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Abstract

Let Σ be the Davis complex for a Coxeter system (W,S). The auto-
morphism group G of Σ is naturally a locally compact group, and a sim-
ple combinatorial condition due to Haglund–Paulin determines when G is
nondiscrete. The Coxeter group W may be regarded as a uniform lattice in
G. We show that many such G also admit a nonuniform lattice Γ, and an
infinite family of uniform lattices with covolumes converging to that of Γ.
It follows that the set of covolumes of lattices in G is nondiscrete. We also
show that the nonuniform lattice Γ is not finitely generated. Examples of Σ
to which our results apply include buildings and non-buildings, and many
complexes of dimension greater than 2. To prove these results, we introduce
a new tool, that of “group actions on complexes of groups”, and use this
to construct our lattices as fundamental groups of complexes of groups with
universal cover Σ.

1 Introduction

Let G be a locally compact topological group, with Haar measure µ. A discrete
subgroup Γ ≤ G is a lattice if Γ\G carries a finite G–invariant measure, and is
uniform if Γ\G is compact. Some basic questions are:

1. Does G admit a (uniform or nonuniform) lattice?

2. What is the set of covolumes of lattices in G, that is, the set of positive reals

V(G) := {µ(Γ\G) | Γ < G is a lattice}?

∗This work was supported in part by NSF Grant No. DMS-0805206. The author is currently
supported by EPSRC Grant No. EP/D073626/2.
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3. Are lattices in G finitely generated?

These questions have been well-studied in classical cases. For example, suppose
G is a reductive algebraic group over a local field K of characteristic 0. Then G
admits a uniform lattice, constructed by arithmetic means (Borel–Harder [7]),
and a nonuniform lattice only if K is archimedean (Tamagawa [28]). If G is a
semisimple real Lie group, the set V(G) is in most cases discrete (see [23] and
its references). If in addition G is simple and higher-rank, then G and hence its
lattices have Kazhdan’s Property (T) (see, for example, [24]). Since countable
groups with Property (T) are finitely generated, it follows that all lattices in G
are finitely generated.

A nonclassical case is G the automorphism group of a locally finite tree T .
The study of lattices in G = Aut(T ) was initiated by Bass and Lubotzky, and has
yielded many surprising differences from classical results (see the survey [23] and
the reference [3]). For example, the set V(G) is in many cases nondiscrete, and
nonuniform tree lattices are never finitely generated.

In fact, the automorphism groupG of any locally finite polyhedral complexX is
naturally a locally compact group (see Section 2.1). For many X with dim(X) ≥ 2,
there is greater rigidity than for trees, as might be expected in higher dimensions.
For instance, Burger–Mozes [9] proved a ‘Normal Subgroup Theorem’ for products
of trees (parallel to that of Margulis [24] for higher-rank semisimple Lie groups),
and Bourdon–Pajot [6] and Xie [32] established quasi-isometric rigidity for certain
Fuchsian buildings. On the other hand, lattices in G = Aut(X) can exhibit the
same flexibility as tree lattices. For example, the set V(G) is nondiscrete for
certain right-angled buildings [30] and Fuchsian buildings [29]. Another example
is density of commensurators of uniform lattices in G, proved by Haglund [17] for
certain 2–dimensional Davis complexes, and by Haglund [14] and Kubena Barnhill–
Thomas [21] for right-angled buildings. Apart from right-angled buildings, very
little is known for X of dimension > 2. Almost nothing is known for X not a
building.

In this paper we consider Questions (1)–(3) above for lattices in G = Aut(Σ),
where Σ is the Davis complex for a Coxeter system (W,S) (see [11] and Section 2.2
below). The Davis complex is a locally finite, piecewise Euclidean CAT(0) polyhe-
dral complex, and the Coxeter group W may be regarded as a uniform lattice in G.
Our results are the Main Theorem and its Corollaries 1.1 and 1.2 below, which es-
tablish tree-like properties for lattices in many such G. After stating these results,
we discuss how they apply to (barycentric subdivisions of) Fuchsian buildings and
Platonic polygonal complexes, and to many Davis complexes Σ with dim(Σ) > 2.

To state the Main Theorem, recall that for a Coxeter system (W,S) with
W = 〈S | (st)mst〉, and any T ⊂ S, the special subgroup WT is the subgroup
of W generated by the elements s ∈ T . A special subgroup WT is spherical if
it is finite, and the set of spherical special subgroups of W is partially ordered
by inclusion. The poset of nontrivial spherical special subgroups is an abstract
simplicial complex L, called the nerve of (W,S). We identify each generator s ∈ S
with the corresponding vertex W{s} = 〈s〉 of L, and denote by A the group of
label-preserving automorphisms of L, that is, the group of automorphisms α of L
such that mst = mα(s)α(t) for all s, t ∈ S. The group G = Aut(Σ) is nondiscrete
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if and only if there is a nontrivial α ∈ A such that α fixes the star in L of some
vertex s (Haglund–Paulin [20]).

Main Theorem 1. Let (W,S) be a Coxeter system, with nerve L and Davis
complex Σ. Let A be the group of label-preserving automorphisms of L. Assume
that there are vertices s1 and s2 of L, and nontrivial elements α1, α2 ∈ A, such
that for i = 1, 2:

1. αi fixes the star of s3−i in L;

2. the subgroup 〈αi〉 of A acts freely on the 〈αi〉–orbit of si, in particular
αi(si) 6= si;

3. for all ti 6= si such that ti is in the 〈αi〉–orbit of si, msiti = ∞; and

4. all spherical special subgroups WT with si ∈ T are halvable along si (see
Definition 1.4 below).

Then G = Aut(Σ) admits:

• a nonuniform lattice Γ; and

• an infinite family of uniform lattices (Γn), such that µ(Γn\G) → µ(Γ\G),
where µ is Haar measure on G.

Corollary 1.1. The set of covolumes of lattices in G is nondiscrete.

Corollary 1.2. The group G admits a lattice which is not finitely generated.

Corollary 1.2 follows from the proof of the Main Theorem and Theorem 1.3 below.
By the discussion above, Corollary 1.2 implies that the group G in the Main
Theorem does not have Property (T). This was already known for G = Aut(Σ),
where Σ is any Davis complex (Haglund–Paulin [20]); our results thus provide an
alternative proof of this fact in some cases.

We describe several infinite families of examples of Davis complexes Σ to which
our results apply in Section 5 below. To establish these applications, we use prop-
erties of spherical buildings in [25], and some results of graph theory from [12].
In two dimensions, examples include the Fuchsian buildings considered in [29],
and some of the highly symmetric Platonic polygonal complexes investigated by
Świa֒tkowski [27]. Platonic polygonal complexes are not in general buildings, and
even the existence of lattices (other than the Coxeter group W ) in their auto-
morphism groups was not previously known. An example of a Platonic polygonal
complex is the (unique) CAT(0) 2–complex with all 2–cells squares, and the link
of every vertex the Petersen graph (Figure 1 below). The Main Theorem and its
corollaries also apply to many higher-dimensional Σ, including both buildings and
complexes which are not buildings.

To prove the Main Theorem, we construct the lattices Γn and Γ as fundamen-
tal groups of complexes of groups with universal covers Σ (see [8] and Section 2.3
below). The construction is given in Section 4 below, where we also prove Corol-
lary 1.2.
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Figure 1: Petersen graph

Complexes of groups are a generalisation to higher dimensions of graphs of
groups. Briefly, given a polyhedral complex Y , a (simple) complex of groups G(Y )
over Y is an assignment of a local group Gσ to each cell σ of Y , with monomor-
phisms Gσ → Gτ whenever τ ⊂ σ, so that the obvious diagrams commute. The
action of a group G on a polyhedral complex X induces a complex of groups G(Y )
over Y = G\X. A complex of groups is developable if it is isomorphic to a com-
plex of groups induced in this way. A developable complex of groups G(Y ) has a

simply-connected universal cover G̃(Y ), equipped with a canonical action of the
fundamental group of the complex of groups π1(G(Y )).

A key difference from graphs of groups is that complexes of groups are not
in general developable. In addition, even if G(Y ) is developable, with universal
cover say X, it may be impossible to identify X of dimension ≥ 2 using only local
data such as the links of its vertices (see Ballmann–Brin [1] and Haglund [18]).
To ensure that our complexes of groups are developable with universal cover Σ,
we use covering theory for complexes of groups (see [8] and [22], and Section 3.1
below). The main result needed is that if there is a covering of complexes of groups
G(Y ) → H(Z), then G(Y ) is developable if and only if H(Z) is developable, and
the universal covers of G(Y ) and H(Z) are isometric (see Theorem 3.2 below).

The other main ingredient in the proof of the Main Theorem is Theorem 1.3
below, which introduces a theory of “group actions on complexes of groups”. This
is a method of manufacturing new complexes of groups with a given universal
cover, by acting on previously-constructed complexes of groups. Given a complex
of groups G(Y ), and the action of a group H on Y , the H–action extends to an
action on G(Y ) if there is a homomorphism from H to Aut(G(Y )). Roughly,
this means that for each cell σ of Y , each h ∈ H induces a group isomorphism
Gσ → Gh·σ, so that the obvious diagrams commute (see Section 3.1 below for
definitions). In Section 3 below we prove:

Theorem 1.3. Let G(Y ) be a (simple) complex of groups over Y , and suppose that
the action of a group H on Y extends to an action on G(Y ). Then the H–action
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induces a complex of groups H(Z) over Z = H\Y such that there is a covering
of complexes of groups G(Y ) → H(Z). Moreover there is a natural short exact
sequence

1 → π1(G(Y )) → π1(H(Z)) → H → 1,

and if H fixes a vertex of Y , then

π1(H(Z)) ∼= π1(G(Y )) ⋊H.

Theorem 1.3 is also used in [21], and we expect this result to be of independent
interest. To our knowledge, group actions on complexes of groups have not pre-
viously been considered. In [2], Bass–Jiang determined the structure of the full
automorphism group of a graph of groups, but did not define or study the graph
of groups induced by a group action on a graph of groups. A more precise state-
ment of Theorem 1.3, including some additional facts about H(Z), is given as
Theorem 3.1 below.

The Main Theorem is proved as follows. The action of the Coxeter group W
on Σ induces a complex of groups G(Y1) over Y1 = W\Σ, with local groups the
spherical special subgroups of W . We then construct a family of finite complexes
of groups G(Yn) and H(Zn), and two infinite complexes of groups G(Y∞) and
H(Z∞), so that there are coverings of complexes of groups as sketched in Figure 2
below.

G(Y1)H(Zn)

G(Yn)

G(Y1)

G(Y∞)

H(Z∞)

Figure 2: Coverings of complexes of groups

The fundamental groups of H(Zn) and H(Z∞) are, respectively, the uniform lat-
tices Γn, and the nonuniform lattice Γ, in G = Aut(Σ). For the local groups of
G(Yn) and G(Y∞), we use Condition (4) in the Main Theorem to replace certain
spherical special subgroups WT by the subgroup halfs(WT ), defined as follows:

Definition 1.4. Let WT be a spherical special subgroup of W , and suppose s ∈ T .
Then WT is halvable along s if the union

(T − {s}) ∪ {sts | t ∈ T − {s}}

generates an index 2 subgroup, denoted halfs(WT ), of WT .

The complexes of groups H(Zn) and H(Z∞) are induced by group actions on,
respectively, G(Yn) and G(Y∞). To construct these group actions, we use the
automorphisms α1 and α2 of L.

I am grateful to Benson Farb for introducing me to these questions, and for
his continuing encouragement and advice. I also thank G. Christopher Hruska
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and Kevin Wortman for many useful discussions. This particular work was in-
spired by conversations with Tadeusz Januszkiewicz and Jacek Świa֒tkowski, and
much of this project was carried out at the Mathematical Sciences Research In-
stitute in Fall 2007, where I benefited from talking with Angela Kubena Barnhill,
Michael W. Davis, Jonathan P. McCammond and Damian Osajda. I would also
like to thank Karen Vogtmann for helpful comments on this manuscript, and an
anonymous referee for careful reading and worthwhile suggestions, in particular
the construction given in Section 5.2.

2 Background

In this section we present brief background. In Section 2.1 we describe the natural
topology on G the group of automorphisms of a locally finite polyhedral complex
X, and characterise uniform and nonuniform lattices in G. Section 2.2 constructs
the Davis complex Σ for a Coxeter system (W,S), following [11]. In Section 2.3 we
recall the basics of Haefliger’s theory of complexes of groups (see [8]), and describe
the complex of groups G(Y1) induced by the action of W on Σ.

2.1 Lattices in automorphism groups of polyhedral com-

plexes

Let G be a locally compact topological group. We will use the following normali-
sation of Haar measure µ on G.

Theorem 2.1 (Serre, [26]). Suppose that a locally compact group G acts on a
set V with compact open stabilisers and a finite quotient G\V . Then there is a
normalisation of the Haar measure µ on G, depending only on the choice of G–set
V , such that for each discrete subgroup Γ of G we have

µ(Γ\G) = Vol(Γ\\V ) :=
∑

v∈Γ\V

1

|Γv|
≤ ∞.

Suppose X is a connected, locally finite polyhedral complex. Let G = Aut(X).
With the compact-open topology, G is naturally a locally compact topological
group, and the G–stabilisers of cells in X are compact and open. Hence if G\X
is finite, there are several natural choices of sets V in Theorem 2.1 above. By
the same arguments as for tree lattices ([3], Chapter 1), it can be shown (for any
suitable set V ) that a discrete subgroup Γ ≤ G is a lattice if and only if the series
Vol(Γ\\V ) converges, and Γ is uniform if and only if this is a sum with finitely
many terms. In Section 2.2 below we describe our choice of G–set V when G is
the group of automorphisms of a Davis complex Σ.

2.2 Davis complexes

In this section we recall the construction of the Davis complex for a Coxeter system.
We follow the reference [11].

6



A Coxeter group is a group W with a finite generating set S and presentation
of the form

W = 〈s ∈ S | s2 = 1 ∀ s ∈ S, (st)mst = 1 ∀ s, t ∈ S with s 6= t〉

with mst an integer ≥ 2 or mst = ∞, meaning that st has infinite order. The pair
(W,S) is called a Coxeter system.

Example 1: This example will be followed throughout this section, and also
referred to in Sections 2.3 and 4 below. Let

W = 〈s1, s2, s3, s4, s5 | s2i = 1, (s1s4)
m = (s2s4)

m = (s3s4)
m = 1,

(s1s5)
m′

= (s2s5)
m′

= (s3s5)
m′

= 1〉

where m and m′ are integers ≥ 2.

Let (W,S) be a Coxeter system. A subset T of S is spherical if the correspond-
ing special subgroup WT is spherical, that is, WT is finite. By convention, W∅ is
the trivial group. Denote by S the set of all spherical subsets of S. The set S is
partially ordered by inclusion, and the poset S>∅ is the nerve L of (W,S) (this
is equivalent to the description of L in the introduction above). By definition,
a nonempty set T of vertices of L spans a simplex σT in L if and only if T is
spherical. We identify the generator s ∈ S with the vertex {s} of L. The vertices
s and t of L are joined by an edge in L if and only if mst is finite, in which case
we label this edge by the integer mst. The nerve L of Example 1 above, with its
edge labels, is sketched in Figure 3 below.

s4

s5

m

m′

s1 s2 s3

m′

m
m

m′

Figure 3: Nerve L of Example 1, with edge labels

We denote by K the geometric realisation of the poset S. Equivalently, K is
the cone on the barycentric subdivision of the nerve L of (W,S). Note that K is
compact and contractible, since it is the cone on a finite simplicial complex. Each
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vertex of K has type a spherical subset of S, with the cone point having type ∅.
For Example 1 above, K and the types of its vertices are sketched on the left of
Figure 4.

s5 {s3, s5}

{s3, s4}

{s2, s4}

{s2, s5}

s4
{s1, s4}

∅
s3s1

s2

{s1, s5}

K4

K3

K5

K2

K1

Figure 4: K and types of vertices (left) and mirrors (right) for Example 1

For each s ∈ S let Ks be the union of the (closed) simplices in K which contain
the vertex s but not the cone point. In other words, Ks is the closed star of the
vertex s in the barycentric subdivision of L. Note that Ks and Kt intersect if
and only if mst is finite. The family (Ks)s∈S is a mirror structure on K, meaning
that (Ks)s∈S is a family of closed subspaces of K, called mirrors. We call Ks the
s–mirror of K. For Example 1 above, the mirrors Ki = Ksi

are shown in heavy
lines on the right of Figure 4.

For each x ∈ K, put

S(x) := {s ∈ S | x ∈ Ks}.

Now define an equivalence relation ∼ on the set W ×K by (w, x) ∼ (w′, x′) if and
only if x = x′ and w−1w′ ∈ WS(x). The Davis complex Σ for (W,S) is then the
quotient space:

Σ := (W ×K)/ ∼ .

The types of vertices of K induce types of the vertices of Σ, and the natural W–
action on W×K descends to a type-preserving action on Σ, with compact quotient
K, so that the W–stabiliser of a vertex of Σ of type T ∈ S is a conjugate of the
spherical special subgroup WT .

We identify K with the subcomplex (1,K) of Σ, and write wK for the translate
(w,K), where w ∈W . Any wK is called a chamber of Σ. The mirrors Ks of K, or
any of their translates by elements of W , are called the mirrors of Σ. Two distinct
chambers of Σ are s–adjacent if their intersection is an s–mirror, and are adjacent
if their intersection is an s–mirror for some s ∈ S. Note that the chambers wK and
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w′K are s–adjacent if and only if w−1w′ = s, equivalently w′ = ws and w′s = w.
For Example 1 above, part of the Davis complex Σ for (W,S) is shown in Figure 5
below. There are 2m copies of K glued around the vertices of types {si, s4}, for
i = 1, 2, 3, since W{si,s4} has order 2m. Similarly, there are 2m′ copies of K glued
around the vertices of types {si, s5}, for i = 1, 2, 3.

The Davis complex Σ may be metrised with a piecewise Euclidean structure,
such that Σ is a complete CAT(0) space (Moussong, see Theorem 12.3.3 of [11]).
From now on we will assume that Σ is equipped with this metric.

s5s1K

s4K

s3Ks1K

s1s4K

s1s5K
s5K

K

s4s3K

Figure 5: Part of Σ, for Example 1

Suppose that G = Aut(Σ) is the group of automorphisms of a Davis complex
Σ. Since W acts cocompactly on Σ, with finite stabilisers, it may be regarded as a
uniform lattice in G. We take as the set V in Theorem 2.1 above the set of vertices
of Σ of type ∅. Then the covolume of W is 1, since W acts simply transitively on
V .
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2.3 Complexes of groups

We now outline the basic theory of complexes of groups, following Chapter III.C
of [8]. The definitions of the more involved notions of morphisms and coverings of
complexes of groups are postponed to Section 3.1 below.

In the literature, a complex of groups G(Y ) is constructed over a space or
set Y belonging to various different categories, including simplicial complexes,
polyhedral complexes, or, most generally, scwols (small categories without loops).
In each case there is a set of vertices, and a set of oriented edges with a composition
law. The formal definition of a scwol is:

Definition 2.2. A scwol X is the disjoint union of a set V (X) of vertices and
a set E(X) of edges, with each edge a oriented from its initial vertex i(a) to its
terminal vertex t(a), such that i(a) 6= t(a). A pair of edges (a, b) is composable
if i(a) = t(b), in which case there is a third edge ab, called the composition of a
and b, such that i(ab) = i(b), t(ab) = t(a) and if i(a) = t(b) and i(b) = t(c) then
(ab)c = a(bc) (associativity).

We will always assume scwols are connected (see Section III.C.1.1 of [8]). Mor-
phisms of scwols and group actions on scwols are defined as follows:

Definition 2.3. Let X, Y and Z be scwols. A nondegenerate morphism f : Y →
Z is a map that sends V (Y ) to V (Z), sends E(Y ) to E(Z) and is such that:

1. for each a ∈ E(Y ), we have i(f(a)) = f(i(a)) and t(f(a)) = f(t(a));

2. for each pair of composable edges (a, b) in Y , we have f(ab) = f(a)f(b); and

3. for each vertex σ ∈ V (Y ), the restriction of f to the set of edges with initial
vertex σ is a bijection onto the set of edges of Z with initial vertex f(σ).

A morphism of scwols f : Y → Z is a functor from the category Y to the category
Z (see Section III.C.A.1 of [8]). An automorphism of a scwol X is a morphism
from X to X that has an inverse.

Definition 2.4. An action of a group G on a scwol X is a homomorphism from
G to the group of automorphisms of X such that for all a ∈ E(X) and all g ∈ G:

1. g · i(a) 6= t(a); and

2. if g · i(a) = i(a) then g · a = a.

Suppose now that Σ is the Davis complex for a Coxeter system (W,S), as
defined in Section 2.2 above. Recall that each vertex σ ∈ V (Σ) has type T a
spherical subset of S. The edges E(Σ) are then naturally oriented by inclusion of
type. That is, if the edge a joins the vertex σ of type T to the vertex σ′ of type
T ′, then i(a) = σ and t(a) = σ′ exactly when T ( T ′. It is clear that the sets
V (Σ) and E(Σ) satisfy the properties of a scwol. Moreover, if Y is a subcomplex
of Σ, then the sets V (Y ) and E(Y ) also satisfy Definition 2.2 above. By abuse of
notation, we identify Σ and Y with the associated scwols.

We now define complexes of groups over scwols.
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Definition 2.5. A complex of groups G(Y ) = (Gσ, ψa, ga,b) over a scwol Y is
given by:

1. a group Gσ for each σ ∈ V (Y ), called the local group at σ;

2. a monomorphism ψa : Gi(a) → Gt(a) along the edge a for each a ∈ E(Y );
and

3. for each pair of composable edges, a twisting element ga,b ∈ Gt(a), such that

Ad(ga,b) ◦ ψab = ψa ◦ ψb

where Ad(ga,b) is conjugation by ga,b in Gt(a), and for each triple of com-
posable edges a, b, c the following cocycle condition holds

ψa(gb,c) ga,bc = ga,b gab,c.

A complex of groups is simple if each ga,b is trivial.

Example: This example will be followed throughout this section, and used in
the proof of the Main Theorem in Section 4 below. Let (W,S) be a Coxeter
system with nerve L and let K be the cone on the barycentric subdivision of L,
as in Section 2.2 above. Put Y1 = K, with the orientations on edges discussed
above. We construct a simple complex of groups G(Y1) over Y1 as follows. Let
σ ∈ V (Y1). Then σ has type a spherical subset T of S, and we define Gσ = WT .
All monomorphisms along edges of Y1 are then natural inclusions, and all ga,b are
trivial. For (W,S) as in Example 1 of Section 2.2 above, the complex of groups
G(Y1) is shown in Figure 6 below. In this figure, D2m and D2m′ are the dihedral
groups of orders 2m and 2m′ respectively, and C2 is the cyclic group of order 2.

Suppose a group G acts on a scwol X, as in Definition 2.4 above. Then the
quotient Y = G\X also has the structure of a scwol, and the action of G induces
a complex of groups G(Y ) over Y (this construction is generalised in Section 3.2
below). Let Y = G\X with p : X → Y the natural projection. For each σ ∈ V (Y ),
choose a lift σ ∈ V (X) such that p(σ) = σ. The local group Gσ of G(Y ) is then
defined to be the stabiliser of σ in G, and the monomorphisms ψa and elements
ga,b are defined using further choices. The resulting complex of groups G(Y ) is
unique up to isomorphism (see Definition 3.3 below).

A complex of groups is developable if it is isomorphic to a complex of groups
G(Y ) induced, as just described, by such an action. Complexes of groups, unlike
graphs of groups, are not in general developable. The complex of groups G(Y1)
above is developable, since it is the complex of groups induced by the action of
W on Σ, where for each σ ∈ V (Y1), with σ of type T , we choose σ in Σ to be the
vertex of (1,K) = K ⊂ Σ of type T .

Let G(Y ) be a complex of groups. The fundamental group of the complex of
groups π1(G(Y )) is defined so that if Y is simply connected and G(Y ) is sim-
ple, π1(G(Y )) is isomorphic to the direct limit of the family of groups Gσ and
monomorphisms ψa. For example, since Y1 = K is contractible and G(Y1) is a
simple complex of groups, the fundamental group of G(Y1) is W .
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〈s3〉 ∼= C2

〈s5〉 ∼= C2

W{s3,s4}
∼= D2m

〈s4〉 ∼= C2

W{s2,s5}
∼= D2m′

W{s1,s5}
∼= D2m′

W{s2,s4}
∼= D2m

〈s1〉 ∼= C2

〈s2〉 ∼= C2

W{s3,s5}
∼= D2m′

W{s1,s4}
∼= D2m

W∅ = {1}

Figure 6: The complex of groups G(Y1), for Example 1 of Section 2.2

If G(Y ) is a developable complex of groups, then it has a universal cover G̃(Y ).
This is a connected, simply-connected scwol, equipped with an action of π1(G(Y )),
so that the complex of groups induced by the action of the fundamental group on
the universal cover is isomorphic to G(Y ). For example, the universal cover of
G(Y1) is Σ.

Let G(Y ) be a developable complex of groups over Y , with universal cover X
and fundamental group Γ. We say that G(Y ) is faithful if the action of Γ on X
is faithful, in which case we may identify Γ with its image in Aut(X). If X is
locally finite, then with the compact-open topology on Aut(X), by the discussion
in Section 2.1 above the subgroup Γ ≤ Aut(X) is discrete if and only if all local
groups of G(Y ) are finite. Moreover, if Aut(X) acts cocompactly on X, a discrete
Γ ≤ Aut(X) is a uniform lattice in Aut(X) if and only if Y ∼= Γ\X is finite, and
a discrete Γ ≤ Aut(X) is a nonuniform lattice if and only if Y ∼= Γ\X is infinite
and the series Vol(Γ\\V ) converges, for some V ⊂ X on which G = Aut(X) acts
according to the hypotheses of Theorem 2.1 above.

3 Group actions on complexes of groups

In this section we introduce a theory of group actions on complexes of groups.
The main result is Theorem 3.1 below, which makes precise and expands upon
Theorem 1.3 of the introduction. The terms appearing in Theorem 3.1 which
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have not already been discussed in Section 2.3 above will be defined in Section 3.1
below, where we also introduce some notation. In Section 3.2 below we construct
the complex of groups induced by a group action on a complex of groups, and in
Section 3.3 we construct the induced covering. Using these results, in Section 3.4
we consider the structure of the fundamental group of the induced complex of
groups.

We will require only actions on simple complexes of groups G(Y ) by simple
morphisms; this case is already substantially technical. If in addition the action
on Y has a strict fundamental domain, it is possible to make choices so that the
induced complex of groups is also simple, and many of the proofs in this section
become much easier. However, in our applications, the group action will not
necessarily have a strict fundamental domain.

Theorem 3.1. Let G(Y ) be a simple complex of groups over a connected scwol
Y , and suppose that the action of a group H on Y extends to an action by simple
morphisms on G(Y ). Then the H–action induces a complex of groups H(Z) over
Z = H\Y , with H(Z) well-defined up to isomorphism of complexes of groups, such
that there is a covering of complexes of groups

G(Y ) → H(Z).

Moreover there is a natural short exact sequence

1 → π1(G(Y )) → π1(H(Z)) → H → 1,

and if H fixes a vertex of Y , then

π1(H(Z)) ∼= π1(G(Y )) ⋊H.

Finally, if G(Y ) is faithful and the H–action on G(Y ) is faithful then H(Z) is
faithful.

We will use the following general result on functoriality of coverings (which is
implicit in [8], and stated and proved explicitly in [22]).

Theorem 3.2. Let G(Y ) and H(Z) be complexes of groups over scwols Y and
Z. Suppose there is a covering of complexes of groups Φ : G(Y ) → H(Z). Then
G(Y ) is developable if and only if H(Z) is developable. Moreover, Φ induces a
monomorphism of fundamental groups

π1(G(Y )) →֒ π1(H(Z))

and an equivariant isomorphism of universal covers

G̃(Y )
∼=
−→ H̃(Z).

3.1 Definitions and notation

We gather here definitions and notation needed for the statement and proof of The-
orem 3.1 above. Throughout this section, Y and Z are scwols, G(Y ) = (Gσ, ψa)
is a simple complex of groups over Y , and H(Z) = (Hτ , θa, ha,b) is a complex of
groups over Z.
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Definition 3.3. Let f : Y → Z be a morphism of scwols (see Definition 2.3
above). A morphism Φ : G(Y ) → H(Z) over f consists of:

1. a homomorphism φσ : Gσ → Hf(σ) for each σ ∈ V (Y ), called the local map
at σ; and

2. an element φ(a) ∈ Ht(f(a)) for each a ∈ E(Y ), such that the following dia-
gram commutes

Gi(a)

φi(a)

��

ψa
// Gt(a)

φt(a)

��

Hf(i(a))

Ad(φ(a))◦θf(a)
// Hf(t(a))

and for all pairs of composable edges (a, b) in E(Y ),

φ(ab) = φ(a)ψa(φ(b))hf(a),f(b).

A morphism is simple if each element φ(a) is trivial. If f is an isomorphism of
scwols, and each φσ an isomorphism of the local groups, then Φ is an isomorphism
of complexes of groups.

We introduce the following, expected, definitions. An automorphism of G(Y )
is an isomorphism Φ : G(Y ) → G(Y ). It is not hard to verify that the set of auto-
morphisms of G(Y ) forms a group under composition, which we denote Aut(G(Y ))
(see Section III.C.2.4 of [8] for the definition of composition of morphisms). We
then say that a group H acts on G(Y ) if there is a homomorphism

H → Aut(G(Y )).

Our notation is as follows. Suppose H acts on G(Y ). Then in particular, H
acts on the scwol Y in the sense of Definition 2.4 above. We write the action
of H on Y as σ 7→ h · σ and a 7→ h · a, for h ∈ H, σ ∈ V (Y ) and a ∈ E(Y ).
The element h ∈ H induces the automorphism Φh of G(Y ). The data for Φh

is a family (φhσ)σ∈V (Y ) of group isomorphisms φhσ : Gσ → Gh·σ, and a family of

elements (φh(a))a∈E(Y ) with φh(a) ∈ Gt(h·a), satisfying the definition of morphism
above (Definition 3.3).

We say that the H–action is by simple morphisms if each Φh is simple, that
is, if each φh(a) ∈ Gt(h·a) is the trivial element. Explicitly, for each a ∈ E(Y ) and
each h ∈ H, the following diagram commutes.

Gi(a)

φh
i(a)

��

ψa
// Gt(a)

φh
t(a)

��

Gh·i(a)
ψh·a

// Gh·t(a)

We note also that the composition of simple morphisms Φh
′

◦ Φh is the simple
morphism Φh

′h with local maps

φh
′h
σ = φh

′

h·σ ◦ φhσ. (1)
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Finally we recall the definition of a covering of complexes of groups.

Definition 3.4. A morphism Φ : G(Y ) → H(Z) over a nondegenerate morphism
of scwols f : Y → Z (see Definition 2.3 above) is a covering of complexes of groups
if further:

1. each φσ is injective; and

2. for each σ ∈ V (Y ) and b ∈ E(Z) such that t(b) = f(σ), the map on cosets

Φσ/b :











∐

a∈f−1(b)
t(a)=σ

Gσ/ψa(Gi(a))











→ Hf(σ)/θb(Hi(b))

induced by g 7→ φσ(g)φ(a) is a bijection.

3.2 The induced complex of groups and its properties

Suppose that a group H acts by simple morphisms on a simple complex of groups
G(Y ) = (Gσ, ψa). In this section we construct the complex of groupsH(Z) induced
by this action, prove that H(Z) is well-defined up to isomorphism of complexes of
groups and discuss faithfulness.

Let Z be the quotient scwol Z = H\Y and let p : Y → Z be the natural
projection. For each vertex τ ∈ V (Z) choose a representative τ ∈ V (Y ) such that
p(τ) = τ . Let StabH(τ) be the subgroup ofH fixing τ and let Gτ be the local group
of G(Y ) at τ . Since the H–action is by simple morphisms, by Equation (1) above
there is a group homomorphism ζ : StabH(τ) → Aut(Gτ ) given by ζ(h) = φhτ .
For each τ ∈ V (Z) we then define the local group Hτ to be the corresponding
semidirect product of Gτ by StabH(τ), that is,

Hτ := Gτ ⋊ζ StabH(τ) = Gτ ⋊ StabH(τ).

For each edge a ∈ E(Z) with i(a) = τ there is, since H acts on Y in the
sense of Definition 2.4 above, a unique edge a ∈ E(Y ) such that p(a) = a and
i(a) = i(a) = τ . For each a ∈ E(Z) choose an element ha ∈ H such that
ha · t(a) = t(a).

Lemma 3.5. Let g ∈ Gi(a) = Gi(a) and h ∈ StabH

(

i(a)
)

. Then the map

θa : (g, h) 7→ (φha

t(a) ◦ ψa(g), hahh
−1
a )

is a monomorphism Hi(a) → Ht(a).

Proof. We will show that θa is a group homomorphism. Since φha

t(a), ψa and the

conjugation h 7→ hahh
−1
a are all injective, the conclusion will then follow.
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Let g, g′ ∈ Gi(a) and h, h′ ∈ StabH(i(a)). Note that since h and h′ fix i(a) =

i(a), they fix the edge a and hence fix the vertex t(a) as well. We have

θa((g, h)(g, h
′)) = θa(gφ

h
i(a)

(g′), hh′)

= (φha

t(a) ◦ ψa(gφ
h
i(a)

(g′)), hahh
′h−1
a )

while

θa(g, h)θa(g
′, h′) = (φha

t(a) ◦ ψa(g), hahh
−1
a )(φha

t(a) ◦ ψa(g
′), hah

′h−1
a )

= (φha

t(a) ◦ ψa(g)φ
hahh

−1
a

t(a)
◦ φha

t(a) ◦ ψa(g
′), hahh

′h−1
a ).

After applying Equation (1) above to the map φhahh
−1
a , and some cancellations, it

remains to show that
ψa ◦ φ

h
i(a)

(g′) = φht(a) ◦ ψa(g
′).

This follows from the fact that Φh is a simple morphism with h · a = a.

To complete the construction of H(Z), for each composable pair of edges (a, b)
in E(Z), define

ha,b = hahbh
−1
ab .

One checks that ha,b ∈ StabH(t(a)) hence (1, ha,b) ∈ Ht(a). By abuse of notation
we write ha,b for (1, ha,b).

Proposition 3.6. The datum H(Z) = (Hσ, θa, ha,b) is a complex of groups.

Proof. Given Lemma 3.5 above, it remains to show that for each pair of composable
edges (a, b) in E(Z),

Ad(ha,b) ◦ θab = θa ◦ θb, (2)

and that the cocycle condition holds. Let (g, h) ∈ Hi(b) = Gi(b) ⋊StabH(i(b)). We
compute

Ad(ha,b) ◦ θab(g, h) = (φ
ha,b

t(ab)
◦ φhab

t(ab)
◦ ψab(g), ha,bhabhh

−1
ab h

−1
a,b)

while

θa ◦ θb(g, h) = (φha

t(a) ◦ ψa ◦ φ
hb

t(b)
◦ ψb(g), hahbhh

−1
b h−1

a ).

By definition of ha,b it remains to show equality in the first component.
By Equation (1) and the definition of ha,b,

φ
ha,b

t(ab)
= φha

t(a) ◦ φ
hb

t(ab)
◦ φ

h−1
ab

t(ab)
.

Hence it suffices to prove

φhb

t(ab)
◦ ψab = ψa ◦ φ

hb

t(b)
◦ ψb. (3)
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Since G(Y ) is a simple complex of groups, and ab is the composition of the edges
h−1
b .a and b, we have

ψab = ψh−1
b
a ◦ ψb.

Applying this, and the fact that φhb

t(b)
is a simple morphism on the edge h−1

b a, we

have
φhb

t(ab)
◦ ψab = φhb

t(ab)
◦ ψh−1

b
a ◦ ψb = ψa ◦ φ

hb

t(b)
◦ ψb.

Hence Equation (3) holds.
The cococycle condition follows from the definition of ha,b. We conclude that

H(Z) is a complex of groups.

We now have a complex of groups H(Z) induced by the action of H on G(Y ).
This construction depended on choices of lifts τ and of elements ha ∈ H. We next
show (in a generalisation of Section III.C.2.9(2) of [8]) that:

Lemma 3.7. The complex of groups H(Z) is well-defined up to isomorphism of
complexes of groups.

Proof. Suppose we made a different choice of lifts τ ′ and elements h′a, resulting in
a complex of groups H ′(Z) = (H ′

τ , θ
′
a, h

′
a,b). An isomorphism Λ = (λσ, λ(a)) from

H(Z) to H ′(Z) over the identity map Z → Z is constructed as follows. For each
τ ∈ V (Z), choose an element kτ ∈ H such that kτ · τ = τ ′, and define a group
isomorphism λτ : Hτ → H ′

τ by

λτ (g, h) = (φkτ

τ (g), kτhk
−1
τ ).

For each a ∈ E(Z), define λ(a) = (1, kt(a)hak
−1
i(a)h

′
a
−1). Note that by III.C.2.9(2)

of [8], λ(a) ∈ H ′
t(a).

The verification that Λ = (λσ, λ(a)) is an isomorphism of complexes of groups
is straightforward.

We remind the reader that faithfulness of a complex of groups is defined in the
final paragraph of Section 2.3 above.

Lemma 3.8. If G(Y ) is faithful and the H–action on Y is faithful then H(Z) is
faithful.

Proof. This follows from the construction of H(Z), and the characterisation of
faithful complexes of groups in Proposition 38 of [22].

3.3 The induced covering

Suppose H acts by simple morphisms on a simple complex of groups G(Y ), in-
ducing a complex of groups H(Z) as in Section 3.2 above. In this section we
construct a covering of complexes of groups Λ : G(Y ) → H(Z) over the quotient
map p : Y → Z.

For σ ∈ V (Y ), the local maps λσ : Gσ → Hp(σ) are defined as follows. Recall
that for each vertex τ ∈ V (Z) we chose a lift τ ∈ V (Y ). Now for each σ ∈ V (Y ), we
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choose kσ ∈ H such that kσ ·σ = p(σ). Hence φkσ
σ is an isomorphism Gσ → Gp(σ).

The local map λσ : Gσ → Hp(σ) is then defined by

λσ : g 7→ (φkσ
σ (g), 1).

Note that each λσ is injective.
For each edge a ∈ E(Y ), define

λ(a) = (1, kt(a)k
−1
i(a)h

−1
b )

where p(a) = b ∈ E(Z). Note that, since H acts on Y in the sense of Definition 2.4
above, we have ki(a) · a = b hence kt(a)k

−1
i(a)h

−1
b fixes t(b). Thus λ(a) ∈ Ht(b) as

required.

Proposition 3.9. The map Λ = (λσ, λ(a)) is a covering of complexes of groups.

Proof. It may be checked that Λ is a morphism of complexes of groups. As noted,
each of the local maps λσ is injective. It remains to show that for each σ ∈ V (Y )
and b ∈ E(Z) such that t(b) = p(σ) = τ , the map on cosets

Λσ/b :











∐

a∈p−1(b)
t(a)=σ

Gσ/ψa(Gi(a))











→ Hτ/θb(Hi(b))

induced by g 7→ λσ(g)λ(a) = (φkσ
σ (g), kσk

−1
i(a)h

−1
b ) is a bijection.

We first show that Λσ/b is injective. Suppose a and a′ are in p−1(b) with
t(a) = t(a′) = σ, and suppose g, g′ ∈ Gσ with g representing a coset of ψa(Gi(a))
in Gσ and g′ a coset of ψa′(Gi(a′)) in Gσ. Assume that λσ(g)λ(a) and λσ(g

′)λ(a′)
belong to the same coset of θb(Hi(b)) in Hτ .

Looking at the second component of the semidirect product Hτ , it follows from
the definition of θb (Lemma 3.5 above) that for some h ∈ StabH(i(b)),

kσk
−1
i(a)h

−1
b =

(

kσk
−1
i(a′)h

−1
b

)

(

hbhh
−1
b

)

= kσk
−1
i(a′)hh

−1
b .

Thus ki(a′)k
−1
i(a) = h fixes i(b). Hence k−1

i(a)ki(a′) fixes k−1
i(a)i(b) = i(a), and so

k−1
i(a)ki(a′) fixes a. Thus ki(a′) · a = ki(a) · a = b = ki(a′) · a

′, hence a = a′.

Looking now at the first component of λσ(g)λ(a) and λσ(g
′)λ(a′) = λσ(g

′)λ(a)
in the semidirect product Hτ , by definition of θb, for some x ∈ Gi(b) we have

φkσ
σ (g) = φkσ

σ (g′)φ
kσk

−1
i(a)

h−1
b

t(b)
◦ φhb

t(b)
◦ ψb(x)

= φkσ
σ (g′)φkσ

σ ◦ φ
k−1

i(a)

t(b)
◦ ψb(x).

Since φkσ
σ is an isomorphism, and k−1

i(a) · b = a, this implies

(g′)−1g = φ
k−1

i(a)

t(b)
◦ ψb(x) = ψa ◦ φ

k−1
i(a)

i(b)
(x) ∈ ψa(Gi(a))
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as required. Thus the map Λσ/b is injective.
To show that Λσ/b is surjective, let g ∈ Gτ and h ∈ StabH(τ), so that (g, h) ∈

Hτ . Let a be the unique edge of Y with t(a) = σ and such that kσ · a = hhbb.
Let g′ be the unique element of Gσ such that φkσ

σ (g′) = g ∈ Gτ . We claim that
λσ(g

′)λ(a) lies in the same coset as (g, h). Now

λσ(g
′)λ(a) = (φkσ

σ (g′), kσk
−1
i(a)h

−1
b ) = (g, kσk

−1
i(a)h

−1
b )

so it suffices to show that kσk
−1
i(a)h

−1
b ∈ hhb StabH(i(b))h−1

b . Equivalently, we wish

to show that h−1
b h−1kσk

−1
i(a) fixes i(b). We have ki(a) · i(a) = i(b) by definition, and

the result follows by our choice of a. Thus Λσ/b is surjective.
Hence Λ is a covering of complexes of groups.

3.4 The fundamental group

Suppose H acts by simple morphisms on a simple complex of groups G(Y ), in-
ducing a complex of groups H(Z) as in Section 3.2 above. In this section we
establish the short exact sequence of Theorem 3.1 above, and provide sufficient
conditions for the fundamental group of H(Z) to be the semidirect product of the
fundamental group of G(Y ) by H.

Fix σ0 a vertex of Y and let p : Y → Z be the natural projection. We refer the
reader to Section III.C.3 of [8] for the definition of the fundamental group of G(Y)
at σ0, denoted π1(G(Y ), σ0). We will use notation and results from that section
in the following proof. Let π1(H(Z), p(σ0)) be the fundamental group of H(Z) at
p(σ0).

Proposition 3.10. There is a natural short exact sequence

1 → π1(G(Y ), σ0) → π1(H(Z), p(σ0)) → H → 1.

Proof. To obtain a monomorphism π1(G(Y ), σ0) → π1(H(Z), p(σ0)), we use the
morphism of complexes of groups Λ : G(Y ) → H(Z) defined in Section 3.3 above.
By Proposition III.C.3.6 of [8], Λ induces a natural homomorphism

π1(Λ, σ0) : π1(G(Y ), σ0) → π1(H(Z), p(σ0)).

Since Λ is a covering (Proposition 3.9 above), Theorem 3.2 above implies that this
map π1(Λ, σ0) is in fact injective.

We next define a surjection π1(H(Z), p(σ0)) → H. The group H may be
regarded as a complex of groups over a single vertex. There is then a canonical
morphism of complexes of groups Φ : H(Z) → H, defined as follows. Recall that
for each τ ∈ V (Z), the local group Hτ is given by Hτ = Gτ ⋊StabH(τ). The local
map φτ : Hτ → H in the morphism Φ is defined to be projection to the second
factor StabH(τ) ≤ H. For each edge b of Z, we define φ(b) = hb. It may then be
checked that Φ is a morphism.

By Proposition III.C.3.6 of [8], the morphism Φ induces a homomorphism of
fundamental groups

π1(Φ, p(σ0)) : π1(H(Z), p(σ0)) → H.
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By III.C.3.14 and Corollary III.C.3.15 of [8], if G(Y ) were a complex of trivial
groups, this map would be surjective. Since the image of π1(Φ, p(σ0)) does not in
fact depend on the local groups of G(Y ), we have that in all cases, π1(Φ, p(σ0)) is
surjective, as required.

It follows from definitions that the image of the monomorphism π1(Λ, σ0) is
the kernel of the surjection π1(Φ, p(σ0)). Hence the sequence above is exact.

Corollary 3.11. If H fixes a vertex of Y ,

π1(H(Z), p(σ0)) ∼= π1(G(Y ), σ0) ⋊H.

Proof. Suppose that H fixes the vertex σ of Y . We will construct a section ι : H →
π1(H(Z), p(σ0)) for the surjective homomorphism π1(Φ, p(σ0)) : π1(H(Z), p(σ0)) →
H given in the proof of Proposition 3.10 above.

The vertex σ is the unique lift τ of a vertex p(σ) = τ ∈ Z. Hence

Hτ = Gτ ⋊ StabH(τ) = Gσ ⋊H.

By definition of the surjection π1(Φ, p(σ0)) : π1(H(Z), p(σ0)) → H, a section
ι : H → π1(H(Z), p(σ0)) is then given by the inclusion H → Hτ .

This completes the proof of Theorem 3.1.

4 Proof of the Main Theorem

We now prove the Main Theorem and Corollary 1.2, stated in the introduction.
Throughout this section, we adopt the notation of the Main Theorem, and assume
that the vertices s1 and s2 of the nerve L, and the elements α1 and α2 of the
group A of label-preserving automorphisms of L, satisfy Conditions (1)–(4) of its
statement. In Section 4.1 we introduce notation, and construct a family of finite
polyhedral complexes Yn, for n ≥ 1, and an infinite polyhedral complex Y∞. We
then in Section 4.2 construct complexes of groups G(Yn) and G(Y∞) over these
spaces, and show that there are coverings of complexes of groups G(Yn) → G(Y1)
and G(Y∞) → G(Y1). In Section 4.3 we define the action of a finite group Hn on
Yn, and of an infinite group H∞ on Y∞, and then in Section 4.4 we show that
these actions extend to actions on the complexes of groups G(Yn) and G(Y∞).
In Section 4.5 we combine these results with Theorem 3.1 above to complete the
proof of the Main Theorem. Corollary 1.2 is proved in Section 4.6.

4.1 The spaces Y
n

and Y∞

In this section we construct a family of finite polyhedral complexes Yn and an
infinite polyhedral complex Y∞.

We first set up some notation. For i = 1, 2, let qi ≥ 2 be the order of αi. It
will be convenient to put, for all k ≥ 0, s2k+1 = s1 and s2k+2 = s2, and similarly
α2k+1 = α1, α2k+2 = α2, q2k+1 = q1 and q2k+2 = q2. Conditions (1)–(4) of the
Main Theorem then become:
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1. for all n ≥ 1, αn fixes the star of sn+1 in L;

2. for all n ≥ 1, the subgroup 〈αn〉 of A acts freely on the 〈αn〉–orbit of sn, in
particular αn(sn) 6= sn;

3. for all n ≥ 1, and all tn 6= sn such that tn is in the 〈αn〉–orbit of sn,
msntn = ∞; and

4. for all n ≥ 1, all spherical special subgroups of W which contain sn are
halvable along sn.

We now use the sequences {sn} and {αn} to define certain elements and subsets
of W . Let w1 be the trivial element of W and for n ≥ 2 let wn be the product

wn = s1s2 · · · sn−1 ∈W.

Denote by Wn,n the one-element set {wn}. For n ≥ 2, and 1 ≤ k < n, in order to
simplify notation, write αjn−1,...,jk for the composition of automorphisms

αjn−1,...,jk = α
jn−1

n−1 · · ·αjkk

where 0 ≤ ji < qi for k ≤ i < n. Let wjn−1,...,jk be the element of W :

wjn−1,...,jk = wnα
jn−1(sn−1)α

jn−1,jn−2(sn−2) · · ·α
jn−1,...,jk+1(sk+1)α

jn−1,...,jk(sk).
(4)

Now for n ≥ 2 and 1 ≤ k < n, define

Wk,n = {wjn−1,...,jk ∈W | 0 ≤ ji < qi for k ≤ i < n}.

Note that if jn−1 = 0 then wjn−1,...,jk ∈Wk,n−1.

Example: Let (W,S) be the Coxeter system in Example 1 of Section 2.2 above,
with nerve L shown in Figure 3 above. For i = 1, 2, let αi ∈ A be the automorphism
of L which fixes the star of s3−i in L and interchanges si and s3. Then if m and
m′ are both even, the Main Theorem applies to this example. (If T = {s} then
WT is halvable along s with halfs(WT ) the trivial group. If T = {s, t} then WT

is the dihedral group of order 2mst, and WT is halvable along s if and only if mst

is even, in which case halfs(WT ) is the dihedral group of order mst.) Note that
q1 = q2 = 2, and so, for instance,

W1,3 = {1, s1α1(s1), s1s2α2(s2)α2(s1), s1s2α2(s2)α2α1(s1)}

W2,3 = {s1, s1s2α2(s2)}

W3,3 = {s1s2}.

The following lemma establishes key properties of the sets Wk,n.

Lemma 4.1. For all n ≥ 1:

1. the sets W1,n, W2,n, . . . , Wn,n are pairwise disjoint; and

21



2. for all 1 ≤ k < n, if
wjn−1,...,jk = wj′

n−1,...,j
′
k

(where 0 ≤ ji < qi for k ≤ i < n) then jk = j′k, jk+1 = j′k+1, . . . , and
jn−1 = j′n−1.

Proof. Given 1 ≤ k ≤ k′ < n, with 0 ≤ ji < qi for k ≤ i < n and 0 ≤ j′i < qi for
k′ ≤ i < n, suppose

wjn−1,...,jk = wj′n−1,...,j
′
k′
. (5)

Then

αjn−1(sn−1)α
jn−1,jn−2(sn−2) · · ·α

jn−1,...,jk′ ,...,,jk+1(sk+1)α
jn−1,...,jk′ ,...,jk(sk)

= αj
′
n−1(sn−1)α

j′n−1,j
′
n−2(sn−2) · · ·α

j′n−1,...,j
′
k′+1(sk′+1)α

j′n−1,...,j
′
k′ (sk′).

By Condition (1) above, for each k ≤ i < n, the automorphism αi fixes si+1, thus

αjn−1,...,ji+1(si+1)α
jn−1,...,ji(si) = αjn−1,...,ji+1,ji(si+1)α

jn−1,...,ji(si)

= αjn−1,...,ji(si+1si).

Also since αi fixes the star of si+1 but αi(si) 6= si, we have msi+1si
= ∞. Since

αjn−1,...,ji is a label-preserving automorphism, it follows that the product of the
two generators

αjn−1,...,ji+1(si+1)α
jn−1,...,ji(si)

has infinite order, for each k ≤ i < n. Similarly for each k′ ≤ i < n. Thus the only

way for Equation (5) to hold is if k = k′, and for each k ≤ i < n, αjii (si) = α
j′i
i (si).

Since 〈αi〉 acts freely on the 〈αi〉–orbit of si and we specified 0 ≤ ji < qi, the
result follows.

For n ≥ 1, and 1 ≤ k ≤ n, define Yk,n to be the set of chambers

Yk,n := {wK | w ∈Wk,n}.

Recall that we are writing wK for the pair (w,K). By Lemma 4.1 above, for
fixed n, the sets Y1,n, . . . , Yn,n are pairwise disjoint. We now define Yn to be the
polyhedral complex obtained by “gluing together” the chambers in Y1,n, . . . , Yn,n,
using the same relation ∼ as in the Davis complex Σ for (W,S). More precisely,

Yn :=

(

n
∐

k=1

Yk,n

)

/ ∼

where, for x, x′ ∈ K, we have (w, x) ∼ (w′, x′) if and only if x = x′ and w−1w′ ∈
WS(x). Note that Y1 = Y1,1 = K. To define Y∞, for each k ≥ 1, noting that Wk,n

is only defined for 1 ≤ k ≤ n, put

Wk,∞ :=
∞
⋃

n=k

Wk,n.
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Then Yk,∞ is the set of chambers

Yk,∞ := {wK | w ∈Wk,∞}.

Similarly to the finite case, the sets Y1,∞, Y2,∞, . . . are pairwise disjoint, and we
define

Y∞ =

(

∞
∐

k=1

Yk,∞

)

/ ∼

for the same relation ∼. Note that there are natural strict inclusions as subcom-
plexes

Y1 ⊂ Y2 ⊂ · · · ⊂ Yn ⊂ · · ·Y∞.

(In fact, Yn and Y∞ are subcomplexes of the Davis complex Σ, but we will not
adopt this point of view.) We define a mirror of Yn or Y∞ to be an interior mirror
if it is contained in more than one chamber.

Example: Let (W,S), α1 and α2 be as in the previous example of this section.
To indicate the construction of Yn and Y∞ in this case, Figure 7 below depicts
the dual graph for Y4, that is, the graph with vertices the chambers of Y4, and
edges joining adjacent chambers. The edges are labelled with the type of the
corresponding interior mirror. Figure 8 sketches the dual graph for Y∞.

We now describe features of Yn and Y∞ which will be needed below. The first
lemma follows from the construction of Yn and Y∞ and Lemma 4.1 above.

Lemma 4.2. Let w = wjn−1,...,jk ∈ Wk,n. All of the chambers of Yn to which
wK ∈ Yk,n is adjacent are described by the following.

1. For n ≥ 1 and 1 ≤ k < n, the chamber wK is adjacent to exactly one chamber
of Yk+1,n, namely it is αjn−1,...,jk(sk)–adjacent to the chamber wjn−1,...,jk+1

K
of Yk+1,n.

2. For n ≥ 2 and 1 ≤ k ≤ n, the chamber wK is adjacent to exactly qk−1 dis-
tinct chambers of Yk−1,n, namely for each 0 ≤ jk−1 < qk−1, the chamber wK
is αjn−1,...,jk,jk−1(sk−1)–adjacent to the chamber wjn−1,...,jk,jk−1

K of Yk−1,n.

Similarly for Y∞.

Corollary 4.3. 1. Any vertex of Yn is contained in at most two distinct cham-
bers of Yn, and similarly for Y∞.

2. Any two interior mirrors of Yn or Y∞ are disjoint.

Proof. Suppose σ is a vertex of Yn, contained in the chamber wK, where w is as in
Lemma 4.2 above. If σ is contained in more than one chamber of Yn or Y∞, then
σ is contained in an interior mirror Ks, for some s ∈ S. By the construction of Yn
and Lemma 4.2 above, s is either an image of sk, or one of qk−1 distinct images
of sk−1, under some element of A. Suppose s is in the image of sk. Condition (1)
of the Main Theorem implies that msksk−1

= ∞. Hence the mirror Ks is disjoint
from each of the qk−1 mirrors of types the qk−1 images of sk−1. Therefore the only
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s1s2K

s1

s2

s1K

α2(s2)

α1(s1)

α2(s1)

K

s1s2α2(s2)K

α2α1(s1)

s1s2α2(s2)α2(s1)K

s1α1(s1)K

s1s2α2(s2)α2α1(s1)K

s1

s1s2s1K

α1(s1)

s1s2s1α1(s1)K

α1α2(s2)

s1s2s1α1(s1)α1α2(s2)K

α1α2α1(s1)

α1α2(s1)

s1s2s1α1(s1)α1(s2)α1α1(s1)K

α1(s2)

s1s2s1α1(s1)α1(s2)K

α1α1(s1)

α1(s1)

s1s2s1α1(s1)α1(s2)α1(s1)K

s1s2s1α1(s1)α1α2(s2)α1α2α1(s1)K

s1s2s1α1(s1)α1α2(s2)α1α2(s1)K

Figure 7: Dual graph for Y4, with vertices and edges labelled

chambers of Yn which contain σ are the two chambers wK and wsK. Now suppose
s is one of the qk−1 images of sk−1 under some element of A. Condition (3) of the
Main Theorem implies that the mirrors of types each of these images are pairwise
disjoint, and so again σ is contained in only two distinct chambers of Yn. Similarly,
any two interior mirrors of Yn or Y∞ are disjoint.

Corollary 4.4. For all n ≥ 2, there are qn−1 disjoint subcomplexes of Yn, denoted

Y
jn−1

n−1 for 0 ≤ jn−1 < qn−1, each isomorphic to Yn−1, and with Y 0
n−1 = Yn−1 ⊂ Yn.

For each 0 ≤ jn−1 < qn−1, the subcomplex Y
jn−1

n−1 is attached to the chamber
wnK = s1s2 · · · sn−1K of Yn along its mirror of type αjn−1(sn−1). An isomorphism

F jn−1 : Yn−1 → Y
jn−1

n−1

is given by sending the chamber

wjn−2,...,jkK ∈ Yk,n−1

to the chamber
wjn−1,jn−2,...,jkK ∈ Yk,n,
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Figure 8: Dual graph for Y∞

and the vertex of wjn−2,...,jkK of type T to the vertex of wjn−1,jn−2,...,jkK of type
αjn−1(T ), for each spherical subset T of S.

Proof. By induction on n, using Lemma 4.2 and Corollary 4.3 above.

4.2 Complexes of groups G(Y
n
) and G(Y∞)

We now construct complexes of groups G(Yn) over each Yn, and G(Y∞) over Y∞,
and show that there are coverings G(Yn) → G(Y1) and G(Y∞) → G(Y1). To
simplify notation, write Y for Yn or Y∞.

To define the local groups of G(Y ), let σ be a vertex of Y , of type T . By
Corollary 4.3 above, σ is contained in at most two distinct chambers of Y . If σ
is only contained in one chamber of Y , put Gσ = WT . If σ is contained in two
distinct chambers of Y , then by Corollary 4.3 above σ is contained in a unique
interior mirror Ks, with s ∈ T . By the construction of Y , s is in the A–orbit of
some sn, n ≥ 1. By Condition (4) of the Main Theorem, it follows that the group
WT is halvable along s. We define the local group at σ to be Gσ = halfs(WT ).

The monomorphisms between local groups are defined as follows. Let a be
an edge of Y , with i(a) of type T and t(a) of type T ′, so that T ( T ′. If both
of the vertices i(a) and t(a) are contained in a unique chamber of Y , then the
monomorphism ψa along this edge is defined to be the natural inclusion WT →֒
WT ′ . If i(a) is contained in two distinct chambers, then i(a) is contained in a
unique interior mirror Ks, with s ∈ T . Thus s ∈ T ′ as well, and so t(a) is also
contained in the mirror Ks. From the definitions of halfs(WT ) and halfs(WT ′), it
follows that there is a natural inclusion halfs(WT ) →֒ halfs(WT ′), and we define
ψa be this inclusion. Finally suppose i(a) is contained in a unique chamber of
Y but t(a) is contained in two distinct chambers of Y . Then for some k ≥ 1,
i(a) is in a chamber of Yk,n (respectively, Yk,∞), and t(a) is either in Yk−1,n or in
Yk+1,n (respectively, in Yk−1,∞ or Yk+1,∞). Moreover t(a) is contained in a unique
interior mirror Ks, with s ∈ T ′ − T . If t(a) is in Yk−1,n (respectively, Yk−1,∞),
then we define ψa to be the natural inclusion WT →֒ halfs(WT ′). If t(a) is in
Yk+1,n (respectively, Yk+1,∞), then we define ψa to be the monomorphism defined
on the generators t ∈ T of WT by ψa(t) := sts ∈ halfs(WT ′), that is, ψa = Ad(s).
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It is not hard to verify that for all pairs of composable edges (a, b) in Y ,
ψab = ψa ◦ ψb. Hence we have constructed simple complexes of groups G(Yn) and
G(Y∞) over Yn and Y∞ respectively. Note that these complexes of groups are
faithful, since by construction the local group at each vertex of type ∅ is trivial.
Note also that G(Y1) is the same complex of groups as constructed in Section 2.3
above, which has fundamental group W and universal cover Σ.

Example: Let (W,S), α1 and α2 be as in the examples in Section 4.1 above. The
complex of groups G(Y2) is sketched in Figure 9. From left to right, the three
chambers here are K, s1K and s1α1(s1)K. We denote by D2m the dihedral group
of order 2m, with Dm the dihedral group of order m, and similarly for D2m′ and
Dm′ (recall that m and m′ are even).

W{s2,s5}
∼= D2m′ W{s2,s5}

∼= D2m′ W{s2,s5}
∼= D2m′

halfs1

`

W{s1,s4}

´

∼= Dm

〈s4〉 〈s4〉 〈s4〉

〈s5〉 〈s5〉 〈s5〉

W{s1,s5}
∼= D2m′

〈s1〉

halfs3

`

W{s3,s5}

´

∼= Dm′

halfs3

`

W{s3,s4}

´

∼= DmW{s3,s4}
∼= D2m

W{s2,s4}
∼= D2m

〈s3〉

〈s2〉 〈s2〉〈s2〉

W{s1,s4}
∼= D2m W{s1,s4}

∼= D2m

W{s3,s5}
∼= D2m′

W{s1,s4}
∼= D2m

halfs1

`

W{s1,s5}

´

∼= Dm′

{1} {1} {1}

halfs1

`

W{s1}

´

= {1} halfs3

`

W{s3}

´

= {1}

Figure 9: Complex of groups G(Y2)

Proposition 4.5. There are coverings of complexes of groups G(Yn) → G(Y1)
and G(Y∞) → G(Y1).

Proof. Let fn : Yn → Y1 and f∞ : Y∞ → Y1 be the maps sending each vertex of Yn
or Y∞ of type T to the unique vertex of Y1 = K of type T . Then by construction
of Yn and Y∞, the maps fn and f∞ are nondegenerate morphisms of scwols. We
define coverings Φn : G(Yn) → G(Y1) and Φ∞ : G(Y∞) → G(Y1) over fn and
f∞ respectively. To simplify notation, write Y for respectively Yn or Y∞, f for
respectively fn or f∞, and Φ for respectively Φn or Φ∞.

Let σ be a vertex of Y , of type T . If the local group at σ is Gσ = WT then the
map of local groups φσ : Gσ →WT is the identity map. If the local group at σ is
halfs(WT ), for some s ∈ T , then φσ : halfs(WT ) →WT is the natural inclusion as
an index 2 subgroup. To define elements φ(a), if the monomorphism ψa in G(Y )
is natural inclusion, define φ(a) = 1. If ψa is Ad(s), then define φ(a) = s. It is
then easy to check that, by construction, Φ is a morphism of complexes of groups.

To show that Φ is a covering of complexes of groups, we first observe that each
of the local maps φσ is injective. Now fix σ a vertex of Y , of type T ′, and b an
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edge of Y1 = K such that t(b) = f(σ), with i(b) of type T (hence T ( T ′). We
must show that the map

Φσ/b :
∐

a∈f−1(b)
t(a)=σ

Gσ/ψa(Gi(a)) →WT ′/WT

induced by g 7→ φσ(g)φ(a) is a bijection, where Gσ and Gi(a) are the local groups
of G(Y ).

First suppose that σ is contained in a unique chamber of Y . Then by con-
struction, there is a unique edge a of Y with i(a) of type T and t(a) = σ, hence
a unique edge a ∈ f−1(b) with t(a) = σ. Moreover, Gσ = WT ′ , Gi(a) = WT , the
monomorphism ψa is natural inclusion hence φ(a) = 1, and φσ : Gσ →WT ′ is the
identity map. Hence Φσ/b is a bijection in this case.

Now suppose that σ is contained in two distinct chambers of Y . Then σ is
contained in a unique interior mirror Ks of Y , with s ∈ T ′. Assume first that s ∈ T
as well. Then there is a unique edge a of Y with i(a) of type T and t(a) = σ. This
edge is also contained in the mirror Ks. Hence there is a unique a ∈ f−1(b) with
t(a) = σ. By construction, we have Gσ = halfs(WT ′), the map φσ : Gσ → WT ′ is
natural inclusion as an index 2 subgroup, Gi(a) = halfs(WT ), the map ψa is natural
inclusion, and φ(a) trivial. Since the index [WT ′ : WT ] = [halfs(WT ′) : halfs(WT )]
is finite, it is enough to verify that the inclusion halfs(WT ′) → WT ′ induces an
injective map on cosets

halfs(WT ′)/ halfs(WT ) →WT ′/WT .

For this, suppose that w,w′ ∈ halfs(WT ′) and that wWT = w′WT in WT ′ . Then
w−1w′ ∈ WT ∩ halfs(WT ′). By definitions, it follows that w−1w′ ∈ halfs(WT ), as
required.

Now assume that σ is contained in the interior mirror Ks, with s 6∈ T . There
are then two edges a1, a2 ∈ f−1(b) such that t(a1) = t(a2) = σ. Without loss
of generality, ψa1

is natural inclusion WT → halfs(WT ′) and φ(a1) = 1, while
ψa2

(g) = sgs with φ(a2) = s. Since the index [halfs(WT ′) : WT ] = 1
2 [WT ′ : WT ] is

finite, it is enough to show that the map on cosets Φσ/b is surjective. Let w ∈WT ′ .
If w ∈ halfs(WT ′) ≤WT ′ , then the image of the coset wψa1

(Gi(a1)) = wWT in Gσ
is the coset wWT in WT ′ . If w 6∈ halfs(WT ′), then since halfs(WT ′) has index 2 in
WT ′ , and s 6∈ halfs(WT ′), there is a w′ ∈ halfs(WT ′) ≤ WT ′ such that w = w′s.
The image of the coset w′ψa2

(Gi(a2)) = w′(sWT s) in halfs(WT ′) is then the coset
w′φ(a2)WT = w′sWT = wWT in WT ′ . Thus Φσ/b is surjective, as required.

We conclude that Φ is a covering of complexes of groups.

4.3 Group actions on Y
n

and Y∞

In this section we construct the action of a finite group Hn on Yn in the sense of
Definition 2.4 above, and that of an infinite group H∞ on Y∞.

We first define the groups Hn and H∞. For each n ≥ 1, let Cqn
denote the

cyclic group of order qn. Note that Cqn
∼= 〈αn〉. We define H1 to be the trivial
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group and H2 = Cq1 . For n ≥ 3, we define Hn to be the wreath product

Hn = Hn−1 ≀ Cqn−1

= (· · · ((Cq1 ≀ Cq2) ≀ Cq3) ≀ · · · ) ≀ Cqn−1

= Cq1 ≀ Cq2 ≀ · · · ≀ Cqn−1
,

that is, Hn is the semidirect product by Cqn−1
of the direct product of qn−1

copies of Hn−1, where Cqn−1
acts on this direct product by cyclic permutation of

coordinates. Note that Hn is a finite group of order

|Hn| = q
q2q3···qn−1

1 q
q3···qn−1

2 · · · q
qn−1

n−2 qn−1. (6)

We define H∞ to be the infinite iterated (unrestricted) wreath product

H∞ := Cq1 ≀ Cq2 ≀ · · · ≀ Cqn−1
≀ · · ·

We then have natural inclusions

H1 < H2 < · · · < Hn < · · · < H∞.

The following lemma will be needed for the proof of Corollary 1.2 in Section 4.6
below.

Lemma 4.6. The group H∞ is not finitely generated.

Proof. By definition of H∞, for any nontrivial h ∈ H∞ there is an n ≥ 1 such that
h ∈ Hn.

We now define the actions of Hn and H∞ on Yn and Y∞ respectively. This
uses the label-preserving automorphisms αn ∈ A. Note that the action of A on
the nerve L extends to the chamber K, fixing the vertex of type ∅. This action
does not in general have a strict fundamental domain. Inconveniently, this action
also does not satisfy Condition (2) of Definition 2.4 above, since for any nontrivial
α ∈ A, there is an edge a of K with i(a) of type ∅ but α(a) 6= a. However, to
satisfy Definition 2.4, it suffices to define actions on Yn and Y∞, and then extend
in the obvious way to the scwols which are the barycentric subdivisions of these
spaces, with naturally oriented edges.

For each n ≥ 1 fix a generator an for the cyclic group Cqn
. Recall that αn ∈ A

has order qn. Thus for any α ∈ A, there is a faithful representation Cqn
→ A,

given by an 7→ ααnα
−1. Recall also that αn fixes the star in L of the vertex sn+1,

and that 〈αn〉 acts freely on the 〈αn〉–orbit of sn. Hence an 7→ ααnα
−1 induces an

action of Cqn
on the chamber K, which fixes pointwise the mirror of type α(sn+1),

and permutes cyclically the set of mirrors of types ααjnn (sn), for 0 ≤ jn < qn.
We define the action of Hn on Yn inductively, as follows. The group H1 is

trivial. For n ≥ 2, assume that the action of Hn−1 on Yn−1 has been given. The
subgroup Cqn−1

of Hn then fixes the chamber wnK = s1s2 · · · sn−1K of Yn setwise,
and acts on this chamber via an−1 7→ αn−1. By the discussion above, this action
fixes pointwise the mirror of type sn of wnK, and permutes cyclically the qn−1
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mirrors of types α
jn−1

n−1 (sn−1), with 0 ≤ jn−1 < qn−1, along which (by Lemma 4.4
above), qn−1 disjoint subcomplexes of Yn, each isomorphic to Yn−1, are attached.

By induction, a copy of Hn−1 in Hn acts on each of these copies of Yn−1 in Yn.
More precisely, for 0 ≤ jn−1 < qn−1, the jn−1st copy of Hn−1 in Hn acts on the

subcomplex Y
jn−1

n−1 of Lemma 4.4 above. This action is given by conjugating the
(inductively defined) action of Hn−1 on Yn−1 ⊂ Yn by the isomorphism F jn−1 :

Yn−1 → Y
jn−1

n−1 in Lemma 4.4. By definition, the action of Cqn−1
cyclically permutes

the subcomplexes Y
jn−1

n−1 , and so we have defined an action of Hn on Yn. The action
of H∞ on Y∞ is similar.

We now describe the fundamental domains for these actions. For each n ≥ 1
and each 1 ≤ k ≤ n, observe that Hn acts transitively on the set of chambers
Yk,n. Let K1 = K, and for n ≥ 2 let Kn be the quotient of the chamber wnK =
s1s2 · · · sn−1K by the action of Cqn−1

≤ Hn as defined above. In Kn, the mirrors

of types α
jn−1

n−1 (sn−1), for 0 ≤ jn−1 < qn−1, have been identified. By abuse of
notation, we refer to these identified mirrors as the mirror of type sn−1 of Kn.
Note also that Cqn−1

≤ Hn fixes pointwise the mirror of type sn of wnK, and so
we may speak of the mirror of type sn of Kn. Then a fundamental domain for the
action of Hn on Yn is the finite complex

Zn := (K1 ∪K2 ∪ · · · ∪Kn) / ∼,

where ∼ means we identify the si−1–mirrors of Ki−1 and Ki, for 1 ≤ i < n.
Similarly, a fundamental domain for the action ofH∞ on Y∞ is the infinite complex

Z∞ := (K1 ∪K2 ∪ · · · ∪Kn ∪ · · · ) / ∼ .

Finally we describe the stabilisers in Hn and H∞ of the vertices of Yn and
Y∞. Let wK be a chamber of Yn or Y∞. Then there is a smallest k ≥ 1 such
that wK ∈ Yk. By construction, it follows that the stabiliser in Hn or H∞ of any
vertex in the chamber wK is a subgroup of the finite group Hk. Hence Hn and
H∞ act with finite stabilisers. Note also that for every n ≥ 1, the action of Hn

fixes the vertex of type ∅ in the chamber wnK. We may thus speak of the vertex
of type ∅ in the quotient Kn defined above. In fact, in the fundamental domains
Zn and Z∞ defined above, the vertex of type ∅ in Kn, for n ≥ 1, has a lift in Yn
or Y∞ with stabiliser the finite group Hn. We observe also that the actions of Hn

and H∞ are faithful, since the stabiliser of the vertex of type ∅ of K1 = K is the
trivial group H1. Figure 10 shows Z∞ and the stabilisers of (lifts of) its vertices
of type ∅ for the example in Section 4.1 above.

4.4 Group actions on G(Y
n
) and G(Y∞)

In this section we show that the actions of Hn and H∞ on Yn and Y∞, defined in
Section 4.3 above, extend to actions (by simple morphisms) on the complexes of
groups G(Yn) and G(Y∞). To simplify notation, write H for Hn or H∞, Y for Yn
or Y∞, and Z for Zn or Z∞. Technically, instead of working with G(Y ), we work
with the corresponding naturally defined complex of groups over the barycentric
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H1 H2 H3 H4

Figure 10: Fundamental domain Z∞

subdivision of Y , so that the action of H satisfies Definition 2.4 above. By abuse
of notation we will however continue to write G(Y ).

Recall that for σ a vertex of Y of type T , the local group Gσ is either WT

or halfs(WT ), and the latter occurs if and only if σ is contained in an interior s–
mirror of Y with s ∈ T . Let wK be a chamber of Y and let h ∈ H. By definition
of the H–action, there is an α ∈ A such that for each vertex σ in wK, with σ of
type T , the vertex h · σ of h · wK has type α(T ). Moreover, if σ is contained in
an interior s–mirror then h · σ is contained in an interior α(s)–mirror. We may
thus define the local map φhσ : Gσ → Gh·σ by φhσ(t) = α(t) for each t ∈ T , and
(if Gσ = halfs(WT )), φhσ(sts) = α(s)α(t)α(s). Then φhσ is an isomorphism either
WT → Wα(T ), or halfs(WT ) → halfα(s)(Wα(T )), as appropriate. It is not hard to
verify that these local maps define an action of H on G(Y ) by simple morphisms.

4.5 Conclusion

In this section we combine the results of Sections 4.1–4.4 above to complete the
proof of the Main Theorem.

Recall that G(Y1) is developable with universal cover Σ (see Section 2.3). By
Proposition 3.9 and Theorem 3.2 above, it follows that the complexes of groups
G(Yn) and G(Y∞) are developable with universal cover Σ. Let H(Zn) be the
complex of groups induced by Hn acting on G(Yn), and H(Z∞) that induced by
H∞ acting on G(Y∞). By Theorem 3.1 above, there are coverings of complexes of
groups G(Yn) → H(Zn) and G(Y∞) → H(Z∞). Hence (by Theorem 3.2 above)
each H(Zn) and H(Z∞) is developable with universal cover Σ.

Let Γn be the fundamental group of H(Zn) and Γ the fundamental group
of H(Z∞). Since the complexes of groups G(Yn) and G(Y∞) are faithful, and
the actions of Hn and H∞ are faithful, Theorem 3.1 above implies that H(Zn)
and H(Z∞) are faithful complexes of groups. Thus Γn and Γ may be identified
with subgroups of G = Aut(Σ). Now G(Yn) and G(Y∞) are complexes of finite
groups, and the Hn– and H∞–actions have finite vertex stabilisers. Hence by
construction, H(Zn) and H(Z∞) are complexes of finite groups. Therefore Γn
and Γ are discrete subgroups of G. Since the fundamental domain Zn is finite, it
follows that each Γn is a uniform lattice. To show that Γ is a nonuniform lattice,
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we use the normalisation of Haar measure µ on G = Aut(Σ) defined in Section 2.1
above, with the G–set V the set of vertices of Σ of type ∅. Since the local groups
of H(Z∞) at the vertices of type ∅ in Z∞ are H1, H2, . . . , we have

µ(Γ\G) =

∞
∑

n=1

1

|Hn|
.

This series converges (see Equation (6) above for the order of Hn, and note that
each qn ≥ 2). We conclude that Γ is a nonuniform lattice in G. Moreover, as the
covolumes of the uniform lattices Γn are the partial sums of this series, we have
µ(Γn\G) → µ(Γ\G), as required. This completes the proof of the Main Theorem.

4.6 Proof of Corollary 1.2

The nonuniform lattice Γ is the fundamental group of the complex of groups
H(Z∞) induced by the action of H∞ on G(Y∞). By the short exact sequence
in Theorem 3.1 above, there is a surjective homomorphism Γ → H∞. Since H∞

is not finitely generated (Lemma 4.6 above), we conclude that Γ is not finitely
generated.

5 Examples

In this section we describe several infinite families of examples to which the Main
Theorem applies. By the dimension of the Davis complex Σ for a Coxeter system
(W,S), we mean the maximum cardinality of a spherical subset of S. We note
that there may be maximal spherical special subgroups WT with |T | strictly less
than dim(Σ).

5.1 Two-dimensional examples

If dim(Σ) = 2 then the nerve of the Coxeter system (W,S) is a graph L with
vertex set S and two vertices s and t joined by an edge if and only if mst is finite.
Assume for simplicity that for some integer m ≥ 2 all finite mst = m. Then Σ is
the barycentric subdivision of a polygonal complex X, with all 2–cells of X regular
Euclidean 2m–gons, and the link of every vertex of X the graph L. Such an X
is called a (2m,L)–complex. Condition (4) of the Main Theorem can hold only if
m is even, and so we also assume this. It is then not hard to find graphs L so
that, for some pair s1 and s2 of non-adjacent vertices of L, and for some nontrivial
elements α1, α2 ∈ Aut(L), Conditions (1), (2) and (3) of the Main Theorem also
hold. We present three infinite families of examples.

5.1.1 Buildings with complete bipartite links

Let L be the complete bipartite graph Kq,q′ , with q, q′ ≥ 2. If q ≥ 3 then there
are (nonadjacent) vertices s1 and s2 of L, and nontrivial elements α1 and α2 of
Aut(L), so that the Main Theorem applies.
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If m = 2 then Σ is the barycentric subdivision of the product of trees Tq ×Tq′ ,
where Tq is the q–regular tree. In particular, if m = m′ = 2 in Example 1 of
Section 2.2 above, then Σ is the barycentric subdivision of T3 × T2. If m ≥ 4,
then by Theorem 12.6.1 of [11] the complex Σ may be metrised as a piecewise
hyperbolic CAT(−1) polygonal complex. With this metric, if p = 2m and q = q′

then Σ is the barycentric subdivision of Bourdon’s building Ip,q (studied in, for
example, [5] and [6]), which is the unique 2–complex with all 2–cells regular right-
angled hyperbolic p–gons P , and the link of every vertex the complete bipartite
graph Kq,q. Bourdon’s building is a right-angled hyperbolic building, of type
(W ′, S′) where W ′ is the Coxeter group generated by the set of reflections S′ in
the sides of P .

5.1.2 Fuchsian buildings

A Fuchsian building is a 2–dimensional hyperbolic building. Bourdon’s building
Ip,q is a (right-angled) Fuchsian building. For Fuchsian buildings which are not
right-angled see, for example, [4] and [13].

To show that the Main Theorem applies to certain Fuchsian buildings which
are not right-angled, let L be the finite building of rank 2 associated to a Chevalley
group G (see [25]). Then L is a bipartite graph, with vertex set say S = S1 ⊔ S2,
and for some k ∈ {3, 4, 6, 8}, L has girth 2k and diameter k. Figure 11 depicts
the building L for the group G = GL(3,F2) = GL(3, 2), for which k = 3. The
white vertices of this building may be identified with the set of one-dimensional
subspaces of the vector space V = F2 × F2 × F2, and the black vertices with the
set of two-dimensional subspaces of V . Two vertices are joined by an edge if those
two subspaces are incident.

Figure 11: The building L for G = GL(3, 2)

The group G acts on L, preserving the type of vertices, with quotient an edge.
Suppose s1 ∈ S1, and let s2 ∈ S2 be a vertex at distance k from s1. Since L is a
thick building, there is more than one such vertex s2. For i = 1, 2, the stabiliser Pi
of si in G acts transitively on the set of vertices of L at distance k from si. Now,
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by Theorem 6.18 of [25], Pi has a Levi decomposition

Pi = Ui ⋊ Li

where Li is the subgroup of Pi fixing the vertex s3−i. Moreover, by Lemma 6.5
of [25], Ui fixes the star of si in L. Hence we may find elements α3−i ∈ Ui for
which Conditions (1) and (2) of the Main Theorem hold. Condition (3) of the
Main Theorem follows since L is bipartite and the action of G preserves the type
of vertices. For example, for L as in Figure 11, if s1 is the vertex {(1, 0, 0)}, we
may choose s2 to be the vertex {(0, 1, 0), (0, 0, 1), (0, 1, 1)}, and then choose

α1 =





1 0 0
1 1 0
1 0 1



 and α2 =





1 1 1
0 1 0
0 0 1



 .

Suppose now that L as above is the nerve of a Coxeter system (W,S). By
Theorem 12.6.1 of [11], since L has girth ≥ 6, the corresponding Davis complex Σ
may also be metrised as a piecewise hyperbolic CAT(−1) polygonal complex. With
this metrisation, Σ is then the barycentric subdivision of a Fuchsian building, with
the link of every vertex L and all 2–cells regular hyperbolic 2m–gons (of vertex
angle π

k ). We call such a building a (2m,L)–building. In general, there may be
uncountably many isomorphism classes of (2m,L)–buildings (see for instance [13]).
In fact, the Davis complex Σ is the barycentric subdivision of the unique locally
reflexive (2m,L)–building with trivial holonomy (see Haglund [17]).

5.1.3 Platonic polygonal complexes

A polygonal complex X is Platonic if Aut(X) acts transitively on the set of flags
(vertex, edge, face) in X. Any Platonic polygonal complex is a (k, L)–complex,
with k ≥ 3 and L a graph such that Aut(L) acts transitively on the set of oriented
edges in L. In [27], Świa֒tkowski studied CAT(0) Platonic polygonal complexes X,
where L is a trivalent graph. Such complexes are not in general buildings.

A graph L is said to be n–arc regular, for some n ≥ 1, if Aut(L) acts simply
transitively on the set of edge paths of length n in L. For example, the Petersen
graph in Figure 1 above is 3–arc regular. Any finite, connected, trivalent graph L,
with Aut(L) transitive on the set of oriented edges of L, is n–arc regular for some
n ∈ {1, 2, 3, 4, 5} (Tutte [31]). Świa֒tkowski [27] showed that if n ∈ {3, 4, 5}, then
for all k ≥ 4 there is a unique (k, L)–complex X, with X Platonic. Thus if k = 2m
is even, the barycentric subdivision of X is the Davis complex Σ for (W,S), where
(W,S) has nerve L and all finite mst = m.

Now suppose L is a finite, connected, trivalent, n–arc regular graph with n ∈
{3, 4, 5}. Choose vertices s1 and s2 of L at distance two in L if n = 3, 4, and at
distance three in L if n = 5. Then by Propositions 3–5 of Djoković–Miller [12],
for i = 1, 2 there are involutions αi ∈ Aut(L) such that αi fixes the star of s3−i
in L, and αi(si) 6= si is not adjacent to si. Thus if m is even, the Main Theorem
applies to G = Aut(Σ).

33



5.2 Higher-dimensional examples

We now discuss examples in dimension > 2 to which the Main Theorem applies.
The construction of the building Σ below was suggested by an anonymous referee
(our own examples were just for W right-angled).

We first discuss when Condition (4) in the Main Theorem can hold. Suppose
WT is a spherical special subgroup of W , with k = |T | > 2. If WT is irreducible,
then from the classification of spherical Coxeter groups (see, for example, [11]), it
is not hard to verify that WT is halvable along s ∈ T if and only if WT is of type
Bk, with s ∈ T the unique generator so that mst ∈ {2, 4} for all t ∈ T −{s}; in this
case halfs(WT ) is of type Dk. If WT is reducible, then so long as s is contained
in a direct factor WT ′ , T ′ ( T , such that either WT ′ = 〈s〉 ∼= C2, WT ′ is an even
dihedral group, or WT ′ is of type Bj with j < k and s the particular generator
described above, then WT will be halvable along s.

Now let L be a thick spherical building of rank k > 2. A reducible example
is L the join of k sets of points, with each set having cardinality at least 3. An
irreducible example is L the building for a Chevalley group G of rank k over a
finite field, such as GL(k + 1, 2).

Define a Coxeter group W with nerve L as follows. Fix ∆ a chamber of L.
Then ∆ is a simplex on k vertices. Let p : L → ∆ be the projection onto this
chamber. Label the edges of ∆ by the mst for a finite Coxeter group V on k
generators, such that V is a product of cyclic groups of order 2, even dihedral
groups and copies of Bj , j < k. For example, when V is right-angled all mst = 2.
Pull the edge labels of ∆ back via p to obtain a labelling of the edges of L. This
defines a Coxeter group W with nerve L, so that each maximal spherical special
subgroup of W is isomorphic to V .

The Davis complex Σ for W is tiled by copies of the barycentric subdivision
of the Coxeter polytope P associated to V . For example, when V is right-angled,
P is a k–cube. The link of each vertex of P is L. Applying the metric criterion of
Charney–Lytchak [10], it follows that Σ is the barycentric subdivision of a building.
Note that dim(Σ) = k > 2.

Choose vertices s1 and s2 in L which are opposite (see [25]). By the same
arguments as in Section 5.1.2 above, there are (type-preserving) elements α1, α2 ∈
Aut(L) so that Conditions (1)–(3) of the Main Theorem hold. A careful choice
of V , such that s1 and s2 if contained in some copy of Bj are both the required
generators, then guarantees that Condition (4) of the Main Theorem holds. Hence
the Main Theorem applies to many examples of buildings of dimension > 2.

We do not know of any hyperbolic buildings of dimension > 2 to which the Main
Theorem applies. For the 3–dimensional constructions of Haglund–Paulin in [19],
certain of the mst must be equal to 3, so Condition (4) of the Main Theorem will
not hold.

A slight modification of the above construction, for example by adding a vertex
s to L with mst = ∞ for all t ∈ S −{s}, produces nerves which are not buildings,
hence examples of Σ of dimension > 2 which are not buildings.
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