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Growth of Rees quotients of free inverse semigroups

defined by small numbers of relators

D. EASDOWN AND L.M. SHNEERSON

ABSTRACT: We study the asymptotic behaviour of a finitely presented Rees

quotient S = Inv〈A | ci = 0 (i = 1, . . . , k) 〉 of a free inverse semigroup

over a finite alphabet A. It is shown that if the semigroup S has polyno-

mial growth then S is monogenic (with zero) or k ≥ 3. The three relator

case is fully characterised, yielding a sequence of two-generated three-relator

semigroups whose Gelfand-Kirillov dimensions form an infinite set, namely

{4, 5, 6, . . .}. The results are applied to give a best possible lower bound, in

terms of the size of the generating set, on the number of relators required to

guarantee polynomial growth of a finitely presented Rees quotient, assuming

no generator is nilpotent. A natural operator is introduced, from the class

of all finitely presented inverse semigroups to the class of finitely presented

Rees quotients of free inverse semigroups, and applied to deduce information

about inverse semigroup presentations with one or many relations. It follows

quickly from Magnus’ Freiheitssatz for one-relator groups that every inverse

semigroup Π = Inv〈 a1, . . . , an | C = D 〉 has exponential growth if n > 2.
It is shown that the growth of Π is also exponential if n = 2 and the Munn

trees of both defining words C and D contain more than one edge.

1. INTRODUCTION

Inverse semigroups were introduced in the 1950s independently by Preston [23] [24]
[25] and Wagner [35] [36], though their origins have been traced to much earlier
times by the scholarly work of Lawson [16] in the context of partial symmetry
and ordered groupoids. As a class of algebraic structures, inverse semigroups fall
between groups and semigroups, but have their own distinct flavour and techniques
that do not obviously lift from either of these classes. This is especially apparent
in the description of elements and their multiplication in free inverse semigroups
over an alphabet, combining both concatenation of words (as in free semigroups)
and word reduction (as in free groups), but also other nonobvious ingredients. A
beautiful and elegant solution to the word problem for free inverse semigroups
was provided by Munn in a seminal paper [19], using birooted word trees (the so-
called Munn trees), which are directed graphs whose edges are labelled by letters
from an alphabet, with certain restrictions and initial and terminal vertices. Munn
trees are exceedingly easy to visualise and manipulate, and provide the foundation
for building the sophisticated techniques required for this paper. Of course, all
inverse semigroups are quotients of free inverse semigroups, so an attempt to fully
understand the behaviour of Rees quotients is a natural first step.
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Denote the class of finitely presented Rees quotients of free inverse semigroups
by MFI (defined carefully in terms of presentations in the next section). In [30] the
authors initiated the study of growth of semigroups from MFI and the relationship
with satisfiability of identities. Growth was shown to be polynomial or exponential
and an algorithmic criterion given to recognise the type of growth. This work was
continued in [31], refining and introducing new algorithmic criteria, culminating in
the proof that polynomial growth occurs if and only if the semigroup in question
has bounded height (in the sense of Shirshov [27]), and finding another equivalent
condition in terms of the geometric structure of nilpotent elements.

Lau [13] [14] proved the rationality of the growth series of semigroups from
MFI having polynomial growth. In [15], he showed that the Gelfand-Kirillov
dimension in those cases may be any integer n ≥ 3, where n is the degree of
growth of some semigroup with n − 2 generators and f(n) relators, where f is a
quadratic function.

The second author in [29] established that the set of finite Gelfand-Kirillov
dimensions of arbitrary infinite Rees quotients of free inverse semigroups is {3} ∪
[4,∞).

In [8], the authors proved that the semigroup S = Inv〈a, b | ab = 0〉 is, up
to isomorphism, the unique principal Rees quotient of a free inverse semigroup
that is not trivial or monogenic and satisfies a nontrivial identity in signature
with involution. In fact, the semigroup S has exponential growth, as do all other
non-monogenic one-relator semigroups from MFI (see [8]). The present article
may be considered a continuation of the work in [8], by studying semigroups from
MFI that can be defined by small numbers of relators, though the results focus on
polynomial growth and move in several different directions. This present article
also combines and unifies, in one place, many of the criteria and main results from
[30] [31], with a variety of illustrations and applications.

In Section 2, all of the main definitions and ingredients are gathered together.
The methods rely heavily on a graphical technique that is a modification of an idea
due to Ufnarovsky [33] [34] (see also [20, Chapter 24]) in the setting of monomial
algebras. This idea has wide applicability and arises in other settings (see, for
example, De Bruijn [7] and [17, Chapter 1] where the terminology De Bruijn
graph is introduced). A related construction is used by Gilman [9] for calculating
degrees of growth and solving a word problem in a class of groups and monoids
given by certain finite presentations. Properties of one of the three-relator non-
monogenic inverse semigroups having polynomial growth and belonging to MFI

are analysed in this section.

Section 3 is a short analysis, using elementary combinatorial properties of
words, to characterise free generation in free inverse semigroups by a pair of re-
duced words. This gives a useful necessary condition for presentations of semigroup
from MFI having polynomial growth which is applied repeatedly for sieve proce-
dures in the following sections. Section 4 is also short and introduces an important
general class of three relator semigroups, where the third relator is described in
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terms of a parameter γ. This class of examples, together with the semigroup T

discussed in Section 2, characterise three relator semigroups from our class that
have polynomial growth. This characterisation is the topic of Section 6, which is
the longest and most detailed section of the paper. This analysis is preceded, in
Section 5, by one of our main theorems that tells us that the presence of at least
three relators is a necessary condition for polynomial growth for semigroups from
our class.

In Section 7 we return to the class described in Section 4, and exhibit a se-
quence of three relator semigroups and prove that the set of their Gelfand-Kirillov
dimensions is infinite and consists of every integer value greater than or equal to
four. This is in contrast with Lau’s examples [15] in which the number of gen-
erators and relators is nonfixed and increases together with the Gelfand-Kirillov
dimension. We prove further, in the general three relator case, assuming a natu-
ral irredundancy condition on the presentations, that only integer values greater
than or equal to four arise as Gelfand-Kirillov dimensions (by excluding the value
three). These results are of topical interest in light of recent activity exhibiting
and calculating irrational or non-integer Gelfand-Kirillov dimensions in a variety
of settings. Belov and Ivanov [3] [4] constructed the first examples of finitely
presented semigroups having non-integer Gelfand-Kirillov dimension. Bartholdi
and Reznykov [1] gave an example of a semigroup with irrational Gelfand-Kirillov
dimension associated with Mealy automata with two nontrivial states over a two-
letter alphabet and satisfying the periodicity identity x4 = x6. Sidki [32] found an
example of a nil semigroup satisfying the identity x5 = 0, generated by two func-
tionally recursive matrices over the integers and having the same Gelfand-Kirillov
dimension as the Bartholdi-Reznykov semigroup.

In Section 8, an operator Z is introduced that takes a finitely presented inverse
semigroup Π and produces a homomorphic image Z(Π) within the class of finitely
presented Rees quotients of free inverse semigroups. As an application of one of
our main theorems, we deduce that, under a mild constraint on word trees, an
inverse semigroup defined by one relation has exponential growth. This constraint
however is necessary, because of another paper [28] by the second author where he
exhibits a one relator nonmonogenic inverse semigroup with polynomial growth.
In Section 9, the operator Z is employed again to deduce further information about
finitely presented inverse semigroups with many relations. The underlying result
is a quadratic lower bound, in terms of the number of generators, on the number
of relations required to guarantee polynomial growth for a finitely presented Rees
quotient of a free inverse semigroup in which none of the generators is nilpotent.

2. PRELIMINARIES

We assume familiarity with the basic definitions and elementary results from the
theory of semigroups, which can be found in any of [5], [10], [11] or [21]. Through-
out let A be a finite alphabet containing at least two letters and put

B = A ∪ A−1
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where the elements of A−1 are formal inverses of corresponding elements of A and
vice-versa (so A and A−1 are disjoint and any a in A may also be denoted by
(a−1)−1). Let k be a positive integer and suppose that c1, . . . , ck ∈ B+. Consider
the inverse semigroup S with zero given by the following finite presentation:

S = Inv〈 A | ci = 0 for i = 1 . . . , k 〉 . (∗)

In this paper we only consider presentations within the class of inverse semigroups.
Because presentations of the form (∗) occur so often in this paper we abbreviate
the notation to write

S = 〈 A | ci = 0 for i = 1 . . . , k 〉 .

The words c1, . . . , ck are called (zero) relators. Observe that S may be regarded
as (isomorphic to) the Rees quotient of the free inverse semigroup FIA generated
by A with respect to the ideal generated by the relators. The class of finitely
presented inverse semigroups with zero defined by presentations (∗) may now be
formally referred to as MFI .

The content of a word w ∈ B∗, denoted by content(w), is the set of letters from
A which appear in w or w−1. If w1, . . . , wn ∈ B∗ then denote by (w1, . . . , wn) the
subsemigroup of B∗ generated by w1, . . . , wn, which we may regard as a subset
of FIA or of S in context. In contrast, denote by Inv〈w1, . . . , wn〉 the inverse
subsemigroup of S generated by w1, . . . , wn. We use the symbol ◦ to denote
literal equality of words, that is, w1 ◦ w2 means that words w1 and w2 coincide
letter by letter. If v, w ∈ B∗ and x ◦ xvy for some x, y ∈ B∗ then we call v a
subword (or factor) of w. The number of letters in a word w is denoted by |w|.
Recall that w is reduced if w does not contain xx−1 as a subword for any letter
x ∈ B , and that w is cyclically reduced if w and w2 are both reduced (whence
all powers of w are reduced).

Reference to Green’s relation J throughout will be with respect to FIA. Call
a word u a divisor of a word v if the equation v = sut holds in FIA for some
s, t ∈ B∗. For any set X of words, put

divX = { divisors of words from X } ,

elements of which are referred to simply as divisors of X . Recall that elements
of FIA may be regarded as birooted word trees (introduced for the first time in
[19] and referred to also as Munn trees), the terminology and theory of which are
explained in [10] (see also [30, Section 2]). As in [30], denote the word tree of a
word w over B by T (w). Two words are J -related if and only if their word trees
are identical. If u and v are words, then T (u) is a subtree of T (v) if and only if
u divides v. A chain is a word tree that is either a single vertex (the word tree of
the empty word) or one in which all vertices have degree 2 except for two leaves
(at the respective ends of the chain) that have degree 1. The chain that consists
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of a single vertex is called empty. Recall also that an element s of a semigroup
S with zero is nilpotent if some power of s is zero.

When writing about or using presentations of the form (∗) in the text of this
paper, we make the following underlying assumptions:

(i) The alphabet A is finite and |A| ≥ 2.
(ii) The number k of relators is at least one.
(iii) No relator is J -equivalent to a single letter from A. (In particular, this

guarantees that S is not a free monogenic inverse semigroup with zero.)
(iv) No relator J -divides any other relator in the presentation for S. (If this

were not the case then we could delete a relator without changing the
Rees quotient.)

(v) At least one relator is J -equivalent to a reduced word.
These assumptions may be referred to collectively as the irredundancy of the pre-
sentation. A useful consequence of (iii) is that every relator contains a reduced
subword of length 2 and no relator can have the form aa−1 or a−1a for a ∈ A.
Condition (v) is included, because if it failed then there would exist at least two
letters a, b ∈ A that generate a noncyclic free subsemigroup (see remarks following
Theorem 2.1 of [31]), so that the growth of S would become exponential for a
trivial reason, and the presentation would not be interesting from our point of
view.

REMARK 2.1. The following fact is used implicitly in some of the arguments in the
paper, where we exchange some letters with their formal inverses as generators.
Suppose that S is given by the presentation (∗) and write A = {a1, a2, . . . , an}
where |A| = n. Put A′ = {aε11 , aε22 , . . . , aεnn } where ε1, . . . , εn ∈ {±1}. Then,
interpreting formal inversion of generators in the usual way, it is clear that

B = A′ ∪ (A′)−1

and
S = Inv〈 A′ | ci = 0 for i = 1 . . . , k 〉 .

We also use (implicitly) the facts that word inversion and word reversal both
induce anti-isomorphisms from S to its dual semigroup.

We recall now some basic definitions and facts about growth of semigroups.
Consider a semigroup S generated by a finite subset X . The length ℓ(t) of an
element t ∈ S (with respect to X ) is the least number of factors in all represen-
tations of t as a product of elements of X , and

gS(m) =
∣∣ { t ∈ S | ℓ(t) ≤ m }

∣∣

is called the growth function of S . Recall that S has polynomial growth if there
exist natural numbers q and d such that gS(m) ≤ qmd for all natural numbers
m , and exponential growth if there exists a real number α > 1 such that gS(m) ≥
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αm for all sufficiently large m . These definitions and notions of growth apply
also to subsets of S in an obvious way. Throughout this paper, we may implicitly
assume that zero lies in the generating set of any semigroup with zero (so that
zero always has length one). If t ∈ S and the equation t = w holds in S, where w

is a product of ℓ(t) elements of X regarded as a word over the alphabet X , then
we call the word w a geodesic for t (with respect to X).

The control of geodesics is necessary in estimating growth. In our context
of Rees quotients, it then becomes important to locate geodesics in free inverse
semigroups. Any given element w of FIA may also be expressed as

w = u1u
−1
1 u2u

−1
2 . . . uru

−1
r w

for some nonnegative integer r and reduced words u1, . . . , ur, w . If r is as small
as possible, so that no ui can be an initial segment of uj for i 6= j , then the
previous expression for w is called the Schein (left) canonical form of w (see [26]),
which is unique up to order of idempotents. Typically the Schein canonical form
is a long way from being geodesic. In fact a geodesic w̃ for w in FIA has the form

w̃ ◦ u0e1u1e2 . . . enun

where n ≥ 0 is the number of idempotents in the Schein canonical form,

w ◦ u0u1 . . . un and e1 ◦ . . . ◦ en ◦ 1

(so that e1, . . . en represent idempotents). Geodesics in free inverse monoids were
considered by Choffrut [6, Section 3.2], and also by Poliakova and Schein in [22],
where they gave a rewriting system that reduces an arbitrary word in the free
inverse semigroup to its geodesic form (which is unique up to the representation
of idempotents). To form each ei, one systematically traces the labels of edges
of the branches of the word tree that emanate from the geodesic chain of T (w)
labelled by w at the vertex pointed to by the last letter of ui−1 (or the initial
vertex if i = 1 and u0 is empty). The word ei is not unique unless there is exactly
one branch emanating from that vertex and that branch is a chain, because one
may arbitrarily choose the order of multiple subbranches to trace from any given
vertex. The number of occurrences of a given letter in ei however is unique. In
all of our examples, the geodesics will be clear from context and the reader is
encouraged to draw diagrams of the associated Munn trees.

Now consider the case that S has polynomial growth with respect to a finite
generating set X . In this case, the limit

GKdim(S) = lim
m→∞

sup
log gS(m)

logm

is finite and called the Gelfand-Kirillov dimension of S (see [2] and [12]). In all
the cases S considered in this paper with polynomial growth, we can find positive
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real numbers α and β and a positive integer k such that, for all sufficiently large
m,

αmk ≤ gS(m) ≤ βmk ,

and then it will follow immediately that GKdim(S) = k.
We recall briefly the classical notion of bounded height (introduced originally

by Shirshov [27]). Let X be a subset of a semigroup S. Consistent with our
notation introduced earlier, denote by (X) the subsemigroup of S generated by
X . If s ∈ (X) can be expressed as a product

s = hα1

1 . . . hαk

k

for some h1, . . . , hk ∈ X and positive integers α1, . . . , αk , and k is as small as
possible, then we say the height of s with respect to X is k. We say that a subset
K of S has height bounded by k if there exists a finite subset X of K such that
K ⊆ (X) and the height of elements of K with respect to X is at most k. One
of the main results of [31] is that a semigroup from the class MFI has polynomial
growth if and only if it has bounded height.

We recall shortly the definition of Ufnarovsky graph Γ = ΓS of S (depending
on the presentation of S), which is the key tool introduced in [30] and modified
slightly in [31]. Example 2.3 below is both illustrative in assisting the reader to
digest the construction and also in seeing how various criteria can be applied that
guarantee polynomial growth.

Consider an irredundant presentation of the form (∗) for a semigroup S from
the class MFI . Put d+ 1 = max{ l(ci) | i = 1, . . . , k } and

d+ 1 = max{ l(c) | c is a reduced word J−equivalent to some relator } .

Note that d exists by condition (v) of irredundancy of the presentation, and may
be calculated easily by inspecting word trees of relators. By condition (iii) of
irredundancy, no word is J -equivalent to a single letter, so d ≥ d ≥ 1. Vertices of
Γ = ΓS are defined to be reduced words of length d which are nonzero in S . If
v1 and v2 are vertices then a directed edge from v1 to v2 is defined in Γ if there
exist letters g, h ∈ A ∪ A−1 such that v1g is a reduced word which is nonzero
in S and v1g ◦ hv2 . We regard the letter g as a label for this edge. Paths in
Γ may then be labelled by reduced words which are nonzero in S . Conversely if
w ◦ vu ◦ u′v′ is any nonzero reduced word where v and v′ have length d then u

labels a path in Γ emanating from v and terminating at v′.
By a cycle in Γ we mean a path that starts and finishes at the same vertex.

By a loop at a vertex v we mean a cycle that begins at v using no other vertex
more than once. (Note that our use of the word loop is slightly non-standard,
but is concise, captures precisely the underlying geometric idea, and is consistent
with the use made in earlier papers on which our results depend.) Recall from
[30, Section 3] that (z, P ) is an adjacent pair if z is a reduced word that labels a
loop in Γ at a vertex v and P is a letter labelling an edge that emanates from
v and terminates outside the loop. Combining Theorems 2.1, 3.3 and 4.3 of [31]
and Lemma 3.2 of [30], we have the following criteria for polynomial growth:
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THEOREM 2.2. Let S be given by an irredundant presentation (∗). Then the fol-
lowing conditions are equivalent:

(a) S has polynomial growth.

(b) S does not contain any noncyclic free subsemigroups.

(c) The set of reduced words that are nonzero in S has bounded
height and all reduced words that are not cyclically reduced
are nilpotent with index of nilpotency ≤ d+ 1.

(d) (i) ΓS has no vertex contained in different cycles; and

(ii) if (z, P ) is an adjacent pair in ΓS then

zd+1PP−1zd+1 = 0 in S .

A sufficient condition for polynomial growth (which becomes necessary if every
relator is J -related to a reduced word) is

(e) (i) ΓS has no vertex contained in different cycles; and

(ii) if (z, P ) is any adjacent pair then (z−1, P ) is not adjacent.

The following example is one of the main ingredients in the full characterisa-
tion (Theorem 6.1 below) of three relator irredundant presentations with polyno-
mial growth.

EXAMPLE 2.3. As noted in the Introduction, the semigroup S = 〈 a, b | ab = 0 〉
was studied thoroughly in [8]. The following homomorphic image of S turns out
to have polynomial growth:

T = 〈 a, b | a2 = b2 = ab = 0 〉 .

Clearly, the presentation of T is irredundant. In terms of the notation preceding
Theorem 2.2, d = d = 1 and the Ufnarovsky graph ΓT becomes

a b−1

b a−1

b−1

a

b

a−1

a b−1

Our apparatus now gives us several ways to see why the growth of T must be
polynomial. Clearly no vertex is contained in different cycles of the graph. The
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adjacent pairs are precisely

(ba−1, b−1) and (a−1b, a) .

We may observe that

(ba−1)2b−1b(ba−1)2 = (a−1b)2aa−1(a−1b)2 = 0

in T , because b2 is a factor of the first word and a−2 is a factor of the second.
Thus T has polynomial growth by condition (d) of Theorem 2.2. Alternatively we
may observe directly from the graph that

(ab−1, b−1) and (b−1a, a)

are not adjacent pairs. Hence condition (e) of Theorem 2.2 also implies that
the growth of T is polynomial. To apply condition (c) directly, to illustrate yet
another alternative, we need to find reduced words that are nonzero in T . These
are precisely the labels of nonempty paths in ΓT . Together with the empty word
these comprise the following regular language that can be read easily from the
graph:

(1 ∪ b)(a−1b)∗(1 ∪ a(b−1a)∗(1 ∪ b−1)) ∪ (1 ∪ a−1)(ba−1)∗(1 ∪ b−1(ab−1)∗(1 ∪ a))

Because there are no nested stars, and the regular expression is the union of two
pieces, each with four factors, the set of reduced words has height bounded by
4. By inspection, the reduced words that are not cyclically reduced are precisely
conjugates of a±1 and b±1, so these are nilpotent in T , since their squares are
clearly zero in T . Hence by condition (c) of Theorem 2.2, we see again that T has
polynomial growth.

In order to calculate the Gelfand-Kirillov dimension of T , we need to be able
to control geodesic representatives for elements of T . Because of the presence of
idempotents, it is not enough to consider just the set of reduced words (which
in fact has Gelfand-Kirillov dimension 2 as a regular language, because of the
presence of at most two cycles in a row (see for example [33], [34])). The relations
a2 = b2 = 0 prevent any vertex of a Munn tree of a word in T having degree more
than 2. Hence all word trees of nonzero elements are chains, and we may adapt the
technique used in [29] (see, for example, the preamble leading up to Lemma 3.1 of
[29]). If w is a word over the alphabet B such that the word tree T (w) is a chain

with m edges, then the length of w in FIA is at most 2m and there are (m+1)(m+2)
2

different divisors of w in FIA having the same word tree. So, every reduced word
v of length m is associated with some subset that consists of a quadratic function
in m distinct nonzero elements of the semigroup T , and different reduced words
are associated with disjoint subsets. By inspection, if v is reduced and nonzero in
T then v or v−1 may be written in one of the following forms:

bα(a−1b)β , bα(a−1b)βa(b−1a)γb−δ
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for some nonnegative integers β, γ and α, δ ∈ {0, 1}. It follows quickly that, for
large integers ℓ, the number of reduced words of length ℓ that are nonzero in T

is bounded above and below by quadratic functions of ℓ. It now follows, by the
preceding observation, that gT (m) is bounded above and below, for large m, by
polynomial functions of m of degree 4. Hence, GKdim(T ) = 4.

The following terminology and notation will be useful in understanding the
proof of Lemma 3.1 below, and again when investigating Gelfand-Kirillov dimen-
sions in Section 7. If w is a word over B then we say w has the whisker property if
the word tree T (w) contains an underlying chain C of vertices such that each leaf
vertex of T (w) is connected to C by a chain of edges, degrees of vertices are only
allowed to be 1, 2 or 3, and vertices of degree 3 only occur on C. These connecting
chains are called whiskers and are themselves word trees of reduced words.

The definition allows for a whisker located at a leaf of C to be empty, in which
case that leaf of C also becomes a leaf of T (w). In the diagram above the thick
line is intended to represent the underlying chain C and the thin lines represent
the whiskers. On this diagram, one of the leaves of the tree is at one end of C,
and at the other end there is a nonempty whisker attached. Whiskers may be of
varying length. However, if ui ◦ w−1viw are reduced words that are not cyclically
reduced, for i = 1, . . . , n, and the word v1 . . . vk is reduced, then u1 . . . un has the
whisker property with respect to the chain C = T (v1 . . . vn), and the whiskers are,
in this case, identical copies of the chain T (w).

3. FREE SEMIGROUP GENERATION BY A PAIR OF REDUCED WORDS

In this section we provide a useful characterisation of free semigroup generation in
FIA by a pair of two reduced words. The corollary that follows is used extensively
throughout this paper. If w is a nonempty reduced word then we write

w ◦ wPwCw
−1
P

where wP and wC are unique reduced words such that wC is nonempty and cycli-
cally reduced.
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LEMMA 3.1. Let u, v ∈ B∗ be reduced words. Then u and v are a pair of free
generators for a subsemigroup of FIA if and only if

(a) uP 6 ◦ vP ; or

(b) uP ◦ vP (possibly empty) and uC and vC are not powers of the same
reduced word in B∗; or

(c) uP ◦ vP is a nonempty word and uC and vC are different positive
powers of the same reduced word in B∗.

PROOF. Suppose first that u and v are free generators for a subsemigroup of FIA
and that neither (a) nor (b) holds. Then uP ◦ vP and uC ◦ wk and vC ◦ wℓ for
some nonzero integers k and ℓ. If k and ℓ have different signs then, without loss
of generality, we may suppose k > 0 and ℓ < 0, and clearly

vku−ℓ ◦ uPw
kℓu−1

P uPw
−kℓu−1

P ◦ 1 ,

so that vku−ℓ is idempotent in FIA, contradicting that u and v are free generators.
Hence k and ℓ have the same sign, so that uC and vC are both positive powers of
w or w−1. In particular uC and vC commute, so it follows immediately that uP is
nonempty. Clearly uC 6 ◦ vC , so (c) is proved.

Suppose now that (a) or (b) holds. Clearly u and v are not powers of the
same word evaluated in the free group FGA generated by A, so they generate a
free subgroup of FGA of rank two. But this subgroup contains a morphic image
of the subsemigroup (u, v) of FIA. This implies that (u, v) is freely generated by
u and v, and we are done.

Suppose finally that (c) holds, so

u ◦ uP c
ku−1

P and v ◦ uP c
ℓu−1

P

for some reduced word c and positive integers k and ℓ with k 6= ℓ. If W (x, y) is a
positive word over the alphabet {x, y} then clearly the word W (u, v) over B has
the whisker property with respect to some chain T (cN ) for some positive integer
N and whiskers that are chains all of the form T (uP ). By inspecting the distances
between successive whiskers, it is immediate that if W1(u, v) and W2(u, v) are two
different positive words over the alphabet {x, y}, then the Munn trees of W1(u, v)
and W2(u, v) cannot be equal. This shows that u and v are free generators of
(u, v) in FIA, completing the proof of the lemma.

Because a word is zero in a semigroup S with presentation (∗) if and only if
some relator divides it, Lemma 3.1 yields the following useful corollary:

COROLLARY 3.2. Suppose that S is given by a presentation (∗). If S contains no
noncyclic free subsemigroup and u, v ∈ B∗ are reduced words such that either (a),
(b) or (c) holds in the previous lemma, then some relator used in the presentation
for S is a divisor of (u, v).
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4. KEY CLASS OF THREE RELATOR INVERSE SEMIGROUPS

The following proposition introduces a class of three relator Rees quotients of free
inverse semigroups over an alphabet with two letters, where the first two relators
place severe restrictions on the shape of nonzero reduced words. The third relator,
described in terms of a parameter γ, is just enough, in combination with the
first two relators, to guarantee polynomial growth. This class is important later
in providing three relator examples with Gelfand-Kirillov dimensions taking all
integer values greater than or equal to four.

PROPOSITION 4.1. Consider the Rees quotient

SC = 〈 a, b | ab = a−1b = C = 0 〉 ,

where C is some nonempty word over the alphabet Σ = {a±1, b±1} that is not
J -equivalent to a single letter. For each positive integer γ, write wγ ◦ aγb−1baγ .

Then SC has polynomial growth if and only if C divides wγ for some positive
integer γ.

PROOF. Put S = SC . Suppose first that C divides wγ for some positive γ. Put

S0 = 〈 a, b | ab = a−1b = 0 〉 .

Since aθb = b−1aθ = 0 in S0 for any integer θ, the reduced words that are nonzero
in S0 have the form bαa±βb−δ where α, β and δ are nonnegative integers, not all
zero. The reduced words that are nonzero in S are also nonzero in S0 and, by what
we have just observed, these form a set of height bounded by three with respect
to Σ. Let v be any reduced word that is not cyclically reduced and nonzero in S.
Then v ◦ bαa±βb−δ for some positive α, β and δ. If α > δ then

v2 ◦ bαa±βbα−δa±βb−δ ,

and it is clear that v2 is zero in S. Similarly, if α < δ, then v−2 is zero in S, whence
v2 is zero in S. If α = δ then, by inspection, wγ divides vγ , whence C divides vγ ,
so that vγ is zero in S. In all cases, v is nilpotent with index of nilpotency ≤ d+1
for the relevant d. Hence, S has polynomial growth by Theorem 2.2.

Suppose conversely that S has polynomial growth. If C divides aγb−1 for some
positive integer γ, then certainly C divides aγb−1baγ , and we are done. Suppose
then that C does not divide aγb−1 for all positive γ. Put d + 1 = ℓ(C). Then
none of C, ab or a−1b divide the reduced words ad or ad−1b−1. These two reduced
words are of length d so form vertices of the Ufnarovsky graph ΓS . The letter a

labels a loop at the vertex ad and the letter b−1 labels an edge emanating from
ad and terminating at the vertex ad−1b−1, so that (a, b−1) is an adjacent pair. By
Theorem 2.2(d), wd+1 is zero in S. Hence one of the relators ab, a−1b or C must
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divide wd+1. But neither ab nor a−1b divide wd+1, so that C divides wd+1. This
completes the proof of the proposition.

5. NECESSARY CONDITIONS ON NUMBERS OF GENERATORS

In this section we prove the (sharp) lower bound of three for the number of relators
in all irrendundant presentations of semigroups in the classMFI having polynomial
growth. We begin by proving a lemma in the case where there are more than two
generators.

LEMMA 5.1. Let S be given by an irredundant presentation (∗) with k relators
and suppose that S contains no noncyclic free subsemigroups. If the alphabet A
has more than two letters then k > 3.

PROOF. Suppose that a1, a2, a3 are distinct letters from A. By Corollary 3.2, there
exist relators

cr ∈ div(a1, a2) , cs ∈ div(a1, a3) , ct ∈ div(a2, a3) , cu ∈ div(a1a
−1
2 , a1a

−1
3 ) .

Since cu is not J -equivalent to a single letter, the pattern of mixed exponents
guarantees that cu cannot be any of cr, cs or ct. If cr, cs and ct are all distinct
then k > 3 and we are done. Suppose without loss of generality that cr = cs so
that

content(cr) = {a1} .

By Corollary 3.2, there exist relators

cm ∈ div(a2a1a2, a2) , cn ∈ div(a3a1a3, a3) .

Then, because of the shape of the words a2a1a2 and a3a1a3, and because neither
cm nor cn are J -equivalent to a1 (part of the irredundancy assumption about the
presentation of S), we have that

{a2} ⊆ content(cm) ⊆ {a1, a2} and {a3} ⊆ content(cn) ⊆ {a1, a3} ,

so that certainly cr, cm and cn are all distinct. For the same reason as before, cu
is different from cm and cn, so again k > 3, and the lemma is proved.

THEOREM 5.2. If S is given by an irredundant presentation (∗) with k relators
and S contains no noncyclic free subsemigroups then k ≥ 3.

PROOF. Suppose that S contains no noncyclic free subsemigroups. Since |A| ≥ 2
(part of irredundancy of the presentation), it suffices, by Lemma 5.1, to consider
the case when |A| = 2, so that A = {a, b} for some distinct letters a and b.
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Suppose first that a2 is a divisor of c1. By Corollary 3.2, there exist relators

cr ∈ div(ab, ab−1) , cs ∈ div(a−1b, b) , ct ∈ div(ab, b) .

By inspection, from the shape of the words in the subsemigroups (ab, ab−1),
(a−1b, b) and (ab, b), certainly a2 cannot divide cr, cs or ct, so c1 must be dif-
ferent from each of cr, cs and ct. For the same reason, b2 cannot divide cr. Since
cr is not J -equivalent to a single letter (again part of the irredundancy of the
presentation), it follows that

content(cr) = {a, b} .

If cs 6= ct then k ≥ 3 and we are done. Suppose now that cs = ct, so

cs ∈ div(a−1b, b) ∩ div(ab, b) .

By inspection, any reduced word of length two in div(a−1b, b)∩ div(ab, b) must be
b2 or b−2. It follows that content(cs) = {b}. By comparing contents, we thus see
that cr 6= cs. Hence again k ≥ 3 and we are done.

Similarly, if b2 is a divisor of c1 then the statement of the theorem is proved.
Suppose now that neither a2 nor b2 is a divisor of c1. Since c1 is not J -

equivalent to a single letter, every reduced subword of c1 of length 2 has the form
aεbδ or bεaδ for some ε, δ ∈ {±1}. Without loss of generality, by interchanging
letters or replacing letters with their inverses, if necessary, we may suppose that
ab is a divisor of c1. By Corollary 3.2, there exist relators

cm ∈ div(a−1b, b) , cn ∈ div(ab−1, a) .

The pattern of mixed signs of exponents in the words a−1b and ab−1 guarantees
that ab is not a divisor of either cm or cn. If cm 6= cn then c1, cm, cn are distinct
relators (because ab is a divisor of c1), so that k ≥ 3 and we are done. We may
suppose then that cm = cn, so

cm ∈ div(a−1b, b) ∩ div(ab−1, a) .

By inspection, any reduced word of length two in div(a−1b, b)∩ div(ab−1, a) must
be a−1b, ab−1, b−1a, or ba−1. It follows, since cm is not J -related to a single
letter, that a−1b or ab−1 divides cm. Suppose that k < 3. Then k = 2 and

S0 = 〈 a, b | ab = a−1b = 0 〉 or S′
0 = 〈 a, b | ab = ab−1 = 0 〉

is a homomorphic image of S. Note, however, that

S′
0 = 〈 b−1, a−1 | b−1a−1 = ba−1 = 0 〉 ∼= 〈 a, b | ab = a−1b = 0 〉 ∼= S0 .
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Hence S0 is a homomorphic image of S. But S0 does not have polynomial growth,
by Proposition 4.1. Thus S also does not have polynomial growth, and so contains
a noncyclic free subsemigroup, by Theorem 2.2(b), a contradiction. Thus k ≥ 3
and the proof of the theorem is complete.

6. GROWTH AND THREE RELATORS

By Theorem 5.2, a non-monogenic semigroup from our class with an irredundant
presentation must have at least three relators to have polynomial growth. In this
section we investigate fully the minimal case of three relators. Suppose throughout
this section that

S = 〈A | c1 = c2 = c3 = 0 〉 (∗∗)

is an irredundant presentation for some words c1, c2, c3. We characterise those
semigroups S for which polynomial growth occurs, by supplementing the class of
semigroups described in Proposition 4.1 and their duals by the semigroup T .

THEOREM 6.1. A semigroup S with presentation (∗∗) has polynomial growth if
and only if S is isomorphic or anti-isomorphic to

T = 〈 a, b | a2 = b2 = ab = 0 〉

or to
SC = 〈 a, b | ab = a−1b = C = 0 〉

where C is not J -related to a single letter and C divides wγ ◦ aγb−1baγ for some
positive integer γ.

PROOF. The “if” direction is verified in Example 2.3, for T , and in the proof of
Proposition 4.1, for each SC . We now prove the “only if” direction.

Suppose that S has polynomial growth. Hence no homomorphic or anti-
homomorphic image of S can possess a noncyclic free subsemigroup. By Lemma
5.1, |A| = 2, so we can write A = {a, b}. Without loss of generality, it suffices to
consider Cases (i), (ii) and (iii) below.

Case (i): Suppose that a2 divides c1 and b2 divides c2. Our initial task is to control
the shape of the relator c3, and to do this first observe that

〈 a, b | a2 = b2 = c3 = 0 〉

is a homormorphic image of S. By Corollary 3.2,

c3 ∈ div(a−1b, aba−1b) ∩ div(a−1b−1, ab−1a−1b−1)
∩ div(b−1a, bab−1a) ∩ div(b−1a−1, ba−1b−1a−1) .
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By irredundancy of the presentation and inspection of word trees, T (c3) = T (w)
where w is some word of length at least two that alternates between letters from
X = {a±1} and Y = {b±1}, beginning either with a letter from X or a letter from
Y . By inspection, no such word of length three can lie in the intersection of sets
of divisors displayed above, so w has length two. It follows that c3 is J -related to
one of ab, ab−1, a−1b or a−1b−1. Note also that a−2 divides c1 and b−2 divides c2.
Without loss of generality, by Remark 2.1, interchanging letters with their formal
inverses, if necessary, as generators of S, we may suppose that c3 is J -related to
ab, without disturbing our underlying assumption that a2 divides c1 and b2 divides
c2. Thus

S1 = 〈 a, b | c1 = b2 = ab = 0 〉 and S2 = 〈 a, b | a2 = c2 = ab = 0 〉

become homomorphic images of S, so these semigroups do not contain noncyclic
free subsemigroups. Observe that b2, ab 6∈ div(b−1a, b−1a2), so that, by Corollary
3.2 applied to S1,

c1 ∈ div(b−1a, b−1a2) .

We will show that the word tree T (c1) has two edges. Suppose by way of con-
tradiction that T (c1) has at least three edges. By inspection, since a2 divides c1,
either a2b−1 or b−1a2 must divide c1. Hence either

S3 = 〈 a, b | a2b−1 = b2 = ab = 0 〉 or S4 = 〈 a, b | b−1a2 = b2 = ab = 0 〉

must become a homomorphic image of S, and neither can contain a noncyclic free
subsemigroup. By inspection, (a−2ba)3 and (bab−1)3 are nonzero in S3 and S4

respectively. Hence, by Theorem 2.2 (noting that d+ 1 = 3 in each case), each of
S3 and S4 contains a noncyclic free subsemigroup, a contradiction. Hence T (c1)
has two edges, so c1 J a2. A similar argument, considering S2 above, yields c2 J b2.
All of this suffices to prove that S is isomorphic to T , completing the analysis of
Case (i).

Case (ii): Suppose that a2 divides c1 but b2 does not divide c2 or c3. Then

〈 a, b | a2 = c2 = c3 = 0 〉

is a homomorphic image of S, so, by Corollary 3.2, and without loss of generality,

c2 ∈ div(ab, ab2) and c3 ∈ div(ba−1, b2a−1) .

It follows quickly, by irredundancy, that c2 is divided by ab or ba, and c3 is divided
by ba−1 or a−1b.

We will prove that the word tree T (c2) has two edges. Suppose by way of
contradiction that T (c2) has at least three edges. Then, because b

2 does not divide
c2, either aba or bab divides c2, so that one of the following inverse semigroups
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is a homomorphic image of S and therefore does not contain a noncyclic free
subsemigroup:

S5 = 〈 a, b | a2 = aba = ba−1 = 0〉 , S6 = 〈 a, b | a2 = bab = ba−1 = 0〉 ,

S7 = 〈 a, b | a2 = aba = a−1b = 0 〉 or S8 = 〈 a, b | a2 = bab = a−1b = 0 〉 .

Note that S7 and S8 are anti-isomorphic to S5 and S6 respectively. By inspec-
tion, (a−1ba)3 is nonzero in both S5 and S6. By Theorem 2.2, each of S5 and
S6, and hence also each of S7 and S8, contains a noncyclic free subsemigroup, a
contradiction.

Hence T (c2) has two edges. Repeating similar steps of the previous argument
shows also that T (c3) has two edges. Thus c2 is J -equivalent to ab or ba, and c3
is J -equivalent to ba−1 or a−1b. It follows that S is isomorphic or anti-isomorphic
to one of the following, where the word C is either c1 or the reversal of c1:

S9 = 〈 a, b | C = ab = ba−1 = 0 〉 or S10 = 〈 a, b | C = ab = a−1b = 0 〉 .

Suppose first that S is isomorphic to S9 or its dual. In particular, S9 has poly-
nomial growth. Observe that a2 divides C (since a2 divides c1) and that S9 =
〈 a, b | C = b−1a−1 = ba−1 = 0 〉. Renaming the letters in Proposition 4.1, we
obtain that C divides bδaa−1bδ for some positive integer δ. Hence a2 also divides
bδaa−1bδ, which is impossible.

This shows that S is isomorphic to S10 or its dual. It follows immediately
from Proposition 4.1 that C divides wγ ◦ aγb−1baγ for some positive integer γ, so
S is isomorphic to SC or its dual, completing the analysis of Case (ii).

Case (iii): Suppose that both a2 and b2 do not divide each of c1, c2 and c3. By
irredundancy, each of c1, c2 and c3 cannot have the form aa−1, a−1a, bb−1 or b−1b,
and must have a reduced subword of length two from amongst

ab , ab−1 , a−1b , a−1b−1 , ba , ba−1 , b−1a , b−1a−1 .

Thus, simplifying this list by removing one from each pair of mutual inverses, each
of c1, c2 and c3 must has a divisor from amongst

ab , ab−1, a−1b , ba .

By Corollary 3.2, without loss of generality,

c1 ∈ div(ab, ba) and c ∈ div(ab−1, b−1a)

where c ∈ {c1, c2, c3}. Observe that the only reduced words of length two that
lie in div(ab, ba) ∩ div(ab−1, b−1a) are a±2 and b±2. If c = c1 then this implies
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that either a2 or b2 divides c1, which contradicts our original assumption. Hence
c 6= c1. Without loss of generality, then,

c2 ∈ div(ab−1, b−1a) .

Because a2 and b2 do not divide c1 and c2 it follows from above that T (c1) = T (v)
where v is a word that alternates between a and b, and T (c2) = T (w) where w is
a word that alternates between a and b−1.

We will prove that the word tree T (c1) has two edges. Suppose by way of
contradiction that T (c1) has at least three edges. Then c1 is divided by aba or bab.
But ab−1 or b−1a divides c2, so that at least one of the following is a homomorphic
image of S:

H1 = 〈 a, b | aba = ab−1 = c3 = 0 〉 , H2 = 〈 a, b | aba = b−1a = c3 = 0 〉 ,

H3 = 〈 a, b | bab = ab−1 = c3 = 0 〉 , H4 = 〈 a, b | bab = b−1a = c3 = 0 〉 .

Suppose first that H1 is a homomorphic image of S. Then the semigroup

〈 a, b | ab = ab−1 = c3 = 0 〉 = 〈 a, b | b−1a−1 = ba−1 = c3 = 0 〉

is also a homomorphic image of S, so has polynomial growth. By Proposition
4.1, after renaming letters, the relator c3 must divide the word bγaa−1bγ for some
positive integer γ. Since b2 does not divide c3 we get that c3 divides ba or a−1b. By
irredundancy of the presentation for H1, c3 must be J -equivalent to a−1b. Hence
we may rewrite the presentation:

H1 = 〈 a, b | aba = ab−1 = a−1b = 0 〉 .

By inspection, none of the relators in this new presentation for H1 divides a word
in the subsemigroup (bab, ba2b). By Corollary 3.2,H1 must contain a noncyclic free
subsemigroup, contradicting that H1 has polynomial growth. Hence H1 cannot
be a homomorphic image of S. By similar arguments, H2, H3 and H4 cannot be
homomorphic images of S. This yields a contradiction and completes the proof
that T (c1) has exactly two edges.

By a similar argument, T (c2) has exactly two edges. Thus c1 is J -equivalent
to ab or ba and c2 is J -equivalent to ab−1 or b−1a, so that S is isomorphic to one
of the following:

L1 = 〈 a, b | ab = ab−1 = c3 = 0 〉 , L2 = 〈 a, b | ab = b−1a = c3 = 0 〉 ,

L3 = 〈 a, b | ba = ab−1 = c3 = 0 〉 , L4 = 〈 a, b | ba = b−1a = c3 = 0 〉 .

As before, c3 must have a divisor from amongst ab, ab−1, a−1b, ba.
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Suppose first that S is isomorphic to L1. We may rewrite the presentation of
L1 as follows:

L1 = 〈 a, b | b−1a−1 = ba−1 = c3 = 0 〉 .

By Proposition 4.1, the relator c3 divides bγaa−1bγ for some positive integer γ. By
irredundancy and the fact that b2 does not divide c, we have that c3 is J -equivalent
to a−1b or ba. Hence S is isomorphic to one of the following:

L1,1 = 〈 a, b | ab = ab−1 = a−1b = 0 〉 , L1,2 = 〈 a, b | ab = ab−1 = ba = 0 〉 .

Similar arguments in the cases that S is isomorphic to L2, L3 and L4 lead to the
following possibilities for S:

L2,1 = 〈 a, b | ab = b−1a = ab−1 = 0 〉 , L2,2 = 〈 a, b | ab = b−1a = ba = 0 〉 ,

L3,1 = 〈 a, b | ba = ab−1 = a−1b = 0 〉 , L3,2 = 〈 a, b | ba = ab−1 = ab = 0 〉 ,

L4,1 = 〈 a, b | ba = b−1a = ab−1 = 0 〉 , L4,2 = 〈 a, b | ba = b−1a = ab = 0 〉 .

It is straightforward now to check that each Li,j listed above is isomorphic to

〈 a, b | ab = a−1b = ab−1 = 0 〉 .

This is an instance of SC , where C ◦ ab−1 divides w1 ◦ ab−1ba, completing the
analysis of Case (iii).

This completes the proof of Theorem 6.1.

7. GELFAND-KIRILLOV DIMENSIONS OF THREE-RELATOR REES QUOTIENTS OF

FREE INVERSE SEMIGROUPS

In this section, we apply our earlier results to prove that the Gelfand-Kirillov
dimensions of semigroups with polynomial growth given by irredundant presen-
tations and three relators take precisely all integer values greater than or equal
to four. We begin by exhibiting a sequence of semigroups where these values are
achieved.

Throughout, let a and b be distinct letters and γ ≥ 2 an integer. Put

Saγ = 〈 a, b | ab = a−1b = aγ = 0 〉 .

These are special cases of the semigroups having polynomial growth that were cat-
alogued in Section 4. In this section we prove that the Gelfand-Kirillov dimension
of Saγ is γ +2. This implies (and it is also straightforward to check directly) that
the semigroups Saγ are pairwise nonisomorphic. Thus we will have exhibited Rees
quotients of free inverse semigroups with just two generators and three relators
that have polynomial growth but whose Gelfand-Kirillov dimensions take every
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positive integer value ≥ 4. Notice that the free monogenic inverse semigroup has
Gelfand-Kirillov dimension 3. However, the proof of Theorem 7.1 below shows that
dimension 3 is avoided by all irredundant presentations involving three relators.

The relations ab = a−1b = 0 guarantee that the word trees of nonzero ele-
ments in Saγ all have the whisker property: the underlying chains are labelled by
nonnegative powers of a, and the whiskers are labelled by nonnegative powers of
b. The whiskers may be of arbitrary length, but the relation aγ = 0 restricts the
length of the underlying chain, so that it has at most γ − 1 edges labelled by a.

Let N denote the set of natural numbers, which we take to include zero. For
any integer k ≥ 1, and x = (x1, . . . , xk) ∈ N

k, put

wx
◦ b−x1bx1ab−x2bx2a . . . b−xk−1bxk−1ab−xkbxk .

Then, the word tree T (wx) has the whisker property with respect to an underlying
chain labelled by ak−1. Further, every word that is nonzero in Saγ is J -equivalent
to wx for some k ≤ γ and x ∈ N

k.
Let Jwx

denote the J -class of wx. Then, following the method in [29] (Propo-
sition 3.2 and its preamble), a word v lies in Jwx

if and only if v or v−1 has a
geodesic representative of the form

wp,s ◦ p−1wx s
−1

for some prefix p and suffix s of wx such that |p| + |s| ≤ |wx| . Thus if v ∈ Jwx

then
ℓ(v) ≤ 2|wx| = 4(x1 + . . .+ xk) + 2k − 2 .

Moreover, varying any of the components of x, the reduced prefix p or the reduced
suffix s of wx changes the Munn tree that the word wp,s represents. For large
positive integers m, put

X =
{
wp,s ∈ Jwx

∣∣∣ x ∈ N
γ ,

m

10γ
≤ xi ≤

m

5γ
for i = 1, . . . , γ

}
.

Firstly, observe that the length of an element of X is bounded by

4(x1 + . . .+ xγ) + 2γ − 2 ≤
4

5
m+ 2γ ≤ m .

Secondly, observe that the size of X is bounded coarsely below by

(⌊
m

5γ

⌋
−

⌈
m

10γ

⌉)γ⌈
m

10γ

⌉2

≥ αmγ+2

for some positive α. This proves that, for large m,

gSaγ (m) ≥ αmγ+2 .
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On the other hand, if v is nonzero in Saγ and ℓ(v) ≤ m, then one of the equations

v = wp,s or v−1 = wp,s

holds in FI{a,b} for some k ≤ γ and x ∈ N
k such that

x1, . . . , xk ≤ m ,

and for some prefix p and suffix s of wx such that |p|+ |s| ≤ |wx|. Certainly, under
these conditions, |wx| ≤ m, so a coarse upper bound for the number of nonzero
elements of length at most m is

2

( γ∑

k=0

(m+ 1)k
)
(m+ 1)2 ≤ βmγ+2

for some positive β. Thus, for large m,

αmγ+2 ≤ gSaγ (m) ≤ βmγ+2 ,

from which it follows immediately that the Gelfand-Kirillov dimension of Saγ is
γ + 2.

THEOREM 7.1. The set of Gelfand-Kirillov dimensions of Rees quotients of free
inverse semigroups having polynomial growth and given by an irredundant presen-
tation with three relators is {4, 5, 6, . . .}.

PROOF. Let S be a Rees quotient of a free inverse semigroup having polynomial
growth and given by an irredundant presentation. By the earlier calculations in
this section, all integer dimensions greater than or equal to 4 arise. By Theorem
5.4 of [15], the Gelfand-Kirillov dimensions of semigroups from MFI are always
integers, so, to complete the proof, it suffices to show that GKdim(S) is at least
4. If S is isomorphic to T = 〈a2 = b2 = ab = 0〉, then GFdim(S) = 4, by Example
2.3, and we are done. Without loss of generality, by Theorem 6.1, we may suppose
S is isomorphic to SC = 〈a, b | ab = a−1b = C = 0〉, where C is not J -related to
a single letter and divides wγ ◦ aγb−1baγ for some positive integer γ. Hence, at
least one of the words ab−1, ba or aδ (for some δ > 1) divides C. It follows that at
least one of Sa2 or the semigroups L2,1 or L2,2 introduced at the end of Section 6
is a homomorphic image of SC . As we noted in Section 6, the semigroups L2,1 and
L2,2 are isomorphic. It is clear that the word tree of any nonzero element in L2,1

is a chain. By [29], the Gelfand-Kirillov dimension of L2,1 is two more than the
Gelfand-Kirillov dimension of the subset H of its reduced nonzero words. Since

H = { bαaβ | α, β ≥ 0 and α + β > 0 }

we have that GKdim(H) = 2, and hence GKdim(L2,1) = 4. Therefore, in view
of the fact that GKdim(Sa2) = 4 also, we have, in all cases, that GKdim(S) is at
least 4. This completes the proof of the theorem.
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8. AN APPLICATION

In this section we introduce an operator Z that takes a general inverse semigroup
presentation Π and produces a homomorphic image Z(Π) in the class MFI . We
then apply one of our earlier theorems to obtain information in the case of one
relation. A further application of this operator appears in Section 9.

Consider the following inverse semigroup given by an inverse semigroup pre-
sentation (not necessarily with zero):

Π = Inv〈A | Ci = Di for i = 1, . . . , k〉

where A is our usual alphabet and all Ci, Di are words over B = A ∪A−1. Form
the following closely associated inverse semigroup with zero from our class MFI ,
which is (isomorphic to) a Rees quotient of Π via the natural homomorphism
extending the identity map on A:

Z(Π) = 〈A | Ci = 0 , Di = 0 for i = 1, . . . , k〉 .

Clearly, if Z(Π) has exponential growth then so does Π, and if Z(Π) contains a
non-monogenic free subsemigroup then so does Π.

THEOREM 8.1. Let Π be the inverse semigroup given by the presentation

Π = Inv〈A | C = D 〉

defined by one relation where C and D are words over B. If A has at least three
letters, or A has exactly two letters and the word trees T (C) and T (D) both contain
more than one edge, then Π contains a non-monogenic free subsemigroup, so in
particular has exponential growth.

PROOF. Suppose first that A has at least three letters. Consider the group G

given by the same presentation as Π but in the class of all groups. In particular,
G is a homomorphic image of Π. Furthermore, G can be defined by the group
presentation

〈A | W = 1〉

where W is a cyclically reduced word that is conjugate in the free group to CD−1.
If W is empty then G is a non-monogenic free group. If W is nonempty then,
by Magnus’ Freiheitssatz [18], we can find at least two elements of A that freely
generate a free subgroup of G. In either case, the same two elements of A freely
generate a non-monogenic free subsemigroup of Π.

Suppose now that A has exactly two letters and the word trees T (C) and
T (D) both contain more than one edge. Then the two relators in the presentation
for Z(Π) cannot be J -related to single letters. If the presentation for Z(Π) is not
irredundant (see the Preliminaries) then either condition (iv) or condition (v) of
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irredundancy fails. If (v) fails then there would exist at least two letters from A

that generate a non-monogenic free subsemigroup. If (iv) fails then one of C or
D is a J -divisor of the other and may be deleted from the presentation without
altering the semigroup. Thus we may suppose that we obtain an irredundant
presentation for Z(Π) that has at most two relators. Then Z(Π) must contain
a noncyclic free subsemigroup, by Theorem 5.2, and the proof of the theorem is
complete.

The recent example in [28] demonstrates that the hypothesis that T (C) and
T (D) contain more than one edge cannot be removed in the statement of the
previous theorem.

9. NUMBER OF RELATORS AND EXAMPLES

In our final main result, we relate the size of the generating set to a lower bound
for the number of relators when an inverse semigroup from MFI has polynomial
growth and the generators are not nilpotent. We use the operator Z introduced
in the previous section to apply this result to obtain information about inverse
semigroup presentations with many relations.

THEOREM 9.1. Suppose that S = 〈A | ci = 0 for i = 1, . . . k〉 has polynomial
growth, where A is an alphabet of size n ≥ 2, and none of the generators (elements
of A) are nilpotent. Then k ≥ 3

2n(n− 1).

PROOF. Write A = {a1, . . . , an}. The hypotheses clearly imply that k ≥ 1 and
no relator is J -equivalent to a single letter. If the presentation is not irredundant
(because one relator J -divides another) then we may delete relators until the
presentation becomes irredundant. It suffices then to prove the statement of the
theorem assuming the presentation for S is irredundant. For the time being, fix
i, j ∈ {1, . . . , n} with i 6= j and put

Si,j = Inv〈ai, aj〉 ,

regarded as an inverse subsemigroup of S. Certainly then Si,j has polynomial
growth. Also put C = {c1, . . . , ck} and

D = {c ∈ C | content(c) ⊆ {ai, aj}} .

If 0 6∈ Si,j then D is empty, and then Si,j becomes a free nonmonogenic inverse
semigroup, contradicting polynomial growth. Hence 0 ∈ Si,j . Since we are inside
the Rees quotient of FIA by the ideal generated by the members of C, this implies
that D is nonempty, say of size ℓ. We can write D = {d1, . . . , dℓ}. Now consider

the semigroup Ŝi,j given by the following irredundant presentation, as an inverse
semigroup with zero:

Ŝi,j = Inv〈ai, aj | d1 = . . . = dℓ = 0〉 .
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The nonzero multiplication of elements inside Si,j may be identified with the same
multiplication regarded as elements of FI{ai,aj}, and a product of words becomes
zero in Si,j precisely when a relator from D divides it. Hence the natural identifica-
tion of nonzero elements of Si,j with elements of FI{ai,aj} induces an isomorphism

from Si,j to Ŝi,j , regarding the latter as a Rees quotient. Therefore Ŝi,j has poly-
nomial growth. By Theorem 5.2, ℓ ≥ 3. Since no generator of S is nilpotent, each
of d1, d2, d3 has content {ai, aj}. Put

ui,j ◦ d1 , vi,j ◦ d2 , wi,j ◦ d3 .

We can now allow i and j to vary. The set

{ ui,j, vi,j , wi,j | i, j ∈ {1, . . . , n} , i 6= j }

has size 3
2
n(n− 1) and the theorem is proved.

COROLLARY 9.2. Consider the inverse semigroup

Π = Inv〈A | Ci = Di for i = 1, . . . , k 〉

defined by k relations where all Ci, Di are words over B. Suppose that A is
an alphabet of size n ≥ 2, Ci and Di are not J -related to a power of a single
letter for each i, and Π does not contain a noncyclic free subsemigroup. Then
k ≥ 3

4n(n− 1).

PROOF. Certainly Z(Π) does not contain a noncyclic free subsemigroup, so by
Theorem 2.2 (b), Z(Π) has polynomial growth. Therefore, by Theorem 9.1, 2k ≥
3
2n(n− 1), and the corollary follows.

EXAMPLE 9.3. Let n ≥ 2 and consider the semigroup

S = 〈 a1, . . . , an | aiaj = ajai = aia
−1
j = 0 for i, j ∈ {1, . . . n} , i < j 〉 .

Then none of the generators are nilpotent and the number of relators is 3
2n(n−1).

One can check easily that the only adjacent pairs in the Ufnarovsky graph of the
presentation are (a−1

i , aj) where i < j, yet

a−2
i aja

−1
j a−2

i = 0

in S. Hence, by Theorem 2.2, S has polynomial growth. This shows that the
bound in the previous theorem is best possible.

EXAMPLE 9.4. Let n ≥ 3 and consider the semigroup

S = 〈 a1, . . . , an | a2i = a−1
2 a1 = ajai = a−1

j ai = 0 for all i ≥ 1, j ≥ 3, j > i 〉 .
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One may check easily that there are only four loops in the graph ΓS , labelled by
a1a2, a2a1, a

−1
2 a−1

1 and a−1
1 a−1

2 respectively, and that the following is a complete
list of adjacent pairs:

(a1a2, a
−1
1 ) , (a2a1, a

−1
2 ) , (a1a2, a

±1
k ) , (a2a1, a

±1
k )

where k ≥ 3. Since none of

(a−1
2 a−1

1 , a−1
1 ) , (a−1

1 a−1
2 , a−1

2 ) , (a−1
2 a−1

1 , a±1
k ) , (a−1

1 a−1
2 , a±1

k )

are adjacent pairs, it follows from Theorem 2.2(e) that S has polynomial growth.
Note that the number of relators is n2 − 1, which is less than 3

2n(n − 1) , but of
course the generators are nilpotent.
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