INFINITE GENERATION OF NON-COCOMPACT LATTICES ON RIGHT-ANGLED BUILDINGS

ANNE THOMAS AND KEVIN WORTMAN

ABSTRACT. Let Γ be a non-cocompact lattice on a locally finite regular right-angled building X. We prove that if Γ has a strict fundamental domain then Γ is not finitely generated. We use the separation properties of subcomplexes of X called tree-walls.

Tree lattices have been well-studied (see [BL]). Less understood are lattices on higher-dimensional CAT(0) complexes. In this paper, we consider lattices on X a locally finite, regular right-angled building (see Davis [D] and Section 1 below). Examples of such X include products of locally finite regular or biregular trees, or Bourdon's building $I_{p,q}$ [B], which has apartments hyperbolic planes tesselated by right-angled p-gons, and all vertex links the complete bipartite graph $K_{q,q}$.

Let G be a closed, cocompact group of type-preserving automorphisms of X, equipped with the compact-open topology, and let Γ be a lattice in G. That is, Γ is discrete, and the series $\sum |\operatorname{Stab}_{\Gamma}(\phi)|^{-1}$ converges, where the sum is over the set of chambers ϕ of a fundamental domain for Γ . The lattice Γ is cocompact in G if and only if the quotient $\Gamma \setminus X$ is compact.

If there is a subcomplex $Y \subset X$ containing exactly one point from each Γ -orbit on X, then Y is called a *strict fundamental domain* for Γ . Equivalently, Γ has a strict fundamental domain if $\Gamma \setminus X$ may be embedded in X.

Any cocompact lattice in G is finitely generated. We prove:

Theorem 1. Let Γ be a non-cocompact lattice in G. If Γ has a strict fundamental domain, then Γ is not finitely generated.

Our proof, in Section 3 below, uses the separation properties of subcomplexes of X which we call *tree-walls*. These generalize the tree-walls (in French, *arbre-murs*) of $I_{p,q}$, which were introduced by Bourdon in [B]. We define tree-walls and establish their properties in Section 2 below.

The first author was supported in part by NSF Grant No. DMS-0805206 and in part by EPSRC Grant No. EP/D073626/2. The second author is supported in part by NSF Grant No. DMS-0905891.

The following examples of non-cocompact lattices on right-angled buildings are known to us.

- (1) For i = 1, 2, let G_i be a rank one Lie group over a nonarchimedean locally compact field whose Bruhat–Tits building is the locally finite regular or biregular tree T_i . Then any irreducible lattice in $G = G_1 \times G_2$ is finitely generated (Raghunathan [Ra]). Hence by Theorem 1 above, such lattices on $X = T_1 \times T_2$ cannot have strict fundamental domain.
- (2) Let Λ be a minimal Kac–Moody group over a finite field \mathbb{F}_q with right-angled Weyl group W. Then Λ has locally finite, regular right-angled twin buildings $X_+ \cong X_-$, and Λ acts diagonally on the product $X_+ \times X_-$. For q large enough:
 - (a) By Theorem 0.2 of Carbone–Garland [CG] or Theorem 1(i) of Rémy [Ré], the stabilizer in Λ of a point in X₋ is a non-cocompact lattice in Aut(X₊). Any such lattice is contained in a negative maximal spherical parabolic subgroup of Λ, which has strict fundamental domain a sector in X₊, and so any such lattice has strict fundamental domain.
 - (b) By Theorem 1(ii) of Rémy [Ré], the group Λ is itself a non-cocompact lattice in Aut $(X_+) \times$ Aut (X_-) . Since Λ is finitely generated, Theorem 1 above implies that Λ does not have strict fundamental domain in $X = X_+ \times X_-$.
- (3) In [T], the first author constructed a functor from graphs of groups to complexes of groups, which extends the corresponding tree lattice to a lattice in $\operatorname{Aut}(X)$ where X is a regular right-angled building. The resulting lattice in $\operatorname{Aut}(X)$ has strict fundamental domain if and only if the original tree lattice has strict fundamental domain.

We thank Martin Bridson and Pierre-Emmanuel Caprace for helpful conversations.

1. RIGHT-ANGLED BUILDINGS

In this section we recall the basic definitions and some examples for right-angled buildings. We mostly follow Davis [D], in particular Section 12.2 and Example 18.1.10. See also Sections 1.2–1.4 of [KT].

Let (W, S) be a right-angled Coxeter system. That is,

$$W = \langle S \mid (st)^{m_{st}} = 1 \rangle$$

where $m_{ss} = 1$ for all $s \in S$, and $m_{st} \in \{2, \infty\}$ for all $s, t \in S$ with $s \neq t$. We will discuss the following examples:

• $W_1 = \langle s, t \mid s^2 = t^2 = 1 \rangle \cong D_{\infty}$, the infinite dihedral group;

- $W_2 = \langle r, s, t \mid r^2 = s^2 = t^2 = (rs)^2 = 1 \rangle \cong (C_2 \times C_2) * C_2$, where C_2 is the cyclic group of order 2;
- The Coxeter group W_3 generated by the set of reflections S in the sides of a right-angled hyperbolic p-gon, $p \ge 5$. That is, $W_3 = \langle s_1, \ldots, s_p \mid s_i^2 = (s_i s_{i+1})^2 = 1 \rangle$ with cyclic indexing.

Fix $(q_s)_{s\in S}$ a family of integers with $q_s \geq 2$. Given any family of groups $(H_s)_{s\in S}$ with $|H_s| = q_s$, let H be the quotient of the free product of the $(H_s)_{s\in S}$ by the normal subgroup generated by the commutators $\{[h_s, h_t] : h_s \in H_s, h_t \in H_t, m_{st} = 2\}$.

Now let X be the piecewise Euclidean CAT(0) geometric realization of the chamber system $\Phi = \Phi(H, \{1\}, (H_s)_{s \in S})$. Then X is a locally finite, regular right-angled building, with chamber set $\operatorname{Ch}(X)$ in bijection with the elements of the group H. Let $\delta_W : \operatorname{Ch}(X) \times \operatorname{Ch}(X) \to W$ be the W-valued distance function and let $l_S : W \to \mathbb{N}$ be word length with respect to the generating set S. Denote by $d_W : \operatorname{Ch}(X) \times \operatorname{Ch}(X) \to$ \mathbb{N} the gallery distance $l_S \circ \delta_W$. That is, for two chambers ϕ and ϕ' of $X, d_W(\phi, \phi')$ is the length of a minimal gallery from ϕ to ϕ' .

Suppose that ϕ and ϕ' are *s*-adjacent chambers, for some $s \in S$. That is, $\delta_W(\phi, \phi') = s$. The intersection $\phi \cap \phi'$ is called an *s*-panel. By definition, since X is regular, each *s*-panel is contained in q_s distinct chambers. For distinct $s, t \in S$, the *s*-panel and *t*-panel of any chamber ϕ of X have nonempty intersection if and only if $m_{st} = 2$. Each *s*-panel of X is reduced to a vertex if and only if $m_{st} = \infty$ for all $t \in S - \{s\}$. For the examples W_1, W_2 , and W_3 above, respectively:

- The building X₁ is a tree with each chamber an edge, each s-panel a vertex of valence q_s, and each t-panel a vertex of valence q_t. That is, X₁ is the (q_s, q_t)-biregular tree. The apartments of X₁ are bi-infinite rays in this tree.
- The building X_2 has chambers and apartments as shown in Figure 1 below. The r- and s-panels are 1-dimensional and the t-panels are vertices.
- The building X_3 has chambers p-gons and s-panels the edges of these p-gons. If $q_s = q \ge 2$ for all $s \in S$, then each s-panel is contained in q chambers, and X_3 , equipped with the obvious piecewise hyperbolic metric, is Bourdon's building $I_{p,q}$.

2. Tree-walls

We now generalize the notion of tree-wall due to Bourdon [B]. We will use basic facts about buildings, found in, for example, Davis [D]. Our main results concerning tree-walls are Corollary 3 below, which

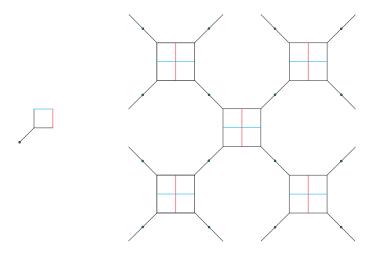


FIGURE 1. A chamber (on the left) and part of an apartment (on the right) for the building X_2 .

describes three possibilities for tree-walls, and Proposition 6 below, which generalizes the separation property 2.4.A(ii) of [B].

Let X be as in Section 1 above and let $s \in S$. As in Section 2.4.A of [B], we define two s-panels of X to be equivalent if they are contained in a common wall of type s in some apartment of X. A tree-wall of type s is then an equivalence class under this relation. We note that in order for walls and thus tree-walls to have a well-defined type, it is necessary only that all finite m_{st} , for $s \neq t$, be even. Tree-walls could thus be defined for buildings of type any even Coxeter system, and they would have similar properties to those below. We will however only explicitly consider the right-angled case.

Let \mathcal{T} be a tree-wall of X, of type s. We define a chamber ϕ of X to be *epicormic at* \mathcal{T} if the s-panel of ϕ is contained in \mathcal{T} , and we say that a gallery $\alpha = (\phi_0, \ldots, \phi_n)$ crosses \mathcal{T} if, for some $0 \leq i < n$, the chambers ϕ_i and ϕ_{i+1} are epicormic at \mathcal{T} .

By the definition of tree-wall, if $\phi \in Ch(X)$ is epicormic at \mathcal{T} and $\phi' \in Ch(X)$ is t-adjacent to ϕ with $t \neq s$, then ϕ' is epicormic at \mathcal{T} if and only if $m_{st} = 2$. Let $s^{\perp} := \{t \in S \mid m_{st} = 2\}$ and denote by $\langle s^{\perp} \rangle$ the subgroup of W generated by the elements of s^{\perp} . If s^{\perp} is empty then by convention, $\langle s^{\perp} \rangle$ is trivial. For the examples in Section 1 above:

- in W₁, both ⟨s[⊥]⟩ and ⟨t[⊥]⟩ are trivial;
 in W₂, ⟨r[⊥]⟩ = ⟨s⟩ ≅ C₂ and ⟨s[⊥]⟩ = ⟨r⟩ ≅ C₂, while ⟨t[⊥]⟩ is trivial; and
- in W_3 , $\langle s_i^{\perp} \rangle = \langle s_{i-1}, s_{i+1} \rangle \cong D_{\infty}$ for each $1 \le i \le p$.

Lemma 2. Let \mathcal{T} be a tree-wall of X of type s. Let ϕ be a chamber which is epicormic at \mathcal{T} and let A be any apartment containing ϕ .

- (1) The intersection $\mathcal{T} \cap A$ is a wall of A, hence separates A.
- (2) There is a bijection between the elements of the group $\langle s^{\perp} \rangle$ and the set of chambers of A which are epicormic at \mathcal{T} and in the same component of $A - \mathcal{T} \cap A$ as ϕ .

Proof. Part (1) is immediate from the definition of tree-wall. For Part (2), let $w \in \langle s^{\perp} \rangle$ and let $\psi = \psi_w$ be the unique chamber of A such that $\delta_W(\phi, \psi) = w$. We claim that ψ is epicormic at \mathcal{T} and in the same component of $A - \mathcal{T} \cap A$ as ϕ .

For this, let $s_1 \cdots s_n$ be a reduced expression for w and let $\alpha = (\phi_0, \ldots, \phi_n)$ be the minimal gallery from $\phi = \phi_0$ to $\psi = \phi_n$ of type (s_1, \ldots, s_n) . Since w is in $\langle s^{\perp} \rangle$, we have $m_{s_is} = 2$ for $1 \leq i \leq n$. Hence by induction each ϕ_i is epicormic at \mathcal{T} , and so $\psi = \phi_n$ is epicormic at \mathcal{T} . Moreover, since none of the s_i are equal to s, the gallery α does not cross \mathcal{T} . Thus $\psi = \psi_w$ is in the same component of $A - \mathcal{T} \cap A$ as ϕ .

It follows that $w \mapsto \psi_w$ is a well-defined, injective map from $\langle s^{\perp} \rangle$ to the set of chambers of A which are epicormic at \mathcal{T} and in the same component of $A - \mathcal{T} \cap A$ as ϕ . To complete the proof, we will show that this map is surjective. So let ψ be a chamber of A which is epicormic at \mathcal{T} and in the same component of $A - \mathcal{T} \cap A$ as ϕ , and let $w = \delta_W(\phi, \psi)$.

If $\langle s^{\perp} \rangle$ is trivial then $\psi = \phi$ and w = 1, and we are done. Next suppose that the chambers ϕ and ψ are *t*-adjacent, for some $t \in S$. Since both ϕ and ψ are epicormic at \mathcal{T} , either t = s or $m_{st} = 2$. But ψ is in the same component of $A - \mathcal{T} \cap A$ as ϕ , so $t \neq s$, hence w = t is in $\langle s^{\perp} \rangle$ as required. If $\langle s^{\perp} \rangle$ is finite, then finitely many applications of this argument will finish the proof. If $\langle s^{\perp} \rangle$ is infinite, we have established the base case of an induction on $n = l_S(w)$.

For the inductive step, let $s_1 \cdots s_n$ be a reduced expression for w and let $\alpha = (\phi_0, \ldots, \phi_n)$ be the minimal gallery from $\phi = \phi_0$ to $\psi = \phi_n$ of type (s_1, \ldots, s_n) . Since ϕ and ψ are in the same component of $A - \mathcal{T} \cap A$ and α is minimal, the gallery α does not cross \mathcal{T} . We claim that s_n is in s^{\perp} . First note that $s_n \neq s$ since α does not cross \mathcal{T} and $\psi = \phi_n$ is epicormic at \mathcal{T} . Now denote by \mathcal{T}_n the tree-wall of X containing the s_n -panel $\phi_{n-1} \cap \phi_n$. Since α is minimal and crosses \mathcal{T}_n , the chambers $\phi = \phi_0$ and $\psi = \phi_n$ are separated by the wall $\mathcal{T}_n \cap A$. Thus the s-panel of ϕ and the s-panel of ψ are separated by $\mathcal{T}_n \cap A$. As the s-panels of both ϕ and ψ are in the wall $\mathcal{T} \cap A$, it follows that the walls $\mathcal{T}_n \cap A$ and $\mathcal{T} \cap A$ intersect. Hence $m_{s_ns} = 2$, as claimed.

Now let $w' = ws_n = s_1 \cdots s_{n-1}$ and let ψ' be the unique chamber of A such that $\delta_W(\phi, \psi') = w'$. Since s_n is in s^{\perp} and ψ' is s_n -adjacent to ψ , the chamber ψ' is epicormic at \mathcal{T} and in the same component of $A - \mathcal{T} \cap A$ as ϕ . Moreover $s_1 \cdots s_{n-1}$ is a reduced expression for w', so $l_S(w') = n - 1$. Hence by the inductive assumption, w' is in $\langle s^{\perp} \rangle$. Therefore $w = w's_n$ is in $\langle s^{\perp} \rangle$, which completes the proof. \Box

Corollary 3. The following possibilities for tree-walls in X may occur.

- (1) Every tree-wall of type s is reduced to a vertex if and only if $\langle s^{\perp} \rangle$ is trivial.
- (2) Every tree-wall of type s is finite but not reduced to a vertex if and only if $\langle s^{\perp} \rangle$ is finite but nontrivial.
- (3) Every tree-wall of type s is infinite if and only if $\langle s^{\perp} \rangle$ is infinite.

Proof. Let \mathcal{T} , ϕ , and A be as in Lemma 2 above. The set of s-panels in the wall $\mathcal{T} \cap A$ is in bijection with the set of chambers of A which are epicormic at \mathcal{T} and in the same component of $A - \mathcal{T} \cap A$ as ϕ . \Box

For the examples in Section 1 above:

- in X_1 , every tree-wall of type s and of type t is a vertex;
- in X_2 , the tree-walls of types both r and s are finite and 1–dimensional, while every tree-wall of type t is a vertex; and
- in X_3 , all tree-walls are infinite, and are 1-dimensional.

Corollary 4. Let \mathcal{T} , ϕ , and A be as in Lemma 2 above and let

 $\rho = \rho_{\phi,A} : X \to A$

be the retraction onto A centered at ϕ . Then $\rho^{-1}(\mathcal{T} \cap A) = \mathcal{T}$.

Proof. Let ψ be any chamber of A which is epicormic at \mathcal{T} and is in the same component of $A - \mathcal{T} \cap A$ as ϕ . Then by the proof of Lemma 2 above, $w := \delta_W(\phi, \psi)$ is in $\langle s^{\perp} \rangle$. Let ψ' be a chamber in the preimage $\rho^{-1}(\psi)$ and let A' be an apartment containing both ϕ and ψ' . Since the retraction ρ preserves W-distances from ϕ , we have that $\delta_W(\phi, \psi') = w$ is in $\langle s^{\perp} \rangle$. Again by the proof of Lemma 2, it follows that the chamber ψ' is epicormic at \mathcal{T} . But the image under ρ of the *s*-panel of ψ' is the *s*-panel of ψ . Thus $\rho^{-1}(\mathcal{T} \cap A) = \mathcal{T}$, as required. \Box

Lemma 5. Let \mathcal{T} be a tree-wall and let ϕ and ϕ' be two chambers of X. Let α be a minimal gallery from ϕ to ϕ' and let β be any gallery from ϕ to ϕ' . If α crosses \mathcal{T} then β crosses \mathcal{T} .

Proof. Suppose that α crosses \mathcal{T} . Since α is minimal, there is an apartment A of X which contains α , and hence the wall $\mathcal{T} \cap A$ separates ϕ from ϕ' . Choose a chamber ϕ_0 of A which is epicormic at \mathcal{T} and consider the retraction $\rho = \rho_{\phi_0,A}$ onto A centered at ϕ_0 . Since ϕ and ϕ' are in A, ρ fixes ϕ and ϕ' . Hence $\rho(\beta)$ is a gallery in A from ϕ to

 ϕ' , and so $\rho(\beta)$ crosses $\mathcal{T} \cap A$. By Corollary 4 above, $\rho^{-1}(\mathcal{T} \cap A) = \mathcal{T}$. Therefore β crosses \mathcal{T} .

Proposition 6. Let \mathcal{T} be a tree-wall of type s. Then \mathcal{T} separates X into q_s gallery-connected components.

Proof. Fix an *s*-panel in \mathcal{T} and let $\phi_1, \ldots, \phi_{q_s}$ be the q_s chambers containing this panel. Then for all $1 \leq i < j \leq q_s$, the minimal gallery from ϕ_i to ϕ_j is just (ϕ_i, ϕ_j) , and hence crosses \mathcal{T} . Thus by Lemma 5 above, any gallery from ϕ_i to ϕ_j crosses \mathcal{T} . So the q_s chambers $\phi_1, \ldots, \phi_{q_s}$ lie in q_s distinct components of $X - \mathcal{T}$.

To complete the proof, we show that \mathcal{T} separates X into at most q_s components. Let ϕ be any chamber of X. Then among the chambers $\phi_1, \ldots, \phi_{q_s}$, there is a unique chamber, say ϕ_1 , at minimal gallery distance from ϕ . It suffices to show that ϕ and ϕ_1 are in the same component of $X - \mathcal{T}$.

Let α be a minimal gallery from ϕ to ϕ_1 and let A be an apartment containing α . Then there is a unique chamber of A which is s-adjacent to ϕ_1 . Hence A contains ϕ_i for some i > 1, and the wall $\mathcal{T} \cap A$ separates ϕ_1 from ϕ_i . Since α is minimal and $d_W(\phi, \phi_1) < d_W(\phi, \phi_i)$, the Exchange Condition (see p. 35 [D]) implies that a minimal gallery from ϕ to ϕ_i may be obtained by concatenating α with the gallery (ϕ_1, ϕ_i) . Since a minimal gallery can cross $\mathcal{T} \cap A$ at most once, α does not cross $\mathcal{T} \cap A$. Thus ϕ and ϕ_1 are in the same component of $X - \mathcal{T}$, as required.

3. Proof of Theorem

Let G be as in the introduction and let Γ be a non-cocompact lattice in G with strict fundamental domain. Fix a chamber ϕ_0 of X. For each integer $n \ge 0$ define

$$D(n) := \{ \phi \in Ch(X) \mid d_W(\phi, \Gamma \phi_0) \le n \}.$$

Then $D(0) = \Gamma \phi_0$, and for every n > 0 every connected component of D(n) contains a chamber in $\Gamma \phi_0$. To prove Theorem 1, we will show that there is no n > 0 such that D(n) is connected.

Let Y be a strict fundamental domain for Γ which contains ϕ_0 . For each chamber ϕ of X, denote by ϕ_Y the representative of ϕ in Y.

Lemma 7. Let ϕ and ϕ' be t-adjacent chambers in X, for $t \in S$. Then either $\phi_Y = \phi'_Y$, or ϕ_Y and ϕ'_Y are t-adjacent.

Proof. It suffices to show that the *t*-panel of ϕ_Y is the *t*-panel of ϕ'_Y . Since Y is a subcomplex of X, the *t*-panel of ϕ_Y is contained in Y. By definition of a strict fundamental domain, there is exactly one representative in Y of the t-panel of ϕ . Hence the unique representative in Y of the t-panel of ϕ is the t-panel of ϕ_Y . Similarly, the unique representative in Y of the t-panel of ϕ' is the t-panel of ϕ'_Y . But ϕ and ϕ' are t-adjacent, hence have the same t-panel, and so it follows that ϕ_Y and ϕ'_Y have the same t-panel. \Box

Corollary 8. The fundamental domain Y is gallery-connected.

Lemma 9. For all n > 0, the fundamental domain Y contains a pair of adjacent chambers ϕ_n and ϕ'_n such that, if \mathcal{T}_n denotes the tree-wall separating ϕ_n from ϕ'_n :

- (1) the chambers ϕ_0 and ϕ_n are in the same gallery-connected component of $Y \mathcal{T}_n \cap Y$;
- (2) $\min\{d_W(\phi_0, \phi) \mid \phi \in Ch(X) \text{ is epicormic at } \mathcal{T}_n\} > n; and$
- (3) there is a $\gamma \in \operatorname{Stab}_{\Gamma}(\phi'_n)$ which does not fix ϕ_n .

Proof. Fix n > 0. Since Γ is not cocompact, Y is not compact. Thus there exists a tree-wall \mathcal{T}_n with $\mathcal{T}_n \cap Y$ nonempty such that for every $\phi \in \operatorname{Ch}(X)$ which is epicormic at \mathcal{T}_n , $d_W(\phi_0, \phi) > n$. Let s_n be the type of the tree-wall \mathcal{T}_n . Then by Corollary 8 above, there is a chamber ϕ_n of Y which is epicormic at \mathcal{T}_n and in the same gallery-connected component of $Y - \mathcal{T}_n \cap Y$ as ϕ_0 , such that for some chamber ϕ'_n which is s_n -adjacent to ϕ_n, ϕ'_n is also in Y. Now, as Γ is a non-cocompact lattice, the orders of the Γ -stabilizers of the chambers in Y are unbounded. Hence the tree-wall \mathcal{T}_n and chambers ϕ_n and ϕ'_n may be chosen so that $|\operatorname{Stab}_{\Gamma}(\phi_n)| < |\operatorname{Stab}_{\Gamma}(\phi'_n)|$. \Box

Let ϕ_n , ϕ'_n , \mathcal{T}_n , and γ be as in Lemma 9 above and let $s = s_n$ be the type of the tree-wall \mathcal{T}_n . Let α be a gallery in $Y - \mathcal{T}_n \cap Y$ from ϕ_0 to ϕ_n . The chambers ϕ_n and $\gamma \cdot \phi_n$ are in two distinct components of $X - \mathcal{T}_n$, since they both contain the *s*-panel $\phi_n \cap \phi'_n \subseteq \mathcal{T}_n$, which is fixed by γ . Hence the galleries α and $\gamma \cdot \alpha$ are in two distinct components of $X - \mathcal{T}_n$, and so the chambers ϕ_0 and $\gamma \cdot \phi_0$ are in two distinct components of $X - \mathcal{T}_n$. Denote by X_0 the component of $X - \mathcal{T}_n$ which contains ϕ_0 , and put $Y_0 = Y \cap X_0$.

Lemma 10. Let ϕ be a chamber in X_0 that is epicormic at \mathcal{T}_n . Then ϕ_Y is in Y_0 and is epicormic at $\mathcal{T}_n \cap Y$.

Proof. We consider three cases, corresponding to the possibilities for tree-walls in Corollary 3 above.

(1) If \mathcal{T}_n is reduced to a vertex, there is only one chamber in X_0 which is epicormic at \mathcal{T}_n , namely ϕ_n . Thus $\phi = \phi_n = \phi_Y$ and we are done.

8

- (2) If \mathcal{T}_n is finite but not reduced to a vertex, the result follows by finitely many applications of Lemma 7 above.
- (3) If \mathcal{T}_n is infinite, the result follows by induction, using Lemma 7 above, on

 $k := \min\{d_W(\phi, \psi) \mid \psi \text{ is a chamber of } Y_0 \text{ epicormic at } \mathcal{T}_n \cap Y\}.$

Lemma 11. For all n > 0, the complex D(n) is not connected.

Proof. Fix n > 0, and let α be a gallery in X between a chamber in $X_0 \cap \Gamma \phi_0$ and some chamber ϕ in X_0 that is epicormic at \mathcal{T}_n . Let m be the length of α .

By Lemmas 7 and 10 above, the gallery α projects to a gallery β in Y between ϕ_0 and a chamber ϕ_Y that is epicormic at $\mathcal{T}_n \cap Y$. The gallery β in Y has length at most m.

It follows from (2) of Lemma 9 above that the gallery β in Y has length greater than n. Therefore m > n. Hence the gallery-connected component of D(n) that contains ϕ_0 is contained in X_0 . As the chamber $\gamma \cdot \phi_0$ is not in X_0 , it follows that the complex D(n) is not connected. \Box

This completes the proof, as Γ is finitely generated if and only if D(n) is connected for some n.

References

- [BL] H. Bass and A. Lubotzky, Tree Lattices. Prog. in Math., 176, Birkhäuser.
- [B] M. Bourdon, Immeubles hyperboliques, dimension conforme et rigidité de Mostow, Geom. Funct. Anal. 7 (1997), 245–268.
- [CG] L. Carbone and H. Garland, Existence of lattices in Kac-Moody groups over finite fields, Commun. Contemp. Math. 5 (2003), 813–867.
- [D] M. Davis, The Geometry and Topology of Coxeter Groups, LMS Monographs, Princeton University Press, 2008.
- [KT] A. Kubena and A. Thomas, Density of commensurators for uniform lattices of right-angled buildings. Preprint.
- [Ra] M.S. Raghunathan, Discrete subgroups of algebraic groups over local fields of positive characteristics, Proc. Indian Acad. Sci. Math. Sci. 99 (1989), 127– 146.
- [Ré] B. Rémy, Constructions de réseaux en theorie de Kac-Moody, C. R. Acad. Sci. Paris 329 (1999), 475–478.
- [T] A. Thomas, Lattices acting on right-angled buildings, Algebr. Geom. Topol. 6 (2006), 1215–1238.

SCHOOL OF MATHEMATICS AND STATISTICS, UNIVERSITY OF SYDNEY *E-mail address*: athomas@maths.usyd.edu.au

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH *E-mail address*: wortman@math.utah.edu