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Abstract. Using finite dimensional approximation, we give a version of the definition
of BV functions on abstract Wiener space introduced in Fukushima-Hino [17]. Then,
we study Caccioppoli sets in the classical Wiener space and pinned Wiener space, and
provide concrete examples of Caccioppoli sets, such as the balls and the level sets of
solutions to SDEs. Moreover, without assuming the ray Hamza conditions in [16], we
prove the infinite dimensional divergence theorem in any Caccioppoli set for any bounded
continuous and H-Lipschitz continuous vector field in the classical Wiener space. In
particular, the isoperimetric inequality holds true for Caccioppoli sets.

1. Introduction

Let U be an open and bounded subset of the Euclidean space Rd, with C1-boundary.
The classical divergence theorem states that for any ϕ ∈ C1

c (Rd;Rd)∫
U

divϕ(x)dx =

∫
∂U

ϕ(x) · nU(x)Hd−1(dx), (1)

where nU(x) is the unit exterior normal to U at x, and Hd−1 is the Hausdorff measure
on ∂U . This fundamental formula holds also for any Borel set U with finite perimeter;
in this case ∂U is replaced by the measure theoretic boundary(cf. [13, p.209, Theorem 1]
and [14]).

In [2], Airault-Malliavin established an infinite-dimensional version of the formula (1)
in the classical Wiener space. Therein, they used the finite dimensional approximation,
and considered the level sets of functionals that are non-degenerate and smooth in the
sense of Malliavin calculus. We remark that infinite dimensional versions of the divergence
theorem (1) have been also investigated in other contexts, see for example [26, 18, 15].

Fukushima [16] and Fukushima-Hino [17] studied BV functions over the abstract Wiener
space (X,H, µ). Let L(logL)1/2 be the Orlicz space over X. According to [17], a function
f ∈ L(logL)1/2 is of bounded variation if

V (f) := sup

∫
X

divf(x) · f(x)µ(dx) < +∞, (2)

where the supremum is taken over all X∗-valued smooth cylindrical vector fields f with
‖f(x)‖H 6 1 for each x ∈ X. Here, X∗ is the dual space of X. The set of all functions
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f : X → R of bounded variation is denoted by BV (X). In particular, they also showed
that

D1,1  BV (X),

where D1,1 is the first order Mallavin-Sobolev space on X.
Basing on the theory of their established BV functions, Fukushima and Hino extended

the infinite dimensional like-formula (1) to the Caccioppoli set Γ (i.e. 1Γ is a BV function).
That is, for a Caccioppoli set Γ ⊂ X, if 1Γ satisfies the ray Hamza condition, Fukushima
[16, Theorem 4.2] proved that for any smooth cylindrical vector field f∫

Γ

divf(x)µ(dx) =

∫
∂Γ

〈f(x),nΓ(x)〉H‖∂Γ‖(dx), (3)

where ‖∂Γ‖ denotes the corresponding surface measure of bounded variation function 1Γ.
The proof of this formula in [16, 17] depends on the theory of Dirichlet form.

We may put forward the following three questions that are of some importance for the
analysis of stochastic partial differential equations and the related deterministic Dirichlet
considered in a bounded set of a Banach space, see for example [9].

(I) In the definition of BV (X), can one start from a broader space rather than the
Orlicz space L(logL)1/2?

(II) Can we give some concrete Caccioppoli sets such as the balls in X?
(III) Is the ray Hamza condition satisfied by 1Γ necessary for (3), and can the range of

vector fields be enlarged to be such that the formula (3) holds?

For the first question, we note recent work [3], where there no additional integrability
condition (except that of L1) is imposed but the space W 1,1 is defined a somewhat non-
standard way. In this paper we shall show that it is enough to require f ∈ L1

w(X, µ)
in the definition of (2), where L1

w(X, µ) is the integrable functions space with weight
‖x‖X + 1. By Fernique theorem, it is clear that L(logL)1/2 ⊂ L1

w(X, µ). Using finite
dimensional approximation, we finally prove that for f ∈ L1

w(X, µ), if V (f) is finite, then
f ∈ L(logL)1/2. This will be given in Section 2. Thus, in a priori position, we can work
in a bigger space.

The second question was recently an object of intense study, see for example [4, 6,
10, 25]. We shall give an affirmative answer in the case of classical Wiener space. It
should be noted that in the finite dimensional case, the indicator function of a Lipschitz
domain is a BV function(cf. [13]). Naturally, we would ask if the indicator functions
of a “smooth domain” in Wiener space such as the ball, is also a BV function so that
the infinite dimensional divergence theorem holds. In [16] and [17], the authors used the
coarea formula to assert the existence of Caccioppoli sets in X. Moreover, in the pinned
Wiener space, Zambotti [27] and Hariya [19] gave some concrete Caccioppoli sets. In their
papers, the surface measures are explicitly given by some analytic method. In Section
3, we shall first give a criterion for Caccioppoli sets. Then, we prove that the balls in
the classical Wiener space and the level sets of solutions to SDEs with constant diffusion
coefficients are Caccioppoli sets. It is worthy to say that in [1], the authors proved that
the indicator function of the ball in the classical Wiener space (resp. does not) belongs
to Dp,α provided pα < 1 (resp. pα > 1). However, it is not known in the critical case of
pα = 1.

Little is known about the third question, except some special cases, see for example
[24, 27, 19]. In Section 4 we will approximate a general vector field by smooth cylindrical
vector fields and will prove that without the ray Hamza condition assumption on 1Γ,
the formula (3) still holds true for any bounded continuous and H-Lipschitz continuous
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vector fields on the classical Wiener space. The proof depends on the structure of the
classical Wiener space. It is not known whether this is also true for an abstract Wiener
spaces. As a simple conclusion, using the result of Bobkov [8](see also [5]), we obtain the
isoperimetric inequality for Caccioppoli sets.

In Section 5, we also study the integration by parts formula in the pinned Wiener space,
and give a more general integration by parts formula than Hariya [19]. The price to pay
is that we can not explicitly give the surface measure.

2. BV Functions

Let (X,H, µ) be an abstract Wiener space. Namely, (X, ‖ · ‖X) is a separable Banach
space, (H, ‖ · ‖H) is a separable Hilbert space densely and continuously embedded in X,
and µ is the Gaussian measure over X. If we identify the dual space H∗ with itself, then
X∗ may be viewed as a dense linear subspace of H so that `(x) = 〈`, x〉H whenever ` ∈ E∗
and x ∈ H, where 〈·, ·〉H denotes the inner product in H.

For p > 1, let Lp(X, µ) be the usual Lp-space over (X, µ), the norm is denoted by ‖ · ‖p.
Let L1

w(X, µ) be the following weighted L1-space:

L1
w(X, µ) :=

{
f ∈ L1(X, µ) : ‖f‖1,w < +∞

}
,

where

‖f‖1,w :=

∫
X
|f(x)| · (‖x‖X + 1)µ(dx).

Define

Φ1(s) :=

∫ s

0

√
log(1 + r)dr, s > 0,

and

Φ2(s) :=

∫ s

0

(er
2 − 1)dr, s > 0.

Then Φ1 and Φ2 are a pair of complementary Young functions. The corresponding Orlicz
spaces LΦi(X, µ), i = 1, 2 are defined by the following norms

‖f‖Φi := inf

{
α > 0 :

∫
X

Φi

( |f(x)|
α

)
µ(dx) 6 1

}
, i = 1, 2.

We also write LΦ1(X, µ) as L(logL)1/2.
In what follows, we shall fix an orthogonal basis E := {`k, k ∈ N} ⊂ X∗ of H. Let

FC∞b be the set of all smooth cylindrical functions with the following form:

f(x) := F (`i1(x), · · · , `im(x)), `ij ∈ E , F ∈ C∞b (Rm),

and FC∞b (X∗) be the set of all cylindrical X∗-valued vector fields with the following form:

f(x) =
l∑

j=1

fj(x)`lj , `lj ∈ E , fj ∈ FC∞b .

It is well known that for any p > 1, FC∞b is dense in Lp(X, µ) and FC∞b (X∗) is dense in
Lp(X, µ;H).

For f ∈ FC∞b , the Malliavin derivative of f is defined by(cf. [22])

Df(x) :=
m∑
j=1

(∂jF )(`i1(x), · · · , `im(x))`ij , (4)
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and for f ∈ FC∞b (X∗), the divergence of f is defined by

divf(x) :=
l∑

j=1

[
fj(x) · `lj(x)−D`lj

fj(x)
]
. (5)

where D`lj
fj(x) = 〈`lj , Dfj(x)〉H. It is well known that∫

X
〈Df(x), f(x)〉Hµ(dx) =

∫
X
f(x) · divf(x)µ(dx),

which means that div is the dual operator of D.
The following lemma is direct from the definitions.

Lemma 2.1. For any f ∈ FC∞b (X∗), we have divf ∈ FC∞b and for some C > 0

|divf(x)| 6 C(‖x‖X + 1), ∀x ∈ X. (6)

For p > 1, the Malliavin Sobolev space Dp,1 is defined as the completion of FC∞b with
respect to the norm:

‖f‖p,1 := ‖f‖p + ‖Df‖p.
Then

Proposition 2.2. D1,1 ⊂ L(logL)1/2 ⊂ L1
w(X, µ), i.e., for some C1, C2 > 0

‖f‖1,w 6 C1‖f‖Φ1 6 C2‖f‖1,1.

Proof. The second inequality was proved in Proposition 3.2 [17]. Put g(x) := ‖x‖X + 1.
Then, by Fernique’s theorem(cf. [22]), one has

‖g‖Φ2 < +∞.

Thus, by the generalized Hölder inequality

‖f‖1,w =

∫
X
|f(x)| · (‖x‖X + 1)µ(dx) 6 ‖f‖Φ1 · ‖g‖Φ2 6 C‖f‖Φ1 .

The result follows. �

For f ∈ L1
w(X, µ), define

V (f) := sup
f∈FC∞b (X∗);‖f(x)‖H61

∫
X

divf(x) · f(x)µ(dx). (7)

By (6), one knows that the above integral is well defined. Thus, we can introduce the
following space of bounded variation functions.

Definition 2.3. A function f ∈ L1
w(X, µ) is called bounded variation if V (f) < +∞. All

such functions are denoted by BV (X).

We have

Theorem 2.4. The map f 7→ V (f) is lower semi-continuous in L1
w(X, µ), and BV (X) is

a Banach space under the norm:

‖f‖BV := ‖f‖1,w + V (f).
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Proof. Let fn → f in L1
w(X, µ). For any f ∈ FC∞b (X∗) with ‖f(x)‖H 6 1, and all x ∈ X,

we have ∫
X

divf(x) · f(x)µ(dx) = lim
n→∞

∫
X

divf(x) · fn(x)µ(dx) 6 lim
n→∞

V (fn).

So,

V (f) 6 lim
n→∞

V (fn). (8)

It is clear that BV (X) is a linear normed space under ‖ · ‖BV . We now prove the
completeness of BV (X) with respect to ‖ · ‖BV . Let fn be a Cauchy sequence under
‖ · ‖BV . Since L1

w(X, µ) is complete, there is an f ∈ L1
w(X, µ) such that

lim
n→∞

‖fn − f‖1,w = 0.

By (8), we know f ∈ BV (X) and

lim
n→∞

V (f − fn) 6 lim
n→∞

lim
k→∞

V (fn − fk) = 0.

The proof is complete. �

Let {Tt}t>0 be the OU semigroup defined by the Mehler formula

Ttf(x) :=

∫
X
f(e−tx+

√
1− e−2ty)µ(dy).

Then

Lemma 2.5. Tt is a bounded operator from L1
w(X, µ) to L1

w(X, µ). More precisely, for
some universal constant C > 0 and any t > 0, f ∈ L1

w(X, µ)

‖Ttf‖1,w 6 (e−t + C
√

1− e−2t) · ‖f‖1,w. (9)

Moreover,

lim
t↓0
‖Ttf − f‖1,w = 0. (10)

Proof. Notice that µ⊗ µ is invariant under the rotation:(
e−t,

√
1− e−2t

−
√

1− e−2t, e−t

)
.

Thus, we have for f ∈ L1
w(X, µ)

‖Ttf‖1,w =

∫
X
|Ttf(x)| · (‖x‖X + 1)µ(dx) 6

6
∫
X

∫
X
|f(e−tx+

√
1− e−2ty)| · (‖x‖X + 1)µ(dy)µ(dx)

=

∫
X

∫
X
|f(x)| · (‖e−tx−

√
1− e−2ty‖X + 1)µ(dy)µ(dx)

6 e−t‖f‖1,w +
√

1− e−2t

∫
X
‖y‖Xµ(dy) · ‖f‖1,

which gives (9).
The limit (10) is clearly true for f ∈ FC∞b . For general f ∈ L1

w(X, µ), it follows by
using (9) and a simple approximation. �
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It was proved in [17, Proposition 3.5 ] that Tt maps L(logL)1/2 into D1,1. It is not known
whether Tt maps L1

w(X, µ) into D1,1. Thus, we can not simply use Ttf as a mollifier to
approximate the function f ∈ BV (X). So, we need to introduce a finite dimensional
approximation operator(cf. [22]).

For n ∈ N, let Hn := span{`1, `2, · · · , `n}, and Πn the orthogonal projection from H to
Hn, H⊥n the orthogonal complement of Hn in H. It is clear that Πn can be extended to X
by defining

Πn(x) := `1(x) · `1 + · · ·+ `n(x) · `n.
Then µn := µ ◦Π−1

n is the finite dimensional Gaussian measure on (Hn,B(Hn)). We have
the following decomposition

(X,H, µ) := (Hn,Hn, µn)⊕ (Yn,H⊥n , µ⊥n ),

where (Hn,Hn, µn) is the finite dimensional Gaussian space, (Yn,H⊥n , µ⊥n ) is still an ab-
stract Wiener space and

X = Hn ⊕ Yn.
In particular, we have the following disintegrated formula(cf. [21, 22]):∫

X
f(x)µ(dx) =

∫
Hn

∫
Yn
f(`+ y)µ⊥n (dy)µn(d`),

and we shall write

Hn 3 ` 7→
∫
Yn
f(`+ y)µ⊥n (dy) = Pnf(`).

We remark that (Pnf) ◦ Πn actually equals to E(f |Bn(X)), where Bn(X) := σ{Π−1
n (B) :

B ∈ B(Hn)}. In the following, if there are no dangers of confusions, we shall not distin-
guish Pnf with (Pnf) ◦ Πn.

We have

Lemma 2.6. For any f ∈ L1(X, µ), it holds that

‖Pnf‖1 6 ‖f‖1 (11)

and

lim
n→∞

‖Pnf − f‖1 = 0. (12)

Proof. Since Bn(X) ↑ B(X), {E(f |Bn(X)), n ∈ N} is a martingale. The result follows
from the martingale convergence theorem. �

Define the following approximation operator

Anf := PnT1/nf.

The following lemma is easy to verify.

Lemma 2.7. For any f ∈ FC∞b and f ∈ FC∞b (X∗), we have

Pnf, T1/nf ∈ FC∞b , PnΠnf = ΠnPnf ∈ FC∞b (X∗),
and

PnΠn(Df) = D(Pnf), Pn(divf) = div(PnΠnf).

We now prove the following mollifying property of An.

Proposition 2.8. The operator DAn : FC∞b → L1(X, µ;H) can be extended to a bounded
linear operator from L1

w(X, µ) to L1(X, µ;H). In particular, An is a bounded linear oper-
ator from L1

w(X, µ) to D1,1.
6



Proof. Let f ∈ FC∞b . Noting that Anf is in fact a function on Hn, we have by Lemma
2.7

‖DAnf(x)‖H =

(
n∑
i=1

|D`iAnf(x)|2
)1/2

6
n∑
i=1

|PnD`iT1/nf(x)|.

On the other hand, a direct calculation in finite dimensional Gaussian space leads to(cf.
[22, 23])

D`iT1/nf(x) =
e−1/n

√
1− e−2/n

∫
X
f(e−1/nx+

√
1− e−2/ny)`i(y)µ(dy).

Hence,∫
X
‖DAnf(x)‖Hµ(dx) 6

∫
X

∫
X
|f(e−1/nx+

√
1− e−2/ny)| · ‖y‖Xµ(dy)µ(dx)

× e−1/n

√
1− e−2/n

n∑
i=1

‖`i‖X∗ ,

and by (9) we get ∫
X
‖DAnf(x)‖Hµ(dx) 6 Cn‖f‖1,w.

The proof is complete. �

Basing on this proposition, we can prove the following characterization for BV (X).

Theorem 2.9. If f ∈ BV (X), then f ∈ L(logL)1/2 and there exists a sequence {fn}n∈N ⊂
D1,1 such that fn → f in L1(X, µ) and

lim
n→∞

‖Dfn‖1 = V (f). (13)

Conversely, for f ∈ L1(X, µ), if there exists a sequence {fn}n∈N ⊂ D1,1 such that fn → f
in L1(X, µ) and supn∈N ‖Dfn‖1 < +∞. Then f ∈ BV (X) and

V (f) 6 lim
n→∞

‖Dfn‖1. (14)

In particular,

f ∈ BV (X) if and only if f ∈ L(logL)1/2 and there exists a sequence

{fn}n∈N ⊂ D1,1 such that fn → f in L1(X, µ) and supn∈N ‖Dfn‖1 < +∞.

Proof. Put
fn := Anf.

It is clear by (10) (12) and Proposition 2.8 that

lim
n→∞

‖fn − f‖1 = 0 and fn ∈ D1,1. (15)

Noticing that Anf is indeed a function defined on the finite dimensional Gaussian prob-
ability space (Hn, µn), we know

V (fn) = ‖Dfn‖1. (16)

For any f ∈ FC∞b (X∗), we have by Lemma 2.7∫
X

divf(x) · fn(x)µ(dx) =

∫
X
Pndivf(x) · T1/nf(x)µ(dx)

=

∫
X

divPnΠnf(x) · T1/nf(x)µ(dx)
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=

∫
X
T1/ndivPnΠnf(x) · f(x)µ(dx)

= e−1/n

∫
X

divT1/nPnΠnf(x) · f(x)µ(dx),

which implies that

V (fn) 6 e−1/nV (f). (17)

So,

sup
n∈N
‖Dfn‖1 = sup

n∈N
V (fn) 6 V (f). (18)

In particular, this also produces that f ∈ L(logL)1/2 by Proposition 2.2 and (15).
On the other hand, we have for n sufficiently large∫

X
divf(x) · fn(x)µ(dx) =

∫
X
Pndivf(x) · T1/nf(x)µ(dx)

=

∫
X

divf(x) · T1/nf(x)µ(dx).

So, by (10) we have

lim
n→∞

∫
X

divf(x) · fn(x)µ(dx) =

∫
X

divf(x) · f(x)µ(dx),

which then gives

V (f) 6 lim
n→∞

V (fn). (19)

The limit (13) thus follows by combining (16) (17) and (19).
We now look at the converse part. For m,n ∈ N, set

fmn (x) := (−m) ∨ (fn(x) ∧m),

fm(x) := (−m) ∨ (f(x) ∧m).

Then fmn ∈ D1,1, and ‖Dfmn ‖1 6 ‖Dfn‖1,

lim
n→∞

‖fmn − fm‖1 = 0, lim
m→∞

‖fm − f‖1 = 0.

Thus, for any f ∈ FC∞b (X∗) with ‖f(x)‖H 6 1 for all x ∈ X, we have by the dominated
convergence theorem∫

X
divf(x) · fm(x)µ(dx) = lim

n→∞

∫
X

divf(x) · fmn (x)µ(dx)

= lim
n→∞

∫
X
〈f(x), Dfmn (x)〉Hµ(dx)

6 lim
n→∞

∫
X
‖Dfmn (x)‖Hµ(dx)

6 lim
n→∞

‖Dfn‖1.

This implies by Theorem 2.4 that

V (f) 6 lim
m→∞

V (fm) 6 lim
n→∞

‖Dfn‖1 < +∞.

The proof is complete. �
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Remark 2.10. From this theorem, one sees that our definition is equivalent to the one
in [17]. In particular, for f ∈ BV (X) we have

V (f) = sup

∫
X

divf(x) · f(x)µ(dx), (20)

where the supremum runs over all the following vector fields f with ‖f(x)‖H 6 1:

f(x) =
n∑
j=1

Fj(hn1(x), · · · , hnmj (x))`j, hnj , `j ∈ X∗, Fj ∈ C∞b (Rmj). (21)

All such vector fields will be denoted by F̃C∞b (X∗). Indeed, (20) follows from the above
characterization.

Using this characterization, we have the following useful proposition.

Proposition 2.11. Let f ∈ BV (X) ∩ L∞(X, µ) and g ∈ D1,1 ∩ L∞(X, µ). Then fg ∈
BV (X) ∩ L∞(X, µ), and

V (fg) 6 V (f) · ‖g‖∞ + ‖f‖∞ · ‖Dg‖1.

Proof. Let fn := Anf . Then

‖D(fng)‖1 6 ‖Dfn‖1 · ‖g‖∞ + ‖fn‖∞ · ‖Dg‖1

6 V (f) · ‖g‖∞ + ‖f‖∞ · ‖Dg‖1.

and
lim
n→∞

‖fng − fg‖1 6 ‖g‖∞ lim
n→∞

‖fn − f‖1 = 0.

The result follows by Theorem 2.9. �

We also have the following isoperimetric inequality for BV functions(cf. [5, 8]).

Theorem 2.12. Let f ∈ BV (X) with 0 6 f 6 1. Then

U
(∫

X
fdµ

)
−
∫
X

U (f)dµ 6 V (f),

where U (s) := Φ′ ◦ Φ−1(s) and Φ(s) := 1√
2π

∫ s
−∞ e

−r2/2ds.

Proof. Set fn := An1Γ. Then fn ∈ D1,1 and 0 6 fn 6 1. Noting that fn is in fact a
function defined on Hn, we thus have by using [8, Corollary 2] and mollifying technique

U
(∫

X
fndµ

)
−
∫
X

U (fn)dµ 6
∫
X
‖Dfn(x)‖Hµ(dx).

Taking the limits n→∞ yields the desired inequality by Theorem 2.9. �

The following result was proved in [17, Theorem 3.9].

Theorem 2.13. For each f ∈ BV (X), there exists a positive finite measure ν(also written
as ‖Df‖) on (X,B(X)) and an H-valued Borel function nf with ‖nf‖H = 1 ν– a.e. such

that for all f ∈ F̃C∞b (X∗)(see Remark 2.10)∫
X

divf(x) · f(x)µ(dx) =

∫
X
〈f(x),nf (x)〉Hν(dx), (22)

and
V (f) = ‖Df‖(X).

Moreover, ν and nf are uniquely determined; namely, if ν ′ and n′f are another pair of
satisfying (22), then ν = ν ′ and nf = n′f ν– a.e..
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The following co-area formula can be proved by using the same method as in [13, p.185
Theorem 1](see [16, 17]).

Theorem 2.14. Let f ∈ BV (X). Then

V (f) =

∫ ∞
−∞

V (1{f>t})dt.

In particular, for a.e. t, 1{f>t} ∈ BV (X).

3. Caccioppoli Sets

Definition 3.1. A Borel set Γ ⊂ X is called a Caccioppoli set if 1Γ ∈ BV (X). The total
of all the Caccioppoli sets is denoted by C (X).

The following proposition is obvious.

Proposition 3.2. Let Γ1,Γ2 ∈ C (X) with Γ1 ∩ Γ2 = ∅. Then, Γc1,Γ1 ∪ Γ2 ∈ C (X).

For a Borel set Γ ⊂ X, the lower Minkowski content of the boundary of Γ is defined by

µs(∂Γ) := lim
ε→0

µ(Γε)− µ(Γ)

ε
, (23)

where Γε := {x ∈ X : dis(x,Γ) < ε}.
We have the following simple proposition for a Borel set to be a Caccioppoli set.

Proposition 3.3. Let Γ ∈ B(X). If µs(∂Γ) < +∞, then Γ ∈ C (X).

Proof. Noting that x 7→ dis(x,Γ) is a Lipschitz continuous function on X with Lipschitz
constant 1, we have by [12]

ess sup
x∈X
‖D[dis(·,Γ)](x)‖H 6 cH↪→X,

where cH↪→X is the embedding constant of H ↪→ X.
Let χε(s) be defined by

χε(s) :=

{
1, s ∈ [0, ε/2],
1− [(2s− ε) ∧ ε]/ε, s ∈ [ε/2,∞).

Then

‖Dχε(dis(·,Γ))‖1 6
2cH↪→X
ε

[µ(Γε)− µ(Γε/2)] 6
2cH↪→X
ε

[µ(Γε)− µ(Γ)],

and
‖χε(dis(·,Γ))− 1Γ‖1 6 µ(Γε \ Γ) = µ(Γε)− µ(Γ).

The result now follows by (14) (23) and µs(∂Γ) < +∞. �

From this proposition, it is immediate that the balls in the classical Wiener space are
Caccioppoli sets. However, it seems difficult to verify that µs(∂Γ) < +∞ for a general set
Γ. We now give a more useful criterion for the level set of a functional to be a Caccioppoli
set.

Theorem 3.4. Let f := (f1, · · · , fd) ∈ D2,1(Rd) be a d-dimensional real valued random
variable on X. Let U be a Borel subset of Rd with compact and Lipschitz boundary ∂U .
Assume that the law of f has a bounded density ρUε0 on some neighbourhood Uε0 of ∂U
with respect to the Lebesgue measure, and

Cf := ess sup
x∈f−1(Uε0 )

‖Df(x)‖H < +∞, (24)
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where for ε > 0

Uε := {z ∈ Rd : dis(z, ∂U) < ε}.
Then, the set Γ := {x : f(x) ∈ U} belongs to C (X).

Proof. First of all, since ∂U is Lipschitz, noticing the following Minkowski content for-
mula(cf. [14, Theorem 3.2.39])

lim
ε↓0

Vol(Uε)

ε
= Hd−1(∂U),

we have for ε < ε0

Vol(Uε) 6 C∂U · ε, (25)

where the constant C∂U is independent of ε.
Define

χε(z) :=

{
1, dis(z, U c) ∈ [ε,∞),
dis(z, U c)/ε, dis(z, U c) ∈ [0, ε].

Then z 7→ χε(z) is a Lipschitz function with Lipschitz constant 1
ε
, and by (25)

lim
ε↓0
‖χε(f)− 1Γ‖1 6 lim

ε↓0
‖1Uε(f)‖1 = lim

ε↓0

∫
Uε

ρUε0 (z)dz

6 sup
z∈Uε0

ρUε0 (z) · lim
ε↓0

Vol(Uε) = 0.

On the other hand, by the local property of the operator D(cf. [23, Proposition 1.3.7]),
we know

D(χε(f))(x) = 1Uε(f(x)) ·
d∑
j=1

(∂jχε)(f(x)) ·Df j(x).

Hence, by (24) and (25) we have for ε < ε0

‖D(χε(f))‖1 6
d∑
j=1

∫
X

1Uε(f(x)) · |(∂jχε)(f(x))| · ‖Df j(x)‖Hµ(dx)

6 ess sup
x∈X

(1Uε0 (f(x)) · ‖Df(x)‖H) · 1

ε
µ
{
x : f(x) ∈ Uε

}
= Cf ·

1

ε

∫
Uε

ρUε0 (z)dz

6 Cf · sup
z∈Uε0

ρUε0 (z) · C∂U ,

and by (14)

V (1Γ) 6 lim
ε↓0
‖D(χε(f))‖1 < +∞.

The proof is thus finished. �

Remark 3.5. It was proved in [12] that (24) is equivalent to the local µ-a.e. H-Lipschitz
continuity. Moreover, in place of the assumption that the law density of f is uniformly
bounded on a neighbourhood of ∂U , we can only require the following estimation:

µ
{
x : f(x) ∈ Uε

}
6 Cε.
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In what follows, we shall study the sets in the classical Wiener space (W,H, µ). Namely,
W is the space of all Rd-valued continuous functions on [0, 1] starting from 0 at 0 with
the norm

‖w‖W :=

(
d∑
i=1

‖wi‖2
∞

)1/2

, ‖wi‖∞ := sup
s∈[0,1]

|wi(s)|,

where w = (w1, · · · , wd) denotes a generic element in W; H ⊂ X is the Cameron-Martin
space, in which the elements have absolutely continuous and square integrable derivatives,
and endowed with the norm,

‖`‖H :=

(∫ 1

0

| ˙̀(s)|2ds

)1/2

;

and µ is the Wiener measure.
Let 0 < r < 1

2
, q > 1

2r
∨ 1

1−2r
. We also consider the subspace Wq,r of W with the

following Sobolev pseudo-norms(cf.[2]):

‖w‖q,r :=

(
d∑
i=1

‖wi‖2
q,r

)1/2

<∞,

where

‖wi‖q,r :=

(∫ 1

0

∫ 1

0

|w(t)− w(s)|2q

|t− s|1+2qr
dtds

) 1
2q

.

Using Theorem 3.4, we have

Theorem 3.6. Let U ∈ B(Rd) have compact and Lipschitz boundary. Then we have

{w ∈W : (‖w1‖∞, · · · , ‖wd‖∞) ∈ U} ∈ C (W),

and for 0 < r < 1
2
, q > 1

2r
∨ 1

1−2r
,

{w ∈Wq,r : (‖w1‖q,r, · · · , ‖wd‖q,r) ∈ U} ∈ C (Wq,r).

In particular, the balls in W and Wq,r are Caccioppoli sets.

Proof. Without loss of generality, we assume d = 1. It is well known that for any a > 0(cf.
[20, p. 30])

µ
{
w : sup

s∈[0,1]

|w(s)| 6 a
}

=
1√
2π

+∞∑
n=−∞

(−1)n
∫ (2n+1)a

(2n−1)a

e−r
2/2dr.

That is, the random variable ‖ · ‖∞ has a smooth density.
Moreover, Airault and Malliavin [2] proved that ‖ · ‖2q

q,r ∈ D∞ = ∩p,αDp,α, and Fang [11]

proved that ‖ · ‖2q
q,r is non-degenerate in the Malliavin calculus sense. Thus, ‖ · ‖q,r has an

infinitely differentiable density.
On the other hand, ‖ · ‖∞ and ‖ · ‖q,r are Lipschitz continuous, the condition (24) holds

by [12]. The result thus follows by Theorem 3.4. �

We now consider the following SDE:

dXt = b(Xt)dt+ dw(t), X0 = x ∈ Rd.
Then

Theorem 3.7. Let b : Rd 7→ Rd be a Lipschitz continuous function, U a Borel subset of Rd
with compact and Lipschitz boundary. Then for any t ∈ [0, 1], {w : Xt(w) ∈ U} ∈ C (W).

12



Proof. First of all, Xt has a continuous law density with respect to the Lebesgue measure
because the generator L := ∆ + bi(x)∂i is strictly elliptic. So, we only need to check (24).
By Theorem 2.2.1 in [23], we know

DrXt = I +

∫ t

r

Bk(s) ·DrX
k
s ds,

where Bk(s) is a uniformly bounded and adapted d-dimensional process.
Thus

‖DXt‖H =

(∫ 1

0

|DrXt|2dr

)1/2

6 1 + C

∫ t

0

‖DXs‖2
Hds.

By the Gronwall inequality, we get

ess sup
w∈W
‖DXt(w)‖H 6 C, ∀t ∈ [0, 1].

By Theorem 3.4, we complete the proof. �

4. Divergence Theorem

In this section, we still work in the classical Wiener space. For any n ∈ N, define a
family of functions in W∗ by

ḣnk(s) := 2n/21(tnk ,t
n
k+1](s), k = 0, 1, · · · , 2n − 1,

where tnk = k2−n and the dot denotes the derivative with respect to s. It is easy to see
that

〈hnk, hnm〉H = δkm, k,m = 0, 1, · · · , 2n − 1, (26)

where δkm is the Kronecker symbol.
For n ∈ N and w ∈W, define

πnw(t) :=
2n−1∑
k=0

[
w(tnk) + w(tnk+1)− w(tnk)(2nt− k)

]
· 1[tnk ,t

n
k+1](t).

Then πnw =
∑2n−1

k=0 hnk(w) · hnk and

lim
n→∞

‖πnw − w‖W 6 2 lim
n→∞

sup
|t−s|62−n

|w(t)− w(s)| = 0. (27)

We now prove the following generalized Green formula:

Theorem 4.1. Let Γ ∈ C (W). Then the support of ‖∂Γ‖ := ‖D1Γ‖ is contained in the
boundary ∂Γ := Γ̄− Γ◦, where Γ̄(resp. Γ◦) denotes the closure(resp. interior) of Γ in W.
Moreover, for any bounded continuous and H-Lipschitz continuous vector field f on W,∫

Γ

divf(w) µ(dw) =

∫
∂Γ

〈f(w),nΓ(w)〉H‖∂Γ‖(dw), (28)

where nΓ := n1Γ
and ‖∂Γ‖ := ‖D1Γ‖ are from Theorem 2.13.

Proof. In the first three steps, we shall prove∫
Γ

divf(w) µ(dw) =

∫
W
〈f(w),nΓ(w)〉H‖∂Γ‖(dw). (29)

In the last step, we prove (28).
(Step 1): In this step, we assume that f has the form:

f(w) := F (hn0(w), · · · , hn(2n−1)(w))`,
13



where ` ∈W∗ and F : R2n → R is a bounded and Lipschitz continuous function.
Let ϕ ∈ C∞c (R2n) be a positive smooth function with compact support and satisfy∫

R2n ϕ(x)dx = 1. Define for ε > 0

Fε(x) := ε2
n

∫
R2n

F (y)ϕ(ε−1(x− y))dy,

and

fε(w) := Fε(hn0(w), · · · , hn(2n−1)(w))`, (30)

Then fε ∈ FC∞b (W∗) and by (22)∫
Γ

divfε(w)µ(dw) =

∫
W
〈fε(w),nΓ(w)〉H‖∂Γ‖(dw). (31)

Since for each w ∈W
lim
ε↓0
‖fε(w)− f(w)‖H = 0, (32)

the right hand side of (31) converges to the right hand side of (29) by the dominated
convergence theorem.

Note that

divfε(w) = Fε(hn0(w), · · · , hn(2n−1)(w)) · `(w)

−D`Fε(hn0(w), · · · , hn(2n−1)(w)).

Since F is Lipschitz continuous, we know

‖DFε(hn0(w), · · · , hn(2n−1)(w))‖H 6 Lip(Fε) 6 Lip(F ).

So
sup
ε∈(0,1]

‖divfε‖2 < +∞.

Thus, thanks to (32)

divfε → divf weakly in L2(W, µ) possible a subsequence,

and hence, the left hand side of (31) converges to the left hand side of (29).
(Step 2): In this step, we assume that f has the following form:

f(w) = f(w)`, ` ∈W∗,
where f is a bounded continuous and and H-Lipschitz continuous function on W, i.e.

|f(w + h)− f(w)| 6 LipH(f) · ‖h‖H, ∀w ∈W, h ∈ H. (33)

Define

Fn(x0, · · · , x2n−1) := f
( 2n−1∑

k=0

xkhnk

)
, xk ∈ R,

and the approximation of f by

fn(w) := Fn(hn0(w), · · · , hn(2n−1)(w))`.

It is clear that by (26) and (33)

|Fn(x0, · · · , x2n−1)− Fn(x′0, · · · , x′2n−1)| 6 LipH(f)

(
2n−1∑
k=0

|xk − x′k|2
)1/2

(34)

and
Fn(hn0(w), · · · , hn(2n−1)(w)) = f(πn(w)), fn(w) = f(πn(w)).

14



Thus, by Step 1 we have∫
Γ

divfn(w) µ(dw) =

∫
W
〈fn(w),nΓ(w)〉H‖∂Γ‖(dw). (35)

Moreover, it is easy to see that

sup
w∈W
‖fn(w)‖H 6 sup

w∈W
‖f(w)‖H, (36)

and by (27), for each w ∈W
lim
n→∞

‖fn(w)− f(w)‖H = 0, (37)

Therefore, the right hand side of (35) converges to the right hand side of (29) as n→∞.
On the other hand, noting that

divfn(w) =
2n−1∑
k=0

(∂kFn)(hn0(w), · · · , hn(2n−1)(w))〈`, hnk〉H + f(πn(w)) · `(w),

we have by (34) and the Rademacher theorem(cf. [13])

|divfn(w)| 6 LipH(f) · ‖`‖H + |`(w)| · sup
w∈W
|f(w)|,

Therefore, it is the same reason as in Step 1 that the left hand side of (35) converges to
the left hand side of (29).

(Step 3:) We now assume that f is a bounded continuous and H-Lipschitz continuous
vector field f on W. For n ∈ N, define

fn(w) =
n∑
k=1

〈f(w), `k〉H`k.

Then clearly, (36) and (37) hold. Moreover, by Krée-Meyer inequality(cf. [22]), we have
by [12]

‖divfn‖2 6 C(‖Dfn‖2 + ‖fn‖2) 6 C · LipH(f) + C‖f‖2,

where the constant C is independent of n.
Thus, as above, using the result obtained in Step 2 we prove (29).
(Step 4:) For any ε > 0, let ϕε > 0 be a smooth function on R+ satisfying

ϕε(s) = 0, s ∈ [0, ε/2], ϕε(s) = 1, s ∈ [ε,∞).

Set

χε(w) := ϕε(dis(w, Γ̄))

and

Γε := {w ∈W : dis(w, Γ̄) < ε}.
Then for any f ∈ FC∞b (W∗), f · χε is a bounded and W-Lipschitz continuous vector field
on W, and

div(f · χε)(w) = 0, µ-a.e. on Γε/2.

Hence, by (29) ∫
W
〈f · χε,nΓ〉H‖∂Γ‖(dw) = 0. (38)

Set for j = 1, 2, · · ·
njΓ(w) := 〈nΓ(w), `j〉H.

15



As in Fukushima [16, p.240], for each n we can find {vj,m, j = 1, · · · , n,m ∈ N} ⊂ FC∞b
such that

lim
m→∞

vj,m(w) = njΓ(w), ‖∂Γ‖ − a.e., j = 1, · · · , n.

Define

gj,m(w) :=
vj,m(w)√∑n

k=1 v
2
j,m(w) + 1/m

∈ FC∞b ,

and

fn,m(w) :=
n∑
j=1

gj,m(w)`j ∈ FC∞b (X∗).

Then

‖fn,m(w)‖H 6 1, ∀w ∈W,

and by (38) ∫
W
〈fn,m · χε,nΓ〉H‖∂Γ‖(dw) = 0.

Taking the limits m→∞ and n→∞ yields by the dominated convergence theorem that∫
W
χε(w)‖∂Γ‖(dw) = 0.

By the arbitrariness of ε > 0, we obtain

‖∂Γ‖(W− Γ̄) = 0. (39)

In view of ∫
W

divf µ(dw) = 0,

we have ∫
W
〈f ,nΓ〉H‖∂Γ‖(dw) = −

∫
Γc

divf µ(dw).

Using the same argument as above, we also have

‖∂Γ‖(W− Γ̄c) = 0.

which together with (39) gives

‖∂Γ‖(W− ∂Γ) = 0.

The proof is complete. �

As a corollary of Theorems 4.1 and 3.6, we have

Corollary 4.2. Let a > 0 and Ba := {w ∈W : ‖w‖W < a}. Then for any ε > 0 and any
bounded continuous and H-Lipschitz continuous vector field f on W∫

Ba

divf(w)µ(dw) =

∫
∂Ba

〈f(w),nΓ(w)〉H‖∂Ba‖(dw).

As a corollary of Theorems 2.12 and 4.1, we have the following isoperimetric inequality.

Corollary 4.3. For any Γ ∈ C (W), U (µ(Γ)) 6 ‖∂Γ‖(∂Γ).
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5. Application to pinned Wiener space

Fix an a ∈ Rd, the pinned Wiener space is a closed linear subspace of W in which each
path ends a at time 1,

Wa := {w ∈W : w(1) = a},
and the pinned Wiener measure is defined by the regular conditional probability of µ with
respect to w(1):

µa(·) := µ(· | w(1) = a).

More precisely, for any bounded measurable function F on Rdn

p1(0, a) ·
∫
Wa

F (w(t1), · · · , w(tn))µa(w)

=

∫
Rdn

F (x1, · · · , xn)Πn
i=0pti+1−ti(xi+1, xi)dx1 · · · dxn, (40)

where x0 = 0, xn+1 = a, tn+1 = 1 and pt(x, y) = 1√
2πt
e−|x−y|

2/(2t). The corresponding

Cameron-Martin space is given by H0 := H ∩W0.
Notice that the pinned Wiener measure µa can also be regarded as the law of pinned

Brownian motion w(t)−t(w(1)−a) under µ. It is clear that (W0,H0, µ0) forms an abstract
Wiener space, and for a 6= 0, the translation w 7→ w − ·a establishes an isomorphism
between (Wa, µa) and (W0, µ0). Therefore, it suffices to consider the pinned Wiener space
(W0,H0, µ0). In this case, for any n ∈ N, let {`nk, k = 1, · · · , 2n − 1} be a linearly
independent subset of W∗0 given by

˙̀
nk(s) := 1(tnk−1,t

n
k ](s)− 1(tnk ,t

n
k+1](s), k = 1, · · · , 2n − 1,

where tnk = k2−n. Let {hnk, k = 1, · · · , 2n− 1} be the Gram-Schmidt orthogonalization of
{`nk, k = 1, · · · , 2n − 1}. Then, for any w ∈W0

2n−1∑
k=1

hnk(w) · hnk(t) =
2n−1∑
k=0

[
w(tnk) + ∆w(tnk)(2nt− k)

]
· 1[tnk ,t

n
k+1](t) =: πnw(t),

where ∆w(tnk) := w(tnk+1)−w(tnk). Indeed, it follows from hnk(w) = hnk(πnw) and πnw ∈
H̃n := span{hnk, k = 1, · · · , 2n − 1}. Thus, using the same method as in proving Theorem
4.1, we find that the conclusions of Theorem 4.1 still holds for the pinned Wiener measure.

On the other hand, for d = 1, it is well known that for any r > a(cf. [7, (4.12)])

µa(w ∈Wa : ‖w‖∞ < r) =
∞∑

n=−∞

(−1)n exp{−2nr(nr − a)}.

Thus, combining Theorems 3.4 and 4.1 yields that

Theorem 5.1. Let U ∈ B(Rd) have compact and Lipschitz boundary. Define

Γ := {w ∈Wa : (‖w1‖∞, · · · , ‖wd‖∞) ∈ U}.

Then Γ ∈ C (Wa), and for any bounded continuous and H0-Lipschitz continuous vector
field f on Wa, ∫

Γ

divf(w)µa(dw) =

∫
∂Γ

〈f(w),nΓ(w)〉H‖∂Γ‖(dw),

where ∂Γ = {w ∈Wa : (‖w1‖∞, · · · , ‖wd‖∞) ∈ ∂U}.
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[11] Fang, S.: Non-dégénérescence des pseudo-normes de sobolev sur l’espace de wiener. Bull. Sc. math.,
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