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JONATHAN A. HILLMAN

Abstract. A bundle with base B and fibre F aspherical closed
surfaces has a section if and only if the action : π1(B)→ Out(π1(F ))
factors through Aut(π1(F )) and a cohomology class is 0. We sim-
plify and make more explicit the latter condition.

Let p : E → B be a bundle projection, with connected base B and
fibre F , and let π = π1(E), β = π1(B) and φ = π1(F ). If the bundle
has a section s : B → E with ps = idB then the exact sequence of
homotopy for the projection gives an extension

ξ(p) : 1→ φ→ π → β → 1,

and the projection p∗ : π → β splits. In general, an epimorphism
π → β splits if and only if the action θ : β → Out(φ) induced by

conjugation in π factors through a homomorphism θ̃ : β → Aut(φ)
and the cohomology class [ξ] ∈ H2(β; ζφ) of the extension is 0. (Here
ζφ is the centre of φ, considered as a Z[β]-module via the action θ.)
If so, then π is a semidirect product φ oθ̃ β. If the base and fibre
are aspherical surfaces, the bundle is determined by the extension (see
Chapter V of [2]), and so it has a section if these conditions hold.

In this note we shall make the cohomological condition more explicit.
We shall assume always that surfaces are compact and connected, and
have no boundary.

1. extensions of groups

Let ζG, G′ and I(G) denote the centre, the commutator subgroup
and the isolator subgroup of a group G, respectively. (Thus G′ ≤ I(G)
and G/I(G) is the maximal torsion-free quotient of the abelianization
Gab = G/G′.) If H is a subgroup of G let CG(H) be the centralizer of
H in G. Let cg denote conjugation by g, for all g ∈ G.

There is a natural restriction homomorphism fromAut(G) toAut(ζG),
which factors through Out(G). In particular, if θ : β → Out(φ) is
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a homomorphism then composition with restriction defines a natural
Z[β]-module structure on ζφ. The extensions

1→ φ→ π → β → 1

with given action θ may be parametrized by H2(β; ζφ). (In general,
there is an obstruction in H3(β; ζφ) for there to be such an extension,
but this obstruction group is trivial when β is a surface group. See
Chapter IV of [1].) If θ factors through Aut(φ) then the semidirect
product corresponds to 0 ∈ H2(β; ζφ).

Lemma 1. If ζφ = 1 then p∗ : π → β splits if and only if the action θ
factors through Aut(φ).

Proof. If φ has trivial centre then the extension is determined by the
action, since H2(β; ζφ) = 0. Thus if the action factors π must be a
semidirect product, i.e., p∗ splits. The converse is clear. �

The exact sequence of low degree for the extension has the form

H2(π;Z)→ H2(β;Z)→ H0(β;H1(φ;Z))→ H1(π;Z)→ H1(β;Z)→ 0.

If the extension splits this gives an isomorphism

πab ∼= (φab/(I − θab)φab)⊕ βab,
where θab is the automorphism of φab induced by θ.

If φ is abelian then the transgression fromH2(β;Z) toH0(β;H1(φ;Z))
in the exact sequence of low degree is the image of the extension class
[ξ] under the homomorphisms

H2(β;φ)→ H2(β;H0(β;φ))→ Hom(H2(β;Z), H0(β;φ))

given by change of coefficients and evaluation. (See Theorem 4 of [4]
for the cohomological version.)

2. aspherical base

We shall assume henceforth that β is a PD2-group. Let 〈X | r〉 be
a 1-relator presentation for β, and let q : F (X)→ β be the associated
epimorphism. Let w = w1(β), let εw : Z[β] → Z be the w-twisted
augmentation, defined by the linear extension of w : β → Z×, and
let Jw = Ker(εw). Let ∂x : Z[F (X)] → Z[β] be the composite of the
Fox free derivative with the linear extension of q. Then the left ideal in
Z[β] generated by {∂xr|x ∈ X} is Jw, and H2(β;A) ∼= H0(β;Zw ⊗ A) =
A/JwA for any Z[β]-module A.

If θ : β → Out(φ) is a homomorphism a choice of lifts ψ(x) ∈ Aut(φ)
for the values θ(q(x)) determines a homomorphism ψ : F (X)→ Aut(φ)
which lifts θq, and hence a semi-direct product G = φoψ F (X). Since
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θ(q(r)) = 1, we must have ψ(r) = cg, for some g ∈ φ. Then π =
G/〈〈rg−1〉〉 is an extension of β by φ which realizes the action θ. (If
ζφ = 1 then g is uniquely determined by ψ.)

Suppose that θ lifts to a homomorphism θ̃ : β → Aut(φ). Then

we may set ψ = θ̃q. For each x ∈ X choose s(x) ∈ π such that
p(s(x)) = q(x) and cs(x) = ψ(x). Then s extends to a homomorphism
s : F (X) → π such that ps = q. Hence s extends to an epimorphism
S : G→ π, giving a commuting diagram

1 −−−→ φ −−−→ G −−−→ F (X) −−−→ 1y =

y S

y q

y y
1 −−−→ φ −−−→ π

p−−−→ β −−−→ 1.

The image of r in G is in CG(φ), since q(r) = 1. If s′ : F (X) → π
is another such homomorphism then f(x) = s′(x)s(x)−1 ∈ ζφ, for all
x ∈ X. Conversely, any function f : X → ζφ may be realized as the
difference s′s−1 of two such homomorphisms.

Lemma 2. The element s(r) is in ζφ, and its image [s(r)] ∈ ζφ/Jwζφ
is well defined. The epimorphism p∗ splits if and only if [s(r)] = 0.

Proof. The first assertion holds since q(r) = 1. If s′(x) = αs(x) (for
some α ∈ ζφ) and s′(y) = s(y) for y 6= x, then s′(r) = s(r) + (∂xr)α.
It follows easily that [s(r)] is independent of the choice of s.

If σ : β → π splits p∗ then we may take s = σq, and so s(r) = 1 in
φ. Hence [s(r)] = 0. Conversely, if [s(r)] = 0 then we may choose s so
that s(r) = 1, and so p∗ splits. �

In fact [s(r)] = [ξ(p)]. Although we shall not need to know this, we
sketch an argument which holds for any group β with a finite presenta-
tion 〈X|R〉. After introducing new generators x′ and new relators x′x, if
necessary, we may assume that the exponents of the generators in each
relator are all positive. The presentation determines a Fox-Lyndon par-
tial resolution CFL

∗ for the augmentation β-module Z. Let Cbar
∗ be the

normalized bar resolution for Z, and let h∗ : CFL
∗ → Cbar

∗ be the chain
morphism given by the identity on CFL

0 = Z[β] = Cbar
0 , the natural

inclusion of CFL
1 = Z[β]X into Cbar

1 , and which sends the generator er
of CFL

2 corresponding to the relator r ∈ R to Σx∈X [∂xr|x] ∈ Cbar
2 . (See

Exercises II.5.3 and II.5.4 of [1]. If c.d.β ≤ 2 then CFL
∗ is a resolution

and h is a chain homotopy equivalence.))
Let σ : β → π be a set-theoretic section such that σ(1) = 1, and let

s : F (X)→ π be the homomorphism defined by s(x) = σ(q(x)) for all
x ∈ X. The class [ξ(p)] is represented by the 2-cocycle f defined by
σ(g)σ(h) = f(g, h)σ(gh) for all g, h ∈ β. (See Chapter IV.3 of [1].)
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Let r = Πc
i=1xi and let Ik = Πk−1

i=1 xi, for 1 ≤ k ≤ c. (There may
be repetitions amongst the generators xi.) Then ∂xr = Σxi=xIi, for all
x ∈ X, and so

f(h2(er)) = f(Σx∈X [∂xr|x]) = f(Σc
i=1[Ii|xi]) = Σc

i=1f(Ii, xi).

On the other hand,

s(r) = Πc
i=1s(xi) = Πc

i=1σ(q(xi)).

A simple induction shows that this is

Πc
i=1f(Ii, xi)σ(q(r)) = Πc

i=1f(Ii, xi)σ(1) = Πc
i=1f(Ii, xi).

In additive notation, this is just f(h2(er)). With a little more effort,
we could avoid the assumption that the exponents in the relators are
all positive. In particular, we may conclude that if β is a PD2-group
with a 1-relator presentation 〈X|r〉 then h∗[ξ(p)] = [s(r)].

Lemma 3. Let G be a group with a finitely generated abelian normal
subgroup A such that β = G/A is a PD+

2 -group. Then the canonical
projection from G to β has a section if and only if

Gab ∼= A/[G,A]⊕ βab.

Proof. Let A = A/[G,A] and G = G/[G,A]. Then G is a central

extension of β by A, and Gab = G
ab

. Since c.d.β = 2, the epimorphism
from A to A induces an epimorphism from H2(β;A) to H2(β;A). Since
β is a PD+

2 -group, H2(β;A) ∼= H0(β;A) and H2(β;A) ∼= H0(β;A).
These are each isomorphic to A, and so the natural homomorphism
from H2(β;A) to H2(β;A) is an isomorphism. Therefore G splits as
a semidirect product if and only if the same is true for G. Since A is
central in G, this is so if and only if G ∼= A× β, and this is equivalent

to G
ab ∼= A⊕ βab. �

(Since H2(β;Z) ∼= Z, this lemma also follows from the observation
at the end of §1 above.)

3. surface bundles with aspherical base and flat fibre

The group κ = π1(Kb) has a presentation 〈x, y | xyx−1 = y−1〉, and
ζκ is generated by the image of x2. Let α and γ be the automorphisms
determined by α(x) = x−1, γ(x) = xy and α(y) = γ(y) = y. Then
Aut(κ) is generated by α, γ and cx, and γ2 = cy. It is easily verified
that αγ = γα, and so Out(κ) ∼= (Z/2Z)2 is the image of an abelian
subgroup of Aut(κ).
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Let β+ = Ker(w) and let B+ be the associated orientable covering
space of B. If p : E → B is a bundle, let p+ : E+ → B+ be the induced
bundle, and let π+ = Ker(wp∗).

Theorem 4. Let p : E → B be a bundle with base B an aspherical
surface and fibre F = T or Kb. Then p has a section if and only if θ
factors through Aut(φ) and [s(r)] = 0. In particular, p has a section if
either

(1) F = T , B is orientable and

H1(E;Z) ∼= H0(B;H1(F ;Z))⊕H1(B;Z); or

(2) F = Kb, θ factors through Aut(κ), β acts on ζφ through w1(β),
and β1(π

+) = β1(β
+) + 1.

The φ-conjugacy classes of sections are parametrized by H1(β; ζφ).

Proof. The first assertion follows from Lemmas 1 and 2.
If F = T then φ is abelian, and so Aut(φ) = Out(φ). Hence p∗ splits

if and only if [s(r)] = 0. If B is orientable then Lemma 3 gives the
more explicit criterion of (1).

If F ∼= Kb then φ ∼= κ, and ζφ ∼= Z, and p∗ splits if and only if
the action factors through Aut(κ) and [s(r)] = 0. If β acts on ζφ
through w1(β) we can make this more explicit. For then H2(β; ζφ)
maps injectively to H2(β+; ζφ) ∼= Z under passage to β+. Thus p∗ splits
if and only if θ factors through Aut(κ) and the restriction to p−1∗ (β+)
splits. (If β is orientable then β/β′ is a free abelian group, and so
every homomorphism θ : β → Out(κ) factors through Aut(κ).) Since
ζφ maps injectively to φ/I(φ), H2(β+; ζφ) in turn maps injectively to
a subgroup of index 2 in H2(β+;φ/I(φ)) ∼= Z. The image of [ξ(p)] is
the class of the extension

1→ φ/I(φ)→ π+/I(φ)→ β+ → 1,

and so (2) follows from Lemma 3, since I(φ) < π+′, φ/I(φ) ∼= Z and
β+/β+′ is free abelian.

If p∗ splits and s and s′ are two sections determining the same lift

θ̃ then s′(g)s(g)−1 is in ζφ, for all g ∈ β. Therefore the sections are
parametrized (up to conjugation by an element of φ) by H1(β; ζφ).
(See Proposition IV.2.3 of [1] for the cases with φ abelian.) �

If p has a section then so does p+. The converse also holds if F = T
and H2(β;φ) ∼= H0(β;Zw ⊗ φ) has no 2-torsion. For then restriction
to H2(β+;φ) is injective, since composition with the transfer is multi-
plication by 2. (See §9 of Chapter III of [1].)
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Examples. Let π be a discrete cocompact subgroup of Nil3 × R.
Then ζπ ∼= Z2 and π/ζπ ∼= Z2, and so the coset space E = π\Nil3 × R
is the total space of a T -bundle over T . The action is trivial, and so
the split extension is the product Z4. Thus the bundle projection for
this coset space has no section. (In fact, π/π′ has rank 2, rather than
4, and so the criterion of (1) fails.) Similarly, coset spaces of discrete
cocompact subgroups of Nil4 are T -bundles over T without sections.

The group with presentation

〈u, v, x, y | u, v � x, y, [u, v] = x2, xyx−1 = y−1〉
is the group of a Nil3×E1-manifold which fibres over T with fibre Kb.
The base group acts trivially on the fibre, but β1(π) = 2, rather than
3, and so the bundle does not have a section.

The group with presentation

〈u, v, x, y | u� x, y, vxv−1 = x−1, vy = yv, [u, v] = x2, xyx−1 = y−1〉
is the group of a flat 4-manifold which fibres over T with fibre Kb. In
this case H2(β; ζφ) = Z/2Z, but [s(r)] 6= 0, and so the bundle does
not have a section.

4. bundles with hyperbolic fibre

If χ(F ) < 0 then p has a section if and only if the action θ factors
through Aut(φ), and the section is unique up to conjugation by an
element of φ. If p has a section then H∗(β;R) is a retract of H∗(π;R),
for any coefficient ring R, and all quotients of β by terms of the lower
central series (or, more generally, by verbal subgroups) are retracts
of corresponding quotients of π. In particular, π/φ′ must split as a
semidirect product (φ/φ′) o β.

When F is orientable, this is close to a result of Morita [6]. Suppose
F has genus g ≥ 2, and fix an orientation. There is an associated
flat bundle j(p) : J → B, with fibre the 2g-torus, called the Jacobian
bundle of p, and a fibre-preserving inclusion E ⊂ J which induces an
isomorphism on H1, for each fibre. Let Mg = Out(φ). Morita defines
a universal class µ ∈ H2(Mg;H

1(φ;Z)), and shows that j(p) has a
section if and only if θ∗µ = 0. This is clearly a necessary condition
for p itself to have a section. Examining his construction, we see that
if f is the 2-cocycle with values in φab associated to a set-theoretic
section σ : β → π/φ′, as in §1 above, then θ∗µ is the image of [f ]
under the change of coefficient isomorphism induced by the Poincaré
duality isomorphism φab ∼= H1(φ;Z). Thus j(p) has a section if and
only if [s(r)] = 0 in φab/(I − θab)φab, where s : F (X) → π/φ′ is as
in §1 above. Since J ' K(π/φ′, 1), this holds if and only if π/φ′ ∼=
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(φ/φ′) o β. If, moreover, B is also orientable then this is so if and only
if πab ∼= (φ/[π, φ])⊕ βab, by Lemma 3.

We may construct the extension corresponding to an action θ as in
§1. However it does not seem easy to construct potential examples with
no section. Is there an example for which the Jacobian bundle has no
section? In particular, are there such examples with B = T?

There is a related, perhaps easier question (Problem 2.17 of [5]). A
multi-section of p is a surface C ⊂ E such that p|C : C → B is a finite
covering projection. In terms of groups, p has a multisection if β has a
subgroup γ of finite index such that θ|γ factors through Aut(φ). Does
every bundle with hyperbolic base and fibre and θ injective admits a
multi-section?

5. bundles with base S2 or RP 2

In this final section we consider bundles with aspherical fibre but
with spherical base. If B = S2 and χ(F ) < 0 or χ(F ) = 0 and φ ∼= π
then p is trivial, and so has a section. (See Theorem 5.19 of [2].)

The characterization of bundles over RP 2 with sections is based on
a study of S2-orbifold bundles. (See [3].)

Theorem 5. Let F be an aspherical surface. A closed orientable 4-
manifold M is homotopy equivalent to the total space of an F -bundle
over RP 2 with a section if and only if π = π1(M) has an element of
order 2, π2(M) ∼= Z and Ker(u) ∼= φ = π1(F ), where u is the natural
action of π on π2(M).

Proof. The conditions are clearly necessary. Suppose that they hold.
If π ∼= φ× Z/2Z then the bundle is trivial. Thus we may assume that
π is not a direct product, and so M is not homotopy equivalent to an
RP 2-bundle space. Hence it is homotopy equivalent to the total space
E of an S2-orbifold bundle over a 2-orbifold B [3]. The involution η of
F corresponding to the orbifold covering has non-empty fixed point set,
since π has torsion. Let Mst = S2 × F/ ∼, where (s, f) ∼ (−s, η(f)).
Then Mst is the total space of an F -bundle over RP 2, and the fixed
points of η determine sections of this bundle.

The double cover of E corresponding to κ is an S2-bundle over F .
Since M is orientable and κ acts trivially on π2(M), F must also be
orientable and the covering involution of F over B must be orientation-
reversing. Since π has torsion ΣB is a non-empty union of reflector
curves, and since F is orientable these are “untwisted”. Therefore
M 'Mst, by Corollary 4.8 of [3]. �
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Orientability is used here mainly to ensure that the base orbifold has
an untwisted reflector curve.
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