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Abstract. The Grothendieck groups of the categories of finitely generated modules and
finitely generated projective modules over a tower of algebras can be endowed with (co)algebra
structures that, in many cases of interest, give rise to a dual pair of Hopf algebras. More-
over, given a dual pair of Hopf algebras, one can construct an algebra called the Heisenberg
double, which is a generalization of the classical Heisenberg algebra. The aim of this paper
is to study Heisenberg doubles arising from towers of algebras in this manner. First, we de-
velop the basic representation theory of such Heisenberg doubles and show that if induction
and restriction satisfy Mackey-like isomorphisms then the Fock space representation of the
Heisenberg double has a natural categorification. This unifies the existing categorifications
of the polynomial representation of the Weyl algebra and the Fock space representation
of the Heisenberg algebra. Second, we develop in detail the theory applied to the tower
of 0-Hecke agebras, obtaining new Heisenberg-like algebras that we call quasi-Heisenberg
algebras. As an application of a generalized Stone–von Neumann Theorem, we give a new
proof of the fact that the ring of quasisymmetric functions is free over the ring of symmetric
functions.
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1. Introduction

The interplay between symmetric groups and the Heisenberg algebra has a rich history,
with implications in combinatorics, representation theory, and mathematical physics. A foun-
dational result in this theory is due to Geissinger, who gave a representation theoretic real-
ization of the bialgebra of symmetric functions Sym by considering the Grothendieck groups
of representations of all symmetric groups over a field k of characteristic zero (see [Gei77]).
In particular, he constructed an isomorphism of bialgebras

Sym ∼=
⊕∞

n=0K0(k[Sn] -mod),

where K0(C) denotes the Grothendieck group of an abelian category C. Multiplication is
described by the induction functor

[Ind] : K0(k[Sn] -mod)⊗K0(k[Sm] -mod)→ K0(k[Sn+m] -mod),

while comultiplication is given by restriction. Mackey theory for induction and restriction
in symmetric groups implies that the coproduct is an algebra homomorphism. For each
Sn-module V , multiplication by the class [V ] ∈ K0(k[Sn] -mod) defines an endomorphism of⊕∞

n=0K0(k[Sn] -mod). These endomorphisms, together with their adjoints, define a repre-
sentation of the Heisenberg algebra on

⊕∞
n=0K0(k[Sn] -mod).

Geissinger’s construction was q-deformed by Zelevinsky in [Zel81], who replaced the group
algebra of the symmetric group k[Sn] by the Hecke algebra Hn(q) at generic q. Again,
endomorphisms of the Grothendieck group given by multiplication by classes [V ], together
with their adjoints, generate a representation of the Heisenberg algebra.

The above results can be enhanced to a categorification of the Heisenberg algebra and
its Fock space representation via categories of modules over symmetric groups and Hecke
algebras. A strengthened version of this categorification, which includes information about
the natural transformations involved, was given in [Kho] for the case of symmetric groups
and in [LS13] for the case of Hecke algebras.

The group algebras of symmetric groups and Hecke algebras are both examples of towers
of algebras. A tower of algebras is a graded algebra A =

⊕
n≥0An, where each An is itself

an algebra (with a different multiplication) and such that the multiplication in A induces
homomorphisms Am ⊗ An → Am+n of algebras (see Definition 3.1). In addition to those
mentioned above, examples include nilcoxeter algebras, 0-Hecke algebras, Hecke algebras at
roots of unity, wreath products (semidirect products of symmetric groups and finite groups,
see [FJW00, CL12]), group algebras of finite general linear groups, and cyclotomic Khovanov–
Lauda–Rouquier algebras (quiver Hecke algebras). To a tower of algebras, one can associate
the Z-modules G(A) =

⊕
nK0(An -mod) and K(A) =

⊕
nK0(An -pmod), where An -mod

(respectively An -pmod) is the category of finitely generated (respectively finitely generated
projective) An-modules. In many cases, induction and restriction endow K(A) and G(A) with
the structure of dual Hopf algebras. For example, in [BL09] Bergeron and Li introduced a set
of axioms for a tower of algebras that ensure this duality (although the axioms we consider
in the current paper are different).

One of the main goals of the current paper is to generalize the above categorifications of
the Fock space representation of the Heisenberg algebra to more general towers of algebras.
We see that, in the general situation, the Heisenberg algebra h is replaced by the Heisenberg
double (see Definition 2.6) of G(A). The Heisenberg double of a Hopf algebra is different
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from, but closely related to, the more well known Drinfeld quantum double. As a k-module,
the Heisenberg double h(H+, H−) of a Hopf algebra H+ (over k) with dual H− is isomorphic
to H+ ⊗k H

−, and the factors H− and H+ are subalgebras. The most well known example
of this construction is when H− and H+ are both the Hopf algebra of symmetric functions,
which is self-dual. In this case the Heisenberg double is the classical Heisenberg algebra. In
general, there is a natural action of h(H+, H−) on its Fock space H+ generalizing the usual
Fock space representation of the Heisenberg algebra. Our first result (Theorem 2.11) is a
generalization of the well known Stone–von Neumann Theorem to this Heisenberg double
setting.

In the special case of dual Hopf algebras arising from a tower of algebras A, we denote the
Heisenberg double by h(A) and the resulting Fock space by F(A). In this situation, there is
a natural subalgebra of h(A). In particular, the image Gproj(A) of the natural Cartan map
K(A)→ G(A) is a Hopf subalgebra of G(A), and we consider also the projective Heisenberg
double hproj(A) which is, by definition, the subalgebra of h(A) generated by Gproj(A) and
K(A). Then hproj(A) acts on its Fock space Gproj(A), and a Stone–von Neumann type theorem
also holds for this action (see Proposition 3.15).

We then focus our attention on towers of algebras that satisfy natural compatibility condi-
tions between induction and restriction analogous to the well known Mackey theory for finite
groups. We call these towers of algebras strong (see Definition 3.4) and give a necessary and
sufficient condition for them to give rise to dual pairs of Hopf algebras (i.e. be dualizing).
Our central theorem (Theorem 3.18) is that, for such towers, the Fock spaces representa-
tions of the algebras h(A) and hproj(A) admit categorifications coming from induction and
restrictions functors on

⊕
nAn -mod and

⊕
nAn -pmod respectively.

To illustrate our main result, we apply it to several towers of algebras that are quotients of
group algebras of braid groups by quadratic relations (see Definition 4.1). We first show that
all towers of this form are strong and dualizing. Examples include the towers of nilcoxeter
algebras, Hecke algebras, and 0-Hecke algebras. Starting with the tower of nilcoxeter alge-
bras, we recover Khovanov’s categorification of the polynomial representation of the Weyl
algebra (see Section 5). Taking instead the tower of Hecke algebras at a generic parameter,
we recover (weakened versions of) the categorifications of the Fock space representation of
the Heisenberg algebra described by Khovanov and Licata–Savage (see Section 6). Consid-
ering the tower of Hecke algebras at a root of unity, we obtain a different categorification of
the Fock space representation of the Heisenberg algebra (Proposition 7.2) which, in the set-
ting of the existing categorification of the basic representation of affine sln using this tower,
corresponds to the principal Heisenberg subalgebra. In this way, we see that Theorem 3.18
provides a uniform treatment and generalization of these categorification results. A major
feature of our categorification is that it does not depend on any presentation of the algebras
in question, in contrast to many categorification results in the literature.

We explore the example of the tower A of 0-Hecke algebras in some detail. In this case, it
is known that K(A) and G(A) are the Hopf algebras of noncommutative symmetric functions
and quasisymmetric functions respectively. However, the algebras h(A) and hproj(A), which
we call the quasi-Heisenberg algebra and projective quasi-Heisenberg algebra, do not seem to
have been studied in the literature. We give presentations of these algebras by generators
and relations (see Section 8.4). The algebra hproj(A) turns out to be particularly simple as it
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is a “de-abelianization” of the usual Heisenberg algebra (see Proposition 8.7). As an appli-
cation of the generalized Stone–von Neumann Theorem in this case, we give a representation
theoretic proof of the fact that the ring of quasisymmetric functions is free over the ring
of symmetric functions (Proposition 9.2). Our proof is quite different than previous proofs
appearing in the literature.

There are many more examples of towers of algebras for which we do not work out the
detailed implications of our main theorem. Furthermore, we expect that the results of this
paper could be generalized to apply to towers of superalgebras. Examples of such towers
include Sergeev algebras and 0-Hecke-Clifford algebras. We leave such generalizations for
future work.

Notation. We let N and N+ denote the set of nonnegative and positive integers respectively.
We let k be a commutative ring (with unit) and F be a field. For n ∈ N, we let P(n) denote
the set of all partitions of n, with the convention that P(0) = {∅}, and let P =

⋃
n∈NP(n).

Similarly, we let C(n) denote the set of all compositions of n and let C =
⋃
n∈N C(n). For a

composition or partition α, we let `(α) denote the length of α (i.e. the number of nonzero
parts) and let |α| denote its size (i.e. the sum of its parts). By a slight abuse of terminology,
we will use the terms module and representation interchangeably.

Acknowledgements. The authors would like to thank N. Bergeron, J. Bernstein, M. Kho-
vanov, A. Lauda, A. Licata, J.-Y. Thibon, and M. Zabrocki for useful conversations.

2. The Heisenberg double

In this section, we review the definition of the Heisenberg double of a Hopf algebra and
state some important facts about its natural Fock space representation. In particular, we
prove a generalization of the well known Stone–von Neumann Theorem (Theorem 2.11).

We fix a commutative ring k and all algebras, coalgebras, bialgebras and Hopf algebras
will be over k. We will denote the multiplication, comultiplication, unit, counit and antipode
of a Hopf algebra by ∇, ∆, η, ε and S respectively. We will use Sweedler notation

∆(a) =
∑

(a) a(1) ⊗ a(2)

for coproducts. For a k-module V , we will simply write EndV for Endk V . All tensor
products are over k unless otherwise indicated.

2.1. Dual Hopf algebras. We begin by recalling the notion of dual (graded connected)
Hopf algebras.

Definition 2.1 (Graded connected Hopf algebra). We say that a bialgebra H is graded if
H =

⊕
n∈NHn, where each Hn, n ∈ N, is finitely generated and free as a k-module, and the

following conditions are satisfied:

∇(Hk ⊗H`) ⊆ Hk+`, ∆(Hk) ⊆
⊕k

j=0Hj ⊗Hk−j, k, ` ∈ N,
η(k) ⊆ H0, ε(Hk) = 0 for k ∈ N+.

We say that H is graded connected if it is graded and H0 = k1H . Recall that a graded
connected bialgebra is a Hopf algebra with invertible antipode (see, for example, [Haz08,
p. 389, Cor. 5]) and thus we will also call such an object a graded connected Hopf algebra.
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If H =
⊕

n∈NHn is a graded bialgebra, then its graded dual
⊕

n∈NH
∗
n is also a graded

bialgebra.

Remark 2.2. In general, one need not assume that the Hn are free as k-modules. Instead,
one needs only assume that

(2.1) H∗k ⊗H∗` ∼= (Hk ⊗H`)
∗ for all k, ` ∈ N

in order for the graded dual to be a graded bialgebra. However, since our interest lies mainly
in dual Hopf algebras arising from towers of algebras, for which the Hn are free as k-modules,
we will make this assumption from the start (in which case (2.1) is automatically satisfied).

Definition 2.3 (Hopf pairing). If H and H ′ are Hopf algebras over k, then a Hopf pairing
is a bilinear map 〈·, ·〉 : H ×H ′ → k such that

〈ab, x〉 = 〈a⊗ b,∆(x)〉 =
∑

(x)〈a, x(1)〉〈b, x(2)〉,
〈a, xy〉 = 〈∆(a), x⊗ y〉 =

∑
(a)〈a(1), x〉〈a(2), y〉,

〈1H , x〉 = ε(x), 〈a, 1H′〉 = ε(a),

for all a, b ∈ H, x, y ∈ H ′. Note that such a Hopf pairing automatically satisfies 〈a, S(x)〉 =
〈S(a), x〉 for all a ∈ H and x ∈ H ′.

Recall that, for k-modules V and W , a bilinear form 〈·, ·〉 : V ×W → k is called a perfect
pairing if the induced map Φ: V → W ∗ given by Φ(v)(w) = 〈v, w〉 is an isomorphism.

Definition 2.4 (Dual pair). We say that (H+, H−) is a dual pair of Hopf algebras if H+

and H− are both graded connected Hopf algebras and H± is graded dual to H∓ (as a Hopf
algebra) via a perfect Hopf pairing 〈·, ·〉 : H− ×H+ → k.

2.2. The Heisenberg double. For the remainder of this section, we fix a dual pair (H+, H−)
of Hopf algbebras. Then any a ∈ H+ defines an element La ∈ EndH+ by left multiplica-
tion. Similarly, any x ∈ H− defines an element Rx ∈ EndH− by right multiplication, whose
adjoint Rx∗ is an element of EndH+. (In the case that H+ or H− is commutative, we often
omit the superscript L or R.) In this way we have k-algebra homomorphisms

H+ ↪→ EndH+, a 7→ La,(2.2)

H− ↪→ EndH+, x 7→ Rx∗.(2.3)

The action of H− on H+ given by (2.3) is called the left regular action.

Lemma 2.5. The left regular action of H− on H+ is given by

Rx∗(a) =
∑

(a)〈x, a(2)〉a(1) for all x ∈ H−, a ∈ H+.

Proof. For all x, y ∈ H− and a ∈ H+, we have

〈y, Rx∗(a)〉 = 〈yx, a〉 = 〈y ⊗ x,∆(a)〉
=
∑

(a)〈y ⊗ x, a(1) ⊗ a(2)〉 =
∑

(a)〈y, a(1)〉〈x, a(2)〉 = 〈y,
∑

(a)〈x, a(2)〉a(1)〉.

The result then follows from the nondegeneracy of the bilinear form. �



6 ALISTAIR SAVAGE AND ODED YACOBI

It is clear that the map (2.2) is injective. The map (2.3) is also injective. Indeed, for
x ∈ H−, choose a ∈ H+ such that 〈x, a〉 6= 0. Then 〈1, Rx∗(a)〉 = 〈x, a〉 6= 0, and so Rx∗ 6= 0.

Since H+ =
⊕

n∈NH
+
n is N-graded, we have a natural algebra Z-grading EndH+ =⊕

n∈Z EndnH
+. It is routine to verify that the map (2.2) sends H+

n to EndnH
+ and the

map (2.3) sends H−n to End−nH
+ for all n ∈ N.

Definition 2.6 (The Heisenberg double, [STS94, Def. 3.1]). We define h(H+, H−) to be
the Heisenberg double of H+. More precisely h(H+, H−) ∼= H+ ⊗H− as k-modules, and we
write a#x for a ⊗ x, a ∈ H+, x ∈ H−, viewed as an element of h(H+, H−). Multiplication
is given by

(2.4) (a#x)(b#y) :=
∑

(x) a
Rx(1)

∗(b)#x(2)y =
∑

(x),(b)〈x(1), b(2)〉ab(1)#x(2)y.

We will often view H+ and H− as subalgebras of h(H+, H−) via the maps a 7→ a#1 and
x 7→ 1#x for a ∈ H+ and x ∈ H−. Then we have ax = a#x. When the context is clear,
we will simply write h for h(H+, H−). We have a natural grading h =

⊕
n∈Z hn, where

hn =
⊕

k−`=nH
+
k #H−` .

Remark 2.7. The Heisenberg double is a twist of the Drinfeld quantum double by a right
2-cocycle (see [Lu94, Th. 6.2]).

Lemma 2.8. If x ∈ H− and a, b ∈ H+, then

Rx∗(ab) =
∑

(x)
Rx(1)

∗(a) Rx(2)
∗(b).

Proof. For x, y ∈ H− and a, b ∈ H+, we have

〈y, Rx∗(ab)〉 = 〈yx, ab〉 = 〈∆(yx), a⊗ b〉 = 〈∆(y)∆(x), a⊗ b〉

= 〈∆(y), R∆(x)∗(a⊗ b)〉 = 〈∆(y),
∑

(x)
Rx∗(1)(a)⊗ Rx∗(2)(b)〉 = 〈y,

∑
(x)

Rx∗(1)(a) Rx∗(2)(b)〉.

The result then follows from the nondegeneracy of the bilinear form. �

Interchanging H− and H+ in the construction of the Heisenberg double results in the
opposite algebra: h(H−, H+) ∼= h(H+, H−)op (see [Lu94, Prop. 5.3]).

2.3. Fock space. We now introduce a natural representation of the algebra h.

Definition 2.9 (Vacuum vector). An element v of an h-module V is called a lowest weight
(resp. highest weight) vacuum vector if kv ∼= k and H−v = 0 (resp. H+v = 0).

Definition 2.10 (Fock space). The algebra h has a natural (left) representation on H+

given by
(a#x)(b) = a Rx∗(b), a, b ∈ H+, x ∈ H−.

We call this the lowest weight Fock space representation of h(H+, H−) and denote it by
F = F(H+, H−). Note that this representation is generated by the lowest weight vacuum
vector 1 ∈ H+.

Suppose X+ is a graded subalgebra of H+ that is invariant under the left regular action
of H− on H+. Then X+#H− is a subalgebra of h(H+, H−) acting naturally on X+. The
following result (when X+ = H+) is a generalization of the Stone–von Neumann Theorem
to the setting of an arbitrary Heisenberg double.
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Theorem 2.11. Let X+ be a subalgebra of H+ that is invariant under the left regular action
of H− on H+.

(a) The only (X+#H−)-submodules of X+ are those of the form IX+ for some ideal I
of k. In particular, if k is a field, then X+ is irreducible as an (X+#H−)-module.

(b) Let k− ∼= k (isomorphism of k-modules) be the representation of H− such that H−n
acts as zero for all n > 0 and H−0

∼= k acts by left multiplication. Then X+ is

isomorphic to the induced module IndX
+#H−

H− k− as an (X+#H−)-module.
(c) Any (X+#H−)-module generated by a lowest weight vacuum vector is isomorphic to

X+.

If X+ = H+ then X+#H− = h(H+, H−) and the module X+ is the lowest weight Fock space
F . In that case we also have the following.

(d) The lowest weight Fock space representation F of h is faithful.

Proof. (a) Clearly, if I is an ideal of k, then IX+ is a submodule of X+. Now suppose
W ⊆ X+ is a nonzero submodule, and let

I = {c ∈ k | c1 ∈ W}.
It is easy to see that I is an ideal of k. We claim that W = IX+. Since the element
1 generates X+, we clearly have IX+ ⊆ W . Now suppose there exists a ∈ W such that
a 6∈ IX+. Without loss of generality, we can write a =

∑`
n=0 an for an ∈ H+

n , ` ∈ N, and
a` 6∈ IX+ (otherwise, consider a − a`). Let b1, . . . , bm be a basis of H+

` such that b1, . . . , bk
is a basis of X+

` , for k = dimkX
+
` . Let x1, . . . , xm be the dual basis of H−` . Then it is easy

to verify that
∑k

j=1 bj#xj acts as the identity on X+
` and as zero on X+

n for n < `. Thus,

a` =
∑k

j=1(bj#xj)(a) ∈
∑k

j=1 bjIX
+ ⊆ IX+,

since Rxj
∗(a) ∈ W ∩H+

0 for all j = 1, . . . , k. This contradiction completes the proof.
(b) We have an injective homomorphism of H−-modules

k− ↪→ ResX
+#H−

H− X+, 1 7→ 1.

Since induction is left adjoint to restriction (see, for example, [CR81, (2.19)]), this gives rise
to a homomorphism of h-modules

(2.5) IndX
+#H−

H− k− → X+, 1 7→ 1.

Since the element 1 generates X+, this map is surjective. Now,

IndX
+#H−

H− k− = (X+#H−)⊗H− k− = X+H− ⊗H− k−.

It follows that, as a left X+-module, IndX
+#H−

H− k− is a quotient of X+ ⊗k k− ∼= X+ and the
map (2.5) is the identity map, hence an isomorphism.

(c) Suppose V is a representation of X+#H− generated by a lowest weight vacuum vector
v0. Then, as above, we have an injective homomorphism of H−-modules

k− ↪→ ResX
+#H−

H− V, 1 7→ v0,

and thus a homomorphism of (X+#H−)-modules

(2.6) IndX
+#H−

H− k− → V, 1 7→ v0.
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Since V is generated by v0, this map is surjective. Since IndX
+#H−

H− k− ∼= X+, it follows
easily from part (a) that it is also injective.

(d) Suppose α is a nonzero element of h. Write α = α′+α′′ where α′ is a nonzero element
of H+#H−n for some n ∈ N and α′′ ∈

∑
k>nH

+#H−k . Choose a basis x1, . . . , xm of H−n and
let b1, . . . , bm denote the dual basis of H+

n . Then we can write α′ =
∑m

j=1 aj#xj for some

aj ∈ H+. Since α′ 6= 0, we have aj 6= 0 for some j. Then α(bj) = α′(bj) = aj 6= 0. Thus the
action of h on F is faithful. �

Remark 2.12. By Theorem 2.11(d), we may view h as the subalgebra of EndH+ generated
by La, a ∈ H+, and Rx∗, x ∈ H−.

3. Towers of algebras and categorification of Fock space

In this section, we consider dual Hopf algebras arising from towers of algebras. In this
case, we are able to deduce some further results about the Heisenberg double h. We then
prove our main result, that towers of algebras give rise to categorificiations of the lowest
weight Fock space representation of h (Theorem 3.18). Recall that F is an arbitrary field.

3.1. Modules categories and their Grothendieck groups. For an arbitrary F-algebra
B, let B -mod denote the category of finitely generated left B-modules and let B -pmod
denote the category of finitely generated projective left B-modules. We then define

G0(B) = K0(B -mod) and K0(B) = K0(B -pmod),

where K0(C) denotes the Grothendieck group of an abelian category C. We denote the class
of an object M ∈ C in K0(C) by [M ]. Note that since all short exact sequences in B -pmod
split, K0(B) is also the split Grothendieck group of B -pmod.

There is a natural bilinear form

(3.1) 〈·, ·〉 : K0(B)⊗G0(B)→ Z, 〈[P ], [M ]〉 = dimF HomB(P,M).

If B is a finite dimensional algebra, let V1, . . . , Vs be a complete list of nonisomorphic simple
B-modules. If Pi is the projective cover of Vi for i = 1, . . . , s, then P1, . . . , Ps is a com-
plete list of nonisomorphic indecomposable projective B-modules (see, for example, [ARS95,
Cor. I.4.5]) and we have

G0(B) =
⊕s

i=1 Z[Vi] and K0(B) =
⊕s

i=1 Z[Pi].

If F is algebraically closed, then

(3.2) 〈[Pi], [Vj]〉 = δij for 1 ≤ i, j ≤ s,

and so the pairing (3.1) is perfect.
Suppose ϕ : B → A is an algebra homomorphism. Then we can consider A as a left

B-module via the action (b, a) 7→ ϕ(b)a. Similarly, we can consider A as a right B-module.
Then we have induction and restriction functors

IndAB : B -mod→ A -mod, IndAB N := A⊗B N, N ∈ B -mod,

ResAB : A -mod→ B -mod, ResABM := HomA(A,M) ∼= BA⊗AM, M ∈ A -mod,

where BA denotes A considered as a (B,A)-bimodule and the left B-action on HomA(A,M) is
given by (b, f) 7→ f ◦Rb for f ∈ HomA(A,M) and b ∈ B (here Rb denotes right multiplication
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by b). The isomorphism above is given by the map f 7→ 1⊗f(1A) for f ∈ HomA(A,M). This
isomorphism is natural in M and so we have an isomorphism of functors ResAB

∼= BA⊗−.

3.2. Towers of algebras.

Definition 3.1 (Tower of algebras). Let A =
⊕

n∈NAn be a graded algebra over a field F
with multiplication ρ : A ⊗ A → A. Then A is called a tower of algebras if the following
conditions are satisfied:

(TA1) Each graded piece An, n ∈ N, is a finite dimensional algebra (with a different multi-
plication) with a unit 1n. We have A0

∼= F.
(TA2) The external multiplication ρm,n : Am ⊗ An → Am+n is a homomorphism of algebras

for all m,n ∈ N (sending 1m ⊗ 1n to 1m+n).
(TA3) We have that Am+n is a two-sided projective (Am ⊗ An)-module with the action

defined by

a · (b⊗ c) = aρm,n(b⊗ c) and (b⊗ c) · a = ρm,n(b⊗ c)a,
for all m,n ∈ N, a ∈ Am+n, b ∈ Am, c ∈ An.

(TA4) For each n ∈ N, the pairing (3.1) (with B = An) is perfect. (Note that this condition
is automatically satisfied if F is an algebraically closed field, by (3.2).)

For the remainder of this section we assume that A is a tower of algebras. We let

(3.3) G(A) =
⊕

n∈NG0(An) and K(A) =
⊕

n∈NK0(An).

Then we have a perfect pairing 〈·, ·〉 : K(A)× G(A)→ Z given by
(3.4)

〈[P ], [M ]〉 =

{
dimF(HomAn(P,M)) if P ∈ An -pmod and M ∈ An -mod for some n ∈ N,
0 otherwise.

We also define a perfect pairing 〈·, ·〉 : (K(A)⊗K(A))× (G(A)⊗ G(A)) by

〈[P ]⊗[Q], [M ]⊗[N ]〉 =


dimF(HomAk⊗A`(P ⊗Q,M ⊗N)) if P ∈ Ak -pmod, Q ∈ A` -pmod

and M ∈ Ak -mod, N ∈ A` -mod for some k, ` ∈ N,
0 otherwise.

Thus we have 〈[P ]⊗ [Q], [M ]⊗ [N ]〉 = 〈[P ], [M ]〉〈[Q], [N ]〉.
Consider the direct sums of categories

A -mod :=
⊕

n∈NAn -mod, A -pmod :=
⊕

n∈NAn -pmod .

For r ∈ N+, we define

A -mod⊗r :=
⊕

n1,...,nr∈N(An1 ⊗ · · · ⊗ Anr) -mod,

A -pmod⊗r :=
⊕

n1,...,nr∈N(An1 ⊗ · · · ⊗ Anr) -pmod .

Then, for i, j ∈ {1, . . . , r}, i < j, we define Sij : A -mod⊗r → A -mod⊗r to be the endo-
functor that interchanges the ith and jth factors, that is, the endofunctor arising from the
isomorphism

An1 ⊗ · · · ⊗Anr ∼= An1 ⊗ · · · ⊗Ani−1
⊗Anj ⊗Ani+1

⊗ · · · ⊗Anj−1
⊗Ani ⊗Anj+1

⊗ · · · ⊗Anr .
We use the same notation to denote the analogous endofunctor on A -pmod⊗r.
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We also have the following functors:

∇ : A -mod⊗2 → A -mod, ∇|(Am⊗An) -mod = Ind
Am+n

Am⊗An ,

∆: A -mod→ A -mod⊗2, ∆|An -mod =
⊕

k+`=n ResAnAk⊗A` ,

η : Vect→ A -mod, η(V ) = V ∈ A0 -mod for V ∈ Vect,

ε : A -mod→ Vect, ε(V ) =

{
V if V ∈ A0 -mod,

0 otherwise.

(3.5)

In the above, we have identified A0 -mod with the category Vect of finite dimensional vector
spaces over F. Replacing A -mod by A -pmod above, we also have the functors ∇, ∆, η and ε
on A -pmod. Since the above functors are all exact (we use axiom (TA3) here), they induce
a multiplication, comultiplication, unit and counit on G(A) and K(A). We use the same
notation to denote these induced maps.

Since induction is always left adjoint to restriction (see, for example, [CR81, (2.19)]), ∇ is
left adjoint to ∆. However, in many examples of towers of algebras (e.g. nilcoxeter algebras
and 0-Hecke algebras), induction is not right adjoint to restriction. Nevertheless, we often
have something quite close to this property. Any algebra automorphism ψn of An induces
an isomorphism of categories Ψn : An -mod → An -mod (which restricts to an isomorphism
of categories Ψn : An -pmod→ An -pmod) by twisting the An action. Then Ψ :=

⊕
n∈N Ψn is

an automorphism of the categories A -mod and A -pmod. It induces automorphisms (which
we also denote by Ψ) of G(A) and K(A).

Definition 3.2 (Twisted adjointness). Given a tower of algebras A, we say that induction is
twisted right adjoint to restriction (and restriction is twisted left adjoint to induction) with
twisting Ψ if there are isomorphisms of algebras ψn : An → An, n ∈ N, such that ∇ is right
adjoint to Ψ⊗2∆Ψ−1.

The following lemma will be useful since many examples of towers of algebras are in fact
composed of Frobenius algebras. We refer the reader to [SY11] for background on Frobenius
algebras.

Lemma 3.3. If each An, n ∈ N, is a Frobenius algebra, then induction is twisted right adjoint
to restriction, with twisting given by ψn being the inverse of the Nakayama automorphism of
An.

Proof. This follows from [Kho01, Lem. 1] by taking B1 = Am+n, B2 = Am ⊗ An and N to
be Am+n, considered as an (Am+n, Am ⊗ An)-bimodule in the natural way. �

Definition 3.4 (Strong tower of algebras). We say that a tower of algebras A is strong if
induction is twisted right adjoint to restriction and we have an isomorphism of functors

(3.6) ∆∇ ∼= ∇⊗2S23∆⊗2.

Remark 3.5. The isomorphism (3.6) is a compatibility between induction and restriction
that is analogous to the well known Mackey theory for finite groups. It implies that K(A) and
G(A) are Hopf algebras under the operations defined above (see [BL09, Th. 3.5] – although
the authors of that paper work over C and they assume that the external multiplication
maps ρm,n are injective, the arguments hold in the more general setting considered here).
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Definition 3.6 (Dualizing tower of algebras). We say that a tower of algebras A is dualizing
if, under the operations defined above, K(A) and G(A) are Hopf algebras which are dual,
in the sense of Definition 2.4 (with k = Z), under the bilinear form (3.4) (i.e. the perfect
pairing (3.4) is a Hopf pairing).

Proposition 3.7. Suppose A is a strong tower of algebras with twisting Ψ. Then the fol-
lowing statements are equivalent.

(a) The tower A is dualizing.
(b) We have Ψ⊗2∆Ψ−1(P ) ∼= ∆(P ) for all P ∈ A -pmod.
(c) We have Ψ⊗2∆Ψ−1 = ∆ as endomorphisms of K(A).

In particular A is dualizing if each An is a symmetric algebra (i.e. if Ψ = Id) or, more
generally, if Ψ acts trivially on K(A).

Proof. First assume that (b) holds. With one exception, the proof that A is dualizing then
proceeds exactly as in the proof of [BL09, Th. 3.6] since (3.6) implies axiom (5) in [BL09,
§3.1]. (Although the authors of that paper work over C and they assume that the exter-
nal multiplication maps ρm,n are injective, the arguments hold in the more general setting
considered here.) The one exception is in the proof that

(3.7) 〈∆([P ]), [M ]⊗ [N ]〉 = 〈[P ],∇([M ]⊗ [N ])〉,
for all M ∈ Am -mod, N ∈ An -mod, P ∈ Am+n -pmod. However, under our assumptions,
we have

HomAm+n(P,∇(M⊗N)) ∼= HomAm⊗An(Ψ⊗2∆Ψ−1(P ),M⊗N) ∼= HomAm⊗An(∆(P ),M⊗N),

which immediately implies (3.7). Thus A is dualizing.
Now suppose A is dualizing. Then, for all P ∈ A -pmod and M ∈ A -mod⊗2, we have

〈Ψ⊗2∆Ψ−1([P ]), [M ]〉 = 〈[P ],∇([M ])〉 = 〈∆([P ]), [M ]〉,
where the first equality holds by the assumption that induction is twisted right adjoint to
restriction and the second equality holds by the assumption that the tower is dualizing.
Then (c) follows from the nondegeneracy of the bilinear form.

The fact that (b) and (c) are equivalent follows from the fact that every short exact
sequence of projective modules splits. Thus, for P,Q ∈ A -pmod, we have [P ] = [Q] in K(A)
if and only if P ∼= Q. �

Remark 3.8. It is crucial in (b) that P be a projective module. The isomorphism does not
hold, in general, for arbitrary modules, even if the tower is dualizing. For instance, the tower
of 0-Hecke algebras is dualizing (see Corollary 4.6), but one can show that Ψ⊗2∆Ψ−1 ∼= S12∆
(see Lemma 4.4). Then (b) corresponds to the fact that the comultiplication on NSym is
cocommutative. However, the comultiplication on QSym is not cocommutative and thus (b)
does not hold, in general, if P is not projective. We refer the reader to Section 8 for further
details on the tower of 0-Hecke algebras.

3.3. The Heisenberg double associated to a tower of algebras. In this section we
apply the constructions of Section 2 to the dual pair (G(A),K(A)) arising from a dualizing
tower of algebras A. We also see that some natural subalgebras of the Heisenberg double
arise in this situation.
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Definition 3.9 (h(A), F(A), Gproj(A)). Suppose A is a dualizing tower of algebras. We let
h(A) = h(G(A),K(A)) and F(A) = F(G(A),K(A)). For each n ∈ N, An -pmod is a full
subcategory of An -mod. The inclusion functor induces the Cartan map K(A)→ G(A). Let
Gproj(A) denote the image of the Cartan map.

For the remainder of this section, we fix a dualizing tower of algebras A and let

(3.8) H− = K(A), H+ = G(A), H+
proj = Gproj(A), h = h(A), F = F(A).

To avoid confusion between G(A) and K(A), we will write [M ]+ to denote the class of a
finitely generated (possibly projective) An-module in H+ and [M ]− to denote the class of a
finitely generated projective An-module in H−. If P ∈ Ap -pmod and N ∈ (An−p⊗Ap) -mod,
then we have a natural An−p-module structure on HomAp(P,N) given by

(3.9) (a · f)(b) = (a⊗ 1) · (f(b)), a ∈ An−m, f ∈ HomAp(P,N), b ∈ P.
Lemma 3.10. If p, n ∈ N, P ∈ Ap -pmod and N ∈ An -mod, then we have

[P ]− · [N ]+ =

{
0 if p > n,

[HomAp(P,ResAnAn−p⊗Ap N)]+ if p ≤ n.

Here · denotes the action of h on F and HomAp(P,ResAnAn−p⊗Ap N) is viewed as an An−p-

module as in (3.9).

Proof. The case p > n follows immediately from the fact that H+
n−p = 0 if p > n. Assume

p ≤ n. For R ∈ An−p -pmod, we have

〈[R]−, [P ]− · [N ]+〉 = 〈[R]−[P ]−, [N ]+〉
= 〈∇([R]− ⊗ [P ]−), [N ]+〉
= 〈[R]− ⊗ [P ]−,∆([N ]+)〉
= dimF HomAn−p⊗Ap(R⊗ P,ResAnAn−p⊗Ap N)

= dimF HomAn−p(R,HomAp(P,ResAnAn−p⊗Ap N))

= 〈[R]−, [HomAp(P,ResAnAn−p⊗Ap N)]+〉.
The result then follows from the nondegeneracy of the bilinear form. �

Lemma 3.11. Suppose k is a commutative ring and R and S are k-algebras. Further-
more, suppose that P is a projective S-module and Q is a projective (R ⊗ S)-module. Then
HomS(P,Q) is a projective R-module.

Proof. If P is a projective S-module and Q is a projective (R⊗ S)-module then there exist
s, t ∈ N, an S-module P ′ and an (R ⊗ S)-module Q′ such that P ⊕ P ′ ∼= Ss and Q ⊕ Q′ ∼=
(R⊗ S)t. Then we have

HomS(P,Q)⊕ HomS(P,Q′)⊕ HomS(P ′, (R⊗ S)t)

∼= HomS(Ss, (R⊗ S)t) ∼= HomS(S,R⊗ S)st ∼= Rst.

Thus HomS(P,Q) is a projective R-module. �

Proposition 3.12. We have that H+
proj is a subalgebra of H+ that is invariant under the

left regular action of H−.
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Proof. Assume P ∈ Ap -pmod and Q ∈ Aq -pmod. As in the proof of [BL09, Prop. 3.2], we

have that Ind
Ap+q
Ap⊗Aq(P ⊗Q) is a projective Ap+q-module. It follows that H+

proj is a subalgebra

of H+.
By Lemma 3.10, it remains to show that

HomAp(P,Res
Aq
Aq−p⊗Ap Q) ∈ Aq−p -pmod .

Again, as in the proof of [BL09, Prop. 3.2], we have that Res
Aq
Aq−p⊗Ap Q is a projective

(Aq−p ⊗ Ap)-module. The result then follows from Lemma 3.11. �

Definition 3.13 (The projective Heisenberg double hproj(A)). By Proposition 3.12, hproj =
hproj(A) := H+

proj#H
− is a subalgebra of h. In other words, hproj is the subalgebra of h

generated by H+
proj and H− (viewing the latter two as Z-submodules of h as in Definition 2.6).

We call hproj the projective Heisenberg double associated to A.

Definition 3.14 (Fock space Fproj(A) of hproj). By Proposition 3.12, the algebra hproj acts
on H+

proj. We call this the lowest weight Fock space representation of hproj and denote it by
Fproj = Fproj(A). Note that this representation is generated by the lowest weight vacuum
vector 1 ∈ H+

proj.

Proposition 3.15. The Fock space Fproj of hproj has the following properties.

(a) The only submodules of Fproj are those submodules of the form nFproj for n ∈ Z.
(b) Let Z− ∼= Z (isomorphism of Z-modules) be the representation of H− such that H−n

acts as zero for all n > 0 and H−0
∼= Z acts by left multiplication. Then Fproj is

isomorphic to the induced module Ind
hproj
H− Z− as an hproj-module.

(c) Any representation of hproj generated by a lowest weight vacuum vector is isomorphic
to Fproj.

Proof. This is an immediate consequence of Theorem 2.11, taking X+ = H+
proj. �

Note that the lowest weight Fock space Fproj is not a faithful hproj-module in general (see
Section 8.5), in contrast to the case for h (see Theorem 2.11(d)). However, we can define
a highest weight Fock space of hproj that is faithful. Consider the augmentation algebra
homomorphism ε+ : H+

proj → Z uniquely determined by ε+(H+
n ∩ H+

proj) = 0 for n > 0. Let

Z+
ε denote the corresponding H+

proj-module. We call the induced module F−proj := Ind
hproj

H+
proj

Z+
ε

the highest weight Fock space representation of hproj. It is generated by the highest weight
vacuum vector 1 ∈ Z+

ε .

Proposition 3.16. The highest weight Fock space representation F−proj of hproj is faithful.

Proof. We have hproj
∼= H+

proj ⊗ H− as k-modules and so F−proj
∼= H− as k-modules. The

action of hproj on F−proj is simply the restriction of the natural action of h on H−, which is
faithful by (an obvious highest weight analogue of) Theorem 2.11(d). �

3.4. Categorification of Fock space. In this section we prove our main result, the cate-
gorification of the Fock space representation of the Heisenberg double. We continue to fix a
dualizing tower of algebras A and to use the notation of (3.8).
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Recall the direct sums of categories

A -mod =
⊕

n∈NAn -mod, A -pmod =
⊕

n∈NAn -pmod .

For each M ∈ Am -mod, m ∈ N, define the functor IndM : A -mod→ A -mod by

IndM(N) = Ind
Am+n

Am⊗An(M ⊗N) ∈ Am+n -mod, N ∈ An -mod, n ∈ N.

For each P ∈ Ap -pmod, p ∈ N, define the functor ResP : A -mod→ A -mod by

ResP (N) = HomAp(P,ResAnAn−p⊗Ap N) ∈ An−p -mod, N ∈ An -mod, n ∈ N,

where ResP (N) is interpreted to be the zero object of A -mod if n− p < 0.
As in the proof of Proposition 3.12, we see that

IndP (A -pmod) ⊆ A -pmod, ResP (A -pmod) ⊆ A -pmod for all P ∈ A -pmod .

Thus we have the induced functors IndP ,ResP : A -pmod→ A -pmod for P ∈ A -pmod.
Since the functors IndM and ResP are exact for all M ∈ A -mod and P ∈ A -pmod,

they induce endomorphisms [IndM ] and [ResP ] of G(A). Similarly, IndP and ResP induce
endomorphisms [IndP ] and [ResP ] of Gproj(A) for all P ∈ A -pmod.

Proposition 3.17. Suppose A is a dualizing tower of algebras.

(a) For all M,N ∈ A -mod and P ∈ A -pmod, we have

([M ]#[P ])([N ]) = [IndM ] ◦ [ResP ]([N ]) = [IndM ◦ResP (N)] ∈ G(A).

(b) For all Q,P,R ∈ A -pmod, we have

([Q]#[P ])([R]) = [IndQ] ◦ [ResP ]([R]) = [IndQ ◦ResP (R)] ∈ Gproj(A).

Proof. This follows from the definition of the multiplication in G(A) and Lemma 3.10. �

Part (a) (resp. part (b)) of Proposition 3.17 shows how the action of h on F (resp. hproj

on Fproj) is induced by functors on
⊕

n≥0An -mod (resp.
⊕

n≥0An -pmod). Typically a
categorification of a representation consists of isomorphisms of such functors which lift the
algebra relations. As we now describe, this can be done if the tower of algebras is strong.

First note that the algebra structure on h is uniquely determined by the fact that H± are
subalgebras and by the relation

(3.10) xa =
∑

(x)
Rx(1)

∗(a)x(2), x ∈ H−, a ∈ H+,

between H− and H+. Since the natural action of h on H+ is faithful by Theorem 2.11(d),
equation (3.10) is equivalent to the equalities in EndH+

(3.11) Rx∗ ◦ La = ∇
(
R∆(x)∗(a⊗−)

)
, x ∈ H−, a ∈ H+.

For Q ∈ (Ap ⊗ Aq) -pmod, M ∈ Am -mod, and N ∈ An -mod, define

ResQ(M ⊗N) := HomAp⊗Aq

(
Q,S23

(
ResAmAm−p⊗ApM ⊗ ResAnAn−q⊗Aq N

))
.

For Q ∈ A -mod⊗2, we let ResQ denote the corresponding sum of functors.
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Theorem 3.18. Suppose that A is a strong tower of algebras. Then we have the following
isomorphisms of functors for all M,N ∈ A -mod and P,Q ∈ A -pmod.

IndM ◦ IndN ∼= Ind∇(M⊗N),(3.12)

ResP ◦ResQ ∼= Res∇(P⊗Q),(3.13)

ResP ◦ IndM ∼= ∇ResΨ⊗2∆Ψ−1(P )(M ⊗−).(3.14)

In particular, if A is dualizing, then the above yields a categorification of the lowest weight
Fock space representations of h(A) and hproj(A).

The isomorphisms (3.12) and (3.13) categorify the multiplication in G(A) and K(A) re-
spectively. If A is dualizing, then, in light of Proposition 3.7, the isomorphism (3.14) cat-
egorifies the relation (3.11). Thus, Theorem 3.18 provides a categorification of the lowest
weight Fock space representation F(A) of h(A). If we restrict the induction and restriction
functors to A -pmod and require M,N ∈ A -pmod in the statement of the theorem, then we
obtain a categorification of the lowest weight Fock space representation Fproj(A) of hproj(A).
Note that the categorification in Theorem 3.18 does not rely on a particular presentation
of the Heisenberg double h(A) (see Remark 6.1), in contrast to many other categorification
statements appearing in the literature.

Proof of Theorem 3.18. SupposeM ∈ Am -mod, N ∈ An -mod, P ∈ Ap -pmod, Q ∈ Aq -pmod,
and L ∈ A` -mod. Then we have

IndM ◦ IndN(L) = Ind
Am+n+`

Am⊗An+`

(
M ⊗ Ind

An+`
An⊗A`(N ⊗ L)

)
∼= Ind

Am+n+`

Am⊗An+` Ind
Am⊗An+`
Am⊗An⊗A`(M ⊗N ⊗ L)

∼= Ind
Am+n+`

Am⊗An⊗A`(M ⊗N ⊗ L)

∼= Ind
Am+n+`

Am+n⊗A` Ind
Am+n⊗A`
Am⊗An⊗A`(M ⊗N ⊗ L)

∼= Ind
Am+n+`

Am+n⊗A`

(
Ind

Am+n

Am⊗An(M ⊗N)⊗ L
)

∼= Ind∇(M⊗N) L.

Since each of the above isomorphisms is natural in L, this proves (3.12).
Similarly, we have

ResP ◦ResQ(L) = HomAp(P,Res
A`−q
A`−q−p⊗Ap HomAq(Q,ResA`A`−q⊗Aq L))

∼= HomAp(P,HomAq(Q,ResA`A`−p−q⊗Ap⊗Aq L))

∼= HomAp⊗Aq(P ⊗Q,ResA`A`−p−q⊗Ap⊗Aq L)

∼= HomAp⊗Aq(P ⊗Q,Res
A`−p−q⊗Ap+q
A`−p−q⊗Ap⊗Aq ResA`A`−p−q⊗Ap+q L)

∼= HomAp+q(Ind
Ap+q
Ap⊗Aq(P ⊗Q),ResA`A`−p−q⊗Ap+q L)

∼= Res∇(P⊗Q) L.

Since each of the above isomorphisms is natural in L, this proves (3.13).
Finally, we have

ResP ◦ IndM(L) = HomAp(P,Res
Am+`

Am+`−p⊗Ap Ind
Am+`

Am⊗A`(M ⊗ L))
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∼= HomAp(P,
⊕

s+t=p Ind
Am+`−p⊗Ap
Am−s⊗As⊗A`−t⊗At ResAm⊗A`Am−s⊗As⊗A`−t⊗At(M ⊗ L))

∼= HomAp(P,
⊕

s+t=p Ind
Am+`−p⊗Ap
Am−s⊗A`−t⊗Ap Ind

Am−s⊗A`−t⊗Ap
Am−s⊗As⊗A`−t⊗At ResAm⊗A`Am−s⊗As⊗A`−t⊗At(M ⊗ L))

∼=
⊕

s+t=p Ind
Am+`−p
Am−s⊗A`−t HomAp(P, Ind

Am−s⊗A`−t⊗Ap
Am−s⊗As⊗A`−t⊗At ResAm⊗A`Am−s⊗As⊗A`−t⊗At(M ⊗ L))

∼=
⊕

s+t=p Ind
Am+`−p
Am−s⊗A`−t HomAs⊗At(Ψ

⊗2 Res
Ap
As⊗At Ψ−1(P ),ResAm⊗A`Am−s⊗As⊗A`−t⊗At(M ⊗ L))

∼= ∇ResΨ⊗2∆Ψ−1(P )(M ⊗ L),

where the first isomorphism follows from (3.6). Since all of the above isomorphisms are
natural in L, this proves (3.14).

The final assertion of the theorem follows from Proposition 3.7 as explained in the para-
graph following the statement of the theorem. �

4. Hecke-like towers of algebras

In the remainder of the paper we will be studying well known examples of towers of al-
gebras. These examples are all quotients of groups algebras of braid groups by quadratic
relations. In this subsection, we prove that all such towers of algebras are strong and dual-
izing. In this section, F is an algebraically closed field unless otherwise specified.

Definition 4.1 (Hecke-like algebras and towers). We say that the F-algebra B is Hecke-like
(of degree n) if it is generated by elements T1, . . . , Tn−1, subject to the relations

TiTj = TjTi, |i− j| > 1,

TiTi+1Ti = Ti+1TiTi+1, i = 1, . . . , n− 2,

T 2
i = cTi + d, i = 1, . . . , n− 1,

for some c, d ∈ F (independent of i). In other words, B is Hecke-like if it is a quotient of the
group algebra of the braid group by quadratic relations (the last set of relations above).

If, for n ∈ N, the algebra An is a Hecke-like algebra of degree n, and the constants c, d
above are independent of n, then we can define an external multiplication on A =

⊕
n∈NAn

by

(4.1) ρm,n : Am ⊗ An → Am+n, Ti ⊗ 1 7→ Ti, 1⊗ Ti 7→ Tm+i.

Axioms (TA1) and (TA2) follow immediately. Furthermore, it follows from Lemma 4.2 below
that, as a left (Am ⊗ An)-module, we have

Am+n =
⊕

w∈Xm,n(Am ⊗ An)Tw,

where Xm,n is a set of minimal length representatives of the cosets (Am ⊗ An)\Am+n. Thus
Am+n is a projective left (Am⊗An)-module. Similarly, it is also a projective right (Am⊗An)-
module and so axiom (TA3) is satisfied. Finally (TA4) is satisfied since F is algebraically
closed. We call the resulting tower of algebras a Hecke-like tower of algebras.

Lemma 4.2. Suppose that B is a Hecke-like algebra of degree n.

(a) If, for w ∈ Sn, we define Tw = Ti1 · · ·Tir , where si1 · · · sir is a reduced decomposition
of w (these elements are well defined by the braid relations), then {Tw | w ∈ Sn} is a
basis of B. In particular, the dimension of B is n!.



CATEGORIFICATION AND HEISENBERG DOUBLES ARISING FROM TOWERS OF ALGEBRAS 17

(b) We have

Tw1Tw2 = Tw1w2 for all w1, w2 ∈ Sn such that `(w1w2) = `(w1) + `(w2),

where ` is the usual length function on Sn.
(c) The algebra B is a Frobenius algebra with trace map λ : B → F given by λ(Tw) = δw,w0,

where w0 is the longest element of Sn. The corresponding Nakayama automorphism
is the map ψn : B → B given by ψn(Ti) = Tn−i.

Proof. The proof of parts (a) and (b) is analogous to the proof for the usual Hecke algebra
of type A and is left to the reader. It remains to prove part (c).

Suppose B is a Hecke-like algebra of degree n. To show that B is a Frobenius algebra
with trace map λ, it suffices to show that kerλ contains no nonzero left ideals. Let I be a
nonzero ideal of B. Then choose a nonzero element b =

∑
w∈Sn awTw ∈ I and let τ be a

maximal length element of the set {w ∈ Sn | aw 6= 0}. Then we have λ(bTτ−1w0
) = aτ 6= 0.

Thus I is not contained in kerλ.
To show that ψn is the Nakayama automorphism, it suffices to show that λ(TwTi) =

λ(Tn−iTw) for all i ∈ {1, . . . , n− 1} and w ∈ Sn. We break the proof into four cases.
Case 1: `(w) ≤ `(w0)− 2. In this case we clearly have λ(TwTi) = 0 = λ(Tn−iTw).
Case 2: w = w0. Then we can write w = w0 = τsi for some τ ∈ Sn with `(τ) = `(w0)−1.

Then λ(TwTi) = λ(cTw0 + dTτ ) = c. Now, since w0si = sn−iw0, we have w = w0 = sn−iτ .
Thus λ(Tn−iTw) = λ(cTw0 + dTτ ) = c = λ(TwTi).

Case 3: wsi = w0. Since, as noted above, we have w0si = sn−iw0, it follows that
sn−iw = w0 and so λ(TwTi) = λ(Tw0) = λ(Tn−iTw).

Case 4: `(w) = `(w0) − 1, but wsi 6= w0. Then we have w = τsi for some τ ∈ Sn with
`(τ) = `(w)− 1. Thus λ(TwTi) = λ(cTw +dTτ ) = 0. Using again the equality w0si = sn−iw0,
we have sn−iw 6= w0. Then an analogous argument shows that λ(Tn−iTw) = 0. �

When considering a Hecke-like tower of algebras, we will always assume that the twisting
Ψ is given by the Nakayama automorphisms ψn described above (see Proposition 3.3).

Proposition 4.3. All Hecke-like towers of algebras are strong.

Proof. Suppose A =
⊕

n∈NAn is a Hecke-like tower of algebras. We formulate the isomor-
phism (3.6) in terms of bimodules. Fix n,m, k, ` such that n+m = k+` and set N = n+m.
Let (k,`)(AN)(n,m) denote AN , thought of as a (Ak ⊗ A`, An ⊗ Am)-bimodule in the natural
way. Then we have

ResANAk⊗A` IndANAn⊗Am
∼= (k,`)(AN)(n,m) ⊗−.

On the other hand, for each r satisfying k −m = n− ` ≤ r ≤ min{n, k}, we have

IndAk⊗A`Ar⊗An−r⊗Ak−r⊗A`+r−n ResAn⊗AmAr⊗An−r⊗Ak−r⊗A`+r−n
∼= Br ⊗−, where

Br = (Ak ⊗ A`)⊗Ar⊗An−r⊗Ak−r⊗A`+r−n (An ⊗ Am),

and where we view Ak ⊗ A` as a right (Ar ⊗ An−r ⊗ Ak−r ⊗ A`+r−n)-module via the map
a1 ⊗ a2 ⊗ a3 ⊗ a4 7→ a1a3 ⊗ a2a4. (This corresponds to the functor S23 appearing in (3.6).)
Therefore, in order to prove the isomorphism (3.6), it suffices to prove that we have an
isomorphism of bimodules

(k,`)(AN)(n,m)
∼=
⊕min{n,k}

r=n−` Br.
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Now, we have one double coset in Sk × S` \ SN/Sn × Sm for each r satisfying k −m =
n− ` ≤ r ≤ min{n, k} (see, for example, [Zel81, Appendix 3, p. 170]). Precisely, the double
coset Cr corresponding to r consists of the permutations w ∈ Sn satisfying

|w({1, . . . , n}) ∩ {1, 2, . . . , k}| = r,

|w({n+ 1, . . . , N}) ∩ {1, 2, . . . , k}| = k − r,
|w({1, . . . , n}) ∩ {k + 1, . . . , N}| = n− r,

|w({n+ 1, . . . , N}) ∩ {k + 1, . . . , N}| = `− n+ r = m− k + r.

Thus the cardinality of the double coset Cr is

|Cr| =
k! `!m!n!

r! (k − r)! (n− r)! (`− n+ r)!
.

The permutation wr ∈ SN given by

wr(i) =


i if 1 ≤ i ≤ r,

i− r + k if r < i ≤ n,

i− n+ r if n < i ≤ n+ k − r,
i if n+ k − r < i ≤ N,

is a minimal length representative of Cr. It then follows from Lemma 4.2(b) that

TwrTi = TiTwr if 1 ≤ i < r or n+ k − r < i < N,

TwrTi = Ti−r+kTwr if r < i < n,

TwrTi = Ti−n+rTwr if n < i < n+ k − r.

Thus,

(4.2) Twr(a1 ⊗ a2 ⊗ a3 ⊗ a4) = (a1 ⊗ a3 ⊗ a2 ⊗ a4)Twr

for all a1 ∈ Ar, a2 ∈ An−r, a3 ∈ Ak−r, a4 ∈ A`+r−n.
Define B′r ⊆ (k,`)(AN)(n,m) to be the sub-bimodule generated by Twr . It follows from

Lemma 4.2 that (k,`)(AN)(n,m) =
⊕min{n,k}

r=n−` B′r and that dimFB
′
r = |Cr|. It also follows that

the dimension of Ak ⊗ A` as a right module over Ar ⊗ An−r ⊗ Ak−r ⊗ A`−n+r is k!`!/r!(n−
r)!(k− r)!(`−n+ r)! and that the dimension of Am⊗An as a left module over Ar ⊗An−r ⊗
Ak−r ⊗ A`+r−n is m!n!/r!(n− r)!(k − r)!(`− n + r)!. Therefore, dimFBr = |Cr| = dimFB

′
r.

Now consider the (Ak ⊗ A`, An ⊗ Am)-bimodule map Br → B′r uniquely determined by

1Ak⊗A` ⊗ 1An⊗Am 7→ Twr ,

which is well defined by (4.2). This map is surjective, and thus is an isomorphism by
dimension considerations. �

Lemma 4.4. If A is a Hecke-like tower of algebras, then we have an isomorphism of functors
Ψ⊗2∆Ψ−1 ∼= S12∆ on A -mod (hence also on A -pmod).

Proof. It suffices to prove that, for m,n ∈ N, we have an isomorphism of functors

(Ψm ⊗Ψn) ◦ Res
Am+n

Am⊗An ◦Ψ
−1
m+n
∼= S12 ◦ Res

Am+n

An⊗Am .
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Describing each functor above as tensoring on the left by the appropriate bimodule, it suffices
to prove that we have an isomorphism of bimodules

(4.3) (Aψm ⊗ Aψn)⊗Am⊗An A
ψ
m+n
∼= S ⊗An⊗Am Am+n,

where Aψk , k ∈ N, denotes Ak, considered as an (Ak, Ak)-bimodule with the right action
twisted by ψk, and where S is An ⊗ Am considered as an (Am ⊗ An, An ⊗ Am)-module via
the obvious right multiplication and with left action given by (a1 ⊗ a2, s) 7→ (a2 ⊗ a1)s for
s ∈ S, a1 ∈ Am, a2 ∈ An.

For k ∈ N, let 1k denote the identity element of Ak and 1ψk denote this same element

considered as an element of Aψk . It is straightforward to show that the map between the
bimodules in (4.3) given by

(1ψm ⊗ 1ψn)⊗ 1ψm+n 7→ (1n ⊗ 1m)⊗ 1m+n.

(and extended by linearity) is a well defined isomorphism. �

Suppose A is a Hecke-like tower of algebras. If d 6= 0 in Definition 4.1, then Ti(Ti−c)/d =
(Ti− c)Ti/d = 1 and so Ti is invertible for all i. It follows that Tw is invertible for all w ∈ Sn.
On the other hand, if d = 0, then Ti(Ti − c) = 0 and so Ti is a zero divisor, hence not
invertible. Therefore, d 6= 0 if and only if Tw is invertible for all w.

Lemma 4.5. If A is a Hecke-like tower of algebras with d 6= 0 (equivalently, such that Ti
is invertible for all i), then we have isomorphisms of functors ∇ ∼= ∇S12 and ∆ ∼= S12∆ on
A -mod (hence also on A -pmod). In particular, A is dualizing.

Proof. Let m,n ∈ N and define w ∈ Sm+n by

w(i) =

{
m+ i if 1 ≤ i ≤ n,

i− n if n < i ≤ m+ n.

Then Tw is invertible and, by Lemma 4.2(b), we have TwTi = Tw(i)Tw for all i = 1, . . . ,m−
1,m+1, . . . ,m+n−1. Now, let S be Am⊗An considered as an (An⊗Am, Am⊗An)-module
via the obvious right multiplication and with left action given by (a1 ⊗ a2, s) 7→ (a2 ⊗ a1)s
for s ∈ S, a1 ∈ An, a2 ∈ Am. Thus, we have an isomorphism of functors S12

∼= S ⊗−. It is
straightforward to verify that the map

Am+n → Am+n ⊗An⊗Am S, a 7→ aTw ⊗ (1⊗ 1),

is an isomorphism of (Am+m, Am ⊗ An)-bimodules. It follows that ∇ ∼= ∇S12. The proof
that ∆ ∼= S12∆ is analogous. The final statement of the lemma then follows from Lemma 4.4
and Propositions 3.7 and 4.3. �

Corollary 4.6. All Hecke-like towers of algebras are strong and dualizing.

Proof. It follows immediately from Lemma 4.4 and Propositions 3.7 and 4.3 that A is strong
and that it is dualizing if and only if K(A) is cocommutative. By [BLL12, Prop. 6.1], A is
isomorphic to either the tower of nilCoxeter algebras, the tower of Hecke algebras at a generic
parameter, the tower of Hecke algebras at a root of unity, or the tower of 0-Hecke algebras.
(While the statement of [BLL12, Prop. 6.1] is over C, the proof is valid over an arbitrary
algebraically closed field.) For the tower of Hecke algebras at a generic parameter or a root
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of unity, we have d 6= 0 in Definition 4.1 and so K(A) is cocommutative by Lemma 4.4. For
the other two towers, we will see in Sections 5 and 8 that K(A) is cocommutative. �

Remark 4.7. In this section, the assumption that F is algebraically closed was only used
to conclude that axiom (TA4) of Definition 3.1 is satisfied and in the proof of Corollary 4.6.
If F is not algebraically closed but the bilinear form (3.4) is still a perfect pairing, then all
the results of this section remain true except that one must replace Corollary 4.6 by the
statement that the tower of nilCoxeter algebras, the tower of Hecke algebras at a generic
parameter, the tower of Hecke algebras at a root of unity, and the tower of 0-Hecke algebras
are all strong and dualizing.

5. Nilcoxeter algebras

In this section we specialize the constructions of Sections 2 and 3 to the tower of nilcoxeter
algebras of type A. We will see that we recover Khovanov’s categorification of the polynomial
representation of the Weyl algebra (see [Kho01]). We let F be an arbitrary field.

Definition 5.1 (Nilcoxeter algebra). The nilcoxeter algebra Nn is the unital F-algebra gen-
erated by u1, . . . , un−1 subject to the relations

u2
i = 0 for i = 1, 2, . . . , n− 1,

uiuj = ujui for i, j = 1, . . . , n− 1 such that |i− j| > 1,

uiui+1ui = ui+1uiui+1 for i = 1, 2, . . . , n− 2.

The representation theory of Nn is straightforward. (We refer the reader to [Kho01] for
proofs of the facts stated here.) Up to isomorphism, there is one simple module Ln, which
is one dimensional, and on which the generators ui all act by zero. The projective cover of
Ln is Pn = Nn, considered as an Nn-module by left multiplication. We have isomorphisms
of Hopf algebras

K(N) ∼= Z[x], [Pn] 7→ xn,

G(N) ∼= Z[x, x2/2!, x3/3!, . . . ], [Ln] 7→ xn/n!.

In both cases, the coproduct is given by ∆(x) = x⊗ 1 + 1⊗ x. We also have

Gproj(N) ∼= Z[x],

and the Cartan map K(N) → G(N) of Definition 3.9 corresponds to the natural inclusion
Z[x] ↪→ Z[x, x2/2!, x3/3!, . . . ].

The inner product satisfies 〈xm, xn
n!
〉 = 〈[Pm], [Ln]〉 = δmn. Therefore x∗

(
xm

m!

)
= xm−1

(m−1)!
, i.e.

x∗ = ∂x corresponds to partial derivation by x. Therefore the algebra h in this setting is the
subalgebra of EndZ[x, x2/2, x3/3!, . . . ] generated by x, x2!, x3/3!, . . . and ∂x. In addition,
hproj is the algebra generated by x and ∂x, with relation [∂x, x] = 1. The Fock space Fproj

is the representation of hproj given by its natural action on Z[x]. It follows from the above
that Q⊗Z h ∼= Q⊗Z hproj is the rank one Weyl algebra.

By Remark 4.7, the tower N is strong and dualizing. Thus, Theorem 3.18 provides
a categorification of the polynomial representation of the Weyl algebra. In fact, (3.14)
specializes to the main result of [Kho01] if one takes M and P to be the trivial A1-modules.
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Indeed, with these choices we have Ψ⊗2∆Ψ−1(P ) = (F0 ⊗ F1)⊕ (F1 ⊗ F0), where Fi denotes
the trivial Ai-module for i = 0, 1. Then (3.14) becomes

Res
An+1

An
◦ Ind

An+1

An
∼=
(

IndAnAn−1
◦Res(F0⊗F1)(F1 ⊗−)

)
⊕
(
Res(F1⊗F0)(M ⊗−)

)
∼=
(

IndAnAn−1
◦ResAnAn−1

)
⊕ Id,

which is the categorification of the relation ∂xx = x∂x + 1 appearing in [Kho01, (13)]. (Note
that while [Kho01] works over the field Q, the arguments go through over more general F.)

6. Hecke algebras at generic parameters

In this section we specialize the constructions of Sections 2 and 3 to the tower of algebras
corresponding to the Hecke algebras of type A at a generic parameter. The results of this
section also apply to the group algebra of the symmetric group (the case when q = 1).

6.1. The Hecke algebra and symmetric functions. Let An be the Hecke algebra at a
generic value of q. More precisely, assume q ∈ C× is not a nontrivial root of unity and let
An be the unital C-algebra with generators Ti, i = 1, . . . , n− 1, and relations

T 2
i = q + (q − 1)Ti for i = 1, 2, . . . , n− 1,

TiTj = TjTi for i, j = 1, . . . , n− 1 such that |i− j| > 1,

TiTi+1Ti = Ti+1TiTi+1 for i = 1, 2, . . . , n− 2.

By convention, we set A0 = A1 = C. Then A =
⊕

n∈NAn is a Hecke-like tower of algebras.
It is well known that a complete set of irreducible An-modules is given by {Sλ | λ ∈ P(n)},
where Sλ is the Specht module corresponding to the partition λ (see [DJ86, §6]). Since the
An are semisimple, we have K(A) = G(A). In fact, both are isomorphic (as Hopf algebras)
to Sym, the algebra of symmetric functions in countably many variables x1, x2, . . . over Z.
This isomorphism is given by the map sending [Sλ] to sλ, the Schur function corresponding
to the partition λ (see, for example, [Zel81]). Recall that Sym is a graded connected Hopf
algebra:

Sym =
⊕

n≥0 Symn,

where Symn is the Z-submodule of Sym consisting of homogeneous polynomials of degree n.
We adopt the convention that Symn = 0 for n < 0. The inner product (3.4) corresponds to
the usual inner product on Sym under which the Schur functions are self-dual. Furthermore,
the monomial and homogeneous symmetric functions are dual to each other:

〈mλ, hµ〉 = δλ,µ, λ, µ ∈ P .

Under this inner product, Sym is self-dual as a Hopf algebra. In other words, (Sym, Sym) is
a dual pair of Hopf algebras.

6.2. The Heisenberg algebra. Applying the construction of Section 2.2 to the dual pair
(Sym, Sym), we obtain the Heisenberg algebra h = h(Sym, Sym). We obtain a minimal
presentation of h by considering two collections of polynomial generators for Sym (one for
Sym viewed as H+ and one for Sym viewed as H−). In particular, if we choose the power
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sum symmetric functions pn, n ∈ N+, in both cases, we get the usual presentation of the
Heisenberg algebra:

[pn, pk] = 0, [p∗n, p
∗
k] = 0, [p∗n, pk] = nδn,k, n, k ∈ N+.

However, the p∗n, pn, n ∈ N, are only a generating set for h ⊗Z Q since the power sum
symmetric functions only generate the ring of symmetric functions over Q.

One the other hand, if we choose the elementary symmetric functions en, n ∈ N+, and
the complete symmetric functions hn, n ∈ N+, we have the following relations:

(6.1) [en, ek] = 0, [h∗n, h
∗
k] = 0, [h∗n, ek] = ek−1h

∗
n−1, n, k ∈ N+.

This gives a presentation of h (one does not need to tensor with Q) and is the one used in
the categorification of h given in [Kho, LS13] (for an overview, see [LS12]).

Other choices of polynomial generators result in different presentations. For the sake of
completeness we record the other nontrivial relations:

(6.2) [e∗n, hk] = hk−1e
∗
n−1, [h∗n, hk] =

∑
i≥1 hk−ih

∗
n−i and [e∗n, ek] =

∑
i≥1 ek−ie

∗
n−i.

To prove these relations, we use the fact (see, for example, [Zab, Prop. 3.6]) that, for k, n ∈ N,
we have

h∗k(hn) = hn−k, h∗k(en) = (δk0 + δk1)en−k, h∗k(pn) = δkn + δk0pn,

e∗k(hn) = (δk0 + δk1)hn−k, e∗k(en) = en−k, e
∗
k(pn) = (−1)k−1δkn + δk0pn,

p∗k(hn) = hn−k, p∗k(en) = (−1)k−1en−k, p∗k(pn) = nδnk + δk0pn.

Then, for example, since ∆(en) =
∑n

i=0 ei ⊗ en−i, we have, by Lemma 2.8,

e∗n(hkf) =
∑n

i=0 e
∗
i (hk)e

∗
n−i(f) = hke

∗
n(f) + hk−1e

∗
n−1(f) for all f ∈ Sym.

Thus [e∗n, hk] = hk−1e
∗
n−1. The other relations are proven similarly.

6.3. Categorification. By Corollary 4.6, the tower A is strong and dualizing. For n ∈ N,
let En (resp. Ln) be the one-dimensional representation of An on which each Ti acts by
−1 (resp. by q). Then ∆(En) ∼=

∑n
i=0Ei ⊗ En−i and ∆(Ln) ∼=

∑
i=0 Li ⊗ Ln−i. Since

HomAn(Ln, En) = 0 unless n = 0 or n = 1 (in which case En and Ln are both the trivial
module), we have, by (3.14),

ResLn ◦ IndEk
∼= ∇

(⊕n
i=0 ResLi⊗Ln−i(Ek ⊗−)

) ∼= (IndEk ◦ResLn)⊕
(
IndEk−1

◦ResLn−1

)
,

which is a categorification of the last relation of (6.1) since, under the isomorphism G(A) ∼=
K(A) ∼= Sym, the class of the representation Ln corresponds to hn and the class of Ek
corresponds to ek. By (3.12), (3.13), and Lemma 4.5, we have

IndEn ◦ IndEk
∼= Ind∇(En⊗Ek)

∼= Ind∇(Ek⊗En)
∼= IndEk ◦ IndEn , and

ResLn ◦ResLk
∼= Res∇(Ln⊗Lk)

∼= Res∇(Lk⊗Ln)
∼= ResLk ◦ResLn ,

which categorifies the first two relations of (6.1).

Remark 6.1. While we have chosen to show how Theorem 3.18 recovers a categorification
of the relations (6.1), we could just have easily used it to recover categorifications of the
relations (6.2). This is an illustration of the fact that Theorem 3.18 does not rely on a
particular presentation of the Heisenberg double h(A).
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Remark 6.2. The special case of Theorem 2.11(c) for the dual pair (Sym, Sym) is known
as the Stone–von Neumann Theorem.

Remark 6.3. Since we have K(A) = G(A), it follows that hproj = h in this case (see
Definition 3.13).

7. Hecke algebras at roots of unity

We now consider Hecke algebras at a root of unity. Fix ` ∈ N+ and consider the unital
C-algebra An with generators and relations as in Section 6.1, but with q replaced by a fixed
`th root of unity ζ. By Corollary 4.6, A =

⊕
n∈NAn is a strong dualizing tower of algebras.

We refer the reader to [LLT96, §3.3] for an overview of some of the facts about Grothendieck
groups stated in this section.

Let J` ⊆ Sym be the ideal generated by the power sum symmetric functions p`, p2`, p3`, . . . ,
and let J ⊥` be its orthogonal complement relative to the standard inner product on Sym
(see Section 6.1). Then there are isomorphisms of Hopf algebras

K(A) ∼= J ⊥` and G(A) ∼= Sym/J`.
Moreover, under these identifications, the inner product between K(A) and G(A) is that
induced by the standard inner product on Sym.

Recall that a partition λ is said to be `-regular if each part appears fewer than ` times.
The specialization S̄λ of the Specht module Sλ, λ ∈ P(n), to q = ζ is, in general, no longer
an irreducible An-module. However, it was shown in [DJ86, §6] that if λ is `-regular, then
S̄λ contains a unique maximal submodule rad S̄λ. As λ varies over the `-regular partitions of
n, Dλ := S̄λ/ rad S̄λ varies over a complete set of nonisomorphic irreducible representations
of An. It follows that a basis of G(A) (resp. K(A)) is given by the [Dλ] (resp. [Pλ], where Pλ
is the projective cover of Dλ) as λ varies over the set of `-regular partitions. In theory, one
could compute the relations in h(A) in these bases by using the results of [LLT96] to express
the basis elements in terms of the standard symmetric functions and then use the relations
in Section 6.2. In this way, one would obtain a presentation of h(A). Of course, in general,
this presentation would be far from minimal.

It fact, it turns out that h(A) is an integral from of the usual Heisenberg algebra h(Sym, Sym)
(see Section 6.2). This can be seen as follows. Recall that the set of power sum functions
pλ, λ ∈ P , is an orthogonal basis of SymQ = Q⊗Z Sym. (Throughout we use a subscript Q
to denote extension of scalars to the rational numbers.) Therefore J`,Q has a basis given by
the set

{pλ | ` divides λi for at least one i},
and J ⊥`,Q has a basis

{pλ | ` does not divide λi for any i}.
Similarly, (Sym/J`)Q has a basis

{pλ + J` | ` does not divide λi for any i}.

Remark 7.1. We see from the above that G(An) and K(An) have bases indexed, on the one
hand, by the set of `-regular partitions of n and, on the other hand, by the set of partitions
of n in which no part is divisible by `. A correspondence between these two sets of partitions
is given by Glaisher’s Theorem (see, for example, [Leh46, p. 538]).



24 ALISTAIR SAVAGE AND ODED YACOBI

For m ∈ N+ such that ` does not divide m, let qm = pm + J`. Then we have algebra
isomorphisms

J ⊥`,Q ∼= Q[pm | m ∈ N+, ` does not divide m], and

(Sym/J`)Q ∼= Q[qm | m ∈ N+, ` does not divide m].

Thus, h(A)Q is generated by {pm, qm |m ∈ N+, ` does not divide m} subject to the relations
[pm, pn] = [qm, qn] = 0 and [pm, qn] = mδm,n1. It follows that h(A)Q is isomorphic as
an algebra to the classical Heisenberg algebra h(Sym, Sym)Q. Thus we have the following
proposition.

Proposition 7.2. The Heisenberg double associated to the tower of Hecke algebras at a root
of unity is an integral form of the classical Heisenberg algebra:

h(A)Q ∼= h(Sym, Sym)Q.

By Proposition 7.2, as ` varies over the positive integers, we obtain a family of integral
forms of the classical Heisenberg algebra. It would be interesting to work out minimal
presentations of these integral forms over Z. Furthermore, the Cartan map K(A) → G(A)
is known to have a nonzero determinant (see [BK02, Cor. 1]). Therefore, it induces an
isomorphism Gproj(A)Q ∼= G(A)Q, which implies that hproj(A)Q ∼= h(A)Q. It is not known
whether hproj(A) ∼= h(A).

It is known that the category A -pmod yields a categorification of the basic representation

of ŝln via i-induction and i-restriction functors (see [LLT96, p. 218]). Theorem 3.18 provides

a categorification of the principle Heisenberg subalgebra of ŝln.

8. 0-Hecke algebras

We now specialize the constructions of Sections 2 and 3 to the tower of 0-Hecke algebras
of type A. We begin by recalling some basic facts about the rings of quasisymmetric and
noncommutative symmetric functions. We refer the reader to [LMvW] for further details.

8.1. The quasisymmetric functions. Let QSym be the algebra of quasisymmetric func-
tions in the variables x1, x2, . . . over Z. Recall that this is the subalgebra of ZJx1, x2, . . .K
consisting of shift invariant elements. That is, f ∈ QSym if and only if, for all k ∈ N+, the
coefficient in f of the monomial xn1

1 x
n2
2 · · ·x

nk
k is equal to the coefficient of the monomial

xn1
i1
xn2
i2
· · ·xnkik for all strictly increasing sequences of positive integers i1 < i2 < · · · < ik and

all n1, n2, . . . , nk ∈ N. The algebra QSym is a graded algebra:

QSym =
⊕

n≥0 QSymn,

where QSymn is the Z-submodule of QSym consisting of homogeneous elements of degree n.
We adopt the convention that QSymn = 0 for n < 0.

The algebra QSym has a basis consisting of the monomial quasisymmetric functions Mα,
which are indexed by compositions α = (α1, . . . , αr) ∈ C:

Mα =
∑

i1<···<ir x
α1
i1
· · ·xαri` .

We adopt the convention that M∅ = 1.
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The algebra QSym has another important basis, the fundamental quasisymmetric func-
tions Fα, which are defined as follows. For two compositions α, β, write β � α if β is a
refinement of α. For example, (1, 2, 1) � (1, 3). Then set

Fα =
∑

β�αMβ, α ∈ C.
The algebra QSym is, in fact, a graded connected Hopf algebra. To describe the co-

product, we introduce a bit of notation relating to compositions. For two compositions
α = (α1, . . . , αr) and β = (β1, . . . , βs) let α · β = (α1, . . . , αr, β1, . . . , βs) and α � β =
(α1, . . . , αr + β1, . . . , βs). So, for example, if α = (1, 2, 1) and β = (3, 5), then α · β =
(1, 2, 1, 3, 5) and α� β = (1, 2, 4, 5). Then the coproduct on QSym is given by either of the
two following formulas:

∆(Mα) =
∑

α=β·γMβ ⊗Mγ,

∆(Fα) =
∑

α=β·γ or α=β�γ Fβ ⊗ Fγ.
Note that naturally Sym ⊆ QSym. In particular, the monomial symmetric functions can

be handily expressed in terms of the monomial quasisymmetric functions:

(8.1) mλ =
∑

α̃=λMα, where α̃ is the partition obtained by sorting α.

8.2. The noncommutative symmetric functions. Define NSym, the algebra of noncom-
mutative symmetric functions, to be the free associative algebra (over Z) generated by the
alphabet h1,h2, . . . . Thus NSym has a basis given by hα := hα1 · · ·hαr , α ∈ C. This is a
graded algebra:

NSym =
⊕

n≥0 NSymn,

where NSymn = Span{hα | α ∈ C(n)}. We adopt the convention that NSymn = 0 for n < 0.
The noncommutative ribbon Schur functions rα are defined to be

rα =
∑

α�β(−1)`(α)−`(β)hβ, α ∈ C.
These basis elements multiply nicely:

hαhβ = hα·β and rαrβ = rα·β + rα�β.

In fact, NSym is a graded connected Hopf algebra. The coproduct is given by the formula

(8.2) ∆(hn) =
∑n

i=0 hi ⊗ hn−i.

8.3. The 0-Hecke algebra and its Grothendieck groups. Let F be an arbitrary field
and let An be the unital F-algebra with generators and relations as in Section 6.1, but with
q replaced by 0 (i.e. the 0-Hecke algebra). Consider the tower of algebras A =

⊕
n∈NAn.

The irreducible An-modules are all one-dimensional and are naturally enumerated by the
set C(n) of compositions of n (see [Nor79, §3] and [KT97, §5.2]). Let Lα be the irreducible
module corresponding to the composition α ∈ C(n) and let Pα be its projective cover. We
then have (see [KT97, Cor. 5.8 and Cor. 5.11] – while the statements there are for the case
that F = C, the proofs remain valid over more general fields)

H− = K(A) ∼= NSym, [Pα] 7→ rα,(8.3)

H+ = G(A) ∼= QSym, [Lα] 7→ Fα.(8.4)

We also have
Gproj(A) ∼= Sym,
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and the Cartan map K(A)→ Gproj(A) of Definition 3.9 corresponds to the projection of Hopf
algebras

(8.5) χ : NSym � Sym, hα 7→ hα̃.

Alternatively, it is given by χ(rα) = rα, where rα is the usual ribbon Schur function. This is
a reformulation of [KT97, Prop. 5.9].

The bilinear form (3.4) becomes the well-known perfect Hopf pairing of the Hopf algebras
QSym and NSym given as follows:

〈·, ·〉 : NSym×QSym→ Z,
〈hα,Mβ〉 = δαβ = 〈rα, Fβ〉 , α, β ∈ C.

In this way, (NSym,QSym) is a dual pair of Hopf algebras.

8.4. The quasi-Heisenberg algebra. We now apply the construction of Section 2.2 to the
dual pair (QSym,NSym).

Definition 8.1 ((Projective) quasi-Heisenberg algebra). We call q := h(QSym,NSym) the
quasi-Heisenberg algebra. We define the projective quasi-Heisenberg algebra qproj to be the
subalgebra of q generated by NSym and Sym ⊆ QSym (see Definition 3.13).

Lemma 8.2. In q we have, for all α = (α1, . . . , αr) ∈ C, n ∈ N+,[
Rh∗n,Mα

]
= M(α1,...,αr−1)

Rh∗n−αr ,

with the understanding that Rh∗k = 0 for k < 0.

Proof. By Lemma 2.8 and (8.2), we have

Rh∗n(MαG) =
∑n

i=0
Rh∗i (Mα) Rh∗n−i(G).

So, if n ≥ αr, we have Rh∗n(MαG) = Mα
Rh∗n(G) + M(α1,...,αr−1)

Rh∗n−αr(G). The result
follows. �

Corollary 8.3. For n ∈ N and λ ∈ P, we have

(8.6) [Rh∗n,mλ] =
∑n

j=1 mλ−j
Rh∗n−j,

where λ− j is equal to the partition obtained from removing a part j from λ if λ has such a
part and mλ−j is defined to be zero otherwise. In particular, for n, k ∈ N, we have

[Rh∗n, pk] = Rh∗n−k, [Rh∗n, ek] = ek−1
Rh∗n−1, [Rh∗n, hk] =

∑n
j=1 hk−j

Rh∗n−j.

Proof. Equation (8.6) follows from (8.1) and Lemma 8.2. The remainder of the relations then
follow by expressing pk, ek and hk in terms of the monomial symmetric functions mλ. �

Corollary 8.4. The quasi-Heisenberg algebra q is generated by the set

{Mα,
Rh∗n | α ∈ C, n ∈ N+}.

The Mα multiply as in QSym (for a precise description of this product, see [LMvW, §3.3.1])
and [

Rh∗n,Mα

]
= M(α1,...,αr−1)

Rh∗n−αr , α = (α1, . . . , αr) ∈ C, n ∈ N+.
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Remark 8.5. We also note that the algebra q has generators

{Fα, Rh∗n | α ∈ C, n ∈ N+}.

From a representation theoretic point of view, these are more natural since the Fα correspond
to simple An-modules (see (8.4)). The Fα then multiply as in QSym (for a precise description
of this product, see [LMvW, §3.3.1]) and

(8.7)
[
Rh∗n, Fα

]
=
∑αr

i=1 F(α1,...,αr−i)
Rh∗n−i, α = (α1, . . . , αr) ∈ C, n ∈ N+.

Remark 8.6. Note that the above presentations are far from minimal. There are polynomial
generators of QSym, given by modified Lyndon words (see [DS99, Th. 1.5]), which one could
use instead of the Mα in the above presentation. This would result in a minimal presentation
of q.

The following result gives a presentation of the projective quasi-Heisenberg algebra in
terms of generators and relations.

Proposition 8.7. The algebra qproj is generated by the set

{en, Rh∗n | n ∈ N}.

The relations are

[en, ek] = 0, [Rh∗n, ek] = ek−1
Rh∗n−1, n, k ∈ N.

Proof. This follows immediately from the definition of qproj and Corollary 8.3. �

Remark 8.8. Note the similarity of the presentation of Proposition 8.7 to the presentation
of the usual Heisenberg algebra h(Sym, Sym) given in (6.1). The only difference is that
the h∗n commute, whereas the Rh∗n do not. There is a natural surjective map of algebras
qproj → h(Sym, Sym) given by en 7→ en, Rh∗n 7→ h∗n, n ∈ N+.

8.5. Fock spaces and categorification. As described in Section 2.3, the quasi-Heisenberg
algebra q acts naturally on QSym and we call this the lowest weight Fock space representation
of q. By Theorem 2.11(c), any representation of q generated by a lowest weight vacuum vector
is isomorphic to QSym.

Similarly, as in Definition 3.14, the projective quasi-Heisenberg algebra qproj acts natu-
rally on Sym and we call this the lowest weight Fock space representation of qproj. As a
qproj-module, Sym is generated by the lowest weight vacuum vector 1 ∈ Sym. By Propo-
sition 3.15(c), any representation of qproj generated by a lowest weight vacuum vector is
isomorphic to Sym. However, this representation is not faithful since it factors through the
projection from qproj to the usual Heisenberg algebra (see Remark 8.8). On the other hand,
the highest weight Fock space representation of qproj is faithful (see Proposition 3.16).

By Remark 4.7, A is a strong dualizing tower of algebras. Therefore, Theorem 3.18
yields a categorification of the Fock space representations of q and qproj. For instance, it is
straightforward to verify that

∆(Lα) ∼=
⊕

α=β·γ or α=β�γ Lβ ⊗ Lγ for all α ∈ C,
Ψ⊗2∆Ψ−1(P(n)) ∼= ∆(P(n)) ∼=

⊕n
i=0 P(i) ⊗ P(n−i) for all n ∈ N.
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For α = (α1, . . . , αr) ∈ C and i ∈ {0, . . . , αr}, it follows that ResP(i)
Lα = L(α1,...,αr−i). Thus

we have

ResP(n)
◦ IndLα

∼= ∇
(⊕n

i=0 ResP(i)⊗P(n−i)(Lα ⊗−)
)
∼=
⊕αr

i=0 IndL(α1,...,αr−i)
ResP(n−i) ,

which is a categorification of the relation (8.7). The categorification of the multiplication of
the elements Fα, α ∈ C, follows from the computation of the induction in A -mod (see, for
example, the proof of [DKKT97, Prop. 4.15]).

9. Application: QSym is free over Sym

As a final application of the methods of the current paper, we use the generalized Stone–
von Neumann Theorem for qproj (Proposition 3.15) to prove that QSym is free over Sym.
This gives a proof that is quite different from the traditional one using modified Lyndon
words (see [DS99, Cor. 1.6]).

Lemma 9.1. Suppose V is a qproj-module which is generated (as a qproj-module) by a finite
set of lowest weight vacuum vectors. Then V is a direct sum of copies of lowest weight Fock
space.

Proof. Let {vi}i∈I denote a set of lowest weight vacuum vectors that generates V and such
that I has minimal cardinality. We claim that

(9.1) Zvi ∩ Zvj = {0} for all i 6= j.

Suppose, on the contrary, that Zvi ∩ Zvj 6= {0} for some i 6= j. Then nivi = njvj for some
ni, nj ∈ Z. Let m = gcd(ni, nj) and choose ai, aj ∈ Z such that m = aini + ajnj. Set
w = ajvi + aivj. Then w is clearly a lowest weight vacuum vector, and we have

ni
m
w =

1

m
(ajnivi + ainivj) =

1

m
(ajnjvj + ainivj) = vj.

Similarly,
nj
m
w = vi. Thus {vk}k∈I\{i,j} ∪ {w} is a set of lowest weight vacuum vectors that

generates V , contradicting the minimality of the cardinality of I.
By Proposition 3.15(c), qproj · vi ∼= Sym as qproj-modules. It then follows from Proposi-

tion 3.15(a) and (9.1) that qproj · vi ∩ qproj · vj = {0} for i 6= j. The lemma follows. �

Define an increasing filtration of qproj-submodules of QSym as follows. For n ∈ N, let

QSym(n) :=
∑

`(α)≤n qproj ·Mα.

In particular, note that QSym(0) = Sym. We adopt the convention that QSym(−1) = {0}.

Proposition 9.2. The space QSym of quasisymmetric functions is free as a Sym-module.

Proof. Note that, for α ∈ C such that `(α) = n, we have Rh∗m(Mα) ∈ QSym(n−1) for any

m > 0. Therefore, in the quotient Vn = QSym(n)/QSym(n−1), such Mα are lowest weight
vacuum vectors. It is clear that these vectors generate Vn, and therefore, by Lemma 9.1,

Vn =
⊕

v∈Sn Sym · v,
where Sn is some collection of vacuum vectors in Vn.

Consider the short exact sequence

0→ QSym(n−1) → QSym(n) → Vn → 0.
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Since Vn is a free (hence projective) Sym-module, the above sequence splits. Therefore, if

QSym(n−1) is free over Sym, then so is QSym(n).
By the argument in the previous paragraph we can choose nested sets of vectors in QSym

S̃0 ⊆ S̃1 ⊆ S̃2 ⊆ · · ·

such that, for every n ∈ N, we have QSym(n) =
⊕

ṽ∈S̃n Sym · ṽ. Let S̃ =
⋃
n∈N S̃n. Then

QSym =
⊕

v∈S̃ Sym · v. �
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