y ;Z), by Poincaré-Lefshetz duality, and so β2(X) = β − γ. Hence χ(X) =
1 + β − 2γ, where 0 ≤ γ ≤ β. �

We may assume X and Y are chosen so that χ(X) ≤ χ(Y ). Thus if β = 0 then
χ(X) = χ(Y ) = 1, while if β = 1 then χ(X) = 0 and χ(Y ) = 2.

Let TX and TY be the torsion subgroups of H1(X;Z) and H1(Y ;Z), respectively.
Then TM ∼= TX ⊕ TY , and each of these summands is self-annihilating under `M ,
by Poincaré-Lefshetz duality. Hence `M is hyperbolic [12]. In particular, TY ∼=
Ext(TX ,Z) ∼= Hom(TX ,Q/Z), and so TM is a direct double: it is (non-canonically)
isomorphic to TX ⊕ TX .

The cohomology ring H∗(M ;Z) is determined by the 3-fold product

µM : ∧3H1(M ;Z)→ H3(M ;Z)

and Poincaré duality. Every finitely generated free abelian group H and linear
homomorphism µ : ∧3H → Z is realized by some closed orientable 3-manifold [20].
(If β ≤ 2 then ∧3Zβ = 0, and so µM = 0.)

Lemma 2. The cup product 3-form µM is 0 if and only if all cup products of classes
in H1(M ;Z) are 0. Its restrictions to each of ∧3H1(X;Z) and ∧3H1(Y ;Z) are 0.

Proof. Poincaré duality implies immediately that µM = 0 if and only if all cup
products from ∧2H1(M ;Z) to H2(M ;Z) are 0.

Since H3(X;Z) = H3(Y ;Z) = 0, the restrictions of µM to ∧3H1(X;Z) and
∧3H1(Y ;Z) are 0. �

See [15] for the parallel case of doubly sliced knots.
If µM 6= 0 then H1(X;Z) and H1(Y ;Z) must be nontrivial proper summands.

In particular, no embedding of the 3-torus S1×S1×S1 can have a complementary
region Y with H1(Y ;Z) = 0. However, if µM = 0 this lemma places no constraint
on the splitting H1(M ;Z) ∼= H1(X;Z)⊕H1(Y ;Z).

Any 3-manifold M may be obtained by 0-framed surgery on some r-component
link L, with r ≥ β. If L = L+ ∪ L− is the union of an s-component slice link
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L+ and an (r − s)-component slice link L− then ambient surgery on S3 in S4

shows that M embeds in S4, with complementary components having χ = 1 +
2s − r and 1 − 2s + r. In particular, if L is a slice link then β = r and there are
embeddings realizing each value of χ(X) allowed by this lemma, including one with
a 1-connected complementary region.

For instance, #β(S2 × S1) is the result of 0-framed surgery on the β-component
trivial link, and so has embeddings realizing all the possibilities for Euler charac-
teristics allowed by Lemma 1. In particular, it has an embedding with one comple-
mentary region \β(S2 × D2), and the other having fundamental group F (β). (In
this case µM = 0.)

The 3-torus is the result of 0-framed surgery on the Borromean rings Bo = 63
2.

(We refer to the tables of [17]. This link shall play a role in the construction of other
examples.) Let Tg = #gT be the closed orientable surface of genus g. Then Tg×S1

is an iterated fibre sum of copies of T ×S1, and so it may be obtained by 0-framed
surgery on a (2g+1)-component link L which shares some of the Brunnian properties
of Bo. It has an embedding as the boundary of Tg×D2, the regular neighbourhood
of the unknotted embedding of Tg in S4, with the other complementary region
having fundamental group Z. On the other hand, if g ≥ 1 then µTg×S1 6= 0, and so
no embedding has a complementary region Y with β1(Y ) = 0.

It is not hard to show that if H ∼= Zβ with β ≤ 5 then for every µ : ∧3H → Z
there is an epimorphism λ : H → Z such that µ is 0 on the image of ∧3Ker(λ).
Hence there are splittings H ∼= A ⊕ B with A of rank 3 or 4 such that µ restricts
to 0 on each of ∧3A and ∧3B. However if β = 6 this fails for the 3-form

µ = e∗1 ∧ e∗2 ∧ e∗3 + e∗1 ∧ e∗5 ∧ e∗6 + e∗2 ∧ e∗4 ∧ e∗5.

(Here {e∗i } is the basis for Hom(Z6,Z) which is Kronecker dual to the standard
basis {ej} of Z6.) For every epimorphism λ : Z6 → Z there is a rank 3 direct
summand A of Ker(λ) such that µ is nontrivial on ∧3A. [This requires a little
calculation. Suppose that λ = Σλie

∗
i . If λ6 6= 0 then we may take A to be the

direct summand containing 〈f1, f2, f3〉, where fj = λ6ej − λje6, for 1 ≤ j ≤ 3, for
then µ(f1 ∧ f2 ∧ f3) = λ3

6 6= 0. Similarly if λ3 or λ4 is nonzero. If λ3 = λ4 = λ6 = 0
but λ1 6= 0 then we may take A to be the direct summand containing 〈g2, e4, g5〉,
where g2 = λ1e2 − λ2e1 and g5 = λ1e5 − λ5e1. Similarly if λ2 or λ5 is nonzero.]

This example arose in a somewhat different context [3]. It is the cup product
3-form of the 3-manifold M given by 0-framed surgery on the 6-component link of
Figure 6.1 of [3]. This link has certain “Brunnian” properties. All the 2-component
sublinks, all but three of the 3-component sublinks and six of the 4-component sub-
links are trivial. Thus M has embeddings in S4 with χ(X) = −1 or 1, corresponding
to partitions of L into a pair of trivial sublinks, but there are no embeddings with
χ(X) = −5 or −3, since the condition on µM fails.

2. massey products and lower central series

Massey product structures in the cohomology of M provide further obstructions.
For instance, if H2(X;Q) ∼= Q or 0 then all triple Massey products 〈a, b, c〉 of
elements a, b, c ∈ H1(X;Q) are proportional.

Let M(g; (1, e)) be the total space of the S1-bundle with base the closed ori-
entable surface of genus g and Euler number −e. (This notation is consistent with
that used for Seifert fibred 3-manifolds in §4 below.) Then M = M(1; (1, 1)) is the
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Nil3-manifold obtained by 0-framed surgery on the Whitehead link Wh = 62
3, and

has fundamental group π ∼= F (2)/F (2)[3]. This group has a presentation

π = 〈x, y, z | z = xyx−1y−1, xz = zx, yz = zy〉.

Every element of π has an unique normal form xmynzp. The images X,Y of x, y
in H1(π;Z)/ ∼= H1(T ;Z) form a (symplectic) basis. Let ξ, η be the Kronecker dual
basis for H1(π;Z). Define functions φξ, φη and θ : π → Z by

φξ(x
mynzp) =

m(1−m)

2
, φη(xmynzp) =

n(1− n)

2
and θ(xmynzp) = −mn− p,

for all xmynzp ∈ π. (We consider these as inhomogeneous 1-cochains with values
in the trivial π-module Z.) Then

δφξ(g, h) = ξ(g)ξ(h), δφη(g, h) = η(g)η(h) and δθ(g, h) = ξ(g)η(h),

for all g, h ∈ π. Thus ξ2 = η2 = ξ ∪ η = 0, and the Massey triple products 〈ξ, ξ, η〉
and 〈ξ, η, η〉 are represented by the 2-cocycles φξη+ξθ and θη+ξφη, respectively. On
restricting these to the subgroups generated by {x, z} and {y, z}, we see that they
are linearly independent. In fact, 〈ξ, ξ, η〉∪η and 〈ξ, η, η〉∪ξ each generate H3(π;Z)
(i.e., these Massey products are the Poincaré duals of Y and X, respectively).

Since the components of Wh are unknotted M embeds in S4, with χ(X) =
χ(Y ) = 1, and since β = 2 we have µM = 0. On the other hand, M has no
embedding with χ(X) = −1, for otherwise H3(X;Z) would contain 〈ξ, ξ, η〉 ∪ η,
and so be nontrivial.

A similar strategy may be used for M = M(g; (1, 1)) and π = π1(M), when
g > 1. Let {α1, β1, . . . , αg, βg} be the basis for H = H1(π;Z) which is Kronecker
dual to a symplectic basis for H1(π;Z) ∼= H1(F ;Z). Then H = A ⊕ B, where A
and B are self-annihilating with respect to cup product on F . The Massey triple
products 〈αi, αi, βi〉 and 〈αi, βi, βi〉 (for 1 ≤ i ≤ g) form a basis for H2(π;Z) which
is Poincaré dual to the given basis for H1(π;Z). If L ≤ H is a direct summand of
rank > g then there are a ∈ L ∩A and b ∈ L/A such that a ∪ b 6= 0 in H2(F ;Z).
We may assume that a = α1 and then b = β1 + b′, where b′ is in the span of
{α2, β2, . . . , αg, βg}. But then 〈a, a, b〉 ∪ b 6= 0. It follows that if j : M → S4 is
any embedding then H1(X;Z) and H1(Y ;Z) each have rank at most g, and so
χ(X) = χ(Y ) = 1. (See §5 for a 0-framed link representing M and giving rise to
such an embedding.)

We shall let G[n] denote the nth term of the descending lower central series of
a group G, defined inductively by G[1] = G and Gn+1] = [G,G[n]], for all n ≥ 1.

Similarly, the rational lower central series is given by letting GQ
1 = G and GQ

k+1

be the preimage in G of the torsion subgroup of G/[G,GQ
k ]. Then G/GQ

k is a

torsion free nilpotent group, and {GQ
k }k≥1 is the most rapidly descending series of

subgroups of G with this property.
The 3-form µM is 0 if and only if π/πQ

[3]
∼= F (β)/F (β)Q[3] [20]. However, this is a

rather weak condition. The next lemma gives a stronger result.

Lemma 3. If H1(Y ;Z) = 0 then π/π[k]
∼= F (β)/F (β)[k], for all k ≥ 1.

Proof. If H1(Y ;Z) = 0 then H2(X;Z) = 0, and T must be 0, by the non-degeneracy
of `M , so H1(M ;Z) ∼= H1(X;Z) ∼= Zβ . Let f : ∨βS1 → X be any map such that
H1(f ;Z) is an isomorphism. Then jX and f induce isomorphisms on all quotients of
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the lower central series, by Stallings’ Theorem [19], and so π/π[k]
∼= F (β)/F (β)[k],

for all k ≥ 1. �

If M is the result of surgery on a β-component slice link L then it has an
embedding with a 1-connected complementary region, and so this lemma applies.

There are parallel results for the rational lower central series and the p-central
series, for primes p, with coefficients Q and Fp, respectively. In particular, if

β1(Y ) = 0 then π/πQ
[k]
∼= F (β)/F (β)Q[k], for all k ≥ 1. These lower central se-

ries are dual to the Massey product structures for classes in H1(G;F), with F = Q
or Fp, and Stallings’ Theorem can be refined to relate “freeness” of quotients of
such series and the vanishing of higher Massey products [5]. In particular, the ker-

nel of cup product from ∧2H1(G;Q) to H2(G;Q) is isomorphic to GQ
[2]/G

Q
[3], by the

argument of [20].
Unfortunately, the fact that Ker(∪X) ⊆ Ker(∪M ) does not have useful con-

sequences for M . For if β1(X) < β then Ker(∪X) has rank at most
(
β1(X)

2

)
≤(

β−1
2

)
=
(
β
2

)
− β, which is a lower bound for the rank of Ker(∪M ). If β1(X) = β

then β2(X) = 0 so µM = 0, and all cup products of degree-1 classes are 0.

3. knot surgery

We may modify embeddings by “knot surgery” on a complementary region, as
follows. Let Nγ be a regular neighbourhood in X of a simple closed curve rep-

resenting γ ∈ π1(X). Then S4 \Nγ ∼= D2 × S2 contains Y and M . If K is a

2-knot with exterior E(K) then Σ = S4 \Nγ ∪ E(K) is a homotopy 4-sphere,
and so is homeomorphic to S4. The complementary components to M in Σ are
X1 = X \Nγ∪E(K) and Y1 = Y . Let t be the image of a meridian for K in the knot
group πK = π1(E(K)). If γ has infinite order in π1(X) then π1(X1) ∼= π1(X)∗ZπK;
if it has finite order c then π1(X1) ∼= π1(X) ∗Z/cZ (πK/〈〈tc〉〉).

When M = S2 × S1 is embedded as the boundary of the trivial 2-knot, with
X = D3×S1 and Y = S2×D2, the core S2×{0} ⊂ Y1 is K, realized as a satellite
of the unknot in Σ. This “satellite” construction gives all possible embeddings of
S2×S1 in S4 (up to composition with self-homeomorphisms of domain and range),
by Aithchison’s result [18].

If γ = 1 then any simple closed curve representing γ is isotopic to one contained
in a small ball, since homotopy implies isotopy for curves in 4-manifolds. Hence in
this case the construction does not change the topology of X. If M embeds with one
complementary component 1-connected and another embedding has a component
with H1 = 0 must that component also be 1-connected?

4. abelian fundamental group

In this section we shall show that manifolds with embeddings for which π1(X)
is abelian are severely constrained.

Theorem 4. Suppose M has an embedding in S4 for which π1(X) is abelian. Then
either β ≤ 4 or β = 6. If β = 0 or 2 then π1(X) ∼= Z/nZ or Z⊕Z/nZ, respectively,

for some n ≥ 1, while if β = 1, 3, 4 or 6 then π1(X) ∼= Zr, where r = bβ+1
2 c. If

β = 1 or 3 then X is aspherical.
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Proof. Let r = β1(X), A = π1(X) and τ = TX . Then 2r ≥ β and A ∼= Zr ⊕ τ .

Since A is abelian, H2(A;Z) = A ∧ A ∼= Z(r
2) ⊕ τ r ⊕ (τ ∧ τ). This is a quotient of

H2(X;Z) ∼= Zβ−r, by Hopf’s Theorem. Hence
(
r
2

)
≤ β − r ≤ r, and so r ≤ 3. If

τ 6= 0 then either r = β = 0 and τ ∧ τ = 0, or r = 1, β = 2 and τ ∧ τ = 0. In either
case, τ is (finite) cyclic. If β 6= 0 or 2 then τ = 0 and either r = β = 1, or r = 2
and β = 3 or 4, or r = 3 and β = 6.

Let ΛA = Z[A]. The chain complex of the universal cover X̃ is chain homotopy
equivalent to a finite complex C∗ of projective ΛA-modules, with Cq = 0 for q > 3,
since X is a compact 4-manifold with nonempty boundary. Since π1(M) surjects

onto π1(X) = H1(X;Z) the boundary ∂X̃ is connected, and so Hi(X̃, ∂X̃;Z) = 0
for i ≤ 1. Therefore Hq(X; ΛA) = Hq(HomΛA

(C∗,ΛA)) = 0 for q > 2, by Poincaré-
Lefshetz duality. We shall show that if r = β = 1 or r = 2 and β = 3 then we
may assume that C3 = 0 also, and so Π = H2(C∗) ∼= π2(X) is the only potential
obstruction to asphericity.

In each case, ΛA = Z[Zr] is a noetherian domain for which all projective modules
are free, and the alternating sum of the ranks of the modules Cq is χ(X) = 0. If
r = β = 1 then the submodule Z1 of 1-cycles is free and (Z1 → C1 → C0) is

a resolution of the augmentation module H0(X̃;Z) = Z, by Schanuel’s Lemma.

Moreover, C2 maps onto Z1, since H1(C∗) = H1(X̃;Z) = 0. Therefore C∗ splits as

C∗ ∼= (C3 → Z2)⊕ (Z1 → C1 → C0),

and C3 and Z2 are free of the same rank. Now Z⊗Λ Π = 0, since Hq(X;Z) = 0 for
q ≥ 2. Therefore the differential ∂3 : C3 → Z2 is injective, and so H3(C∗) = 0.

If r = 2 and β = 3 then H3(C∗) = H1(X; ∂X; ΛA) = 0, since H0(∂X; ΛA) = 0
and π1(X) has one end. In each case,

Hq(C∗) = Hq(HomΛA
(C∗,ΛA)) = 0 for q ≥ 3,

and so C∗ is chain homotopy equivalent to a finite complex of free ΛA-modules
of length at most 2, by Wall’s finiteness criterion [23]. Since H1(C∗) = 0 and

Σ(−1)qrank(Cq) = 0 we see that Π = 0, so Hq(X̃;Z) = 0 for q ≥ 1. Thus X is
aspherical. �

If r = β = 0 and τ = 0 then X and Y are contractible. In the remaining cases X
cannot be aspherical, since either H2(X;Z) is too big (if β = 2 or 4), or H3(X;Z)
is too small (if β = 6).

Embeddings realizing these possibilities may be easily found. The simplest ex-
amples are for β = 0, 1 or 3, with M ∼= S3, M = S2×S1 or T ×S1 = S1×S1×S1

the boundary of a regular neighbourhood of a point or of the standard unknotted
embedding of S2 or T in S4, respectively.

Other examples may be given in terms of representative links. When β = 0 the
(2, 2n) torus link gives examples with X ∼= Y and π1(X) ∼= Z/nZ. When β = 1 we
may use any knot which bounds a slice disc D ⊂ D4 such that π1(D4 \ D) ∼= Z,
such as the unknot or the Kinoshita-Terasaka knot. (All such knots have Alexander
polynomial 1. Conversely every Alexander polynomial 1 knot bounds a TOP locally
flat slice disc with group Z, by a striking result of Freedman.) The links 83

5 and 83
6

give further simple examples. (These each have a trivial 2-component sublink and
an unknotted third component which represents a meridian of the first component
or the product of meridians of the first two components, respectively.) When β = 2
any 2-component link with unknotted components and linking number 0, such as
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the trivial 2-component link or Wh, gives examples with π1(X) ∼= Z. We may
construct examples realizing Z ⊕ Z/nZ by adjoining to Bo a fourth unknotted
component which links only the first component, with linking number n. When
β = 3 we may use the links Bo, 93

9 or 93
18. (These each have a trivial 2-component

sublink and an unknotted third component which represents the commutator of the
meridians of the first two components. However neither of the latter two links is
Brunnian.)

Let L be the 4-component link obtained from Bo by adjoining a parallel to the
third component, and let M be the 3-manifold M obtained by 0-framed surgery
on L. Then the meridians of L represent a basis for H1(M ;Z) ∼= Z4, and µM =
e∗1 ∧ e∗2 ∧ e∗3 + e∗1 ∧ e∗2 ∧ e∗4, where {e∗i } is the Kronecker dual basis. This link may
be partitioned into the union of two trivial 2-component links in two essentially
different ways, and ambient surgery gives two essentially different embeddings of
M . If the sublinks are {L1, L2} and {L3, L4} then the complementary components
have fundamental groups Z2 and F (2). Otherwise, the complementary components
are homeomorphic and have fundamental group Z2.

If M is an example with β = 6 and π1(X) and π1(Y ) abelian then

µM = e∗1∧e∗5∧e∗6 +e∗2∧e∗4∧e∗6 +e∗3∧e∗4∧e∗5 +e∗1∧e∗2∧ ẽ∗6 +e∗1∧e∗3∧ ẽ∗5 +e∗2∧e∗3∧ ẽ∗4,

where {e∗1, e∗2, e∗3} is a basis for H1(X;Z) and {e∗4, e∗5, e∗6} and {ẽ∗4, ẽ∗5, ẽ∗6} are bases
for H1(Y ;Z). The simplest link giving rise to such a 3-manifold is a 6-component
link with all 2-component sublinks trivial, a partition into two trivial 3-component
links, and also a partition into two copies of Bo. It also has some trivial 4-
component sublinks, but no trivial 5-component sublinks. We shall not give further
details.

In all of the above examples except for when β = 2 and TX 6= 0 the group
π1(Y ) is also abelian. Note that Theorem 4 does not apply to π1(Y ), as it uses the
hypothesis β1(X) ≥ 1

2β!

5. seifert fibred 3-manifolds

We shall assume henceforth that M is Seifert fibred. Let M = M(g;S) be the
orientable Seifert fibred 3-manifold with base orbifold Tg(α1, . . . , αr) and Seifert
data S = {(α1, β1), . . . , (αr, βr)}, where 1 < αi and (αi, βi) = 1, for all 1 ≤ i ≤ r.
If c > 0 we let also M(−c;S) be the orientable Seifert fibred 3-manifold with base
orbifold #cRP 2(α1, . . . , αr) and Seifert data S. (Our notation is based on that of
[10]. In particular, we do not assume that 0 < βi < αi.) If r = 1, we allow also
the possibility α1 = 1. Let εS = −Σi=ri=1(βi/αi) be the generalized Euler invariant
of the Seifert bundle.

Let p : M → B be the projection to the base orbifold B, and let |B| be the
surface underlying B. If h is the image of the regular fibre in π then the subgroup
generated by h is normal in π, and πorb(B) ∼= π/〈h〉.

Lemma 5. Let M a an orientable Seifert fibred 3-manifold. If B is nonorientable
or if εS 6= 0 then H∗(M ;Q) ∼= H∗(#βS2 × S1;Q). Otherwise, the image of h in
H1(M ;Q) is nonzero, and H∗(M ;Q) ∼= H∗(|B| × S1;Q).

Proof. There is a finite regular covering q : M̂ → M , which is an S1-bundle space

with orientable base B̂, say. Let G = Aut(q). Then H∗(M ;Q) ∼= H∗(M̂ ;Q)G. If B
is nonorientable or if εS 6= 0 then the regular fibre has image 0 in H1(M ;Q), and
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so H∗(B̂;Q) maps onto H∗(M ;Q). Hence all cup products of degree-1 classes are

0. In such cases, H∗(M ;Q) ∼= H∗(#βS2 × S1;Q). Otherwise, M̂ ∼= B̂ × S1 and G

acts orientably on each of S1 and B̂. Hence the image of h in H1(M ;Q) is nonzero
and H∗(M ;Q) ∼= H∗(|B| × S1;Q). �

We may use the observations on cup product from §1 to extract some information
on the image of the regular fibre under the maps H1(jX) and H1(jY ).

Theorem 6. Let M = M(g;S) where g ≥ 1 and εS = 0. If M embeds in S4 then
χ(X) > 1− β = −2g and χ(Y ) < 1 + β = 2g + 2. If χ(X) < 0 then the image of h
in H1(Y ;Q) is nontrivial.

Proof. Let {a∗i , b∗i ; 1 ≤ i ≤ g} be the images in H1(M ;Q) of a symplectic basis for
H1(|B|;Q). Then a∗i (h) = b∗i (h) = 0 for all i. Let θ ∈ H1(M ;Q) be such that
θ(h) 6= 0. By Lemma 5 we have

H∗(M ;Q) ∼= H∗(|B| × S1;Q) ∼= Q[θ, a∗i , b
∗
i , ∀ i ≤ g]/I,

where I is the ideal (θ2, a∗2i , b
∗2
i , θa

∗
i b
∗
i − θa∗j b∗j , a∗i a∗j , b∗i b∗j , ∀ 1 ≤ i < j ≤ g).

Since θa∗1b
∗
1 6= 0 the triple product µM 6= 0, and so M has no embedding with

β2(Y ) = 0 (see §1). Hence χ(X) = 1− β (⇔ χ(Y ) 6= 1 + β) is impossible.
If χ(X) < 0 then β1(X) > g+1, and so the image of H1(X;Q) in H1(M ;Q) must

contain some pair of classes from the image of H1(|B|;Q) with nonzero product.
But then it cannot also contain θ, since all triple products of classes in H1(X;Q)
are 0. Thus the image of H1(Y ;Q) must contain a class which is nontrivial on h,
and so jY (h) 6= 0 in H1(Y ;Q). �

In particular, if g = 1 then χ(X) = 0 and χ(Y ) = 2.
Theorem 6 also follows from Lemma 3, since the centre of π is not contained in

the commutator subgroup π[2] = [π, π].
If the base orbifold B is nonorientable or if εS 6= 0 then µM = 0, by Lemma

5, and so the argument of Theorem 6 does not extend to these cases. However,
Lemma 5 also suggests that when εS 6= 0 we should be able to use Massey product
arguments as in §2 (where we considered the case S = ∅).

Theorem 7. Let M = M(g;S), where εS 6= 0. If M embeds in S4 with comple-
mentary regions X and Y then χ(X) = χ(Y ) = 1.

Proof. The group π = π1(M(g;S)) has a presentation

〈x1, y1, . . . , xg, yg, c1, . . . , cr, h | Π[ai, bi]Πcj = 1, cαi
i h

βi = 1, h central〉.

We may assume that g ≥ 1, for if g = 0 then M is a Q-homology 3-sphere and
the result is clear. To calculate cup products and Massey products of pairs of
elements of a standard basis for H1(π;Q) (corresponding to the Kronecker dual
of a symplectic basis for H1(|B|;Q)), it suffices to reduce to the case g = 1. Let
G = π/〈〈x2, y2, . . . , xg, yg〉〉, so G has a presentation

〈x, y, c1, . . . , cr, h | [x, y]Πcj = 1, cαi
i h

βi = 1, h central〉.

Let Gτ = 〈〈c1, . . . , cr, h〉〉, and let H be the preimage in G of the torsion subgroup
of G/[G,Gτ ]. Then Gτ/H ∼= Z, with generator t, say, and [x, y] = te for some
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e 6= 0. Every element has a normal form g = xmyntpw, with w ∈ H. Define
functions φξ, φη and θ : π → Q by

φξ(x
myntpw) =

m(1−m)

2
, φη(xmyntpw) =

n(1− n)

2

and θ(xmyntpw) = −mn− p

e
,

for all xmyntpw ∈ G. (In effect, we are passing to the Nil3-group G/H, with
presentation 〈x, y, t | [x, y] = te, t central〉.) We may now complete the argument
as in §2, and we may conclude that only χ(X) = χ(Y ) = 1 is possible when
εS 6= 0. �

If χ(X) = 0 and h has nonzero image in H1(X;Q) then S is skew-symmetric
(i.e., the Seifert data occurs in pairs {(a, b), (a,−b)}), by the main result of [8]. (In
particular, this must be the case if g = 0.) Conversely, if S is skew-symmetric and
all cone point orders ai are odd then M(0;S) embeds smoothly. Since β = 1 we
must have χ(X) = 0 and H1(Y ;Q) = 0. (In fact, for the embedding constructed
on page 693 of [2] the component X has a fixed point free S1-action.) Hence also
M(g;S) embeds smoothly (as in Lemma 3.3 of [2]).

If `M is hyperbolic then all even cone point orders have the same 2-adic valuation,
by Theorem 3.7 of [2] (when g < 0) and Lemma 6 of [9] (when g ≥ 0).

Donald has stronger results for the case of smooth embeddings, using gauge
theoretic methods rather than algebraic topology [4]. If M(g;S) embeds smoothly
and εS = 0 then S is skew-symmetric. (Thus if εS = 0 and all cone point orders
are odd then M(g;S) embeds smoothly if and only if S is skew-symmetric.) If
M(−c;S) (with c > 0) embeds smoothly then S is weakly skew-symmetric (i.e., the
data occurs in pairs {(a, b), (a,−b′)}, where b′ = b or bb′ ≡ 1 mod (a)) and all even
cone point orders are equal.

Are there further obstructions related to 2-torsion in the cone point orders of the
base orbifolds B? What are the possible values of χ(X) for embeddings of M(g;S)
(with εS = 0) or M(−c;S)?

6. recognizing the simplest embeddings

The simplest 3-manifolds to consider in the present context are perhaps the total
spaces of S1-bundles over surfaces. Most of those which embed have canonical
“simplest” embeddings. We give some evidence that these may be characterized by
the conditions π1(X) ∼= π1(F ), where F is the base, and π1(Y ) is abelian.

If p : E → F is an S1-bundle with base a closed surface F and orientable total
space E then π1(F ) acts on the fibre via w = w1(F ), and such bundles are classified
by an Euler class e(p) in H2(F ;Zw) ∼= Z. If we fix a generator [F ] for H2(F ;Zw)
we may define the Euler number of the bundle by e = e(p)([F ]). (We may change
the sign of e by reversing the orientation of E.) Let h be the image of the fibre in
π = π1(E).

Suppose first that F ∼= Tg. Then E ∼= M(g; (1, e)) can only embed in S4 if e = 0
or ±1, since TE = 0 if e = 0 and is cyclic of order e otherwise. If e = 0 then
E ∼= Tg × S1. There is a canonical embedding jg : Tg × S1 → S4, as the boundary
of a regular neighbourhood of the standard smooth embedding Tg ⊂ S3 ⊂ S4.
Let Xg and Yg be the complementary components. Then Xg

∼= Tg × D2 and

Yg ' S1 ∨
∨2g

S2, and so π1(Yg) ∼= Z.
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We shall assume henceforth that g ≥ 1, since embeddings of S2 × S1 and S3 =
M(0; (1, 1)) may be considered well understood.

Lemma 8. Let j : Tg×S1 → S4 be an embedding such that π1(X) ∼= π1(Tg). Then
X is s-cobordant rel ∂ to Xg = Tg ×D2.

Proof. Let X̃ be the universal cover, with boundary ∂X̃ ∼= Tg × R, and let Γ =

Z[π1(F )]. ThenHq(X̃;Z) = 0 andHq(X; Γ)) = H4−q(X, ∂X; Γ) = H4−q(X̃, Tg;Z) =
0 for q > 2, by Poincaré-Lefshetz duality and the long exact sequence of the pair

(X, ∂X). Therefore the equivariant chain complex for X̃ is chain homotopy equiv-
alent to a complex P∗ of finitely generated projective Γ-modules which is of length
2, by Wall’s finiteness criteria [23]. Hence there is an exact sequence

0→ Π→ P2 → P1 → P0 → Z→ 0,

where Π = π2(X). Hence Π is a finitely generated projective Γ-module, by Schanuel’s
Lemma (and the fact that c.d.π1(Tg) = 2.) Since H3(π1(Tg);Z) = 0, the Cartan-
Leray spectral sequence of the universal cover gives a short exact sequence

0→ Z⊗Γ Π→ H2(X;Z)→ H2(π1(Tg);Z)→ 0.

Now H2(X;Z) ∼= H2(π1(Tg);Z) ∼= Z, and so Z⊗Γ Π = 0. Since π1(Tg) satisfies the

weak Bass Conjecture, it follows that Π = 0 [6]. Hence Hq(X̃;Z) = 0 for all q ≥ 1,
and so X is aspherical. Any homeomorphism from ∂X to ∂Xg which preserves the
product structure extends to a homotopy equivalence of pairs (X, ∂X) ' (Xg, ∂Xg).
Now L5(π1(Tg)) acts trivially on the s-cobordism structure set STOP (Xg, ∂Xg), by
Theorem 6.7 and Lemma 6.9 of [7]. Therefore X and Xg are TOP s-cobordant (rel
∂). �

If π1(Y ) ∼= Z then Σ = Y ∪ (Tg ×D2) is 1-connected, since π1(Y ) is generated
by the image of h, and χ(Σ) = 2. Hence Σ is a homotopy 4-sphere, containing a
locally flat copy of Tg with exterior Y .

Lemma 9. If there is a map f : Y → Yg which extends a homeomorphism of the
boundaries then Y is homeomorphic to Yg.

Proof. Let Λ = Z[t, t−1] be the group ring of π1(Y ) = 〈t〉.
We see easily that Hq(Y ; Λ) = Hq(Y ; Λ) = 0 for q > 2, by Poincaré-Lefshetz

duality (and using the fact that ∂Y = Tg × S1). As in Lemma 8 it follows that the

equivariant chain complex for Ỹ is chain homotopy equivalent to a finite projective
Λ-complex Q∗ of length 2, and so there is an exact sequence

0→ Π→ Q2 → Q1 → Q0 → Z→ 0,

where Π = π2(Y ). All projective Λ-modules are free, and the alternating sum of
the ranks of the modules Qi is χ(Y ) = 2g. Applying Schanuel’s Lemma to this
resolution of Z and to the standard short exact sequence

0→ Λ→ Λ→ Z→ 0,

we see that Π ∼= Λ2g. In particular, this holds also for Yg.
If f : Y → Yg restricts to a homeomorphism of the boundaries then π1(f)

is an isomorphism. Comparison of the long exact sequences of the pairs shows
that f induces an isomorphism H4(Y, ∂Y ;Z) ∼= H4(Y, ∂Y ;Z), and so has degree 1.
Therefore π2(f) = H2(f ; Λ) is onto, by Poincaré-Lefshetz duality. Since π2(Y ) and
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π2(Yg) are each free of rank 2g, it follows that π2(f) is an isomorphism, and so f
is a homotopy equivalence, by the Whitehead and Hurewicz Theorems.

Thus f is a homotopy equivalence rel ∂, by the HEP, and so it determines an
element of the structure set STOP (Yg, ∂Yg). The group L5(Z) acts trivially on the
structure set, as before, and so the normal invariant gives a bjection STOP (Yg, ∂Yg) ∼=
H2(Yg, ∂Yg;F2) ∼= H2(Yg;F2). Since H2(Z;F2) = 0 the Hurewicz homomorphism
maps π2(Yg) onto H2(Yg;F2). Therefore there is an α ∈ π2(Yg) whose image in
H2(Yg;F2) is the Poincaré dual of the normal invariant of f . Let fα be the com-
posite of the map from Yg to Yg ∨ S4 which collapses the boundary of a 4-disc in
the interior of Yg with idYg

∨ αη2, where η2 is the generator of π4(S2). Then fα is
a self homotopy equivalence of (Yg, ∂Yg) whose normal invariant agrees with that
of f . (See Theorem 16.6 of [22].) Therefore f is homotopic to a homeomorphism
Y ∼= Yg. �

However, finding such a map f to begin with seems difficult. Can we somehow
use the fact that Y and Yg are subsets of S4? In fact, Y must be homeomorphic to
Yg if g ≥ 3, according to [13].

Suppose now that W is an s-cobordism rel ∂ from X to Xg = Tg × D2, and
that Y ∼= Yg. Since g ≥ 1 the 3-manifold Tg × S1 is irreducible and sufficiently
large. Therefore π0(Homeo(Tg × S1)) ∼= Out(π) [21]. If g > 1 then π1(Tg) has

trivial centre, and so Out(π) ∼=
(
Out(π1(Tg)) 0

Z2g Z×

)
. It follows easily that every self

homeomorphism of Tg×S1 extends to a self homeomorphism of F ×D2. Attaching
Y × [0, 1] ∼= Yg × [0, 1] to W along Tg ×S1× [0, 1] gives an s-concordance from j to
jg (i.e, one whose complementary regions are s-cobordisms rel ∂).

If g = 1 then X ∼= T ×D2 and Out(π) ∼= GL(3,Z). Automorphisms of π are
generated by those which may be realized by homeomorphisms of T ×D2 together
with those that may be realized by homeomorphisms of Y1 [16]. Thus if embeddings
of T with group Z are standard so are embeddings of S1 × S1 × S1 with both
complementary components having abelian fundamental groups.

The situation is less clear for bundles over Tg with Euler number ±1. We may
construct embeddings of such manifolds by fibre sum of an embedding of Tg × S1

with the Hopf bundle η : S3 → S2. However, it is not clear how the comple-
ments change under this operation. There are natural 0-framed links representing
such bundle spaces. As we saw earlier, M(1; (1, 1)) may be obtained by 0-framed
surgery on the Whitehead link. This is an interchangeable 2-component link, and
so M(1; (1, 1)) has an embedding with X ∼= Y ' S1 ∨ S2 and π1(X) ∼= π1(Y ) ∼= Z.
Is this embedding characterized by these conditions? (Once again, it is enough to
find a map which restricts to a homeomorphism on boundaries.)

The product M(1; (1, 0)) ∼= S1 × S1 × S1 may be obtained by 0-framed surgery
on the Borromean rings. Changing the framing on one component of Bo to 1, and
applying a Kirby move to isolate this component gives the disjoint union of Wh
and the unknot. Since the linking numbers are 0 the framings are unchanged, and
we may delete the isolated 1-framed unknot. The corresponding modification of the
standard 0-framed (2g+1)-component link L representing Tg×S1 involves changing
the framing of the component L2g+1 whose meridian represents the central factor
of π. Performing a Kirby move and deleting an isolated 1-framed unknot gives a
0-framed 2g-component link representing M(g; (1, 1)). Since the original link had
partitions into two trivial links with g + 1 and g components respectively, the new
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link has a partition into two trivial g-component links. However this is the only
partition into slice sublinks, for as we saw in §2 consideration of the Massey product
structure shows that all embeddings of M(g; (1, 1)) have χ(X) = χ(Y ) = 1.

Suppose now that F is nonorientable. Then F ∼= #cRP 2, where c = 2−χ(F ) ≥
1, and M(−c; (1, e)) embeds if and only if it embeds as the boundary of a regular
neighbourhood of an embedding of F with normal Euler number e. We must have
e ≤ 2c and e ≡ 2c mod (4) [2]. The standard embedding of RP 2 in S4 is determined
up to composition with a reflection of S4. The complementary regions are each
homeomorphic to a disc bundle over RP 2 with normal Euler number 2, and so
have fundamental group Z/2Z. The standard embeddings of #cRP 2 are obtained
by taking iterated connected sums of these building blocks ±(S4, RP 2), and in
each case the exterior has fundamental group Z/2Z. The regular neighbourhoods
of #cRP 2 are disc bundles with boundary M(−c; (1, e)). Thus M(−c; (1, e)) has a
standard embedding with one complementary component Xc,e a disc bundle over
#cRP 2 and the other component Yc,e having fundamental group Z/2Z.

The constructions in the appendix to [2] suggest framed link presentations for
M(−c; (1, e)). The standard embedding corresponds to a 0-framed (c+1)-component
link assembled from copies of the (2, 4)-torus link 42

1 and its reflection. This is the
union of an unknot and a trivial c-component link, but has no other partitions into
slice links. However, we can do better if we recall that #cRP 2 ∼= (#c−2gRP 2)#Tg
for any g such that 2g < c. Using copies of ±42

1 and Bo accordingly, for each e ≤ 2c
such that e ≡ 2c mod (4) we find a representative link with partitions into trivial

sublinks corresponding to all the values χ(X) ≥ 2 − |e|2 . (Note Figure A.3 of [2].)
Are any other values realized?

We may again argue that if j is an embedding of M(−c; (1, e)), where c ≥ 2,
and π1(X) ∼= π1(#cRP 2) then X is aspherical, and hence is s-cobordant to Xe.
Moreover, if π1(Y ) = Z/2Z then Y is the exterior of an embedding of #cRP 2 in S4

with normal Euler number e. Kreck has shown that in certain cases embeddings of
#cRP 2 with group Z/2Z must be standard, and we should again expect that j is s-
concordant to a standard embedding [14]. In particular, Kreck’s result includes the
case when F = Kb (i.e., c = 2). Hence embeddings of the half-turn flat 3-manifold
M(−2; (1, 0)) and of the Nil3-manifold M(−2; (1, 4)) with π1(X) ∼= π1(Kb) and
π1(Y ) = Z/2Z are standard.

Seven of the thirteen 3-manifolds with elementary amenable fundamental groups
that embed are total spaces of S1-bundles (namely, S3, S3/Q, S2×S1, S1×S1×S1,
M(−2; (1, 0)), M(1; (1, 1) and M(−2; (1, 4))). Two of these and five of the others
are the result of surgery on 2-component links with trivial component knots. (See
[2].) The thirteenth such 3-manifold is the Poincaré homology sphere S3/I∗, which
bounds a contractible TOP 4-manifold C (as do all homology 3-spheres) and so
embeds in the double DC ∼= S4. However, it is well known that S3/I∗ does not
embed smoothly.



COMPLEMENTS OF CONNECTED HYPERSURFACES IN S4 13

References

[1] Budney, R. Embedding of 3-manifolds in S4 from the point of view of the 11-tetrahedron
census, arXiv: 0810.2346 [math.GT]

[2] Crisp, J.S. and Hillman, J.A. Embedding Seifert fibred and Sol3-manifolds in 4-space,

Proc. London Math. Soc. 76 (1998), 685–710.
[3] Doig, M. and Horn, P. On the intersection ring of graph manifolds,

arxiv:1412.3990 [math.GT].

[4] Donald, A. Embedding Seifert manifolds in S4,
Trans. Amer. Math. Soc. 367 (2015), 559-595.

[5] Dwyer, W.G. Homology, Massey products and maps between groups,

J. Pure Appl. Alg. 6 (1975), 177–190.
[6] Eckmann, B. Idempotents in a complex group algebra, projective modules, and the von

Neumann algebra, Archiv Math. (Basel) 76 (2001), 241–249.
[7] Hillman, J.A. Four-Manifolds, Geometries and Knots,

Geometry and Topology Monographs, vol. 5,

Geometry and Topology Publications (2002 – revised 2007, 2014).
[8] Hillman, J.A. Embedding 3-manifolds with circle actions,

Proc. Amer. Math. Soc. 137 (2009), 4287–4294.

[9] Hillman, J.A. The linking pairings of orientable Seifert manifolds,
Top. Appl. 158 (2011), 468–478.

[10] Jankins, M. and Neumann, W.D. Lectures on Seifert Manifolds,

Brandeis Lecture Notes 2, Brandeis University (1983).
[11] Kanenobu, T. Groups of higher dimensional satellite knots,

J. Pure Appl. Alg. 28 (1983), 179–188.

[12] Kawauchi, A. and Kojima, S., Algebraic classification of linking pairings on 3-manifolds,
Math. Ann. 253 (1980), 29–42.

[13] Kawauchi, A. Torsion linking forms on surface-knots and exact 4-manifolds,
in Knots in Hellas ’98, Delphi 1998,

Ser. Knots Everything 24, World Scientific, River Edge NJ (2000), 208–228.

[14] Kreck, M. On the homeomorphism classification of smooth knotted surfaces in the 4-sphere,
in Geometry of Low-dimensional Manifolds, Durham 1989,

London Mathematical Society Lecture Notes 150, Cambridge University Press (1990), 63–72.

[15] Levine, J.P. Doubly sliced knots and doubled disc knots,
Michigan Math. J. 30 (1983), 249–256.

[16] Montesinos, J. M. On twins in the 4-sphere I,

Quarterly J. Math. 34 (1983), 171–199. II, ibid. 35 (1984), 73–83.
[17] Rolfsen, D. Knots and Links

[18] Rubinstein, J.H. Dehn’s lemma and handle decompositions of some 4-manifolds,

Pacific J. Math. 86 (1980), 565–569.
[19] Stallings, J. Homology and central series of groups,

J. Algebra 2 (1965), 170–181.
[20] Sullivan, D. On the intersection ring of compact three manifolds,

Topology 14 (1975), 275–277.
[21] Waldhausen, F. On irreducible 3-manifolds which are sufficiently large,

Ann. Math. 87 (1968), 56–88.

[22] Wall, C.T.C. Surgery on Compact Manifolds, second edition,

Edited and with a foreword by A. A. Ranicki,
Mathematical Surveys and Monographs 69,

American Mathematical Society, Providence (1999).
[23] Wall, C.T.C. Finiteness conditions for CW complexes II,

Proc. Roy. Soc. Ser. A 295 (1966), 129–139.

School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia

E-mail address: jonathan.hillman@sydney.edu.au


