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Abstract

The symmetries provided by representations of the centrally extended Lie su-

peralgebra psl(2|2) are known to play an important role in the spin chain models

originated in the planar anti-de Sitter/conformal field theory correspondence and one-

dimensional Hubbard model. We give a complete description of finite-dimensional

irreducible representations of this superalgebra thus extending the work of Beisert

which deals with a generic family of representations. Our description includes a new

class of modules with degenerate eigenvalues of the central elements. Moreover, we

construct explicit bases in all irreducible representations by applying the techniques

of Mickelsson–Zhelobenko algebras.
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1 Introduction

As discovered by Beisert [1, 2, 3], certain spin chain models originated in the planar anti-de

Sitter/conformal field theory (AdS/CFT) correspondence admit hidden symmetries pro-

vided by the action of the Yangian Y(g) associated with the centrally extended Lie super-

algebra

g = psl(2|2)nC3.

This is a semi-direct product of the simple Lie superalgebra psl(2|2) of type A(1, 1) and

the abelian Lie algebra C3 spanned by elements C, K and P which are central in g. Due

to the results of [5], psl(2|2) is distinguished among the basic classical Lie superalgebras

by the existence of a three-dimensional central extension. A new R-matrix associated with

the extended Lie superalgebra g is found by Yamane [14]. Furthermore, g can be obtained

from the Lie superalgebras of type D(2, 1;α) by a particular limit with respect to the

parameter α.

The Yangian symmetries of the one-dimensional Hubbard model associated with Y(g)

were considered in [2]; they extend those provided by the direct sum of two copies of the

Yangian for sl(2) previously found in [13]. An extensive review of the Yangian symmetries

in the spin chain models can be found in [12].

These applications motivate the study of representations of both the Lie superalgebra

g and its Yangian. In this paper we aim to prove a classification theorem for finite-

dimensional irreducible representation of g. Generic representations of g were already

described by Beisert [3]. As we demonstrate below, beside these generic modules, the

complete classification includes some degenerate representations which were not considered

in [3]. In more detail, if L is a finite-dimensional irreducible representation of the Lie

superalgebra g, then each of the central elements C,K and P acts in L as multiplication

by a scalar. We will let the lower case letters denote the corresponding scalars,

C 7→ c, K 7→ k, P 7→ p.

The Lie superalgebra psl(2|2) is known to admit a family of automorphisms parameterized

by elements of the group SL(2), as described in [4]. As pointed out in [3], by twisting the

action of g in L by such an automorphism, we obtain another irreducible representation of

g, where the values c, k, p are transformed by(
c −k

p −c

)
7→
(
u v

w z

)(
c −k

p −c

)(
u v

w z

)−1

,

and complex numbers u, v, w, z satisfy uz − vw = 1. An appropriate transformation of

this form brings the 2 × 2 matrix formed by c, k, p to the Jordan canonical form. In the
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case, where the canonical form is a diagonal matrix,(
c −k

p −c

)
7→
(
d 0

0 −d

)
,

the values of k and p under the twisted action of g are zero, and so the twisted module

becomes an irreducible representation of the Lie superalgebra sl(2|2). Such representations

are well-studied; see e.g. [4], [8], [11] and [15] for an explicit construction of basis vectors

and formulas for the action of the generators in this basis. It is essentially this case which

was considered in [3] in relation with the symmetries of the S-matrix for the AdS/CFT

correspondence. The only remaining possibility is the case where the canonical form is the

2× 2 Jordan block, (
c −k

p −c

)
7→
(
0 0

1 0

)
.

This can only happen when c2 − pk = 0 so that both eigenvalues of the matrix are zero.

Our goal in this paper is to study the structure of these representations of g. In what

follows we consider the class of finite-dimensional irreducible representations of g where

both central elements C and K act as the zero operators, while P acts as the identity

operator. Our main result is a classification theorem for such representations of g.

Main Theorem. A complete list of pairwise non-isomorphic finite-dimensional irreducible

representations of g where the central elements act by C 7→ 0, K 7→ 0, P 7→ 1, consists of

1. the Kac modules K(m,n) with m,n ∈ Z+ and m ̸= n,

dimK(m,n) = 16(m+ 1)(n+ 1),

2. the modules Sn with n ∈ Z+, dimSn = 8(n+ 1)(n+ 2).

Here the Kac modules K(m,n) over g are defined as the induced modules from finite-

dimensional irreducible representations of the Lie algebra sl(2)⊕sl(2) in the same way as for

simple Lie superalgebras, and Sn are certain submodules of K(n, n); see Sec. 3.2 for precise

definitions. Comparing this description with the classification theorem for representations

of the Lie superalgebra psl(2|2) [6], note that nontrivial irreducible quotients of the Kac

modules over psl(2|2) have dimension 4n(n+2)+2 (they are also known as short multiplets).

Hence the family of g-modules Sn does not have their counterparts within the class of

psl(2|2)-modules.

To give a physical interpretation of the conditions on c, p and k, note that in the original

spin chain models [1, 3], the scalar c corresponds to the energy of a particle moving on the

spin chain, whereas p and k correspond to its momenta. Thus, the relation c2−pk = const

is the dispersion relation of the particle, and the automorphisms of psl(2|2) provided by

elements of SL(2) are interpreted as the Lorentz symmetry which preserves the dispersion
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relation. Therefore, the relation c2−pk = 0 describes a massless particle on the light-cone.

Due to the Main Theorem, the multiplets of the particle on the light-cone are shorter than

long multiplets [3] and longer than short multiplets. Thus, the particles on the light-cone

are described by middle multiplets.

Our arguments are based on the theory of Mickelsson–Zhelobenko algebras [16]. We

also apply it to construct bases of all finite-dimensional irreducible representations of g.

Formulas for the action of the generators of g in such a basis can also be found in an

explicit form. Furthermore, this description of representations extends to the case, where

the central elements P and K of g act as the zero operators, allowing us to essentially

reproduce the results of [8], [11] and [15] concerning representations of gl(2|2) and sl(2|2).
This paper is organized as follows. In Sec. 2 we review the centrally extended Lie

superalgebra g. In Sec. 3 we describe finite-dimensional irreducible representation of g.

After introducing the Mickelsson–Zhelobenko algebra in Sec. 3.1 we construct a basis of

the Kac module by the Mickelsson–Zhelobenko generators and establish its irreducibility

properties. In Sec. 3.3 the classification theorem is proved. Explicit action of the generators

on the Kac modules is described in Sec. 3.4. Appendix A is devoted to relations in the

Mickelsson–Zhelobenko algebra. In Appendix B the action of raising operators is produced;

it is used to prove irreducibility of the Kac modules. In Appendix C the sl(2)⊕sl(2)-highest

weight vectors of the Kac modules are listed.

We acknowledge the financial support of the Australian Research Council. T.M. would

like to thank the hospitality of the School of Mathematics and Statistics at the University

of Sydney. The most of this work has been done during his stay there. T.M. also thanks

Sanefumi Moriyama, Hiroyuki Yamane and Kentaroh Yoshida for variable discussions.

T.M. is supported by the Netherlands Organization for Scientific Research (NWO) under

the VICI grant 680-47-602. T.M.’s work is also part of the ERC Advanced grant research

programme No. 246974, “Supersymmetry: a window to non-perturbative physics” and of

the D-ITP consortium, a program of the NWO that is funded by the Dutch Ministry of

Education, Culture and Science (OCW).

2 Central extension of Lie superalgebra psl(2|2)
The general linear Lie superalgebra gl(2|2) over C has the standard basis Eij, 1 6 i, j 6 4.

The Z2-grading on gl(2|2) is defined by setting degEij = ı̄+ ȷ̄, where we use the notation

ı̄ = 0 for 1 6 i 6 2 and ı̄ = 1 for 3 6 i 6 4. The commutation relations have the form[
Eij, Ekl

]
= δkj Ei l − δi l Ekj(−1)(ı̄+ȷ̄)(k̄+l̄),
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where the square brackets denote the super-commutator. Then sl(2|2) is the subalgebra of

gl(2|2) spanned by the elements

h1 = E11 − E22, h2 = E22 + E33, h3 = E33 − E44

and by all elements Eij with i ̸= j. We have the direct sum decomposition

gl(2|2) = sl(2|2)⊕ C(E11 + E22 − E33 − E44).

Furthermore, the element

C =
1

2
h1 + h2 −

1

2
h3 =

1

2
(E11 + E22 + E33 + E44)

is central in sl(2|2), and the simple Lie superalgebra of type A(1, 1) is defined as the

quotient of sl(2|2) by the ideal generated by C. This quotient is denoted by psl(2|2). As

in [3], we will consider the Lie superalgebra

g = sl(2|2)nC2 = psl(2|2)nC3,

where C2 is the abelian Lie algebra with the basis elements K and P , while abelian Lie

algebra C3 is spanned by the elements C,K and P . These elements are central in g and

the only nontrivial additional relations take the form

[E13, E24] = −[E23, E14] = K, (2.1)

[E31, E42] = −[E32, E41] = P. (2.2)

More precisely, the commutations relations in g are determined by those for the basis

elements

[Eij, Ekl] = δkjEil − δilEkj(−1)(ı̄+ȷ̄)(k̄+l̄) + ϵ̄ik ϵjlP + ϵik ϵ̄jlK, (2.3)

where the constants ϵij and ϵ̄ij are zero except for the values

ϵ12 = −ϵ21 = 1 and ϵ̄34 = −ϵ̄43 = 1.

The Lie subalgebra g0 of even elements in g is the direct sum

g0 = k⊕ C3, k = sl(2)⊕ sl(2) ⊂ psl(2|2),

where the two copies of sl(2) are spanned by the elements E12, E21, h1 and E34, E43, h3,

respectively.

Given complex numbers u, v, w, z such that uz − vw = 1, the corresponding automor-

phism ϕ : g → g mentioned in the Introduction is determined by the mapping

E13 7→ uE13 + vE42, E42 7→ zE42 + wE13, (2.4)

and the condition that each element of the subalgebra sl(2)⊕ sl(2) is stable under ϕ. By

[3], the images of the central elements C,K, P are then found from the matrix relation(
C −K

P −C

)
7→
(
u v

w z

)(
C −K

P −C

)(
u v

w z

)−1

.
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3 Finite-dimensional irreducible representations

As we pointed out in the Introduction, our main focus will be on finite-dimensional irre-

ducible representations of g, where the eigenvalues of the central elements are given by

C 7→ 0, K 7→ 0, P 7→ 1.

This means that we will essentially deal with the extended Lie superalgebra psl(2|2)⊕CP ,

where the only nontrivial additional relations are (2.2).

From the viewpoint of the spin chain model [3], these representations should describe

the particle states on the light-cone since the dispersion relations are given by c2− pk = 0,

where c and p, k correspond to energy and momenta of the particles, respectively.

3.1 Mickelsson–Zhelobenko algebras

We will use the Mickelsson–Zhelobenko algebra Z(g, k) associated with the pair k ⊂ g. An

extensive theory of such algebras was developed in [16]; see also [9, Ch. 9] and [10] where

they were employed for constructions of bases of Gelfand–Tsetlin type in representations

of classical Lie algebras and superalgebras. To recall the definitions, denote by h the

Cartan subalgebra of k spanned by the basis elements h1 and h3. We have the triangular

decomposition

k = k− ⊕ h⊕ k+,

where

k− = span of {E21, E43} and k+ = span of {E12, E34}.

Let J = U(g) k+ be the left ideal of U(g) generated by k+ and consider the quotient

M(g, k) = U(g)/J.

The Mickelsson algebra S(g, k) is defined by

S(g, k) = {v ∈ M(g, k) | k+v = 0}.

Given a finite-dimensional g-module V , its subspace

V + = {v ∈ V | k+v = 0} (3.1)

is a S(g, k)-module whose structure largely determines the structure of V ; see [16] for more

details. Denote by R(h) the field of fractions of the commutative algebra U(h). The

Mickelsson–Zhelobenko algebra Z(g, k) can be defined as the extension

Z(g, k) = S(g, k)⊗U(h) R(h). (3.2)

6



As was observed by Zhelobenko (see [16]), the algebraic structure of Z(g, k) can be described

with the use of the extremal projector p = p(k) which is a formal series of elements of U(k)

with coefficients in R(h) given by

p =

(
1 +

∞∑
k=1

(−1)k

k!
Ek

21E
k
12

1

(h1 + 2) · · · (h1 + k + 1)

)

×

(
1 +

∞∑
l=1

(−1)l

l!
El

43E
l
34

1

(h3 + 2) · · · (h3 + l + 1)

)
.

The operator p has the property p2 = p and satisfies the relations

E12p = pE21 = 0 and E34p = pE43 = 0. (3.3)

The extremal projector naturally acts on the extension

M′(g, k) = M(g, k)⊗U(h) R(h).

It projects M′(g, k) onto Z(g, k) with the kernel k−M′(g, k). In particular, Z(g, k) = pM′(g, k).

Moreover, the algebra Z(g, k) is generated by the elements

zik = pEik, zki = pEki, i = 1, 2 and k = 3, 4,

together with C,K and P . We will call the elements zik and zki raising and lowering

operators, respectively. They are given by the following explicit formulas.

Lemma 3.1. The raising operators are found by

z14 = E14,

z13 = E13 + E43E14
1

h3 + 1
,

z24 = E24 − E21E14
1

h1 + 1
,

z23 = E23 − E21E13
1

h1 + 1
+ E43E24

1

h3 + 1
− E21E43E14

1

(h1 + 1)(h3 + 1)
,

and the lowering operators are

z41 = E41 + E21E42
1

h1 + 1
− E43E31

1

h3 + 1
− E21E43E32

1

(h1 + 1)(h3 + 1)
,

z31 = E31 + E21E32
1

h1 + 1
,

z42 = E42 − E43E32
1

h3 + 1
,

z32 = E32.
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Proof. These expressions follow by the application of the explicit formula for the extremal

projector p.

We will need expressions for the elements Eik and Eki in terms of the raising and

lowering operators provided by the next lemma.

Lemma 3.2. We have the relations in M′(g, k):

E14 = z14,

E13 = z13 − E43z14
1

h3 + 1
,

E24 = z24 + E21z14
1

h1 + 1
,

E23 = z23 + E21z13
1

h1 + 1
− E43z24

1

h3 + 1
− E21E43z14

1

(h1 + 1)(h3 + 1)
,

and

E41 = z41 − E21z42
1

h1 + 1
+ E43z31

1

h3 + 1
− E21E43z32

1

(h1 + 1)(h3 + 1)
,

E31 = z31 − E21z32
1

h1 + 1
,

E42 = z42 + E43z32
1

h3 + 1
,

E32 = z32.

Proof. The formulas are immediate from Lemma 3.1.

As follows from [16], the generators of the Mickelsson–Zhelobenko algebra Z(g, k) satisfy

quadratic relations which can be derived from Lemmas 3.1 and 3.2. In particular, for

i = 1, 2 and k = 3, 4 we have

z2ik = 0 and z2ki = 0.

Complete sets of relations in Z(g, k) are listed in Appendix A.

3.2 Kac modules

For nonnegative integers m and n we will denote by L0(m,n) the finite-dimensional irre-

ducible representation of the Lie algebra k = sl(2) ⊕ sl(2) with the highest weight [m,n].

This representation is generated by the highest vector w such that

E12w = E34w = 0, h1w = mw, h3w = nw.
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The vectors

Ek
21E

l
43w, k = 0, 1, . . . ,m, l = 0, 1, . . . , n, (3.4)

form a basis of L0(m,n). We extend L0(m,n) to a representation of the subalgebra b ⊂ g,

spanned by g0 = k⊕C3 and the elements Eik with i = 1, 2 and k = 3, 4. These additional

elements act as the zero operators, while C 7→ 0, K 7→ 0 and P 7→ 1. The corresponding

Kac module K(m,n) is defined as the induced representation

K(m,n) = U(g)⊗U(b) L
0(m,n). (3.5)

Its basis is formed by the vectors

Eθ1
41E

θ2
31E

θ3
42E

θ4
32E

k
21E

l
43w

where each θi takes values in {0, 1} and k, l are as in (3.4). In particular,

dimK(m,n) = 16(m+ 1)(n+ 1).

As in (3.1) we will write K+(m,n) for the subspace of k+-invariants in K(m,n). Note

that the action of the elements zik and zki of the Mickelsson–Zhelobenko algebra Z(g, k) in

K+(m,n) is well-defined. The denominators of these rational functions do not vanish when

h1 and h3 are replaced by the corresponding eigenvalues of weight vectors. In accordance

with [16], a basis of K+(m,n) can be constructed with the use of ordered products of the

lowering operators zki with i = 1, 2 and k = 3, 4. Below we use this approach to write

down explicit basis elements.

Suppose first that m,n > 2. Consider the elements

zθ141 z
θ2
31 z

θ3
42 z

θ4
32 w ∈ K+(m,n) (3.6)

with each θi taking values in {0, 1}. Each element (3.6) can be interpreted as a path in

the following labelled oriented graph

�
�

��

@
@

@R

@
@

@I

�
�

�	 �
�
��

�
�

�	

@
@

@I

@
@
@R

�
�

��

�
�

�	

@
@

@I

@
@

@R

z32z31

z42z41

[m,n]

[m+1,n+1]
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where the vertices belong to the lattice Z2, the middle vertex represents the weight [m,n]

of w and the four vectors (1, 1), (1,−1), (−1, 1) and (−1,−1) indicate the action of the

respective lowering operators z32, z42, z31 and z41. At most one step may be taken in any

direction beginning with (1, 1), then following with (1,−1), (−1, 1) and (−1,−1). The

monomial (3.6) is obtained by writing the product of the labells of the vectors used in

the path and apply the corresponding operator to w. For instance, the path of length

two consisting of (1,−1) then following by (−1, 1) corresponds to the monomial z31z42w

of weight [m,n].

We thus obtain the following weight vectors in K+(m,n):

[m,n] w, z41z32w, z31z42w, z41z31z42z32w,

[m+ 1, n+ 1] z32w, z31z42z32w,

[m+ 1, n− 1] z42w, z41z42z32w,

[m− 1, n+ 1] z31w, z41z31z32w,

[m− 1, n− 1] z41w, z41z31z42w,

[m+ 2, n] z42z32w,

[m,n+ 2] z31z32w,

[m− 2, n] z41z31w,

[m,n− 2] z41z42w.

In the cases where m ∈ {0, 1} or n ∈ {0, 1} families of weight vectors in K+(m,n) are

constructed in a way similar to (3.6). We use the interpretation of the elements (3.6) as

paths in the same oriented graph with the additional condition that all vertices [k, l] of the

path belong to the region k, l > 0. We will call such paths admissible. Clearly, if m,n > 2

then all paths are admissible. For instance, in the case m = n = 0 this leaves the elements

[0, 0] w, z41z31z42z32w,

[1, 1] z32w, z31z42z32w,

[2, 0] z42z32w,

[0, 2] z31z32w,

of the space K+(0, 0). In all remaining cases such vectors are listed in Appendix C.

Proposition 3.3. A basis of the Kac module K(m,n) is formed by the vectors

Ek
21E

l
43 z

θ1
41 z

θ2
31 z

θ3
42 z

θ4
32 w, (3.7)

with the condition that the corresponding elements (3.6) are associated with admissible

paths, and where

k = 0, 1, . . . ,m− θ1 − θ2 + θ3 + θ4 and l = 0, 1, . . . , n− θ1 + θ2 − θ3 + θ4.
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Proof. The restriction of the module K(m,n) to the subalgebra k is a direct sum

K(m,n)
∣∣∣
k

∼=
⊕
r,s>0

cr,sL
0(r, s),

where the multiplicity cr,s is found by

cr,s = dimK+(m,n)[r,s],

where the subscript [r, s] indicates the corresponding weight subspace. The subspace

K+(m,n)[r,s] coincides with the image of the weight space K(m,n)[r,s] under the action

of the extremal projector p = p(k),

K+(m,n)[r,s] = pK(m,n)[r,s].

By the Poincaré–Birkhoff–Witt theorem, the Kac module K(m,n) is spanned by vectors

of the form

Ek
21E

l
43E

θ1
41E

θ2
31E

θ3
42E

θ4
32w

where each θi takes values in {0, 1}. Due to the properties (3.3) of p, we may conclude

that the space K+(m,n)[r,s] is spanned by the vectors

pEθ1
41E

θ2
31E

θ3
42E

θ4
32w (3.8)

such that r = m−θ1−θ2+θ3+θ4 and s = n−θ1+θ2−θ3+θ4. However, each vector (3.8)

is a linear combination of admissible elements of the form (3.6). Indeed, this follows by

application of the formulas of Lemma 3.2: first replace E32 with z32, then use the expression

provided by Lemma 3.2 for E42 to write the vector as a linear combination of elements

pEθ1
41E

θ2
31 z

θ3
42 z

θ4
32w and then use such replacements for E31 and E41.

Furthermore, each nonzero element of K+(m,n)[r,s] generates a k-submodule of K(m,n)

of dimension (r+1)(s+1). Therefore, the module K(m,n) is spanned by all vectors (3.7).

On the other hand, the number of these vectors is easily calculated. For m,n > 2 it equals

4(m+ 1)(n+ 1) + 2(m+ 2)(n+ 2) + 2(m+ 2)n+ 2m(n+ 2) + 2mn

+ (m+ 3)(n+ 1) + (m+ 1)(n+ 3) + (m− 1)(n+ 1) + (m+ 1)(n− 1)

= 16(m+ 1)(n+ 1)

which coincides with dimK(m,n). This proves that the vectors form a basis of K(m,n).

The same calculation in the cases where m 6 1 or n 6 1 confirms that the number of

vectors matches dimK(m,n).
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The proof of Proposition 3.3 essentially contains the decompositions of the Kac modules

as k-modules. In particular, for m,n > 2 we have

K(m,n)
∣∣∣
k

∼= 4L0(m,n)⊕ 2L0(m+ 1, n+ 1)⊕ 2L0(m+ 1, n− 1)

⊕ 2L0(m− 1, n+ 1)⊕ 2L0(m− 1, n− 1)⊕ L0(m+ 2, n)

⊕ L0(m,n+ 2)⊕ L0(m− 2, n)⊕ L0(m,n− 2).

Following the terminology used for representations of simple Lie superalgebras [6], we

will call the weight [m,n] typical, if the Kac module K(m,n) is irreducible. Otherwise,

[m,n] will be called atypical. We will give necessary and sufficient conditions for [m,n] to

be typical. They turn out to coincide with such conditions for representations of psl(2|2)
(see [6], [7]), but the structure of the atypical Kac modules differs; see also [4]. Our main

instrument will be the techniques of Mickelsson–Zhelobenko algebras which will allow us

to describe K(m,n) as a module over k.

Proposition 3.4. If m ̸= n then the Kac module K(m,n) is irreducible.

Proof. Observe that if R is a nonzero submodule of K(m,n), then the subspace R+ defined

in (3.1) is a nonzero S(g, k)-submodule of K+(m,n). Therefore, to describe g-submodules

of K(m,n) it will be sufficient to describe S(g, k)-submodules of K+(m,n). Since R+ is

h-invariant, each weight component of R+ is contained in R+. Working case by case for

each weight subspace, we verify easily with the use of formulas of Lemmas A.1, A.2, A.3

and Appendix B, that the condition R+ ̸= {0} implies that R+ contains the vector w. For

example, suppose that m,n > 2 and that a linear combination

c1w + c2z41z32w + c3z31z42w + c4z41z31z42z32w, ci ∈ C ,

belongs to R+. Applying the operators z23 and z24 to this element, we obtain the following

two relations, respectively,

0 =
m− n

2
c2 +

m+ n+ 2

2(n+ 1)
c3 and 0 = − m− n

2(n+ 2)
c2 +

n(m+ n+ 2)

2(n+ 1)
c3

together with c4 = 0. The relations imply c2 = c3 = 0 when m ̸= n. The same argument

applied to the remaining weight subspaces implies that w ∈ R+ and so R+ = K+(m,n),

which proves that R = K(m,n). Thus, the corresponding Kac module K(m,n) is irre-

ducible.

Now suppose that m = n and introduce the S(g, k)-submodules of K+(n, n) by

S+
n = S(g, k)z32w and T+

n = S(g, k)z41w.

The corresponding submodules Sn and Tn of K(n, n) are then defined by

Sn = U(k)S+
n and Tn = U(k)T+

n . (3.9)
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Proposition 3.5. The g-modules Sn are irreducible for n > 0 and the g-modules Tn are

irreducible for n > 1. Moreover, T0 = {0} and we have a g-module isomorphism

Sn−1
∼= Tn, n > 1. (3.10)

Proof. By using the formulas of Appendices A and B, we can produce explicit bases of S+
n

and T+
n . Arranging the basis vectors in accordance with their h-weights, for S+

n with n > 1

we have

[n, n] z41z32w, z41z31z42z32w,

[n+ 1, n+ 1] z32w, z31z42z32w,

[n+ 1, n− 1] z41z42z32w,

[n− 1, n+ 1] z41z31z32w,

[n+ 2, n] z42z32w,

[n, n+ 2] z31z32w,

and for T+
n with n > 2 we have

[n, n] z32z41w, z31z42z32z41w,

[n+ 1, n− 1] z42z32z41w,

[n− 1, n+ 1] z31z32z41w,

[n− 1, n− 1] z41w, z31z42z41w,

[n− 2, n] z31z41w,

[n, n− 2] z42z41w.

Similarly, the basis of S+
0 is given by

[0, 0] w, z41z31z42z32w,

[1, 1] z32w, z31z42z32w,

[2, 0] z42z32w,

[0, 2] z31z32w,

while the basis of T+
1 is

[1, 1] z32z41w, z31z42z32z41w,

[2, 0] z42z32z41w,

[0, 2] z31z32z41w,

[0, 0] z41w, z41z31z42w,
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and T+
0 = {0}. Using formulas of Appendices A and B once again, we can see that

the nonzero submodules S+
n and T+

n of the S(g, k)-module K+(n, n) are irreducible. This

implies that the corresponding submodules Sn and Tn of K(n, n) are also irreducible.

Finally, to prove the last statement of the proposition, for a given n > 1 denote by w′

the highest vector of the k-module L0(n − 1, n − 1). The Mickelsson–Zhelobenko algebra

relations imply that for n > 2 we have an S(g, k)-module isomorphism

ϕ : S+
n−1 → T+

n , z32w
′ 7→ z32z41w,

with the inverse map given by

ϕ−1 : z41w 7→ −n+ 1

n
z41z32w

′.

For n = 1 the statement is equivalent to the existence of an isomorphism K+(0, 0) ∼= T+
1 .

It is provided by the map

ϕ : K+(0, 0) → T+
1 , w′ 7→ z41w.

This yields the desired isomorphism (3.10).

Proposition 3.6. The Kac module K(n, n) over g with n > 1 is the direct sum of two

irreducible submodules,

K(n, n) = Sn ⊕ Tn.

The module K(0, 0) = S0 is irreducible. Hence, we have an isomorphism

K(n, n) ∼= Sn ⊕ Sn−1, n > 0,

assuming S−1 = {0}.

Proof. This will follow from Proposition 3.5. It suffices to verify that

K+(n, n) = S+
n ⊕ T+

n , n > 1. (3.11)

However, dimK+(n, n) = dimS+
n + dimT+

n and we have

K+(n, n) = S+
n + T+

n

due to the relation

w = −n+ 2

n+ 1
z41z32w − n+ 1

n
z32z41w;

see Lemma A.1. Therefore, the intersection of S+
n and T+

n is zero and (3.11) follows, thus

completing the proof.
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3.3 Classification theorem

We can now prove the classification theorem for representations of the Lie superalgebra

g = psl(2|2)nC3, where the central elements act by

C 7→ 0, K 7→ 0 and P 7→ 1. (3.12)

Theorem 3.7. A complete list of pairwise non-isomorphic finite-dimensional irreducible

representations of g with the conditions (3.12) consists of

1. the Kac modules K(m,n) with m,n ∈ Z+ and m ̸= n,

dimK(m,n) = 16(m+ 1)(n+ 1),

2. the modules Sn with n ∈ Z+, dimSn = 8(n+ 1)(n+ 2).

Proof. Consider the following triangular decomposition of the Lie superalgebra g,

g = n̄− ⊕ h⊕ n̄+,

where h is spanned by the elements h1, h3, C, K and P , whereas the subalgebras n̄+ and

n̄− are defined by
n̄+ = span of {E12, E34, E31, E32, E14, E24},
n̄− = span of {E21, E43, E13, E23, E41, E42}.

Given a pair of complex numbers µ = (µ1, µ3), consider the one-dimensional representation

Cµ of the Lie superalgebra h⊕ n̄+ defined by

n̄+ 1µ = 0, h1 1µ = µ1 1µ, h3 1µ = µ3 1µ, C 1µ = 0, K 1µ = 0, P 1µ = 1µ,

where 1µ denotes the basis vector of Cµ. The corresponding Verma module M(µ) is then

defined by

M(µ) = U(g)⊗U(h⊕n̄+) Cµ.

By a standard argument, M(µ) contains a unique maximal proper submodule V and we

set L(µ) = M(µ)/V . The module L(µ) is irreducible and any finite-dimensional irreducible

representation of g is isomorphic to L(µ) for a certain uniquely determined µ. Therefore,

to classify finite-dimensional irreducible representations of g it suffices to find necessary

and sufficient conditions on µ for the module L(µ) to be finite-dimensional.

By considering the U(k)-cyclic span of the vector 1µ we conclude that the condition

dimL(µ) < ∞ implies that both µ1 and µ3 are nonnegative integers. In what follows we

will assume that µ1, µ3 ∈ Z+. As a next step, we will demonstrate that L(µ) is infinite-

dimensional unless µ3 > 2.

Suppose first that µ3 = 0. The vector

v = z421µ = E421µ ∈ L(µ)
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is nonzero since E31 v = P 1µ = 1µ. On the other hand, the weight of v is (µ1+1, −1) and

k+ v = 0. Therefore, the k-module U(k) v is infinite-dimensional and so is L(µ).

Now let µ3 = 1. If µ1 > 1 then the vector

u = z41z421µ = E41E421µ − P E431µ = E41E421µ − E431µ ∈ L(µ)

is nonzero since

E24E14u = −µ1(µ1 + 1)

2
1µ

while the weight of u is (µ1,−1). If µ1 = 0 then the vector y = E411µ is nonzero since

E32y = −P 1µ = −1µ and the weight of y is (−1, 0).

As a final step, we will show that each representation L(µ) with µ3 > 2 is finite-

dimensional and isomorphic to exactly one module in the list given in the formulation of

the theorem. By the construction of the Kac modules K(m,n), for µ = (m,n+2) we have

the homomorphism

M(m,n+ 2) → K(m,n), 1µ 7→ z31z32w.

By Propositions 3.4 and 3.5, this yields isomorphisms

L(m,n+ 2) ∼= K(m,n), m, n ∈ Z+, m ̸= n,

and

L(n, n+ 2) ∼= Sn, n ∈ Z+.

The theorem is proved.

The techniques of Mickelsson–Zhelobenko algebras which we used to prove Theorem 3.7

can also be applied to reproduce the well-known descriptions of finite-dimensional irre-

ducible representations of the Lie superalgebras psl(2|2) and sl(2|2) [7]; see also [8], [11]

and [15]. Namely, the above arguments can be easily modified for the case where the cen-

tral element P of g acts as the zero operator. The corresponding Kac modules K◦(m,n)

over psl(2|2) are irreducible for m ̸= n. However, the structure of K◦(n, n) differs from

that of the g-module K(n, n); the corresponding submodules S◦
n and T ◦

n of K◦(n, n), which

are defined exactly as in (3.9), are not irreducible for n > 1. The intersection Un = S◦
n∩T ◦

n

is nonzero for n > 1 and we have

U+
n = span of {z41z32w, z41z31z42z32w, z41z42z32w, z41z31z32w}.

The sum Rn = S◦
n + T ◦

n is a proper submodule of K◦(n, n) (cf. Proposition 3.5) and the

quotient L◦(n, n) = K◦(n, n)/Rn is irreducible. The vectors w, z31w, z42w, z31z42w form

a basis of L◦+(n, n) for n > 1.

To summarize, we get the following description of psl(2|2)-modules; see [6] and [7].
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Corollary 3.8. A complete list of pairwise non-isomorphic finite-dimensional irreducible

representations of psl(2|2) consists of

1. the Kac modules K◦(m,n) with m,n ∈ Z+ and m ̸= n,

dimK◦(m,n) = 16(m+ 1)(n+ 1),

2. the modules L◦(n, n) with n > 1, dimL◦(n, n) = 4n(n+ 2) + 2,

3. the trivial one-dimensional module L◦(0, 0).

To state the corresponding results for the Lie superalgebra g′ = sl(2|2) = psl(2|2)⊕CC,

consider the Kac modules K(m,n; 2c) over g′ (with m,n ∈ Z+), which are defined as in

(3.5), except that the central elements now act by C 7→ c, K 7→ 0 and P 7→ 0, and we

assume that the complex number c is nonzero. The g′-module K(m,n; 2c) is irreducible if

and only if

m− n ̸= ±2c and m+ n+ 2 ̸= ±2c. (3.13)

These conditions define the class of typical representations of g′. The remaining atypical

representations are nontrivial quotients of K(m,n; 2c) in the cases where (3.13) does not

hold. To describe the corresponding submodules, consider the Mickelsson algebra S(g′, k)

and introduce submodules

S ⊂ K(m,n;m− n), T ⊂ K(m,n;n−m),

X ⊂ K(m,n;−m− n− 2), Y ⊂ K(m,n;m+ n+ 2),

by setting V = U(k)V +, where V denotes one of the four submodules, and V + is the

S(g′, k)-submodule of the respective Kac module,

S+ = S(g′, k)z32w, T+ = S(g′, k)z41w

X+ = S(g′, k)z31w, Y + = S(g′, k)z42w.

Corollary 3.9. A complete list of pairwise non-isomorphic finite-dimensional irreducible

representations of sl(2|2) with a non-zero eigenvalue c of the central element C consists of

1. the Kac modules K(m,n; 2c) with the conditions (3.13),

dimK(m,n; 2c) = 16(m+ 1)(n+ 1),

2. the modules K(m,n;m− n)/S,

dimK(m,n;m− n)/S = 4
(
m(n+ 1) + (m+ 1)n

)
,

3. the modules K(m,n;−m+ n)/T ,

dimK(m,n;−m+ n)/T = 4
(
(m+ 1)(n+ 2) + (m+ 2)(n+ 1)

)
,
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4. the modules K(m,n;−m− n− 2)/X,

dimK(m,n;−m− n− 2)/X = 4
(
(m+ 2)(n+ 1) + (m+ 1)n

)
,

5. the modules K(m,n;m+ n+ 2)/Y ,

dimK(m,n;−m− n− 2)/Y = 4
(
(m+ 1)(n+ 2) +m(n+ 1)

)
.

3.4 Explicit construction of representations

Our proof of the classification theorem (Theorem 3.7) was based on explicit bases of irre-

ducible representations V . They all have the form

Ek
21E

l
43 z

θ1
41 z

θ2
31 z

θ3
42 z

θ4
32 w, (3.14)

with some conditions on the parameters, where w is the highest vector of the k-module

L0(m,n). The matrix elements for the action of the generators of g in this basis can be

found from the Mickelsson–Zhelobenko algebra relations in a standard way; cf.[9, Ch. 9]

and [10]. First observe that if k > m− θ1 − θ2 + θ3 + θ4 or l > n− θ1 + θ2 − θ3 + θ4 then

the corresponding vector (3.14) is zero. This is easily verified by considering all possible

values of the parameters θi. For example, if θ1 = θ3 = θ4 = 0 and θ2 = 1 then for m > 1

we have

Em
21z31w = Em

21

(
E31 + E21E32

1

m+ 1

)
w

= E31E
m
21w +

1

m+ 1
E32E

m+1
21 w − (m+ 1)E31E

m
21

1

m+ 1
w = 0

since Em+1
21 w = 0 in K(m,n). Therefore, Ek

21z31w = 0 for all k > m. This determines the

action of the subalgebra k on the basis vectors.

Furthermore, using the commutation relations of g we can reduce the calculation to

the case where one of the generators of the form Eik or Eki with i = 1, 2 and k = 3, 4 acts

on the vector v ∈ V +. Then we write this generator in the form provided by Lemma 3.2

and apply the formulas for the action of the elements zik and zki on the basis of V +. To

illustrate, consider the action of E13 on the basis vector (3.14),

E13 E
k
21E

l
43 z

θ1
41 z

θ2
31 z

θ3
42 z

θ4
32 w = Ek

21E
l
43E13 z

θ1
41 z

θ2
31 z

θ3
42 z

θ4
32 w − k Ek−1

21 El
43E23 z

θ1
41 z

θ2
31 z

θ3
42 z

θ4
32 w.

Next, replace E13 and E23 by their expression provided by Lemma 3.2. In particular, the

first vector on the right hand side becomes

Ek
21E

l
43

(
z13 − E43z14

1

h3 + 1

)
zθ141 z

θ2
31 z

θ3
42 z

θ4
32 w

so that the calculation is completed by applying the formulas of Appendix B for the action

of z13 and z14 on the vector zθ141 z
θ2
31 z

θ3
42 z

θ4
32 w.
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We will omit explicit matrix element formulas to avoid significant extension of the paper

for the reason that their reproduction is straightforward from the formulas of Appendices A

and B.

Note that the same techniques of Mickelsson–Zhelobenko algebras can also be used to

reproduce explicit basis constructions for representations of the Lie superalgebras sl(2|2)
and gl(2|2) given in [8], [11] and [15].

A Relations in the Mickelsson–Zhelobenko algebra

The following relations in Z(g, k) are written without a specialization of the values of the

central elements C, K and P .

Lemma A.1. We have the relations for the lowering operators:

z31z41 = −z41z31
h3

h3 + 1
,

z42z41 = −z41z42
h1

h1 + 1
,

z32z41 = −P
h3

h3 + 1
− z31z42

h1 − h3

(h1 + 1)(h3 + 1)
− z41z32

h3(h3 + 2)

(h3 + 1)2
,

z42z31 = P − z31z42 + z41z32
h1 + h3 + 2

(h1 + 1)(h3 + 1)
,

z32z31 = −z31z32
h1

h1 + 1
,

z32z42 = −z42z32
h3

h3 + 1
.

Lemma A.2. We have the relations for the raising operators:

z14z13 = −z13z14
h3

h3 + 1
,

z14z24 = −z24z14
h1

h1 + 1
,

z14z23 = −K
h3

h3 + 1
− z24z13

h1 − h3

(h1 + 1)(h3 + 1)
− z23z14

h3(h3 + 2)

(h3 + 1)2
,

z13z24 = K − z24z13 + z23z14
h1 + h3 + 2

(h1 + 1)(h3 + 1)
,

z13z23 = −z23z13
h1

h1 + 1
,

z24z23 = −z23z24
h3

h3 + 1
.
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Lemma A.3. We have the relations for the raising and lowering operators;

with z14:

z14z41 =
h1h3(h1 − h3 + 2C)

2(h1 + 1)(h3 + 1)
+ z31z13

h1(h1 + 2)

(h1 + 1)2(h3 + 1)
− z32z23

1

(h1 + 1)(h3 + 1)

− z41z14
h1h3(h1 + 2)(h3 + 2)

(h1 + 1)2(h3 + 1)2
+ z42z24

h3(h3 + 2)

(h1 + 1)(h3 + 1)2
,

z14z31 = −z31z14
h1(h1 + 2)

(h1 + 1)2
+ z32z24

1

h1 + 1
,

z14z42 = −z42z14
h3(h3 + 2)

(h3 + 1)2
+ z32z13

1

h3 + 1
,

z14z32 = −z32z14,

with z13:

z13z41 = −z41z13
h1(h1 + 2)

(h1 + 1)2
+ z42z23

1

h1 + 1
,

z13z31 =
h1(h1 + h3 + 2 + 2C)

2(h1 + 1)
− z31z13

h1(h1 + 2)

(h1 + 1)2
+ z32z23

1

h1 + 1

− z41z14
h1(h1 + 2)

(h1 + 1)2(h3 + 1)
+ z42z24

1

(h1 + 1)(h3 + 1)
,

z13z42 = −z42z13,

z13z32 = −z32z13 − z42z14
1

h3 + 1
,

with z24:

z24z41 = −z41z24
h3(h3 + 2)

(h3 + 1)2
+ z31z23

1

h3 + 1
,

z24z31 = −z31z24,

z24z42 = −h3(h1 + h3 + 2− 2C)

2(h3 + 1)
+ z31z13

1

(h1 + 1)(h3 + 1)
+ z32z23

1

h3 + 1

− z41z14
h3(h3 + 2)

(h1 + 1)(h3 + 1)2
− z42z24

h3(h3 + 2)

(h3 + 1)2
,

z24z32 = −z32z24 − z31z14
1

h1 + 1
,
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with z23:

z23z41 = −z41z23,

z23z31 = −z31z23 − z41z24
1

h3 + 1
,

z23z42 = −z42z23 − z41z13
1

h1 + 1
,

z23z32 = −h1 − h3 − 2C

2
− z31z13

1

h1 + 1
− z32z23 − z41z14

1

(h1 + 1)(h3 + 1)
− z42z24

1

h3 + 1
.

B Action of raising operators

Lemmas A.1, A.2 and A.3 imply the following relations for the action of the raising oper-

ators on the vectors of the space K+(m,n) of k+-invariants of the Kac module K(m,n).

Action on w:

z14 · w = z24 · w = z13 · w = z23 · w = 0.

Action on z41z32w:

z14 · z41z32w =
(m− n)[(m+ 1)(n+ 1) + 1]

2(m+ 2)(n+ 2)
z32w,

z24 · z41z32w = − m− n

2(n+ 2)
z31w,

z13 · z41z32w = − m− n

2(m+ 2)
z42w,

z23 · z41z32w =
m− n

2
z41w.

Action on z31z42w:

z14 · z31z42w = − n(m+ n+ 2)

2(m+ 2)(n+ 1)
z32w,

z24 · z31z42w =
n(m+ n+ 2)

2(n+ 1)
z31w,

z13 · z31z42w =
(mn+m+ n)(m+ n+ 2)

2(m+ 2)(n+ 1)
z42w,

z23 · z31z42w =
m+ n+ 2

2(n+ 1)
z41w.
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Action on z41z31z42z32w:

z14 · z41z31z42z32w =
m+ n+ 2

2(m+ 2)
Pz32w +

(m− n)(m+ 1)(mn+m+ 2n+ 1)

2(m+ 2)2(n+ 2)

×
[
1 +

(m+ n+ 2)(mn+m+ 2n+ 3)

(m+ 1)(n+ 1)(mn+m+ 2n+ 1)

]
z31z42z32w,

z24 · z41z31z42z32w = −(m+ n+ 2)(n+ 1)(n2 + 5n+ 7)

2(n+ 2)3
z41z31z32w,

z13 · z41z31z42z32w = −(m+ n+ 2)(mn+ 2m+ n+ 3)

2(m+ 2)2
z41z42z32w − m− n

2(m+ 2)
Pz42w,

z23 · z41z31z42z32w =
m− n

2
z41z31z42w.

Action on z32w:

z23 · z32w = −m− n

2
w, z14 · z32w = z24 · z32w = z13 · z32w = 0.

Action on z31z42z32w:

z14 · z31z42z32w = 0,

z24 · z31z42z32w =
m+ n+ 2

2
z31z32w,

z13 · z31z42z32w =
m+ n+ 2

2
z42z32w,

z23 · z31z42z32w = −m− n

2
z31z42w +

m+ n+ 2

2(n+ 1)
z41z32w.

Action on z42w:

z24 · z42w = −n(m+ n+ 2)

2(n+ 1)
w, z14 · z42w = z13 · z42w = z23 · z42w = 0.

Action on z41z42z32w:

z14 · z41z42z32w =
n(m− n)

2(n+ 1)
z42z32w,

z24 · z41z42z32w =
n(n+ 2)(m+ n+ 2)

2(n+ 1)2
z41z32w +

m− n

2(n+ 1)
z31z42w,

z13 · z41z42z32w = 0,

z23 · z41z42z32w = −m− n

2
z41z42w.
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Action on z31w:

z13 · z31w =
m(m+ n+ 2)

2(m+ 1)
w, z14 · z31w = z24 · z31w = z23 · z31w = 0.

Action on z41z31z32w:

z14 · z41z31z32w =
m(m− n)

2(m+ 1)
z31z32w,

z24 · z41z31z32w = 0,

z13 · z41z31z32w = −m(m+ n+ 2)

2(m+ 1)
z41z32w − m− n

2(m+ 1)
(z31z42w − P w),

z23 · z41z31z32w = −m− n

2
z41z31w.

Action on z41w:

z14 · z41w =
mn(m− n)

2(m+ 1)(n+ 1)
w, z24 · z41w = z13 · z41w = z23 · z41w = 0.

Action on z41z31z42w:

z14 · z41z31z42w =
(m− n)(mn+m+ n+ 2)

2(m+ 1)(n+ 1)
z31z42w +

(m+ n+ 2)n(n+ 2)

2(m+ 1)(n+ 1)2
z41z32w

+
(m+ n+ 2)n

2(m+ 1)
P w,

z24 · z41z31z42w = −n(m+ n+ 2)

2(n+ 1)
z41z31w,

z13 · z41z31z42w = −m(m+ n+ 2)

2(m+ 1)
z41z42w,

z23 · z41z31z42w = 0.

Action on z42z32w:

z14 · z42z32w = 0, z24 · z42z32w =
m+ n+ 2

2
z32w,

z13 · z42z32w = 0, z23 · z42z32w =
m− n

2
z42w.

Action on z31z32w:

z14 · z31z32w = 0, z24 · z31z32w = 0,

z13 · z31z32w =
m+ n+ 2

2
z32w, z23 · z31z32w =

m− n

2
z31w.
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Action on z41z31w:

z14 · z41z31w =
(m− 1)(m− n)

2m
z31w, z24 · z41z31w = 0,

z13 · z41z31w = −(m− 1)(m+ n+ 2)

2m
z41w, z23 · z41z31w = 0.

Action on z41z42w:

z14 · z41z42w =
(n− 1)(m− n)

2n
z42w, z24 · z41z42w =

(n− 1)(m+ n+ 2)

2n
z41w,

z13 · z41z42w = 0, z23 · z41z42w = 0.

C Bases of k+-invariants in Kac modules

K+(0, 0):

[0, 0] w, z41z31z42z32w,

[1, 1] z32w, z31z42z32w,

[2, 0] z42z32w,

[0, 2] z31z32w.

K+(1, 0):

[1, 0] w, z41z32w, z41z31z42z32w,

[2, 1] z32w, z31z42z32w,

[0, 1] z31w, z41z31z32w,

[3, 0] z42z32w,

[1, 2] z31z32w.

K+(0, 1):

[0, 1] w, z41z32w, z41z31z42z32w,

[1, 2] z32w, z31z42z32w,

[1, 0] z42w, z41z42z32w,

[2, 1] z42z32w,

[0, 3] z31z32w.
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K+(1, 1):

[1, 1] w, z41z31z42z32w, z31z42w, z41z32w,

[2, 2] z32w, z31z42z32w,

[2, 0] z42w, z41z42z32w,

[0, 2] z31w, z41z31z32w,

[0, 0] z41w, z41z31z42w,

[3, 1] z42z32w,

[1, 3] z31z32w.

K+(m, 0) with m > 2:

[m, 0] w, z41z32w, z41z31z42z32w,

[m+ 1, 1] z32w, z31z42z32w,

[m− 1, 1] z31w, z41z31z32w,

[m+ 2, 0] z42z32w,

[m, 2] z31z32w,

[m− 2, 0] z41z31w.

K+(0, n) with n > 2:

[0, n] w, z41z32w, z41z31z42z32w,

[1, n+ 1] z32w, z31z42z32w,

[1, n− 1] z42w, z41z42z32w,

[2, n] z42z32w,

[0, n+ 2] z31z32w,

[0, n− 2] z41z42w.

K+(m, 1) with m > 2:

[m, 1] w, z41z32w, z31z42w, z41z31z42z32w,

[m+ 1, 2] z32w, z31z42z32w,

[m+ 1, 0] z42w, z41z42z32w,

[m− 1, 2] z31w, z41z31z32w,

[m− 1, 0] z41w, z41z31z42w,

[m+ 2, 1] z42z32w,

[m, 3] z31z32w,

[m− 2, 1] z41z31w.
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K+(1, n) with n > 2:

[1, n] w, z41z32w, z31z42w, z41z31z42z32w,

[2, n+ 1] z32w, z31z42z32w,

[2, n− 1] z42w, z41z42z32w,

[0, n+ 1] z31w, z41z31z32w,

[0, n− 1] z41w, z41z31z42w,

[3, n] z42z32w,

[1, n+ 2] z31z32w,

[1, n− 2] z41z42w.

K+(m,n) with m,n > 2:

[m,n] w, z41z32w, z31z42w, z41z31z42z32w,

[m+ 1, n+ 1] z32w, z31z42z32w,

[m+ 1, n− 1] z42w, z41z42z32w,

[m− 1, n+ 1] z31w, z41z31z32w,

[m− 1, n− 1] z41w, z41z31z42w,

[m+ 2, n] z42z32w,

[m,n+ 2] z31z32w,

[m− 2, n] z41z31w,

[m,n− 2] z41z42w.
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