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Abstract. We prove that all immersions of a genus one surface into G/T pos-
sessing a Toda frame can be constructed by integrating a pair of commuting vector
fields on a finite dimensional Lie algebra. Here G is any simple real Lie group
(not necessarily compact), T is a Cartan subgroup and the k-symmetric space
structure on G/T is induced from the Coxeter automorphism. We provide nec-
essary and sufficient conditions for the existence of a Toda frame for a harmonic
map into G/T and describe those G/T to which the theory applies in terms of
involutions of extended Dynkin diagrams.

1. Introduction

The last few decades have seen significant progress in the understanding and classifi-
cation of harmonic maps from surfaces into compact real Lie groups and symmetric
spaces. An important class of harmonic maps are those of finite type, which are
obtained as the solutions to a pair of ordinary differential equations on a finite di-
mensional loop algebra. This is a far simpler process than attempting to solve the
Laplace-Beltrami equation directly, and so motivates us to determine circumstances
under which harmonic maps are of finite type. Similarly, when the target manifold is
a k-symmetric space, k > 2, it is natural to restrict our attention to those harmonic
maps which are cyclic primitive and ask when these maps are of finite type. Many
papers (e.g. [10, 14, 2, 9, 4, 3, 6]) have addressed these questions when the target Lie
group or (k)-symmetric space is compact. We remove the need for this compactness
assumption and in Theorem 5.2 show that all maps from a genus one surface into
a k-symmetric space G/T possessing a Toda frame are of finite type, where G is
any simple real Lie group preserved by a Coxeter automorphism and T is the cor-
responding Cartan subgroup. A natural generalisation of the usual 2-dimensional
affine Toda field equations provides the integrability condition for the existence of
a Toda frame, and so we make contact with classical integrable systems theory. To
determine the spaces G/T and the harmonic maps into them to which this theory
applies we address the following two questions, each of independent interest:

(1) When does a map from a surface into G/T possess a Toda frame? and
(2) When is G preserved by a Coxeter automorphism?
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The first of these is answered in Theorem 4.2, where it is proven that a map from
a surface into G/T locally has a Toda frame precisely when it is cyclic primitive
and a certain function is constant. Cyclic primitive maps are in particular harmonic
and play an analogous role for k-symmetric spaces as harmonic maps do for sym-
metric spaces. This and our finite-type result are the natural extensions of results
obtained in [3] in the case when G is compact. The second question does not arise
in the compact situation, since a Coxeter automorphism for a complex simple Lie
algebra gC automatically preserves a compact real form g. We characterise when a
Coxeter automorphism preserves a real form of a complex simple Lie algebra, which
is equivalent to the corresponding real Lie group G being preserved whenever G
simply connected or adjoint. Given simple roots for gC spanning a Cartan subalge-
bra tC, let σ be the associated Coxeter automorphism and Θ a Cartan involution
with respect to g that preserves t = g ∩ tC. Then σ preserves g if and only if Θ
defines a permutation of the extended Dynkin diagram, so in particular whenever
t is a maximally compact Cartan subalgebra (Proposition 3.1). In Theorem 3.2 we
prove that all involutions of the extended Dynkin diagram for a simple complex Lie
algebra gC arise from a Cartan involution for some real form g.

Harmonic maps from surfaces into Lie groups and symmetric spaces arise naturally
in many geometric and physical problems. On the geometric side, strong motivation
comes from the study of surfaces with particular curvature properties. For example,
minimal surfaces are described by conformal harmonic maps and both constant
mean curvature and Willmore surfaces are characterised by having harmonic Gauss
maps into particular symmetric spaces. From the physics viewpoint, these harmonic
maps are interesting because of their relationship with the appropriate Yang-Mills
equations and non-linear sigma-models. Indeed the harmonic map equations on a
Riemann surface are precisely the reduction of the Yang-Mills equations on R2,2

obtained by considering solutions invariant under translation in the directions of
negative signature. Classical solutions of sigma-models are given by harmonic maps
into (non-compact) as pseudo-Riemannian manifolds. In [7] we study an explicit
example, namely harmonic tori in de Sitter spaces Sm1 . In particular we apply the
theory of this paper to the superconformal such maps with globally defined harmonic
sequence to see that they may all be obtained by integrating a pair of commuting
vector fields on a finite-dimensional vector space. It follows that all Willmore tori
in S3 without umbilic points may be obtained in this simple way.

The structure of this paper is as follows. In section 2 we give the general theory
for harmonic maps of surfaces into symmetric spaces and for primitive maps into
k-symmetric spaces when the relevant Lie group G is equipped with a bi-invariant
pseudo-metric. The question of when a Coxeter automorphism preserves the real
form of the complex simple Lie algebra is addressed in section 3 in terms of Cartan
involutions and extended Dynkin diagrams. Section 4 contains the relationship with
the affine Toda field equations and the finite type result is proven in section 5.

It is a pleasure to thank Anthony Henderson for helpful conversations regarding the
Lie-theoretic results of section 3.
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2. Finite type maps into symmetric spaces

The fact that a harmonic map from a surface to a Lie group corresponds to a
loop of flat connections [15, 17] is the fundamental observation that enables one to
apply integrable systems techniques to the study of these maps. The Cartan map
G/H → G from a symmetric space to the relevant Lie group is well-known to be
a totally geodesic immersion when G is compact and equipped with a bi-invariant
Riemannian metric. The composition of a harmonic map with a totally geodesic
one is again harmonic, so this enables harmonic maps into symmetric spaces to be
studied using the same tools as those into Lie groups, and in particular in terms of
a loop of flat connections. We show in Theorem 2.1 that when G has merely a bi-
invariant pseudo-metric that the Cartan map is again a totally geodesic immersion.
In particular all reductive Lie groups possess a bi-invariant pseudo-metric. We can
hence study harmonic maps into G/H using integrable systems methods regardless
of whether G is compact.

Let G be a semisimple Lie group. Recall that a homogeneous space G/H is a k-
symmetric space (k > 1) if there is an automorphism τ : G → G of order k such
that

(Gτ )0 ⊂ H ⊂ Gτ

where Gτ denotes the fixed point set of τ , and (Gτ )0 the identity component of Gτ .
When k = 2, we say that G/H is a symmetric space. We have the induced action

τ : G/H → G/H

gH 7→ τ(g)H.

We write τ also for the induced automorphism of g and note the Zk-grading

gC =
k−1⊕
j=0

gτj , [gτj , g
τ
l ] ⊂ gτj+l,

where gτj denotes the ej
2πi
k -eigenspace of τ .

We shall be interested in harmonic maps from a Riemann surface Σ into a symmetric
space G/H. When G is compact, the Killing form on g induces a bi-invariant metric
on G/H and the harmonic map equations for f : Σ→ G/H may either be calculated
directly [20], using Noether’s Theorem [16], or by composing f with the Cartan map
G/H → G, which is well-known in this case to be a totally geodesic immersion [8].
Recall here that the Cartan map of a symmetric space is given by

ι : G/H → G

gH 7→ τ(g)g−1.

We suppose merely that G has a bi-invariant pseudo-metric. Then analogous com-
putations hold; in particular we can reduce the problem to studying harmonic maps
into the Lie group G due to the following result.
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Theorem 2.1. Let G be a semisimple Lie group with bi-invariant pseudo-metric
〈·, ·〉 and G/H a symmetric space with respect to the involution τ : G → G. Then
ι : gH 7→ τ(g)g−1 is a totally geodesic immersion G/H → G . If H = Gτ , then ι is
additionally an embedding.

Let us call a Lie group G reductive if its Lie algebra g is reductive, that is has
radical equal to its centre. Then g may be written as the direct sum of a semisimple
Lie algebra and an abelian one. On the semisimple Lie algebra the Cartan-Killing
form is non-degenerate, whilst on the abelian algebra any bilinear form is invariant
under the adjoint action of the group. Combining these we obtain the existence of a
bi-invariant pseudometric on any reductive Lie group, and hence the above theorem
in particular applies when G is reductive.

Proof. ι is an immersion: Suppose dιgH(γ′(0)) = 0 for some smooth path γ in G/H
with γ(0) = gH. Take a lift γ̃ of γ to G with γ̃(0) = g and write π : G→ G/H for
the projection. Then

0 =
d

dt

∣∣∣∣
t=0

(
τ (γ̃(t)) (γ̃(t))−1

)
= dτg(γ̃′(0))g−1 − τ(g)g−1γ̃′(0)g−1,

so
dτe(g−1γ̃′(0)) = τ(g−1)dτg(γ̃′(0)) = g−1γ̃′(0)

and γ′(0) is zero in TgH(G/H) so dιgH is injective.

ι is totally geodesic: Let ∇l denote the connection on G obtained by trivialising
TG by left translation, and similarly ∇r that induced from trivialising by right
translation. A computation shows that ∇r = ∇l + adg−1dg and hence

∇ =
1
2

(∇l +∇r)

is the Levi-Civita connection of the pseudo-metric 〈·, ·〉.
Denote by exp : g→ G the Lie-theoretic exponential map, and by e the differential-
geometric exponential map associated to the Levi-Civita connection ∇. Note that
as in the definite case, for each X ∈ g the map

γX : g→ G

t 7→ etX

is a geodesic, i.e. ∇γ′Xγ
′
X = 0, so exp and e agree on the domain of e. Since the

pseudo-metric is bi-invariant, we conclude that the geodesics through g ∈ G are
locally of the form γ(t) = getX . Denote by m the (−1)-eigenspace of τ : g→ g, and
note that g = h ⊕ m, where h is the Lie algebra of H. The lift γ̃(t) = getXH is
horizontal, in the sense that γ̃′(t) ∈ getXm. Thus the geodesics in G/H through gH
are locally of the form γ̃(t) = getXH. Since

ι(getXH) = getXτ(e−tX)τ(g−1) = ge2tXτ(g−1) = gτ(g−1)etτ(g)Xτ(g−1)

is again a geodesic, we conclude that ι is totally geodesic.
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If H = Gτ , then ι is an embedding: In this case if ι(g1H) = ι(g2H), then g−1
1 g2 =

τ(g−1
1 g2), and so g−1

1 g2 ∈ H, and thus ι is injective. �

Let F : U → G be a smooth lift of f : U → G/H on some simply connected
U ⊂ Σ, where we assume henceforth that G is semisimple and has a bi-invariant
pseudo-metric (we will later restrict our attention to simple such G.). By the above
theorem, f is harmonic if and only if ι ◦ f is. The Maurer-Cartan form on G is the
unique left-invariant g-valued 1-form which acts as the identity on g. We denote it
by ω, and note that if G is a linear group, then ω = g−1dg. We will use this notation
throughout even in the non-linear case. Write f̃ = ι ◦ f and Φ = f̃∗(ω) = f̃−1df̃ .
For any smooth f̃ , the form Φ satisfies the zero-curvature condition

(1) dΦ +
1
2

[Φ ∧ Φ] = 0,

known as the Maurer-Cartan equation. Recall that for vector fields X,Y ,

[Φ ∧ Φ](X,Y ) = 2[Φ,Φ](X,Y ) = [Φ(X),Φ(Y )].

The condition that the map f̃ : Σ→ G is harmonic can be written as

(2) d ∗ Φ = 0.

Noting that f̃ = τ(F )F−1, we have

(3) Φ = F
(
τ(F )−1d(τ(F ))− F−1dF

)
F−1 = −2AdF (ϕm),

where ϕ = ϕh + ϕm is the decomposition of ϕ := F−1dF into the eigenspaces of τ .
Then (2) becomes

(4) 0 = d(AdF (∗ϕm)) = AdF (d ∗ ϕm + [ϕ ∧ ∗ϕm])

or equivalently,

(5) d ∗ ϕm + [ϕ ∧ ∗ϕm] = 0.

One can also compute the harmonic map equations directly for f . Writing [m] for
the subbundle of G/H × g whose fibre at g · x is Adg(m), we have an isomorphism
[m] ∼= T (G/H)] given by

[m]y → TyG/H

Y 7→ d

dt

∣∣∣∣
t=0

etY · y.

The inverse of this isomorphism defines a g-valued 1-form θ on the symmetric space
G/H, which we term its Maurer-Cartan form. Then [16] f is harmonic if and only
if

d ∗ (f∗θ) = 0

and using that
f∗θ = AdF (ϕm)
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we recover (4). Write ϕ′m + ϕ′′m for the decomposition of ϕm into dz and dz̄ parts.
Since [m,m] ⊂ h, a straightforward computation shows (1) and (5) are equivalent to
the requirement that for each λ ∈ S1, the form

(6) ϕλ = λϕ′m + ϕh + λ−1ϕ′′m

satisfies the Maurer-Cartan equation

(7) dϕλ +
1
2

[ϕλ ∧ ϕλ] = 0.

Some solutions to (7) can be obtained simply by solving a pair of commuting ordinary
differential equations on a finite-dimensional loop algebra. These unusually simple
solutions are said to be of finite type.

Let G/K be a k-symmetric space for k > 2 and τ the corresponding kth order
involution. As we shall now explain when mapping into a k-symmetric space for
k > 2 it is natural to restrict our attention to a subclass of harmonic maps consisting
of those which are primitive, a notion that we now define. Again we have the
reductive splitting

g = k⊕ p

with

pC =
k−1⊕
j=1

gτj , kC = gτ0 .

Similarly to before we may define the Maurer-Cartan form θ of the k-symmetric
space G/K when k > 2. For any smooth lift F : U → G of ψ : U → G/K, writing
ϕ = F ∗ω we have

ψ∗θ = AdFϕp.

We say that a smooth map ψ of a surface Σ into G/K is primitive if the image of
ψ∗θ′ is contained in [g1]. Equivalently, it is primitive precisely when ϕ′ = F−1∂F
takes values in gτ0 ⊕ gτ1 . Using that [gτ1 , g

τ
−1] ⊂ gτ0 , the Maurer-Cartan equation for

ϕ decomposes into gτ1 , gτ0 and gτ−1 components as

dϕ′p + [ϕk ∧ ϕ′p] = 0(8)

dϕk +
1
2

[ϕk ∧ ϕk] + [ϕ′p ∧ ϕ′′p ] = 0

dϕ′′p + [ϕk ∧ ϕ′′p ] = 0.

From these equations one easily verifies that primitive maps are in particular har-
monic. Moreover [5] if G/H is a symmetric space with K ⊂ H and the corresponding
reductive splitting preserved under τ , then the projection of ψ : Σ→ G/K into G/H
is harmonic. An analogous calculation to that above shows that on simply connected
subsets U ⊂ Σ, a primitive map ψ : U → G/K is equivalent to a loop

(9) ϕλ = λϕ′p + ϕk + λ−1ϕ′′p , λ ∈ S1

of g-valued 1-forms each satisfying the Maurer-Cartan equation. We see then that
both harmonic maps into symmetric spaces and primitive maps into k-symmetric
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spaces are governed by the same equation (7) so we turn now to the question of
constructing solutions to this equation.

Let ΩG be the loop group ΩG = {γ : S1 → G} with corresponding loop algebra
Ωg := {ξ : S1 → g} , where the loops are assumed real analytic without further
comment. We use ΩgC to denote loops in the complexified Lie algebra gC. For
studying maps into k-symmetric spaces it is helpful to consider the twisted loop
group

ΩτG = {γ : S1 → G : γ(e
2πi
k
λ) = τ(γ(λ))}

and corresponding twisted loop algebra Ωτg along with its complexification ΩτgC.
The (possibly doubly infinite) Laurent expansion

ξ(λ) =
∑
j

ξjλ
j , ξj ∈ gτj ⊂ gC, Φ−j = Φ̄j

allows us to filtrate ΩτgC by finite-dimensional subspaces

Ωτ
d = {ξ ∈ Ωg | ξj = 0 whenever |j| > d}.

Fix a Cartan subalgebra t of g such that t ⊂ k and recall that a non-zero α ∈ (tC)∗

is a root with corresponding root space Gα ⊂ gC if [X1, X2] = α(X1)X2 for all X1 ∈ t
and X2 ∈ Gα. We denote the set of roots by ∆ and employ the same notation for
the root system formed by considering ∆ as a subset of (tC)∗. Choose a set of simple
roots, that is a subset {α1, . . . , αN} of ∆ such that every root α ∈ ∆ can be written
uniquely as

α =
N∑
j=1

mjαj ,

where the mj are either all positive integers or all negative integers. The height of
α is h(α) =

∑N
j=1mj and the root(s) of maximal height are called highest root(s)

whilst those of minimal height are termed lowest root(s).

We similarly define the root spaces of kC. Let n be the nilpotent algebra consisting
of the positive root spaces of kC with respect to a choice of simple roots and consider
the resulting Iwasawa decomposition

(10) kC = n⊕ tC ⊕ n̄

of kC. Then for η ∈ kC and a local coordinate z on Σ, decomposing according to
(10) we have

(ηdz)h = r(η)dz + r(η)dz̄

where r : kC → kC is defined by

(11) r(η) = ηn̄ +
1
2
ηk.
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The key observation here is that for simply-connected coordinate neighbourhood
U ⊂ Σ, if ξ : U → Ωτ

d satisfies

(12)
∂ξ

∂z
= [ξ, λξd + r(ξd−1)]

then
ϕλ = (λξd + r(ξd−1))dz + (λ−1ξ−d + r(ξd−1))dz̄

satisfies the Maurer-Cartan equation (7) (c.f. [5], Theorem 2.5). The equation

1
2

(X(ξ)− iY (ξ)) = (λξd + r(ξd−1))

defines vector fields X,Y on Ωd. A straightforward computation shows that these
vector fields commute and so finding solutions to (12) is merely a matter of solving
a pair of commuting ordinary differential equations. This yields a rather special
class of solutions to the Maurer-Cartan equations (7) and hence of harmonic maps
to symmetric spaces and primitive maps to k-symmetric spaces, k > 2. The flows
of X,Y are easily seen to evolve on spheres in Ωd. When G is compact, so are these
spheres and hence X,Y are complete and for any initial condition the differential
equation (12) has a unique solution on U . However when G is non-compact the
completeness of X,Y is not guaranteed.

Definition 2.2. A harmonic map f : Σ→ G/H to a symmetric space or a primitive
map ψ : Σ→ G/K to a k-symmetric space, k > 2 is said to be of finite type if it has
a lift F : Σ→ G for which there exists a smooth map ξ : R→ Ωτ

dg satisfying

(13) dξ = [ξ, ϕλ]

and

(14) ϕλ = (λξd + r(ξd−1))dz + (λ−1ξ−d + r(ξd−1))dz̄.

Here ϕλ and r are defined in (9) and (11) for the primitive case and in (6) and the
obvious analogue to (11) for the harmonic case.

We introduce some terminology for later use. A formal Killing field for f or ψ is a
smooth map ξ : Σ→ Ωτg satisfying the Lax equation (13). When ξ takes values in
some Ωd it is termed a polynomial Killing field of degree d and when it additionally
satisfies (14) it is an adapted polynomial Killing field.

When the automorphism τ : gC → gC is of the form τ = AdexpM for some M ∈ tC

where t is a Cartan subalgebra of g, then we can express the eigenspaces gτj of τ in
terms of root spaces.

Given our chosen set of simple roots αj , denote by ηj the corresponding dual basis
of tC. For any root α = m1α1 + . . .mNαN , smooth map sj : Σ→ C and root vector
Rα ∈ Gα, a straightforward computation shows that

(15) Adexp(s1η1+...sNηN )Rα = exp(m1s1 + . . .mNsN )Rα.
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Note that exp(m1s1 + . . .mNsN ) is a scalar function. Given τ = Adexp( 2πi
k

(
P
sjηj))

we have

gτl = span{Rα|α =
N∑
j=1

mjαj ,
N∑
j=1

sjmj = l mod (k)}.

In particular if we let k − 1 denote the maximal height of a root of gC and suppose

(16) σ := Adexp( 2πi
k

PN
j=1 ηj)

,

then σ is of order k and from (15) it acts on the root spaces by

(17) σ(Rα) = exp
(

2πih(α)
k

)
Rα.

We recognise the inner automorphism σ as the Coxeter automorphism associated
to the identity transformation of the simple roots [1]. It plays an important role
here because when it preserves the real Lie group G, it allows us to view G/T as
a k-symmetric space for which gσ1 is the sum of the simple and lowest root spaces.
Here T is a Cartan subgroup with Lie algebra t. Furthermore since K = T in this
case, the map r described in (11) is simply multiplication by 1

2 and so the adapted
polynomial Killing field condition (14) simplifies. Taking this N -symmetric space
structure on G/T , we say that a smooth map ψ : Σ → G/T is cyclic primitive if
it is primitive and satisfies the condition that the image of ψ∗θ′ contains a cyclic
element. Writing α0 for the lowest root, an element in

(⊕N
j=0 Gαj

)
is cyclic if its

projection to each of the root spaces Gα0 ,Gα1 , . . . ,GαN is non-zero. We henceforth
assume that G is simple in order to guarantee the uniqueness of the lowest root
(that is, we assume that G is connected and g is simple).

3. Extended Dynkin diagrams and Cartan involutions

We now ascertain the k-symmetric spaces to which our theory will apply. That
is, we give conditions under which a choice of real form g of a simple complex Lie
algebra gC, Cartan subalgebra tC and simple roots αj yield a Coxeter automorphism
σ which preserves the real Lie algebra g. When GC is a simply connected or adjoint
simple Lie group with Lie algebra gC, this ensures that the Coxeter automorphism
preserves the real group G.

Let ¯ denote the complex conjugation of gC corresponding to the real form g. Define
the conjugate of a root α by

ᾱ(X) = α(X̄).
Then from (17) we see that the condition for the Coxeter automorphism σ to preserve
g is that for all roots α, the height h(α) satisfies

h(ᾱ) = −h(α) mod k,

or equivalently that for j = 1, . . . , N we have

ᾱj ∈ {−α0, . . . ,−αN}.
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We will now use a Cartan involution to express this reality condition in terms of the
extended Dynkin diagram for α0, . . . , αN . A Cartan involution is an involution Θ
of g such that

〈X,Y 〉Θ = −〈X,Θ(Y )〉
is positive definite, where 〈·, ·〉 denotes the Killing form. Using complex-linearity, Θ
extends to an involution of gC. We may [12, Prop. 6.59] choose a Cartan involution
Θ which preserves the Cartan subalgebra t.

Proposition 3.1. Let g be a real simple Lie algebra, t a Cartan subalgebra and
Θ be a Cartan involution preserving t. Choose simple roots α1, . . . , αN for the
root system ∆(gC, tC) and let σ be the corresponding Coxeter automorphism of gC

defined in (16). Then the following are equivalent:

(1) σ preserves the real form g,
(2) σ commutes with Θ,
(3) Θ defines a permutation of the extended Dynkin diagram for gC consisting

of the usual Dynkin diagram augmented with the lowest root α0.

Proof. Write t = l ⊕ p, where l, p are respectively the (+1)-eigenspace and (−1)-
eigenspace of the action of Θ on t. Then [12, Cor. 6.49] all roots α are real on p
and imaginary on l, and defining the action of Θ on roots by Θ(α)(X) = α(Θ(X))
we have that

Θ(α) = −ᾱ for all roots α.
If Rα is a root vector for α, then R̄α is a root vector for ᾱ and Θ(Rα) is a root
vector for Θ(α). We assume that our root vectors are chosen so that

Rᾱ = R̄α

and write RΘ(α) = cαΘ(Rα). Then using (17), a straightforward computation shows
that σ◦Θ(Rα) = Θ◦σ(Rα) if and only if σ(R̄−α) = σ(R−α), proving the equivalence
of conditions (1) and (2) above.

The Cartan involution Θ commutes with σ if and only if for all roots α, the height
function h satisfies

h(Θ(α)) ≡ h(α) mod k,
or equivalently when Θ defines a permutation of α0, α1, . . . , αN . All automorphisms
of a Lie algebra preserve the Killing form and hence a Cartan involution Θ as above
defines a permutation of the extended Dynkin diagram and we see the equivalence
of conditions (2) and (3). �

We next show that every involution of the extended Dynkin diagram for ∆(gC, tC)
does indeed arise from a Cartan involution for some real form g with Θ-stable Cartan
subalgebra t = g ∩ tC. A Θ-stable Cartan subalgebra t of g is maximally compact
if and only if Θ preserves a set of simple roots for the root system ∆(g, t) [12, p
387]. Hence when t is maximally compact, a Coxeter automorphism σ must stabilise
the real form g. (In particular, all Cartan subalgebras of a compact real form g are
maximally compact.) The more interesting case then is when the Cartan subalgebra
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t is not maximally compact, which corresponds to the involution of the extended
Dynkin diagram acting nontrivially on the lowest root α0.

Theorem 3.2. Every involution of the extended Dynkin diagram for a simple com-
plex Lie algebra gC is induced by a Cartan involution of a real form of gC.

More precisely, let gC be a simple complex Lie algebra with Cartan subalgebra tC and
choose simple roots α1, . . . , αN for the root system ∆(gC, tC). Given an involution π
of the extended Dynkin diagram for ∆, there exists a real form g of gC and a Cartan
involution Θ of g preserving t = g∩ tC such that Θ induces π and t is a real form of
tC. The Coxeter automorphism σ determined by α1, . . . , αN preserves the real form
g.

Proof. Let π be an involution of the extended Dynkin diagram. Denote also by π
the corresponding involution of the set {0, 1, . . . , N} and the induced involution of
(tC)∗ which preserves the root system ∆ and satisfies π(αj) = απ(j).

Let {Hα, Rα | α ∈ ∆} be a Chevalley basis. That is, writing α# for the dual of the
root α with respect to the Killing form κ we set Hα = (2/κ(α#, α#))α# and we
choose the root vectors Rα so that

[Rα, R−α] = Hα.

and such that the structure constants cα,β defined by [Rα, Rβ] = cα,βRα+β satisfy
c−α,−β = −cα,β. For any bαj ∈ C for j = 1, . . . , N , we obtain an automorphism Θ
of gC compatible with π by requiring that Θ(Rαj ) = bαjRπ(αj) for j = 1, . . . , N and
that {π(Hα),Θ(Rα) | α ∈ ∆} is a Chevalley basis. Our first task is to verify that
for an appropriate choice of bαj , the resulting Θ is involution.

Given π and bα1 , . . . , bαN , for any root α we define bα ∈ C by the equation Θ(Rα) =
bαRπ(α). The automorphism Θ will be an involution precisely when bαjbαπ(j)

= 1
for j = 1, . . . , N . For the j with π(j) 6= 0, we can clearly guarantee this by taking
bαπ(j)

= b−1
αj . We will show that bα1 , . . . , bαN can be chosen so that additionally

bα0bαπ(0)
= 1.

We may express Rα0 as C[R−β1 , [R−β2 , . . . , [R−βK−1
, R−βK ] . . .]] for some non-zero

constant C and simple roots βi such that
∑K

i=1 βi = −α0. Now writing α0 =
−
∑N

j=1mjαj we have

(18) bα0Rαπ(0)=Θ(Rα0
) = C

N∏
j=1

b
mj
−αj [R−π(β1), [R−π(β2), . . . , [Rπ(βK−1), R−π(βK)] . . .]]

and Θ2(Rα0) =
∏N
j=1(b−αjb−απ(j)

)mjRα0 , implying

bα0bαπ(0)
=

N∏
j=1

(b−αjb−απ(j)
)mj .
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Using that {π(Hα),Θ(Rα) | α ∈ ∆} is again a Chevalley basis and that an auto-
morphism of the extended Dynkin diagram must preserve the Killing form gives

bαjb−αj =
κ(π(αj)), π(αj)))

κ(αj , αj)
= 1.

Hence

bα0bαπ(0)
=

N∏
j=1

(bαjbαπ(j)
)−mj = (bαπ(0)

bα0)−1,

where the last equality uses the assumption bαjbαπ(j)
= 1 for π(j) 6= 0. We therefore

automatically have bα0bαπ(0)
= ±1. Considering (18) shows that if there exists j

such that π(j) = j and mj is odd then by switching the sign of bαj if necessary we
may ensure that bα0bαπ(0)

= 1.

It remains to give a method of proof for when there is no αj with mj odd that is
fixed by π. If π(0) = 0 then there is nothing to prove so we assume henceforth that
π(0) 6= 0. Suppose γ is a positive root such that

(a) the expression γ =
∑N

j=1 njαj as a sum of simple roots has nπ(0) = 0,
(b) π(γ) + απ(0) is also a root, and
(c) γ + α0 = −π(γ)− απ(0).

From (c) we have that

[[Rγ , Rα0 ], [Rπ(γ), Rπ(0)]] = cγ,α0cπ(γ),π(α0)Hγ+α0 .

Applying Θ gives

[[bγRπ(γ), bα0Rπ(0)], [bπ(γ)Rγ , bαπ(0)
Rα0 ]] = −cγ,α0cπ(γ),π(α0)Hγ+α0

and so

bγbπ(γ)bα0bαπ(0)
= 1.(19)

We may write Rγ as C ′[Rβ′1 , [Rβ′2 . . . [Rβ′K′−1
, Rβ′

K′
]] . . .] with C ′ a non-zero constant

and β′i 6= απ(0) simple roots satisfying
∑K′

i=1 β
′
i = γ. Then

bγbπ(γ)Rγ = Θ2(Rγ) =

(
K′∏
i=1

bβ′ibβ′π(i)

)
Rγ .

However for simple roots αj with π(j) 6= 0 we chose bαj so that bαjbαπ(j)
= 1 and

hence bγbπ(γ) = 1. Substituting this into (19) gives that bα0bαπ(0)
= 1, as required.

A similar argument applies if there are positive roots γ, δ such that

(i) the expressions of γ, δ as sums of simple roots do not contain απ(0),
(ii) π(γ) + απ(0) and δ + π(δ) are also roots, and

(iii) δ + π(δ) + γ + π(γ) = −α0 − απ(0).
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Here we know there is some non-zero constant C ′′ such that

[[Rγ , Rα0 ], [Rπ(γ), Rπ(0)]] = C ′′[R−δ, R−π(δ)]

and as above applying Θ gives

bγbπ(γ)bα0bαπ(0)
= b−δb−π(δ).

By (i) we know bγbπ(γ) = 1 and b−δb−π(δ) = 1 so conclude that bαπ(0)
bα0 = 1.

To show that every involution of the extended Dynkin diagram extends to an invo-
lution of the Lie algebra we now consider the involutions of each of the diagrams
and, for those that do not fix some αj with odd mj , identify a suitable root γ or
pair of roots γ, δ.

E8

α0 α8 α7 α6 α5 α4 α3 α1

α2

DN
. . .

α1 α2

α0

αN−2

αN−1

αN

CN . . .
α0 α1 α2 αN−1 αN

BN . . .
α1 α2 αN−1 αN

α0

. . .

AN

α1 αN

αN−1α2

α0

E7
α7 α6 α5 α4 α3 α1 α0

α2

E6
α6 α5 α4 α3 α1

α2

α0

F4
α0 α1 α2 α3 α4

G2
α0 α1 α2

Figure 1. Extended Dynkin diagrams, with the lowest root α0 coloured.

For a root system of type AN , the simple root coefficients mj = 1 for all j = 1, . . . , N .
Thus any diagram involution fixing some node is induced by an involution of the Lie
algebra. By inspection of the extended Dynkin diagram shown in Figure 3, we see
that when N is even, every involution of the extended Dynkin diagram fixes some
αj . When N is odd we need to consider the rotation π(j) = j+ 1

2(N+1) mod (N+1)
and reflections.

For the involution π(j) = j + 1
2(N + 1) mod (N + 1), the root γ = α1 + α2 + . . .+

α 1
2

(N−1) satisfies conditions (a), (b), (c) above.
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Consider now an involution π coming from a reflection. Since we have automatically
covered the cases when there is a fixed root we can assume that there are an even
number of roots between α0 and π(α0) going in each direction around the circle.
Indeed the axis of reflection is between the nodes (π(0)− 1)/2 and (π(0) + 1)/2 and
between (N + π(0))/2 and (N + π(0))/2 + 1. The roots

γ = α1 + α2 + . . .+ α(π(0)−1)/2 and δ = απ(0)+1 + απ(0)+2 . . .+ α(π(0)+N)/2

satisfy conditions (i), (ii), (iii) above.

There is only one involution of the root system of type BN , which sends α0 to α1

and fixes everything else. We can choose γ = α2 + . . .+ αN .

For root systems of type CN there is again only one involution; π(αi) = αN−i. Here
choose γ = α1 + . . .+ αN−1.

For DN , m1 = mN−1 = mN = 1, and so we need only consider involutions which
do not fix any of these vertices, of which there are three. These are involutions with
π(0) = 1, N − 1 or N . If π(0) = 1 then let γ = α2 + . . .+αN−1, and if π(0) = N − 1
or N , take γ = α1 + α2 + . . .+ αN−2.

For the root system E6, all involutions of the diagram fix the vertex α4 and m4 = 3
is odd.

The unique involution of the extended Dynkin diagram for E7 satisfies π(α0) = α7.
A list of all positive roots of E7 are tabulated for example in [18, p 1524-1530]. Let
γ = α1 + α2 + 2α3 + 2α4 + α5 + α6, so π(γ) = α1 + α2 + α3 + 2α4 + 2α5 + α6 and
π(γ) + απ(0) = α1 + α2 + α3 + 2α4 + 2α5 + α6 + α7 is also a root. Furthermore
γ+απ(0) +π(γ) = 2α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 +α7 which is the highest root.

The extended Dynkin diagrams of type E8, F4, G2 do not possess any involutions.

We have then shown that given any involution π of an extended Dynkin diagram for
(gC, tC), there exists an involution Θ of gC preserving tC and inducing π. It remains
to show that there is a real form g of gC for which Θ is a Cartan involution and
such that g ∩ tC has full rank. For any choice of simple roots we may consider the
corresponding Borel subalgebra bC = tC ⊕

⊕
α∈∆+ Gα and it is easy to see that Θ

preserves the set of simple roots if and only if it preserves the corresponding Cartan
and Borel subalgebras. Now by [11, Theorem 8.6] there exists an automorphism Ψ
of gC such that ΨΘΨ−1 acts on the corresponding simple and lowest root vectors
Rαj in the Chevalley basis simply by scaling them by ±1, and hence preserves the
Cartan and Borel subalgebras tC and bC. Then Θ preserves the Cartan subalge-
bra Ψ−1(tC) and the Borel subalgebra Ψ−1(bC) and hence the set of simple roots
Ψ−1{α1, . . . , αN}. Then there exists a real form g′ of gC with respect to which Θ is
a Cartan involution and such that g′Ψ−1(tC) is a Cartan subalgebra of g′ [12, proof
of Theorem 6.88].

Let lC denote the (+1)-eigenspace of Θ and LC a complex Lie group with Lie algebra
lC. In [13, Theorem 1] (c.f. [19, Proposition 2.1]) it was shown that for a given real
form g′ and Θ-stable Cartan subalgebra tC of a simple complex Lie algebra gC, there



TODA FRAMES, HARMONIC MAPS AND EXTENDED DYNKIN DIAGRAMS 15

exists a Θ-stable Cartan subalgebra t′ of g′ and l ∈ LC such that tC = Adl(t′)C.
Hence g = Adl g′ is a real form of gC for which t = g ∩ tC is a Θ-stable real form of
tC and Θ is a Cartan involution of g.

By Proposition 3.1 the Coxeter automorphism corresponding to the choice of simple
roots α1, . . . , αN preserves the real form g and in particular the Cartan subalgebra
t. �

4. Toda frame

We now explore the relationship between cyclic primitive maps and the affine Toda
field equations. Henceforth G shall denote a simple real Lie group, T a Cartan
subgroup and α1, . . . , αN simple roots such that the resulting Coxeter automorphism
σ preserves the real group G. This Coxeter automorphism then gives G/T the
structure of a k-symmetric space, where k − 1 is the maximum height of a root of
gC. We shall consider cyclic primitive maps ψ from the complex plane into G/T
and will see that cyclic primitive maps ψ : C → G/T arise from and give rise to
solutions of the two-dimensional affine Toda field equations for g. Our results also
apply to maps from a simply-connected coordinate neighbourhood of any Riemann
surface.

The famous Toda equations arose originally as a model for particle interactions
within a one-dimensional crystal, with the affine model corresponding to the particles
being arranged in a circle. They have been the subject of extensive study, both as a
completely integrable Hamiltonian system and in the context of Toda field theories.
The standard form of the affine Toda field equation for g on the complex plane is

(20) 2Ωzz̄ =
N∑
j=0

mje
2αj(Ω)α]j

Here Ω : C→ it is a smooth map, the lowest root α0 is given by

α0 = −
N∑
j=1

mjαj ,

we set m0 = 1 and Rαj are root vectors such that α]j is the dual of αj with respect
to the Killing form. Using (3), since the Coxeter automorphism preserves the real
form g there exists a permutation π of the roots α0, α1, . . . , αN such that

(21) αj = −απ(j).

We shall consider the generalisation of the affine Toda field equations obtained by
allowing m0, m1, . . . ,mN to be any positive real numbers such that mπ(j) = mj and
Rαj to be any root vectors satisfying Rαj = R−απ(j)

.

Given a cyclic element W =
∑N

j=0 rjRαj of gσ1 , we say that a lift F : C → G of
ψ : C → G/T is a Toda frame with respect to W if there exists a smooth map
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Ω : C→ it such that

(22) F−1Fz = Ωz + Adexp ΩW.

We call Ω an affine Toda field with respect to W . The motivation for this nomen-
clature is

Lemma 4.1. Fix a cyclic element W =
∑N

j=0 rjRαj of gσ1 such that mπ(j) = mj

and Rαj = R−απ(j)
.

The affine Toda field equation (20) is the integrability condition for the existence of
a Toda frame with respect to W where we take mj = rjrj for j = 0, . . . , N .

Proof. Using [Rαj , R−αl ] = 0 whenever j 6= l, we can rewrite the Toda field equation
(20) as

2Ωzz̄ =
N∑

j,l=0

rjrle
αj(Ω)eαj(Ω)[Rαj , R−αl ]

= [
N∑
j=0

rje
αj(Ω)Rαj ,

N∑
l=0

rle
αl(Ω)R−αl ].

From equation (15) we know eαj(Ω)Rαj = Adexp ΩRαj and also

eαl(Ω)R−αl = e−αl(−Ω)R−αl = Adexp−ΩR−αl .

If we set W :=
∑N

j=0 rjRαj with the normalisation is described in the lemma then
since

∑N
j=0RjRαj =

∑N
j=0RjR−αj , the Toda field equation becomes

2Ωzz̄ = [Adexp ΩW,Adexp−ΩW ].

Now for any given Ω : C→ it the integrability condition for the existence of a Toda
frame with respect to W is the Maurer-Cartan equation (1) for

ϕ = (Ωz + Adexp ΩW )dz + (Ωz̄ + Adexp−ΩW )dz̄.

Namely, this integrability condition is

0 = (−Ωz̄ + Adexp−(Ω)W )z − (Ωz + Adexp ΩW )z̄
+ [Ωz + Adexp ΩW,−Ωz̄ + Adexp−(Ω)W ]

= −2Ωzz̄ + [Adexp ΩW,Adexp−ΩW ],

which is precisely the Toda field equation. �

Recall that we write α0 = −
∑N

j=1mjαj for the expression of the lowest root α0 in
terms of the chosen simple roots α1, . . . , αN . Given F̃ : C→ G with

(23) F̃−1F̃z|gσ1 =
N∑
j=0

cjRαj ,
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we say that a cyclic element

(24) W =
N∑
j=0

rjRαj

gσ1 is normalised with respect to F̃ : C→ G if

r0

N∏
j=1

r
mj
j = c0

N∏
j=1

c
mj
j .

Theorem 4.2. A map ψ : C→ G/T possesses a Toda frame if and only if it is cyclic
primitive Let ψ : C→ G/T be a cyclic primitive map possessing a frame F̃ : C→ G

such that c0
∏N
j=1 c

mj
j is constant, where cj are the root coefficients defined in (23).

Then for any cyclic element W of gσ1 which is normalised with respect to F̃ there
exists a Toda frame F : C→ G of ψ with respect to W . Furthermore if ψ and F̃ are
doubly periodic with lattice Λ then so is the Toda frame F .

Conversely, if ψ : C→ G/T has a Toda frame F with respect to cyclic W ∈ gσ1 then
ψ is cyclic primitive and W is normalised with respect to F . In particular then the
root coefficients cj are such that c0

∏N
j=1 c

mj
j is constant.

Proof. Consider the frames F := F̃ expX of ψ where X : C → t. For such F we
have F−1Fz = Adexp−X F̃

−1F̃z +Xz and so

F−1Fz|gσ1 = Adexp−X F̃
−1F̃z|gσ1 .

This implies the Toda condition of Adexp ΩW = F−1Fz|gσ1 is equivalent to

Adexp(X+Ω)W = F̃−1F̃z|gσ1 =
N∑
j=0

cjRαj .(25)

Using equation (15) we can rewrite this as
N∑
j=0

rje
αj(X+Ω)Rαj =

N∑
j=0

cjRαj .

Comparing root space coefficients implies that

(26) eαj(X+Ω) =
cj
rj

for j = 1, . . . k

and r0
∏N
j=1(eαj(X+Ω))−mj = c0. Since W is normalised with respect to F̃ and C is

simply connected, we can solve for X + Ω. We can then find Ω and X from X + Ω
by taking its t and it components respectively.

It remains to show that Ωzdz = F−1∂F |t = ϕ′t. From the gσ1 component (8) of the
Maurer-Cartan equation for ϕ we have

∂(Adexp ΩW )− [Adexp ΩW,ϕ
′
t] = 0
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or equivalently
[Adexp ΩW,ϕ

′
t − ∂Ω] = 0.

Since W is cyclic so is Adexp ΩW and thus ϕ′t = ∂Ω.

Conversely, givenW and a solution Ω to the corresponding affine Toda field equation,
the resulting Toda frame F is primitive. Furthermore the equation

r0(e−
PN
j=1 mjαj(X+Ω)Rα0 +

N∑
j=1

rje
αj(X+Ω)Rαj =

N∑
j=0

cjRαj

implies that r0
∏N
j=1 r

mj
j = c0

∏N
j=1 c

mj
j and hence c0

∏N
j=1 c

mj
j is a non-zero con-

stant. This implies that the cj are nowhere zero and ψ is cyclic primitive.

Now suppose F̃ is doubly periodic with respect to a lattice Λ. Then for j = 1, . . . N ,
from(26) we see that eαj(X+Ω) is doubly periodic with respect to Λ and so

exp(X + Ω) = exp(
N∑
j=1

αj(X + Ω)ηj)

is also. Given any Γ ∈ Λ it follows that

exp(X(z + Γ)−X(z)) = exp(Ω(z)− Ω(z + Γ)).(27)

Using the conjugation map gC → gC which fixes g, we obtain from (27) that

exp(X(z + Γ)−X(z)) = exp(−Ω(z) + Ω(z + Γ).(28)

When combined, (27) and (28) imply that exp(X(z + Γ)) = exp(z)) for all z and
hence expX is doubly periodic with lattice Λ.

Since F̃ and expX are both doubly periodic with lattice Λ we know F = F̃ expX
is also. �

Our chief interest lies in cyclic primitive ψ which are doubly periodic, as it is these we
shall show are of finite type. We henceforth restrict our attention to doubly-periodic
maps and denote by C/Λ any genus one Riemann surface. Let W be a cyclic element
of gσ1 as before. We say that a frame F : C/Λ → G of ψ : C/Λ → G/T is a Toda
frame with respect to W if F is a Toda frame of ψ when both are considered as
maps from C. From the proof of Theorem 4.2 we make the following observation,
which will prove useful in the next section.

Lemma 4.3. If F : C/Λ → G is a Toda frame of ψ : C/Λ → G/T then the
corresponding affine Toda field Ω : C → it has the property that exp Ω and Ωz are
doubly periodic with lattice Λ.

5. Finite type result

We will now show that all smooth maps ψ from a 2-torus C/Λ into the k-symmetric
space G/T which have a Toda frame are of finite type. Hence all such maps can
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be constructed from a pair of commuting ordinary differential equations on a finite-
dimensional loop algebra. In [4] it was shown that all semisimple adapted harmonic
maps of a 2-torus into a compact semisimple Lie group are of finite type. We prove
our finite type result by adapting the methods of that paper. Note that the existence
of a Toda frame forces ψ to be cyclic primitive.

A map Y : C/Λ→ gC is called a Jacobi field if there exists Ω̇ : C/Λ→ tC such that

dY + [F−1dF, Y ] =
(

Ω̇z + [Ω̇, F−1Fz]
)
dz +

(
−Ω̇z̄ − [Ω̇, F−1Fz̄]

)
dz̄.(29)

If Ft is a family of Toda frames with corresponding Ωt : C → it then d
dtFt|t=0 is a

Jacobi field with Ω̇ = d
dtΩt|t=0. Note that if Ω̇ = 0 the Jacobi equation is the Killing

field equation.

Let F be a Toda frame for ψ : C→ G/T . We have

F−1dF = (Ωz + Adexp ΩW )dz + (−Ωz̄ + Adexp−ΩW )dz̄

for some Ω : T 2 → it and cyclic W ∈ gσ1 . Let Y be a Jacobi field with corresponding
Ω̇ : T 2 → it. Then Y must satisfy

Yz + [Ωz + Adexp ΩW,Y ] = Ω̇z + [Ω̇,Adexp ΩW ](30)

Yz̄ + [−Ωz̄ + Adexp−ΩW,Y ] = −Ω̇z̄ − [Ω̇,Adexp−ΩW ].(31)

Taking (30)z̄− (31)z we obtain

2Ω̇zz̄ = −
[
Adexp ΩW, [Ω̇,Adexp−ΩW ]

]
−
[
Adexp−ΩW, [Ω̇,Adexp ΩW ]

]
.

Since Ω and W are fixed, we see that Ω̇ satisfies a linear elliptic partial differential
equation. As the torus is compact, the space of possible Ω̇ is finite dimensional.

Lemma 5.1. Suppose ψ : C/Λ→ G/T is a cyclic primitive map possessing a formal
Killing field Y =

∑
j≤1 λ

jYj ∈ ΩσgC. Then ψ has a (real) polynomial Killing field
with highest term Y1.

Proof. We will find an infinite number of linearly independent Jacobi fields for which
some linear combination must be a formal Killing field. Since Y is a formal Killing
field, we have (13). ∑

j≤1

λjdYj =

∑
j≤1

λjYj , ϕλ

 .
Comparing coefficients of λj gives the equations

(Yj)zdz + [ϕ′t, Yj ] + [ϕ′p, Yj−1] = 0,

(Yj)z̄dz̄ + [ϕ′′t , Yj ] + [ϕ′′p , Yj+1] = 0.

For each l ∈ Z+ set

Y l :=
1
2
Y−kl +

∑
−kl<j≤1

λj+klYj .
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We will show that the Y l are all Jacobi fields. Considering the coefficients separately
gives

(Y l)zdz + [λϕ′p + ϕ′t, Y
l] =

1
2

(Y−kl)zdz +
[

1
2
Y−kl, λϕ

′
p

]
(Y l)z̄dz̄ +

[
ϕ′′t + λ−1ϕ′′p , Y

l
]

= −1
2

(Y−kl)z̄dz̄ −
[

1
2
Y−kl, λ

−1ϕ′′p

]
.

Since Y−kl ∈ g0 = tC we can set Ω̇l := 1
2Y−kl. With this choice of Ω̇, Y is a solution

to (29) and hence is a Jacobi field. The space of potential Ω̇ is finite dimensional, so
there must be a non-trivial finite linear combination of the Ω̇l which equals 0. The
corresponding finite linear combination of the Y l is a formal Killing field. Since the
highest order terms of the Y l are each Y1 we can rescale this formal Killing field to
one with highest order term Y1. After multiplying by an appropriate power of λk

we may also assume that the degree of the lowest term has smaller absolute value
than the degree of the highest term. Then ξ + ξ is a polynomial Killing field for ξ
and by construction has highest order term Y1. �

Theorem 5.2. Suppose ψ : C/Λ→ G/T has a Toda frame F : C/Λ→ G. Then ψ
is of finite type.

Proof. Let F : C/Λ→ G be the Toda frame of ψ with corresponding Ω : C/Λ→ it
and W ∈ gσ1 . Recall that ψ is of finite type if it has an adapted polynomial Killing
field ξ, that is a ξ =

∑d
j=−d λ

jξj in the real twisted loop algebra Ωσg satisfying the
Killing field equation (13) and such that

ξd + λ
1
2

Adexp ΩW.

Since G was assumed simple, the complexified Lie algebra gC is simple and hence has
a faithful linear representation so can be regarded as a subalgebra of some gl(m,C).
If we set

D = d− adΩzdz−Ωz̄dz̄

then we can rewrite (13) as

Dξλ = [ξλ, (2Ωz + λAdexp ΩW )dz + (−2Ωz̄ + λ−1 Adexp−ΩW )dz̄].

From d(Adexp ΩW ) = [Ωz,Adexp ΩW ]dz+[Adexp ΩW,Ωz̄]dz̄ we know DAdexp ΩW =
0.

Writing V = ker adAdexp ΩW and V ⊥ = im adAdexp ΩW , we have a bundle decomposi-
tion C/Λ× gC = V ⊕ V ⊥. Furthermore

V V ⊂ V, V ⊥V ⊂ V ⊥, V V ⊥ ⊂ V ⊥.

Let X =
∑

k≤−1 λ
kXk where the Xk are sections of V ⊥. We seek X such that

(32) Y = (1 +X)−1 Adexp ΩW (1 +X)
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is a solution of the Killing field equation. Note that

DY = (1 +X)−1[Adexp ΩW,DX(1 +X)−1](1 +X),

and define a one-form κ by

κ = (1 +X)((2Ωz +λAdexp ΩW )dz+ (−2Ωz̄ +λ−1 Adexp−ΩW )dz̄−DX)(1 +X)−1.

Routine calculations show that

DY + [(2Ωz + λAdexp ΩW )dz + (−2Ωz̄ + λ−1 Adexp−ΩW )dz̄, Y ]

= (1 +X)−1[AdexpΩ
W,−κ](1 +X)

and hence Y satisfies the Killing field equation if and only if κ takes values in V .

Our task then is to construct X so that κ takes values in V . We have

κ′ · (1 +X) = (1 +X)(2Ωz + λAdexp ΩW )dz − ∂X

where κ′ · (1 +X) denotes multiplication. Note that Ωz is valued in V ⊥ as it lies in
tC.

The splitting of κ′ · (1 +X) into its V and V ⊥ components is

(V ) : κ′ =
(
λAdexp ΩW + (2XΩz)V

)
dz

(V ⊥) : κ′ ·X =
(

2Ωz + (2XΩz)⊥ + λX Adexp ΩW
)
dz −D′X.

Substitution implies

λ[Adexp ΩW,X]dz = 2
(

Ωz + (XΩz)⊥ − (XΩz)VX
)
dz −D′X.(33)

Conversely if (33) holds then κ′ =
(
λAdexp ΩW + (2XΩz)V

)
dz and so κ′ takes

values in V . Comparing the λj coefficients on both sides of (33) we can solve for X
inductively over j by at each stage requiring Xj ∈ im adAdexp ΩW and

[Adexp ΩW,X1] = 2Ωz

[Adexp ΩW,Xj−1]dz = 2
(

(XjΩz)⊥ −
∑
s+l=j

(XsΩz)VXl

)
dz −DXk.

Define ∇λ = d+ adϕλ and note that (7) says precisely that ∇λ is a flat connection
in the trivial bundle C/Λ × gC. With X as above we have ∇′λY = 0. We wish to
show that ∇′′λY = 0 also, as this will imply that Y satisfies the Killing field equation
(13).

Define B by

(34) ∇′′λY = (1 +X)−1B(1 +X).

Using Adexp ΩW = (1 +X)Y (1 +X)−1 and

∇′′λ Adexp ΩW = [−Ωz̄ + λ−1 Adexp−ΩW,Adexp ΩW ]dz̄

we obtain

Bdz̄ = [(−Ωz̄ + λ−1 Adexp−ΩW )dz̄ −∇′′λX(1 +X)−1,Adexp ΩW ]
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which shows that B takes values in V ⊥.

As ∇λ is a flat connection we have commutativity of covariant derivatives and hence
∇′λ∇′′λY = 0 which we write as

−∇′λX(1 +X)−1B +∇′λB +B∇′λX(1 +X)−1 = 0.(35)

Since ∇′λB = D′B + [2Ωz + λAdexp ΩW,B]dz, we can rewrite (35) as

D′B = [∇′λX(1 +X)−1 + (λAdexp ΩW − 2Ωz)dz,B].(36)

From its defining equation (34) we know that B is of the form
∑

j≤d λ
jBj . We will

show that B = 0. Suppose not, then there is some non-zero top coefficient Bd. Since
X has only negative powers of λ, the λd+1 term in (36) is

[Adexp ΩW,Bd].

However we know that Bd ∈ V ⊥ and hence it must be zero. Thus ∇′′λY = 0 and Y
satisfies the Killing field equation. From (32) we see that Y is of the form

∑
j≤0 λ

jYj
and furthermore Y0 = Adexp ΩW .

We now need to project this Y onto Ωσ(gC) to get a solution to the Killing field
equation in the correct loop algebra.

Representations of simple Lie algebras are completely reducible and we have identi-
fied gC with a subalgebra of gl(m,C) so it must have a complementary subspace in
gl(m,C) which is invariant under the adjoint action of gC. This means there exists
a projection map π : Ω(gl(m,C))→ Ω(gC) such that

dπ(Y ) = π(dY ) = π([Y, ϕλ]) = [π(Y ), ϕλ].

Thus we have that π(Y ) ∈ Ω(gC) satisfies the Killing field equation. Furthermore
Y0 = π(Adexp ΩW ) = Adexp ΩW . Set Ỹ = λY =

∑
j≤1 λ

jYj−1 and note that
Ỹ1 = Y0 = Adexp ΩW .

We want to project Ỹ onto Ωσ(gC). Consider the map

πσj :=
1
k

(Id +ε−jσj + ε−2jσ2j + . . .+ ε−(k−1)jσ(k−1)j)

where ε is the k-th primitive root of unity. This map πσj projects any element in gC

to its part in gj . Thus we can define πσ : Ω(gC)→ Ωσ(gC) by

πσ(
∑
j

λjξj) =
∑
j

λjπσj (ξj).

Then ξ̃ = πσ(Ỹ ) satisfies

dξ̃ = [ξ̃,Ωz + λAdexp ΩW )dz + (−Ωz̄ + λ−1 Adexp−ΩW )dz̄]

and ξ̃1 = Ỹ1 = Adexp ΩW .

Now we may apply Lemma 5.1 to ξ̃ to conclude the existence of a (real) polynomial
Killing field ξ whose top term, ξd, is Adexp ΩW .
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The d− 1 coefficient of ξz = [ξ,Ωz + λAdexp ΩW ] is

(Adexp ΩW )z = [Adexp ΩW,Ωz] + [ξd−1,Adexp ΩW ]

which implies
[ξd−1 − 2Ωz,Adexp ΩW ] = 0.

Since W is a cyclic element and ξd−1 − 2Ωz ∈ t we conclude ξd−1 − 2Ωz = 0 and
hence ξ satisfies the theorem. �
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