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Abstract

In an electrically conducting fluid two types of turbulence with a preferred direction are distinguished:
planar turbulence, in which every velocity of the turbulent ensemble of flows has no component in the
given direction; and two-dimensional turbulence, in which every velocity in the turbulent ensemble is
invariant under translation in the preferred direction. Under the additional assumptions of two-scale
and homogeneous turbulence with zero mean flow, the associated alpha- and beta-effects are derived
in the second-order smoothing approximation when the electrically conducting fluid occupies all space.
Two antidynamo theorems, which establish necessary conditions for dynamo action, are shown to follow
from the special structures of these alpha and beta effects. The theorems are analogues of the laminar
planar velocity and two-dimensional antidynamo theorems. The mean magnetic field is general in the
planar theorem but only two-dimensional in the two-dimensional theorem. The laminar theorems imply
decay of the total magnetic field for any velocity of the associated turbulent ensemble. However, the
mean-field theorems are not fully consistent with this, because further conditions beyond those arising
from the turbulence must be imposed on the beta-effect to establish decay of the mean magnetic field.
The two mean-field theorems relax the previous restriction to turbulence which is both two-dimensional
and planar.

KEYWORDS: magnetohydrodynamics, dynamo theory, mean-field electrodynamics, alpha-effect,
beta-effect, antidynamo theorem

1 Introduction

In an electrically conducting fluid, which occupies all space E3 and moves with a prescribed velocity v, the
magnetic induction field B is governed by the equations,

∂tB = η∇2B +∇× (v ×B) , ∇ ·B = 0 , in E3. (1.1)

We assume the magnetic diffusivity η is uniform. Further conditions must be imposed on v and B for the
magnetic field B to be self-exciting. The velocity acts as a dynamo if there is a magnetic field satisfying (1.1),
which does not decay to zero as t → ∞. An antidynamo theorem (ADT) is a collection of results (Ivers
1984), which establishes conditions under which a magnetic field cannot be maintained by the inductive
effect of the velocity, i.e. dynamo action.

1.1 The Laminar Planar Velocity and Two-Dimensional ADT’s

In the laminar planar velocity ADT, which is the cartesian analogue of the toroidal velocity ADT (Elsasser
1946, Bullard & Gellman 1954), the flow is planar and the magnetic field is general. A velocity field v is
planar if there is a cartesian coordinate system (x1, x2, x3) with unit vectors (11,12,13), such that v is of
the form

v = v1(x1, x2, x3, t)11 + v2(x1, x2, x3, t)12 . (1.2)

Thus v is everywhere parallel to the x1x2-plane. Results have been established by Moffatt (1978), Zeldovich
& Ruzmaikin (1980) and Ivers & James (1988). A second theorem of present interest is the laminar two-
dimensional ADT, which is the cartesian analogue of Cowling’s (1934) axisymmetric ADT. The velocity and
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magnetic fields are two-dimensional, i.e. there is a cartesian coordinate system (x1, x2, x3), such that v and
B are independent of x3. Thus v is of the form

v = v1(x1, x2, t)11 + v2(x1, x2, t)12 + v3(x1, x2, t)13 . (1.3)

Results of varying generality have been established by Cowling (1957), Zeldovich (1957), Lortz (1968),
Vainshtein & Zeldovich (1972), Lortz & Meyer-Spasche (1982a,b,c), Lortz, Meyer-Spasche & Stredulinsky
(1984) and Stredulinsky, Meyer-Spasche & Lortz (1986).

1.2 Two-Scale Turbulence and ADT’s

We derive mean-field electrodynamic analogues of the laminar planar velocity and two-dimensional ADT’s.
The velocity and magnetic field are decomposed into mean and fluctuating parts v = v+v′ and B = B+B′,
where the overline denotes the ensemble average. We assume throughout that the mean velocity is zero,
v = 0. We consider only two-scale turbulence (Krause & Rädler 1980, Moffatt 1978), which leads to the
mean magnetic induction equation,

∂tB = η∇2B +∇× (α ·B + β · ·∇B) , in E3. (1.4)

In cartesian component form (β · ·∇B)i = βijk∂kBj . The mean magnetic field is solenoidal everywhere,

∇ ·B = 0 , in E3. (1.5)

The alpha-effect acts as a dynamo if there is a mean magnetic field satisfying (1.7), which does not decay to
zero as t→∞.

To isolate the alpha-effect from the beta-effect and simplify the analysis the isotropic beta-effect,

β := βε , in E3, (1.6)

is often assumed, where ε is the unit rank-3 alternating tensor. Thus, if the scalar β is uniform, the mean
induction equation reduces to

∂tB = ηT∇2B +∇× (α ·B) , in E3, (1.7)

where ηT := η + β is the turbulent magnetic diffusion. Also commonly considered is the general beta-effect
with one invariant direction e; in cartesian component form,

βeijk := βεijk + β1eiδjk + β2ejδki + β3ekδij + β4eiemεmjk + β5ejemεimk + β6ekemεijm + β7eiejek . (1.8)

The β1 term does not contribute to (1.4) due to (1.5). Often only terms linear in e are included (Krause
& Rädler 1980). Since β is a pseudo-tensor, the coefficients βe and β4:6 are (proper) scalars, and β1:3,7 are
pseudo-scalars, if e is a proper (polar) vector; β and β1:7 are (proper) scalars, if e is a pseudo (axial) vector.
Irrespective of the mirror-symmetry of e, βe = 0 (indeed all β = 0) if the turbulence is mirror-symmetric
(see Moffatt 1978 p.155). In fact, if the turbulence is mirror-symmetric, then B = 0.

Krause & Rudiger (1974) defined turbulence to be ‘two-dimensional’ in E3, if any velocity in the turbulent
ensemble is of the form v = v1(x1, x2, t)11 + v2(x1, x2, t)12. This more restricted form, which is the inter-
section of the forms (1.2) and (1.3), is a consequence of the Proudman-Taylor theorem (Proudman 1916) for
rapidly rotating fluids. Krause & Rudiger (1974) also defined isotropic ‘two-dimensional’ turbulence. Krause
(1976; see also Krause and Rädler 1980) showed that in two-scale isotropic ‘two-dimensional’ homogeneous
turbulence in E3, the alpha-effect must be of the form

α =

 0 0 α13

0 0 α23

α31 α32 0

 , (1.9)

where the αij are constants. Krause proved that, for general β, the alpha-effect (1.9) cannot produce dynamo
action, even for general mean magnetic fields with spatial dependence eik·r, if 0 < |k| � 1. However, the
argument fails if α does not contribute positively to Re γ. The basis of the theorem is the following elegant
result (Krause 1973,1976):

Theorem 1. The alpha-effect in isotropic homogeneous two-scale turbulence in E3 is a dynamo for 0 <
|k| � 1 only if the adjugate adjαS of the symmetric part αS of α is not negative semi-definite.
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The superscript S denotes the symmetric part. This theorem is only valid for small wave-vectors 0 < |k| � 1.
In cartesian component form, the element Aij of the adjugate adjαS is the cofactor of αSji and αS ·adjαS =

I detαS . The converse fails since α need not contribute to Re γ. For the alpha-effect (1.9)

adjαS =
1

4

 −(α23 + α32)2 −(α13 + α31)(α23 + α32) 0
−(α13 + α31)(α23 + α32) −(α13 + α31)2 0

0 0 0

 , (1.10)

which is negative semi-definite. Rüdiger (1978) invoked this result to explain the observation that magnetic
(nonmagnetic) A stars are mostly slow (fast) rotators.

For turbulence under rapid rotation with Rossby number |v|/Ω` � 1 and magnetic Reynolds number
R′m := Ω`2/η � 1, where ` is the fluctuating length-scale, and with viscous dissipation negligible compared
to ohmic dissipation, Moffat (1970b) derived an alpha-effect of the form α = α1(I − ΩΩ/Ω2), where I =
1111 + 1212 + 1313 is the identity tensor and Ω is the rotation rate. This alpha-effect is inconsistent
with (1.9). To explain this inconsistency we define two distinct forms of turbulence, planar turbulence and
two-dimensional turbulence, analogously to the laminar dynamo case.

Definition 1 (Planar Turbulence). The turbulence is planar if there is a direction e such that e · v = 0 for
all velocities v in the ensemble.

The direction e is the same for all velocities. If the x3-axis is aligned with e, then the turbulence is planar
if any velocity v in the ensemble is of the form (1.2). We show in section 3.1 that, if the mean velocity is
zero and the turbulence is homogeneous and planar, then the alpha-effect is of the cartesian form

α =

 0 0 α13

0 0 α23

α31 α32 α33

 (1.11)

where the αij are constants. The matrix (1.11) may be non-symmetric.
If the turbulence is planar the beta-effect is also not isotropic and must be restricted. Thus it is shown

in section 3.1 that in planar turbulence the beta-effect must satisfy the conditions,

βijk = 0 , i, j = 1, 2 . (1.12)

The isotropic beta-effect (1.6) fails this condition. It can be minimally modified by zeroing the relevant
components as follows,

β = β(ε− ε · e⊗ e) , in E3, (1.13)

where ⊗ denotes the tensor product. In cartesian component form, βijk = β(εijk − εij3δk3). If the beta-
effect shares the preferred direction e of the turbulence in definition 1 then it must also be of the form (1.8).
Imposing (1.12) on βe in (1.8) with β1 = 0 gives β3 = 0 and β6 = −β, i.e.

βpl
ijk := β(εijk − εij3δk3) + β2δj3δki + β4δi3ε3jk + β5δj3εi3k + β7δi3δj3δk3 . (1.14)

The beta-effect (1.13) is a special case of βpl.

Definition 2 (Two-Dimensional Turbulence). The turbulence is two-dimensional if there is a direction e
such that e · ∇v = 0 for all velocities v in the ensemble.

The direction e is the same for all velocities. If the x3-axis is aligned with e, then the turbulence is two-
dimensional if any velocity v in the ensemble is of the form (1.3). We show in section 3.2 that, if the mean
velocity is zero and the turbulence is homogeneous and two-dimensional, then the alpha-effect is of the form

α =

α11 α12 α13

α21 α22 α23

α31 α32 0

 , (1.15)

where the αij are constants. The matrix (1.15) may be non-symmetric. This is consistent with Moffat’s
(1970b) alpha-effect referred to above. The alpha-effects (1.11) and (1.15) constitute a splitting of Krause’s
alpha-effect (1.9). It is also shown in section 3.2 that the β-effect must be restricted by the necessary
conditions

βij3 = 0 , β33k = 0 . (1.16)
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The isotropic beta-effect (1.6) fails these two-dimensional conditions and must be modified, as in (1.13). If β
is invariant in the direction e of definition 2, then imposing conditions (1.16) on (1.8) yields β3 = 0, β6 = −β
and β7 = −(β1 + β2), i.e.

βtd
ijk := β(εijk − εij3δk3) + β2δj3(δki − δi3δk3) + β4δi3ε3jk + β5δj3εi3k . (1.17)

The coefficients are independent of x3. The beta-effect (1.13) is also a special case of βtd.
The turbulence definitions 1 and 2 are based on v not α. We distinguish planar and two-dimensional

alpha-effects as follows:

Definition 3 (Planar Alpha-Effect). The alpha-effect is two-dimensional if there is a direction e such that
e ·α = 0 and α · e = 0.

Definition 4 (Two-Dimensional Alpha-Effect). The alpha-effect is two-dimensional if there is a direction e
such that e · ∇α = 0.

A planar alpha-effect should not be confused with a planar-turbulence alpha-effect of definition 1. Similarly
for a two-dimensional alpha-effect. The alpha-effect (1.11) is not planar nor is (1.15) two-dimensional. The
ADT’s proved below are based on planar turbulence and two-dimensional turbulence.

In section 3 we derive mean field electrodynamic analogues of the two-dimensional and planar velocity
ADT’s. In section 2 we outline the derivation of formulae for the alpha- and beta-effects in two-scale
homogeneous turbulence in E3. In section 3 we derive the alpha-effects (1.9) and (1.11) and associated
restrictions on the beta-effect for planar and two-dimensional turbulence. We also prove the main results,
Theorems 3.1 and 3.2, for beta-effects of the restricted form (1.13). Extensions of the theorems to general
beta-effects are also established under necessary conditions on β. We also examine the consistency of the
mean-field ADT’s with the corresponding laminar ADT: since each velocity in the planar or two-dimensional
ensembles satisfies the related laminar ADT, the mean magnetic field should decay according to that laminar
theorem.

2 Solution of the Fluctuating Magnetic Induction Equation

2.1 The Second-Order Correlation Approximation and Green’s Tensor Solution

The mean of equation (1.1) yields the mean magnetic induction equation,

(∂t − η∇2)B = ∇× E , (2.1)

where E(r, t) := v′(r, t)×B′(r, t). Subtracting (2.1) from (1.1) leaves the fluctuating magnetic induction
equation,

(∂t − η∇2)B′ = ∇× (v′ ×B) +∇× (v′ ×B′ − v′ ×B′) . (2.2)

We make the second-order correlation approximation, in which ∇× (v′ × B′ − v′ ×B′) is neglected
compared to ∂tB

′ or η∇2B′ (see Krause and Rädler 1980). Thus (2.2) reduces to

(∂t − η∇2)B′ = ∇× (v′ ×B) . (2.3)

The solution of (2.3) can be given in terms of the Green’s tensor G(r, t, ξ, τ), which is the solution of the
differential equation, (∂t− η∇2)G = δ3(ξ− r)δ(τ − t)I, where δ3 and δ are Dirac delta distributions, subject
to G(r, t, ξ, τ) = 0 if t < τ , G(r, t, ξ, τ) → 0 as |ξ − r| → ∞ (Bräuer 1973). The solution is isotropic and
given by G(r, t, ξ, τ) = G(r− ξ, t− τ)I, where the function

G(r, t) =

0, t ≤ 0;
exp(−|r|2/4ηt)

(4πηt)3/2
, t > 0.

Thus the solution of (2.3) is

B′(r, t) =

∫∫
R3×R

G(r− ξ, t− τ)∇ξ × [v′(ξ, τ)×B(ξ, τ)] d3ξ dτ . (2.4)
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A useful alternative form of (2.4) may be obtained using integration by parts and the identity tensor,

B′(r, t) = −
∫∫

R3×R
[I×∇ξG(r− ξ, t− τ)]× v′(ξ, τ) ·B(ξ, τ) d3ξ dτ .

The vector product with v′(r, t) and the ensemble mean yield

E(r, t) = −
∫∫

R3×R
v′(r, t)× [I×∇ξG(r− ξ, t− τ)]× v′(ξ, τ) ·B(ξ, τ) d3ξ dτ .

Change the variables of integration to ξ′ = r− ξ, τ ′ = t− τ and then drop the primes,

E(r, t) =

∫∫
R3×R

v′(r, t)× [I×∇ξG(ξ, τ)]× v′(r− ξ, t− τ) ·B(r− ξ, t− τ) d3ξ dτ . (2.5)

2.2 Two-Scale Turbulence and the Alpha-Effect

We assume that the turbulence is two-scale with a clear separation between the mean and fluctuating length
and time scales. Thus we expand B(r− ξ, t− τ) in (2.5) in a Taylor series about r,

B(r− ξ, t− τ) = B(r, t)− ξ · ∇B(r, t) + O(|ξ|2) .

Note that the divergence with respect to ξ of each term on the right side vanishes. Then E(r, t) = α ·
B(r, t) + β · ·∇B(r, t), which together with (2.1) yields (1.4). In coordinate-free form,

α =

∫∫
R3×R

v′(r, t)× [I×∇ξG(ξ, τ)]× v′(r− ξ, t− τ) d3ξ dτ , (2.6)

β = −
∫∫

R3×R
v′(r, t)× [I×∇ξG(ξ, τ)]× v′(r− ξ, t− τ)⊗ ξ d3ξ dτ . (2.7)

In terms of the two-point velocity correlation tensor, Q(r, t, ξ, τ) := v′(r, t)⊗ v′(r + ξ, t+ τ), the carte-
sian tensor components of α and β are

αij = εilmεmnpεpqj

∫∫
R3×R

Qlq(r, t,−ξ,−τ)
∂G(ξ, τ)

∂ξn
d3ξ dτ , (2.8)

βijk = −εilmεmnpεpqj
∫∫

R3×R
ξkQlq(r, t,−ξ,−τ)

∂G(ξ, τ)

∂ξn
d3ξ dτ . (2.9)

The velocity correlation tensor satisfies the symmetry property,

Q(r− ξ, t− τ, ξ, τ) = v′(r− ξ, t− τ)⊗ v′(r, t) = {v′(r, t)⊗ v′(r− ξ, t− τ)}T = QT (r, t,−ξ,−τ) .

Moreover, if v′ is incompressible, then

∇ξ ·QT (r, t, ξ, τ) = {∇ξ · v′(r + ξ, t+ τ)}v′(r, t) = 0 . (2.10)

2.3 Homogeneous Turbulence and Fourier Representation of the Alpha-Effect

Henceforth we assume that turbulence is homogeneous, in the sense that Q(r, t, ξ, τ) is independent of r and
t. We can then write Q = Q(ξ, τ). In particular, QT (ξ, τ) = Q(−ξ,−τ). Fourier techniques are particularly
effective, if turbulence is homogeneous and the conducting region is E3. The full Fourier transform of a
scalar function f(ξ, τ) : R3 × R→ R is defined by

f̂(k, ω) = F{f} :=
1

(2π)4

∫∫
R3×R

f(ξ, τ)e−i(k·ξ−ωτ) d3ξ dτ ,

and the inverse transform by

f(ξ, τ) = F−1{f} :=

∫∫
R3×R

f̂(k, ω)ei(k·ξ−ωτ) d3k dω .
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Since v′ is real, the Fourier transform of the velocity correlation tensor satisfies the symmetry, Q̂∗(k, ω) =

Q̂(−k,−ω), where the asterisk denotes complex conjugation. Thus Q̂∗ = Q̂T , i.e. Q̂ is hermitian. Moreover,

F{∇ξ · QT (ξ, τ)} = iQ̂(k, ω) · k. If all flows in the ensemble are incompressible, then Q̂(k, ω) · k = 0 by

(2.10) and k · Q̂(k, ω) = k · Q̂T (−k,−ω) = 0.
Using Parseval’s identity∫

R4

f(ξ, τ)g∗(ξ, τ) d3ξ dτ = (2π)4

∫
R4

f̂(k, ω)ĝ∗(k, ω) d3k dω

and

Ĝ(k, ω) =
1

(2π)4

1

ηk2 − iω
,

the Fourier transforms of (2.8) and (2.9) in the homogeneous case yield

αij = i(εilqδnj − εiljδnq)
∫
R4

knQ̂lq(k, ω)

η|k|2 − iω
d3k dω (2.11)

and

βijk = −(εilqδnj − εiljδnq)
∫
R4

kn
η|k|2 − iω

∂Q̂lq(k, ω)

∂kk
d3k dω , (2.12)

where Q̂lq are the cartesian tensor components of the Fourier transform of the correlation tensor. The

hermitian property of Q̂ ensures that αij is real.

3 Homogeneous Alpha-Effect ADT’s in E3

The homogeneous property of the turbulence implies the mean induction equation (1.4) possesses solutions
of the form

B = B̂eik·r+γt , k 6= 0 , (3.1)

where B̂ is a constant vector. Substitution into (1.4) and (1.5) gives

M · B̂ = 0 , M := (γ + ηk2)I− ik× (α+ iβ · k) ; k · B̂ = 0 (3.2)

The non-solenoidal mode with k ·B̂ 6= 0 always decays, irrespective of α and β: the scalar product of (3.2)(a)

with k implies (γ + ηk2)k · B̂ = 0, i.e. γ = −ηk2.
More general magnetic field solutions can be constructed by linearity,

B(r, t) =

∫
R3

B̂(k)eik·r+γ(k)t d3k or B(r, t) =
∑
k

B̂(k)eik·r+γ(k)t ,

and solutions may be periodic or non-periodic. A unified treatment can be given in terms of Stieltjes integrals
(see Moffatt 1970a). Since the mean magnetic field may not necessarily vanish at infinity care is need with
the self-excitation condition. Magnetic energy self-excitation criteria for a region D with boundary ∂D are
based on the magnetic energy equation for D,

d

dt

∫
D

1
2B

2
d3r = −

∫
∂D

E×B · dS−
∫
D

η(∇×B)2 d3r +

∫
D

∇×B · (α ·B + β · ·∇B) d3r ,

where E is the mean electric field. This equation can be derived using the mean forms of Faraday’s Law,
∇×E = −∂tB, Ohm’s Law and Ampere’s Law, which give E = η∇×B−α ·B−β · ·∇B. Self-excitation of
the mean magnetic field depends only on the Poynting flux term on the right side; the second and third terms
physically represent the ohmic dissipation and magnetic energy transfer between the mean and fluctuating
magnetic fields. Periodic magnetic fields are clearly self-excited: if D is a periodic cell there is no net flow of
magnetic energy into D and dynamo action corresponds to non-decay of the magnetic energy in D. In the
non-periodic Fourier transform case, we assume∫

R3

(1 + |k|2)|B̂(k, ω)|2 d3k <∞ ,
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and dynamo action corresponds to non-decay of the energy of the mean magnetic field. In the non-periodic
random wave case D = [−L,L]3, the volume-averaged Poynting flux vanishes,

lim
L→∞

1

8L3

∫
∂D

E×B · dS = 0

and dynamo action corresponds to non-decay of the spatially-averaged energy of the mean magnetic field,

lim
L→∞

1

8L3

∫
D

B
2
d3r =

∑
k

|B̂(k)|2e2γ(k)t .

Since the main interest of the present work is the alpha-effect, we assume in the two main results,
theorem 2 and theorem 3, that the beta-effect has the simpler restricted form (1.13) of β, where the scalar
β = 1

4εijkβijk, i.e.

β = −
∫
R4

2kl
η|k|2 − iω

∂Q̂Skl(k, ω)

∂kk
d3k dω .

The superscript S denotes the symmetric part. As indicated above this anisotropic beta-effect differs from
the commonly used isotropic (1.6). Since k × β · k = β(k2

⊥I − k⊥ ⊗ k) equation (3.2) can be replaced by

[(γ + ηT k
2
⊥ + ηk2

3)I − ik × α − βk⊥ ⊗ k] · B̂ = 0. Further reduction is possible by imposing the solenoidal

condition k · B̂ = 0,
M · B̂ = 0 , M := (γ + ηT k

2
⊥ + ηk2

3)I− ik×α . (3.3)

This modifies but does not eliminate the non-solenoidal mode in (3.2): in particular, the scalar product of
(3.3) with k gives the modified growth rate γ = −ηT k2

⊥ − ηk2
3 for the mode.

The rank-2 tensor α in (3.3) can be replaced by its symmetric part αS . Decompose α = αS + I × a,
where the vector a := 1

2 [(α23−α32)1x+(α31−α13)1y+(α12−α21)1z] is constructed from the antisymmetric

part of α. Since k× (I× a) ·B = (k ·B)a− (k · a)B, M in (3.3) can be reduced to

M := (γ + ηT k
2
⊥ + ηk2

3 − ik · a)I− ik×αS , (3.4)

noting the solenoidal condition on B. The antisymmetric part of α contributes only to the frequency of the
magnetic field, not its growth rate Re γ.

3.1 Homogeneous Planar Alpha-Effect ADT in E3

We now assume that the turbulence is planar in the sense of definition 1 and that the magnetic field
has the general form (3.1). Since any velocity in the ensemble is planar, v3 = 0, and hence the 2-point
velocity correlation tensor for planar turbulence has zero components, Qi3 = 0, Q3j = 0. The corresponding

components of its Fourier transform are also zero, Q̂i3 = 0, Q̂3j = 0. Hence αij = 0 if i, j = 1, 2, and hence
the alpha-effect is of the form (1.11). Similarly, the beta-effect must satisfy the necessary conditions (1.12).
The isotropic beta-effect (1.6) does not satisfy these conditions. However, the minimal change to (1.6), in the
sense that only the elements which violate (1.12) are zeroed, i.e. βijk = βεijk − βεij3δk3, yields the beta-effect
(1.13). Similarly, imposing (1.12) on (1.8) yields (1.14)

We prove theorem 2 from first principles without using theorem 1, since the corollary 1 then follows
directly.

Theorem 2. (Homogeneous Planar Alpha-Effect ADT). Let α and β satisfy (1.11) and (1.13), respectively,
with constant αij and βijk. If the magnetic field is of the form (3.1), then Re γ = −ηT k2

⊥ − ηk2
3. In general,

if ηT > 0, then the magnetic modes (3.1) all decay to zero.

Proof. For non-trivial solutions to (3.3) det M = 0. Thus, since α is of the form (1.11),∣∣∣∣∣∣
λ− ik2α31 −ik2α32 −i(k2α33 − k3α23)
ik1α31 λ+ ik1α32 −i(k3α13 − k1α33)

0 0 λ− i(k1α23 − k2α13)

∣∣∣∣∣∣ = 0 ,

where λ := γ + ηT k
2
⊥ + ηk2

3. The two zeros greatly simplify the evaluation of the determinant. Solving for λ
yields the growth rates,

γ = −ηT k2
⊥ − ηk2

3 + i(k1α23 − k2α13) ,−ηT k2
⊥ − ηk2

3 − i(k1α32 − k2α31) . (3.5)

The solenoidal condition k · B̂ = 0 has removed the mode with γ = −ηT k2
⊥ − ηk2

3. Since αij , k1, k2 are real,
Re γ = −ηT k2

⊥ − ηk2
3 for all modes.
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We now consider beta-effects more general than (1.13), but restricted by the necessary conditions (1.12).
The coefficient matrix M is now given by (3.2). For these general beta-effects it is useful to define the
matrices

M1 :=

 β231 β232 β233

−β131 −β132 −β133

0 0 0

 , M2 :=

−β321 −β322 −β323

β311 β312 β313

0 0 0

 . (3.6)

The following corollary establishes sufficient conditions on the beta-effect for decay of the magnetic modes
(3.1).

Corollary 1. (General Planar-Turbulence Beta-Effect). Let α and β satisfy (1.11) and (1.12), respectively,
with constant αij and βijk, and let the magnetic field be of the form (3.1). If the matrices ηI + MS

i ,
i = 1, 2, where Mi is given by (3.6) and the superscript S denotes the symmetric part, are positive definite,
then Re γ < 0 and the magnetic modes (3.1) all decay to zero. In terms of the minimum eigenvalues, if
λmin(MS

i ) > −η, i = 1, 2, then Re γ < 0.

Proof. By the conditions (1.11) and (1.12) on α and β, the matrix M in (3.2) has elements m31 = 0 and
m32 = 0. Thus replacing α by α+iβ ·k and ηT by η in (3.5) yields Re γ = −η|k|2−kTM1k,−η|k|2−kTM2k.
The result follows.

Of course, the single mode (3.1) decays if β and the wave-vector k satisfy kTM1k > −η|k|2 and kTM2k >
−η|k|2.

As an application of the corollary we first consider a beta-effect βΩ which is affine in one invariant
direction Ω, i.e. βΩ is of the form (1.8) with e replaced by Ω and without the quadratic or cubic terms in
Ω. In cartesian component form,

βΩ
ijk := βεijk + β2Ωjδki + β3Ωkδij . (3.7)

The beta-effect βΩ does not satisfy the necessary conditions (1.12). One way to modify (1.8) to enforce the
conditions with minimal changes is to zero the relevant components,

βijk = βΩ
ijk − βΩ

11kδi1δj1 − βΩ
12kδi1δj2 − βΩ

21kδi2δj1 − βΩ
22kδi2δj2 . (3.8)

Hence β231 = −β132 = β, β232 = β131 = β2Ω3 and −β321 = β312 = β, β323 = β2Ω2, β313 = β2Ω1.
The remaining elements of M1 and M2 are zero. Thus the minimum eigenvalues λmin(MS

1 ) = 0 and
λmin(MS

2 ) = 1
2 (β −

√
β2 + β2

2 |Ω⊥|2), where Ω⊥ := (Ω1,Ω2, 0). Hence ηI + MS
1 is positive definite, if

η + β > 0; and ηI + MS
2 is positive definite, if |β2Ω⊥| < 2

√
η(η + β), i.e. if the invariant direction Ω only

differs weakly from that of the planar turbulence.
We now consider the beta-effect βpl, which is more physically realistic since it has the same invariant

direction as the planar turbulence. Now β231 = −β132 = β + β5, β232 = β131 = β2, −β321 = β312 = β + β4

and the remaining elements of M1 and M2 are zero. Thus λmin(MS
1 ) = min(β + β5, 0) and λmin(MS

2 ) =
min(β + β4, 0). Hence ηI + MS

i is positive definite, if β5 > −η− β and β4 > −η− β for i = 1, 2 respectively.
These conditions are not obviously implied by the formula (2.12). Thus, the decay of the magnetic field
appears to be conditional, which is not consistent with the laminar planar flow ADT.

A restricted form of theorem 2, in which 0 < |k| � 1, is a corollary of theorem 1, since (1.10) is true for
the α in (1.11); whereas theorem 2 holds for all |k| > 0. However, the restriction |k| � 1 is consistent with
the two-scale assumption underlying (2.6) and (2.7), and hence the theorem.

3.2 Homogeneous Two-Dimensional Alpha-Effect ADT in E3

We assume in this subsection that the turbulence is two-dimensional in the sense of Definition 2 in the
introduction and that the magnetic field is also two-dimensional, i.e. B is independent of x3. Thus (3.1)
must be restricted to

B = B̂eik⊥·r⊥+γt , k⊥ 6= 0 , (3.9)

where r⊥ := (x1, x2, 0) and k⊥ = (k1, k2, 0). The superposition of magnetic modes must be modified
accordingly. Thus, for example,

B(r⊥, t) =

∫
R2

B̂(k)eik⊥·r⊥+γ(k⊥)t d2k⊥ , where

∫
R2

(1 + |k⊥|2)|B̂(k)|2 d2k⊥ <∞ .
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The symmetry restrictions on the alpha and beta-effects differ from the planar case. The Fourier trans-
forms must be modified for two-dimensional functions: if a function f : R3 → R is independent of x3, i.e.
f(r + c13) = f(r) for all r ∈ R3 and c ∈ R, then F{f} = f̂(k, ω) = δ(k3)f̂⊥(k⊥, ω), where f⊥(r⊥) := f(r).

f̂⊥(k⊥, ω) :=
1

(2π)3

∫∫
R3

f(r, t)e−i(k⊥·r⊥−ωt) d2r⊥ dt

using the Fourier representation of the Dirac delta distribution, δ(k) = (2π)−1
∫
R e
−ikz dz. Integrating over

k3 yields

αij = i(εilqδnj − εiljδnq)
∫
R3

kn(1− δ3n)Q̂ql(k⊥, ω)

ηk2
⊥ − iω

d2k⊥ dω (3.10)

and

βijk = −(εilqδnj − εiljδnq)
∫
R3

kn(1− δ3n)

ηk2
⊥ − iω

∂Q̂ql(k⊥, ω)

∂kk
d2k⊥ dω ,

In particular, α33 = 0 since i = j = 3 forces n = 3, and hence the alpha-effect is of the form (1.15) with
constant matrix elements. We do not require or assume that the alpha-effect is symmetric. By the same
reasoning and the fact that Q̂ql is independent of k3, the cartesian components of β are restricted by the
conditions (1.16). The restricted anisotropic beta-effect (1.13) satisfies these conditions whereas the isotropic
(1.6) does not. The coefficient matrix M in (3.3) reduces to

M = (γ + ηT k
2
⊥)I− ik⊥ ×α . (3.11)

Theorem 3. (Homogeneous Two-Dimensional Alpha-Effect ADT). Let α and β satisfy (1.15) and (1.13),
respectively, with constant αij and βijk. If the magnetic field is of the two-dimensional form (3.9), then
Re γ = −ηT k2

⊥. All magnetic modes (3.9) decay to zero.

Proof. For non-trivial solutions in (3.3) det M = 0, where now M is given by (3.11). Since k3 = 0 and α is
of the form (1.15), ∣∣∣∣∣∣

λ− ik2α31 −ik2α32 0
ik1α31 λ+ ik1α32 0

−i(k1α21 − k2α11) −i(k1α22 − k2α12) λ− i(k1α23 − k2α13)

∣∣∣∣∣∣ = 0 ,

where λ := γ+ ηT k
2
⊥. The significant feature is the two zero elements, similar to the planar turbulence case.

Solving for λ gives

γ = −ηT k2
⊥ + i(k1α23 − k2α13) , −ηT k2

⊥ − i(k1α32 − k2α31) . (3.12)

The solenoidal condition k · B̂ = 0 removes the non-solenoidal mode with γ = −ηT k2
⊥. Since αij , k1, k2 are

real, the result follows.

The result is essentially unchanged if all the flows in the ensemble are incompressible, ∇ · v = 0. In this
case k · Q̂ = 0 and Q̂ · k = 0. The last term in (3.10) contains δnqknQ̂ql = knQ̂nl = 0. Thus

αij = iεilq

∫
R3

kjQ̂ql(k⊥, ω)

ηk2
⊥ − iω

d2k⊥ dω

and hence α13 = 0 = α23. Thus γ = −ηk2
⊥ ,−i(k1α32 − k2α31)− ηk2

⊥. One mode is still oscillatory.
The theorem fails if the magnetic field depends on x3. Thus if k3 6= 0 and k1, k2 � k3, equation (3.11)

implies k×α · B̂ = λB̂, where lambda is defined by γ = −ηk2 + iλ and

k×α = k3

−α21 −α22 −α23

α11 α12 α13

0 0 0

+ O(k1, k2) .

If α is symmetric, then λ = ±ik3

√
A33 +O(k1, k2) where A33 is the cofactor of α33 and γ = −ηk2

3±k3

√
A33 +

O(k1, k2). If A33 > 0 and the alpha-effect magnetic Reynolds number
√
A33/η|k3| > 1, then growing modes

exist. The fastest growing modes occur for wavenumber k3 ≈
√
A33/2η with growth rate Re γ ≈ A33/4η.

For example, Moffatt’s (1970b) α-effect has A33 = α2
11 > 0, which gives growing modes.

If general beta-effects are considered, restricted only by (1.16), we get (3.3) with M reduced to

M = (γ + ηk2
⊥)I− ik⊥ × (α+ iβ · k⊥) . (3.13)
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Corollary 2. (General Two-Dimensional Turbulence Beta-Effect). Let α and β satisfy (1.15) and (1.13),
respectively, with constant αij and βijk, and let the magnetic field be of the two-dimensional form (3.9). If
the matrices ηT I + MS

i , i = 1, 2, are positive definite when restricted to the subspace {k⊥|k ∈ R3}, where
Mi is given by (3.6), then Re γ < 0 and all magnetic modes (3.9) decay to zero.

Proof. From (1.15) and (1.16) the matrix M in (3.13) has elements m13 = 0 and m23 = 0. Thus replacing
α by α+ iβ · k in (3.12) yields Re γ = −η|k⊥|2 − kT⊥M1k⊥,−η|k⊥|2 − kT⊥M2k⊥. The result follows.

As an application of this corollary we consider the beta-effect βtd with the preferred direction of the
two-dimensional turbulence. Then β231 = −β132 = β + β5, β232 = β131 = β2, −β321 = β312 = β + β4 and
the remaining elements of M1 and M2 are zero. Thus ηI + MS

i are positive definite when restricted to the
two-dimensional subspace, if β5 > −η − β and β4 > −η − β for i = 1, 2 respectively, as in the planar case.
Thus the magnetic modes (3.9) decay conditionally to zero.

4 Concluding Remarks

In the homogeneous two-dimensional and planar mean-field antidynamo theorems proven herein the alpha-
effect is consistent with the corresponding laminar theorem, in the sense that no restrictions are imposed
on the alpha-effect, apart from (1.11) and (1.15) which arise purely from the turbulence. This is false for
the beta-effect. In addition to conditions (1.12) and (1.16), which arise from the turbulence, the beta-effect
must either be restricted to (1.13) or satisfy the conditions of corollaries 1 and 2, Thus there remains the
possibility that there may exist beta-effects in planar or two-dimensional turbulence which allow energy to
flow from the fluctuating field B′ to B and B to grow exponentially, even though B = B + B′ must decay
to zero to satisfy the associated laminar ADT. The difficulty is that (1.12) and (1.16) are only necessary
conditions. Even imposing the additional condition of a preferred direction consistent with the turbulence
does not remove the inconsistency.

The mean-field planar ADT with zero mean velocity fails if e in the definition of planar turbulence
is different for each velocity, since neither the mean flow nor the fluctuating components must be planar.
If the mean velocity is non-zero the ADT should generalise, even if e depends on the velocity. Similarly
for the two-dimensional ADT. There is also the added complication of the mean magnetic field not being
two-dimensional.

Extensions of the theorems, if the turbulence is inhomogeneous, or the mean velocity is non-zero or
the conducting region is bounded in certain directions, are the subject of future work. It is known that
the laminar planar velocity theorem may fail in a bounded conductor, e.g. a sphere (Bachtiar et al 2006).
Fourier techniques are still useful for inhomogeneous turbulence but not so for non-zero mean velocity or
finite conducting regions. Weaker forms of planar and two-dimensional turbulence are also possible, based
on the statistical properties of the turbulence, such as the alpha-effect.
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[24] Rüdiger, G. (1980), “Rapidly rotating α2-dynamo models”, Astron. Nachr. 301, 181–187.

[25] Stredulinsky, E.W., Meyer–Spasche, R. and Lortz, D. (1986), “Asymptotic-behavior of solutions
of certain parabolic problems with space and time-dependent coefficients”, Commun. Pure Ap-
plied Math. 39, 233–266.

[26] Vainshtein, S.I. and Zeldovich, Ya.B. (1972), “Origin of magnetic fields in astrophysics (turbu-
lent dynamo mechanisms)”, Sov. Phys. Uspekhi 15, 159–172. [Translated from Usp. Fiz. Nauk.
106, 431 (1972).]

[27] Zeldovich, Ya.B. (1957), “The magnetic field in the two-dimensional motion of a conducting
turbulent liquid”, Sov. Phys. JETP 4, 460–462. [Translated from JETP 31, 154–155 (1956).]

[28] Zeldovich, Ya.B. and Ruzmaikin, A.A. (1980), “The magnetic field in a conducting fluid in
two-dimensional motion”, Sov. Phys. JETP 51, 493–497.

11


