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This report offers some recent experiences from the author's teaching that highlight 
the fragility of language and mathematical formalism in communicating ideas and 
concepts. Syntactic reasoning is at the superficial end of the spectrum, “skating on 
the surface", involving formal manipulation of symbols, simple rules and 
substitutions. Semantic reasoning is deeper, “diving down towards the seabed", 
drawing conclusions from underlying meanings and heuristics. The author argues 
that illuminating the tension and interplay between these complementary modes of 
reasoning, and creating heightened awareness, may enhance approaches to 
successful learning, improve morale and attitudes, and lead to more robust outcomes 
and willingness to engage in challenging mathematical activities. 

INTRODUCTION AND CONTEXT 
It is common to experience frustration or feel demoralised when calculations or 
mathematical arguments inevitably go awry, make little or no sense, or appear to lack 
relevance or significance. It is unfortunate that what in fact may be natural states of 
incomprehension, or apparent “chaotic mindlessness”, can become painful, have 
negative connotations and a tendency to undermine confidence and put students off 
mathematics, even permanently. People are not stupid simply because they cannot 
comprehend explanations, even when delivered with care and diligence by an 
experienced teacher. They are not hopeless mathematical thinkers just because they 
become lost or “frozen” in attempting to create their own mathematical solutions or 
arguments, even after feeling that they have already achieved a reasonable degree of 
comprehension. Mathematics is inherently difficult and the creative processes that 
lead to successful communication are fragile and easily corrupted. Language is the 
medium of communication, and, through syntax (which includes grammar and formal 
rules of manipulation and deduction), semantics (which includes meaning and any 
underlying ideas or heuristics) may be conveyed in various degrees of approximation. 
The nexus between syntax and semantics is poorly understood, and there has been a 
plethora of attempts to explore it (going back to Frege (1892), and see, for example, 
Chomsky (1957), Heim and Kratzer (1998) and a discussion of the syntax-semantics 
interface in Escribano (1999)) and even develop a specialised theory of formal 
languages that intertwine the two through the notion of a syntactic congruence, a 
little more about which is explained below. 
Wigner (1960), in a physics context, writes about the “miracle of the appropriateness 
of the language of mathematics” in an influential paper whose title refers to the 
“unreasonable effectiveness of mathematics in the natural sciences”. But this 
apparent appropriateness or effectiveness comes at a considerable expense: it is easy 
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to overlook hundreds or (in the case of calculus) thousands of years of mathematical 
evolution. What might seem natural or inevitable in hindsight is the result of many 
minds tilling the mathematical soil and making incremental contributions and adding 
flashes of inspiration to a creative effort that has been refined over many generations. 
Whilst we may look to certain landmarks or individuals as unlocking keys to the 
development of mathematics, one should not ignore the historical context and 
framework in which discoveries are made. As Newton famously remarked: “If I have 
seen further, it is because I have stood on the shoulders of giants.” The metaphor of 
standing on the shoulders of giants dates back to the twelfth century (see, for 
example, Merton (1965)), and is intended to pay tribute to an historical continuum. In 
the author’s opinion, the historical context of mathematics should have as much 
prominence in the classroom as the mathematics itself, at least in introductory phases.  
It is too easy (and especially dangerous in the context of teaching weak or 
inexperienced students) to take modern mathematical notation and terminology for 
granted and lose sight of the significance of a variety of conceptual advances that 
seem to us now quite trivial, but, in their day, were substantial breakthroughs. A 
symbol for zero was introduced in about 800 AD, and, up until about the sixteenth 
century, solutions to quadratic equations took many lines and several cases to write 
down and explain (see Stillwell (1989) for an excellent historical account of this and 
the many variations, and Fitzgerald (2010) for a beautiful anecdote of the role of zero 
in putting him off mathematics at a young age). Once modern mathematical language 
had established itself, combined with the axiomatic method initiated by Euclid (see, 
for example, Artmann (1999)), it seemed inevitable that leading mathematicians, 
such as Hilbert, would ask whether mathematics could be reduced to formal 
manipulation of expressions and axioms (see, for example, Ewald (1996)). Gödel 
(1931) essentially proved that interesting mathematics could not be trivialised in this 
way (his celebrated Incompleteness Theorem, which is really the basis of all 
undecidability results, including, for example, the unsolvability of the word problem). 
His discoveries tell us that, in a sense that can be made precise, there is an 
unbridgeable gulf between syntax and semantics. It is no surprise that students of 
mathematics, and practising mathematicians, want to minimise effort by using, 
wherever possible, syntactic or “formulaic” methods. These methods however are 
inherently fragile and inexperienced students frequently come unstuck. The 
established mathematician, by contrast, has a wealth of semantic knowledge and 
experience, combined with well lubricated technique, and is able to use syntax 
expertly to move quickly and economically through series of deductions and just use 
semantics at a few pivotal points in a calculation or extended argument. The author 
contends that stimulating awareness of these two contrasting modes of reasoning 
should enhance learning. Including the terminology “syntactic reasoning” and 
“semantic reasoning” in classroom practice and parlance may assist in highlighting 
levels of depth and degrees of importance of certain ideas or techniques. 
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At this point, we remark about the origin of this terminology from the theory of 
formal languages, used for example in theoretical computer science (see, for 
example, Eilenberg (1974)). Let Σ be an alphabet and denote by Σ * the collection of 
all words over Σ, by which we mean formal strings of symbols from Σ. A formal 
language L is just a subset of Σ*. Two words v and w from Σ* are called syntactically 
congruent with respect to L, and we write v ~L w, if substituting one for the other in 
any given context does not affect membership of L, that is, 

(∀s, t ∈ Σ* )   svt ∈ L   ⇔   swt ∈ L . 

This captures precisely the idea of v and w being equivalent “synonyms” with respect 
to L. For example, if L comprises all well-formed sentences in English, then all nouns 
become (syntactically) congruent, all verbs become congruent, but a verb and a noun 
will not be congruent. It is not difficult to modify L (for example, by only including 
fruit in the vocabulary of nouns used to make sentences) so that all names of fruit 
become congruent, all non-fruit are congruent, but a fruit and non-fruit are not 
congruent with respect to L, and then modify L again to distinguish, say, apples and 
oranges up to congruence. Modifying the language changes the syntactic congruence 
~L on words from Σ*. It then becomes fruitful to collectively study so-called streams 
or varieties of languages (see Eilenberg (1974)). The syntactic congruence classes 
with respect to a fixed L form a monoid under concatenation, denoted by ML = Σ*/ ~L 
and called the syntactic monoid of L. The relationships between formal languages and 
syntactic monoids are well studied and lead to an elegant and rich theory. For 
example, a language is regular (built from singletons using boolean operations, 
concatenation and star) if and only if it is recognised by a finite state automaton, and 
this occurs if and only if its syntactic monoid is finite. Algebraic properties of the 
monoid ML may be regarded as closely related to the underlying semantics of L, 
regardless of how L is described in terms of syntax or grammar. In this way syntax 
leads to semantics. We will not pursue this any further here, but the point is that the 
idea of simple substitution of words in context provides a test for syntactic 
congruence. Whenever we perform mathematics by making a simple substitution, 
disregarding meaning, we use syntactic reasoning. Whenever we make a 
mathematical deduction using underlying heuristics or meaning, we are applying 
semantic reasoning. It becomes very interesting when errors creep in, making 
incorrect substitutions or applying invalid heuristics. In a certain sense, all of the 
examples discussed in the remainder of this paper are pathological. But studying 
pathology is illuminating and strengthens our understanding of everyday phenomena, 
just as, for example, Oliver Sacks (1995) draws our attention to extreme examples of 
behaviour in neuropsychology, or a mathematician tests the boundaries of his or her 
theory using counterexamples (see, for example, Gelbaum and Olmsted (1990)). 
Errors and misconceptions are interesting and revealing, not just of a student’s 
current state of knowledge or understanding, but of the process of thinking itself, and 
strategies for tackling difficult or sophisticated mathematical problems. Rather than 
regarding the tension between syntactic and semantic reasoning as a nuisance or 
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source of frustration, one can exploit the differences to create opportunities to 
enhance learning and expose weaknesses or gaps in understanding. Almost always, in 
the author’s experience, errors in reasoning tell us more than we imagined and their 
resolution makes us more robust and creative in the long run. 
EXCURSIONS TO AND FROM OBLIVION 
The following figure of an elephant (downloaded from CoolOptical Illusions (2009)) 
with an indeterminate number of legs is a fine illustration of how slight perturbations 
of syntax (in this case the way feet are joined to legs in an outline of an elephant) can 
make an elementary question such as “How many legs does an elephant have?” 
difficult, if not impossibly difficult to answer, or even meaningless. 

 
One could speculate how the artist came up with this figure. Possibly it was an 
intentional variation of the famous trident illusion, or it could be just that the artist 
misplaced the drawing of one of the hind feet, because of a suitable gap (all gaps are 
syntactically congruent!) and then proceeded to fill in some of the other gaps, and 
then realised the error leads to a pleasant illusion. This is an artificial example, but 
our students may have no warning, in natural contexts, to help them recognise when 
something we tell them, or something they do themselves, is slightly “out of tune”, or 
when a seemingly innocuous question has not been properly formulated. The 
associated anxiety and feelings of helplessness can be anything but pleasant, and 
further compounded by exam or (the equivalent of) stage fright. 
Introducing calculus recently to students of agriculture, the author set an assignment, 
separated into parts, that explains the well-known Rule of 70. This rule tells an 
investor that approximately 70/i years is required to double an investment 
compounded at i % annually. For example, at 1% and 7% interest, one expects the 
investment to double in value after 70 and 10 years respectively. Students were asked 
to manipulate the equation  

2P  =   P (1 + i/100)t 
where P dollars is the principal invested and t the number of years for it to double. 
After one particular class, the author was visited by a contingent of students in 
distress, unable to progress through an early step of the assignment, which was to 
eliminate P from both sides of this equation. The leader of the contingent was well 
spoken and articulate, and said “We have taken P away from both sides, to get  
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P  =  (1 + i/100)t 

and do not know what to do now.” The author replied: “Are you sure? What did you 
do to the left-hand side?” Student: “We took P away.” Author: “Hmmm...” The 
student elaborated: “If you take one P away from two P’s you get one P. We don’t 
know what to do with the P that’s left.” The group, about half a dozen students, 
nodded in perplexed unison. Author: “But that is subtraction. What did you do on the 
right-hand side?” The penny dropped and they suddenly realised that they had 
confused division and subtraction together in the idea of “taking away”. The error 
was syntactic, in terms of formally manipulating symbols. However, there was 
probably a semantic component in being tempted to use subtraction: it is a common 
heuristic when introducing abstract variables such as P’s and Q’s, to think of them 
like apples and oranges. If you have two oranges and take one orange away, you are 
left with one orange. This is a powerful heuristic and may have infected the syntax of 
this simple first step (even though it is less effort just to cross the P out). This 
incident is also interesting, psychologically, because there were several students in 
the group asking for help, and it seems surprising that not one of them noticed the 
error, and all were eager for assistance. Magicians and other performers exploit the 
fact that it is remarkably easy to fool or distract a large number of people. The group 
misconception here was unintentional, but the student spokesman probably had led 
the discussion prior to the group visiting the author, and he was confident and well-
spoken. The correct cancellation of P leads to the equation 

2  =  (1 + i/100)t 
and then the next steps of the assignment required students to express t in terms of i, 

t   =   ln 2 / ln(1 + i/100) , 
and finally use a tangent approximation (equivalent to the linear term of a Taylor 
series) to make the substitution 

ln(1 + i/100)  ≈  i/100 , 
and so deduce the Rule of 70: 

t  ≈   ln 2 / (i/100)  =  100 ln 2/i   ≈   70/i . 
The extended exercise involved formal manipulation of equations (or 
approximations) and substitutions, so was particularly ripe for syntactic errors. Other 
students in the class found the fraction i/100 especially problematic and there were 
many stumbles and errors, particularly when differentiating and using the Chain 
Rule. The author believes that successful technique and understanding involving 
fractions lead to one of the key threshold concepts in mathematics, in the sense of 
Meyer and Land (2005). Many obstacles to teaching and learning introductory 
calculus would evaporate if students had already successfully passed through the 
crucial “fraction portal”. Unfortunately this has such a “primary school”, and 
therefore derogatory, connotation in a tertiary setting, that we don’t pay enough 
attention to it at university. (It seems ironic to the author that he also delivers honours 
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courses in which talented and gifted students at university learn about fields and 
modules of fractions, without any hint of stigma, involving precisely the primary 
school concepts that are required for a successful introduction to calculus.) 
In the final exam for the same unit of study as the previous assignment example, 
students were asked to perform some very routine differentiations. Asked to find the 
derivative y’ when  
                                                                         1  

   y   =    ——  , 
           3x 

one student wrote the following: 
                                             1                                                   1 
                                y   =   ⎯⎯   =  3x–1 ,     y’  =  –3x–2  =  ⎯⎯  . 
                                            3x                                               –3x2 

This is an interesting and strangely beautiful answer and one can speculate about the 
student’s reasoning or thought processes. The author suspects (but is not absolutely 
sure) that, under exam pressure, this answer was produced hastily and with at best 
superficial and formulaic attention to detail. If one could have been a fly on the wall 
and asked the student at the time what he or she was thinking, most probably the 
phenomenon would have been interrupted and the answer spoilt. The final expression 
for y’ is correct, but the steps in the reasoning, if interpreted literally, become 
semantic nonsense. Most probably the student used syntactic substitutions in which 
the two errors cancelled out. If the student had bracketed correctly, 
                                                                  1 

     y   =    ——   =  (3x)–1  ,  
                                                                 3x                                            
the most natural next step would involve the Chain Rule. It seems reasonable to 
assume the Chain Rule did not enter the student’s mind and that only the formula for 
differentiating x-–1 was consciously applied. If this is the case, then a very slight 
modification to the answer would deserve full marks: 
                                             1                                                       1 

     y   =    ——   =  3–1x–1 ,     y’  =  –3–1x–2  =  ——  . 
                                            3x                                                   –3x2 

This then would be quite a sophisticated answer, deliberately avoiding the Chain 
Rule, and providing evidence of understanding of fractions, their manipulation and 
exponential notation. The author intends, in the future, to ask inexperienced students 
to analyse this example, and variations, as exercises. This example is interesting also 
in challenging the marker to appropriately and fairly assess the answer. Does it 
deserve 0, 0.5, 1 or perhaps even 1.5 marks out of 2? (It is not completely correct, 
regardless of how one interprets the student’s reasoning.) Does one reward or 
penalise syntax or semantics? Under what circumstances does one have priority over 
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the other? Should this be in the consciousness of the person designing the 
assessment? 
These examples so far involve students who are inexperienced or weak at 
mathematics. The author believes however that the tension between syntax and 
semantics is a universal phenomenon concerning human communication and affects 
all of us, regardless of our experience or ability. The author set a difficult assignment 
question in abstract algebra for talented and gifted honours students: 

Assignment Exercise: Prove Blah blah blah. 
The author received an elaborate answer from a talented student that separated into 
two halves connected by an “isthmus”: 

(1 − e)m + em  =  1 . 
Each half was meticulously correct and involved sophisticated ideas and reasoning 
from the course, with good technique and correct semantics. The isthmus however 
involved an exceedingly simple “syntactic” cancellation error, typical of mistakes all 
of us make when routinely simplifying algebraic expressions. The brackets should 
have been expanded before cancelling, and the left-hand side becomes m, not 1, in 
which case the whole argument, as it turns out, unravels and falls apart. (The 1 on the 
right-hand side turned out to be crucial for the second half of the solution offered.) 
However there was a problem with the student’s semantics, because at the end of the 
second half, he claimed to have proved Super Duper Blah blah blah, which in fact is 
false (only Blah blah blah is true). If he had thought a little about examples from the 
course, he would have realised that he must have fallen into error, and then searched 
through and found it and abandoned this particular solution. In fact, the density of his 
writing meant that the isthmus was buried somewhere in the middle of the argument 
and difficult to locate. The author awarded this answer 6/10, removing marks for the 
error and failure to realise that the final conclusion Super Duper Blah blah blah was 
absurd. If this answer were an arithmetic calculation, for example, and it was not 
obvious from the context of the problem that the final answer was incorrect, then the 
error could be regarded as very slight indeed and the student might get 9.5/10. This 
was interesting also because the entire honours class was asked to peer review each 
other’s work. All of the student’s peers commented that this particular answer was 
worthless (0/10) on the basis that the conclusion was ridiculous. Because of the 
density and length of the answer, none of the peers appeared to have the energy or 
inclination to try to locate the error or read and verify the careful reasoning in each of 
the halves surrounding the isthmus. This kind of example highlights the difficulties 
inherent in distinguishing between syntactic and semantic reasoning, the relative 
worth of industrious mathematical activity that leads to dead ends, and subtle issues 
about assessment and feedback. 
We will finish with a story involving the author (and published in Easdown (1985)). 
Many years ago the author’s wife asked him to put the kettle on to make a cup of tea. 
He did so willingly, and a few minutes later the apartment rapidly filled with smoke 
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followed by an explosion of flames. He had taken an electric kettle, filled it with 
water and placed it on an electric plate on the stove and turned the stove on (instead 
of plugging the kettle in to a power point and turning on the switch in the wall). His 
mind was distracted for some reason, and he managed to get inequivalent operations 
mixed up, made a simple syntactic error involving electrical equipment and nearly 
burnt the house down. His error was not dissimilar to the students confusing 
multiplication and subtraction in an earlier example, though with potentially much 
more catastrophic consequences! One of the wonderful aspects of mathematics is that 
spectacular errors can be harmless and exquisite adventures that take place in the 
mind. We have much to learn from them and they are to be celebrated. 
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