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Abstract

This paper establishes sufficient conditions for an implied volatility sur-
face to be free from “static arbitrage”. The conditions are shown to be neces-
sary under certain (very mild) conditions.

Application is made to determining whether or not some proposed im-
plied volatility smiles are free of static arbitrage.

This paper establishes sufficient and close to necessary conditions for an implied
volatility surface to be free from static arbitrage. A call price surface is free of static
arbitrage if there can be no arbitrage opportunities trading in the surface. More
precisely, a call option price surface (K, τ) 7→ C(K, τ) is free from static arbitrage
if and only if there exists a non-negative martingale, say S, such that C(K, τ) =
E ((Sτ − K)+) for every K, τ ≥ 0. We then say that an implied volatility surface
is free from static arbitrage if the call price surface C(K, τ) = CBS(K, τ,Σ(K, τ)) is
free from static arbitrage, where Σ(K, τ) is the implied volatility at strike K and
time to expiry τ, and CBS(K, τ,Σ(K, τ)) is the Black-Scholes price of a K-strike and
τ time to expiry option with implied volatility Σ(K, τ).
Determining necessary and sufficient conditions for an implied volatility surface
to be free of (static) arbitrage is important for a number of reasons. Lee (pp. 11–12
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of [Lee05]), for example, lists a number of applications. First, if a “model gen-
erates a theoretical [implied volatility surface] that differs qualitatively from em-
pirical facts, [then] we have evidence of model misspecification”. Second, “nec-
essary conditions on” the implied volatility surface “for the absence of arbitrage
provide[s] consistency checks that can help to reject unsound proposals” for im-
plied volatility parameterisations. Also, as noted by Lee (p. 71 of [Lee00]), it is
of “benefit to [market] practitioners who seek parameterisations that fit” the mar-
ket implied volatility smile. Finally, as noted by Musiela and Rutskowski (see pp.
270-271 of [MR05]) and [Dur03], it is an important and open problem in stochas-
tic implied volatility modelling since one needs to know how to specify an initial
arbitrage free implied volatility surface.
Our investigations proceed in a straightforward manner. We first establish neces-
sary and sufficient conditions on the call price surface for it to be free of static arbi-
trage. We then translate these conditions into conditions on the implied volatility
surface.
Necessary and sufficient conditions on the call price surface for it to be free from
static arbitrage are, under various conditions, quite well known. Buehler (see
[Bue06]) considers the case of a finite family of strikes and maturities in the call
price surface, Davis and Hobson (see [DH07]) and Carr and Madan (see [CM05])
study similar problems, but with a different focus. Cox and Hobson ([CH05])
consider a call price surface to be free of static arbitrage if it may be matched by a
local martingale. We do not use this approach because of the problem of implied
volatility being ill-defined in strictly local martingale models. Durrleman [Dur03]
presents a number of necessary call option restrictions and is able to establish suf-
ficiency under very strong conditions. The setup closest to ours is that of Föllmer
and Schied (see [FS04]), although their conditions differ from ours.
Various necessary conditions on a surface for it to be an implied volatility surface
are known, see Lee [Lee05] and, especially, Durrleman [Dur03]. No set of suffi-
cient conditions has been presented in the literature. Themain contribution of this
paper is Theorem 2.9 which presents a set of conditions that, if satisfied, certifies
that a candidate surface is indeed an implied volatility surface free from static ar-
bitrage. The other major result of this paper is Theorem 2.15 which shows that
the set of conditions which we proved were sufficient are, under two weak con-
ditions, necessary properties of an implied volatility surface that is free of static
arbitrage.
This paper is organised as follows. In the first section, we give the mathematical
setup. Some elementary properties of convex functions are recalled. In the second
section, we give necessary and sufficient conditions for a call price surface to be
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free of static arbitrage. In the third section, we present sufficient conditions for an
implied volatility surface to be free of static arbitrage and show that they are nec-
essary under certain (very mild) technical conditions. In the final section, we give
examples of implied volatility smile parameterisations that have been presented
in the literature and show, using our results, that they are not arbitrage-free.

1 Background

1.1 Setup

We assume throughout this paper zero interest rates and dividend yield. We will
also restrict ourselves to non-negative price processes, and assume that we are in a
perfectly liquid market for European calls. That is, call option prices for all strikes,
K > 0, and maturities, τ ≥ 0, are known in the market. We exclude strike K = 0
from this assumption for two reasons. Firstly, it becomes problematic when one
deals with implied volatility parameterised in terms of log moneyness (ln(K/s),
s being the stock price). Secondly, it is simple to take the continuous extension of
the call price surface to [0,∞)× [0,∞), so that there is no real loss of generality in
supposing that K > 0.

Definition 1.1. A call price surface parameterised by s is a function

C : [0,∞)× [0,∞) → R

(K, τ) 7→ C(K, τ)

along with a real number s > 0.

It will sometimes be convenient to simply refer to a call price surface parame-
terised by s as a call price surface or a call surface.
The next definition follows that presented in [CH05] except for our insistence on
true martingales.

Definition 1.2. There is no static arbitrage in a call price surface C if there exists a
non-negative martingale X on some stochastic basis (Ω,F ,F = (Ft)t≥0,P) with
C(K, τ) = E ((Xτ − K)+|F0) for each (K, τ) ∈ [0,∞)× [0,∞). In particular, X0 =
s, i.e. the current stock price. If such a martingale and probability space exists,
then we say that the call price surface is free of static arbitrage.
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1.2 Auxiliary Facts

Definition 1.3 (Buehler, Definition 2 in [Bue06]). Let µ, ν be two measures defined
on (R,B(R)). Then µ is said to precede ν in the Balayage order if and only if

∫

R

f dµ ≤
∫

R

f dν

for all convex functions f . This is denoted by µ � ν for probability measures with
finite expectation.

Lemma 1.4 (Föllmer and Schied, Corollary 2.63 in [FS04]). Let µ, ν be two
measures defined on (R,B(R)). We have µ � ν if and only if

∫

R

(x− K)+µ(dx) ≤
∫

R

(x− K)+ν(dx)

for all K ∈ R.

Theorem 1.5 (Kellerer, Theorem 3 in [Kel72]). LetM = (µt)t∈T be a set of probability
measures on (R,B(R)) with finite expectation at each t ∈ T , where T ⊆ [0,∞) is some
Borel set. A Markov sub-martingale with marginal distributions µt exists if M is in
Balayage order, that is

µt � µt′

for all t < t′ with t, t′ ∈ T .

We will need an obvious corollary to Theorem 1.5.

Corollary 1.6. Let M = (µt)t∈T be a set of probability measures on (R,B(R)) with
finite constant expectation for all t ∈ T , where T ⊆ [0,∞) is some Borel set. A Markov
martingale with marginal distributions µt exists ifM is in Balayage order, that is

µt � µt′

for all t < t′ with t, t′ ∈ T .

We will also use some elementary properties of convex functions.

Lemma 1.7. Let f : (0,∞) → R be a function that admits a continuous extension, call
it g, to [0,∞). We consider the following conditions on f .

(i) f is convex;
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(ii) f is non-increasing;

(iii) f (x) → 0 as x → ∞; and

(iv) for some a ∈ (0,∞), (a− x)+ ≤ f (x) ≤ a for every x > 0.

Then

1. if f satisfies (i), then g is convex on [0,∞);

2. if f satisfies (ii), then g is non-increasing on [0,∞);

3. if f satisfies (iii), then g(x) → 0 as x → ∞;

4. if f satisfies (iv), then (g(0) − x)+ = (a − x)+ ≤ g(x) ≤ a = g(0) for every
x ≥ 0;

5. if f satisfies (iv), then a = g(0) = limx→0+ g(x);

6. if f satisfies (i), (ii), and (iv), then the right-hand derivative of g, write it g′+, exists,
and is non-decreasing and right-continuous on x ≥ 0;

7. if f satisfies (i), (ii), and (iv), then for every x ≥ 0, −1 ≤ g′+(x) ≤ 0;

8. if f satisfies (i), (ii), and (iv), then for every x > 0,−1 ≤ g(x)− g(0)

x
≤ g′+(x) ≤

0; and

9. if f satisfies (i) and (iii), then g is non-increasing.

2 Main Results

2.1 The Call Price Surface

In this section, we give necessary and sufficient conditions for a call price surface
to be free of static arbitrage. The following is largely from Lemma 7.23 of Föllmer
and Schied (see [FS04]), although our conditions differ from theirs.
We emphasise that in our conclusions we allow for K = 0.

Theorem 2.1. Let s > 0 be a constant.

(a) Let C : (0,∞)× [0,∞) → R satisfy the following conditions.
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(A1) (Convexity in K)

C(·, τ) is a convex function, ∀τ ≥ 0;

(A2) (Monotonicity in τ)

C(K, ·) is non-decreasing, ∀K > 0;

(A3) (Large strike limit)
lim
K→∞

C(K, τ) = 0, ∀τ ≥ 0;

(A4) (Bounds)
(s− K)+ ≤ C(K, τ) ≤ s, ∀K > 0, τ ≥ 0; and

(A5) (Expiry Value)
C(K, 0) = (s− K)+, ∀K > 0.

Then

(i) the function

Ĉ : [0,∞)× [0,∞) → R

(K, τ) 7→
{
s, if K = 0

C(K, τ), if K > 0

satisfies assumptions (A1)-(A5) but with K ≥ 0 instead of K > 0; and

(ii) there exists a non-negative Markov martingale X with the property that

Ĉ(K, τ) = E
(
(Xτ − K)+|X0 = s

)

for all K, τ ≥ 0.

(b) All of the listed conditions in part (a) of this theorem are necessary properties of Ĉ for
it to be the conditional expectation of a call option under the assumption that X is a
(non-negative) martingale.

Proof.

(a) (i) The function Ĉ(·, τ) is the continuous extension ofC(·, τ) to [0,∞). There-
fore, properties (A1), (A3), and (A4) follow from Lemma 1.7. Clearly,

(A2) and (A5) hold for Ĉ.
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(ii) We first show that for each fixed τ ≥ 0 there exists a probability measure
µτ on (R,B(R)) such that

Ĉ(K, τ) =
∫

[0,∞)
(x− K)+ µτ(dx), ∀K, τ ≥ 0. (1)

Our argument follows closely parts of Proposition A.4 and Lemma 7.23

of [FS04]. We will let Ĉ′
+ denote the right-hand partial derivative of Ĉ

with respect to its first argument. Using Lemma 1.7 we get that for each

τ ≥ 0, Ĉ′
+(·, τ) exists, is right-continuous, non-decreasing, and bounded

above by zero and below by minus one.

Fix τ ≥ 0. Since Ĉ(·, τ) is convex on [0,∞), it holds for every ǫ > 0 that

Ĉ(K, τ) = Ĉ(ǫ, τ) +
∫ K

ǫ
Ĉ′
+(k, τ)dk.

Taking the limit as ǫ → 0+ and using the fact that

lim
K→0+

Ĉ(K, τ) = s,

we get that

Ĉ(K, τ) = s+
∫ K

0
Ĉ′
+(k, τ)dk.

Then (A3) yields

lim
K→∞

∫ K

0
Ĉ′
+(k, τ)dk = −s. (2)

We may conclude that

lim
K→∞

Ĉ′
+(K, τ) = 0.

and using the properties of Ĉ and Ĉ′
+ announced earlier

F(K, τ) =

{
1+ Ĉ′

+(K, τ), if K ≥ 0

0, if K < 0,

is, with τ fixed, a cumulative distribution function. Fix τ ≥ 0. Of course,
F defines a probability measure µτ on (R,B(R)). Using this we have
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that

Ĉ(K, τ) = s−
∫ K

0
−Ĉ′

+(k, τ)dk

= s−
∫ K

0

∫

[k,∞)
µτ(dy)dk

= s−
∫

∞

0

∫ K

0
1{k<y} dk µτ(dy)

= s−
∫

[0,∞)
(y ∧ K) µτ(dy)

=
∫

[0,∞)
(y− K)+ µτ(dy).

Clearly,
∫
[0,∞) yµτ(dy) = Ĉ(0, τ) = s. So Equation (1) holds for each

τ ≥ 0 and K ≥ 0.

As in [FS04], we now show that the family of measures M = (µτ)τ∈[0,∞),
with µτ defined as in the first part of the proof, is in Balayage order. Fix
K ≥ 0. Let 0 ≤ τ1 < τ2 < ∞. Using (A2) and the representation of

Ĉ(K, τ) given in Equation (1), we have
∫

R

(y− K)+ µτ1(dy) = Ĉ(K, τ1) ≤ Ĉ(K, τ2) =
∫

R

(y− K)+ µτ2(dy),

for K ≥ 0. By construction, every µτ ∈ M has support contained in
[0,∞). We can now argue that for fixed K < 0

∫
∞

−∞

(y− K)+ µτ1(dy) =
∫

[0,∞)
(y− K)+ µτ1(dy)

=
∫

[0,∞)
(y− K) µτ1(dy)

= s− K

=
∫

∞

−∞

(y− K)+ µτ2(dy).

So by Lemma 1.4, we may conclude that M is in Balayage order. The
existence of a Markov martingale with marginals M now follows from
Corollary 1.6.

(b) The necessity comes from elementary facts about the conditional expectation
of the call payoff.
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Remark 2.2. It is to be noted that the constructed martingale of the previous the-
orem need not be càdlàg, nor is the filtration necessarily right-continuous.

2.2 The Implied Volatility Surface

We now turn our attention to the implied volatility surface and derive sufficient
and close to necessary conditions for it to be free from static arbitrage.

Definition 2.3. Let

d+ : R × (0,∞) → R

(u, v) 7→ −u/v+ v/2

and

d− : R × (0,∞) → R

(u, v) 7→ −u/v− v/2.

Following Durrleman [Dur03], we will work with a “scaled Black-Scholes” func-
tion as it simplifies the calculations.

Definition 2.4. Let

B : R × [0,∞) → R

(x, θ) 7→





limθ→0+ B(x, θ) = (1− exp(x))+ , if θ = 0,

Φ (d+(x, θ))− exp(x)Φ (d−(x, θ)) , if θ ∈ (0,∞)

limθ→∞ B(x, θ) = 1, if θ = ∞.

Remark 2.5. It is clear that

(1− exp(x))+ ≤ B(x, θ) ≤ 1

for every x ∈ R and θ ∈ [0,∞].

Remark 2.6. The standard representation of the Black-Scholes call pricing function
can be recovered from B as follows

CBS(K, τ, σ) =

{
sB(ln(K/s), σ

√
τ), if K > 0,

s, if K = 0,
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where s is the current stock price and τ is the time to expiry of the K-strike call.
Observe that B is conveniently written solely in terms of log-moneyness, that is
ln(K/s), and time-scaled volatility σ

√
τ.

We now introduce a variant of implied volatility which we have termed time-scaled
implied volatility in log-moneyness form.

Definition 2.7. Time scaled implied volatility (in log-moneyness form) parame-
terised by s is a function defined by

Ξ : R × [0,∞) → [0,∞]

(x, τ) 7→
√

τΣ(s exp(x), τ),

where Σ is implied volatility and s > 0 is the stock price. K enters via x which is
log-moneyness, that is x = ln(K/s).

Remark 2.8. A time scaled implied volatility surface (in log-moneyness form) pa-
rameterised by s defines a call price surface parameterised by s via

C(K, τ) =

{
sB(ln(K/s),Ξ(ln(K/s), τ)), if K > 0,

s, if K = 0.

Note that there was no need to define implied volatility for K = 0.

Theorem 2.9. Let s > 0 and Ξ : R × [0,∞) → R.
Let Ξ satisfy the following conditions:

(IV1) (Smoothness) for every τ > 0, Ξ(·, τ) is twice differentiable.

(IV2) (Positivity) for every x ∈ R and τ > 0,

Ξ(x, τ) > 0.

(IV3) (Durrleman’s Condition) for every τ > 0 and x ∈ R,

0 ≤
(
1− x∂xΞ

Ξ

)2

− 1

4
Ξ
2 (∂xΞ)2 + Ξ∂2xxΞ, (3)

where we have written Ξ for Ξ(x, τ).

(IV4) (Monotonicity in τ) for every x ∈ R, Ξ(x, ·) is non-decreasing.
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(IV5) (Large moneyness behaviour)1 for every τ > 0

lim
x→∞

d+(x,Ξ(x, τ)) = −∞.

(IV6) (Value at maturity) for every x ∈ R,

Ξ(x, 0) = 0.

Then

C̃ : [0,∞)× [0,∞) → R

(K, τ) 7→
{
sB(ln(K/s),Ξ(ln(K/s), τ)), if K > 0,

s, if K = 0,

is a call price surface parameterised by s that is free of static arbitrage. In particular,

there exists a non-negative Markov martingale X with the property that C̃(K, τ) =
E ((Xτ − K)+|X0 = s) for all K, τ ≥ 0.

Proof. It is sufficient to check that the conditions of Theorem 2.1 are satisfied by C̃.
We will then have the claimed existence of a martingale from Theorem 2.1.
We will use x = ln(K/s). In the following, where it is obvious from the context,
we will sometimes omit the arguments of functions. For example we will write
d+ instead of d+(u, v) and d− instead of d−(u, v), etc. We will let ∂1B(u, v) denote
the partial derivative of B with respect to its first argument evaluated at (u, v) ∈
R × (0,∞), ∂212B(u, v) denote the mixed partial derivative of B with respect to its
first and second arguments, and so on.
As in Durrleman [Dur03], we use, without further comment,

∂1B(u, v) = − exp(u)Φ (d−) ,
∂2B(u, v) = φ (d+) ,

∂211B(u, v) = − exp(u)Φ (d−) +
1

v
φ (d+) ,

∂212B(u, v) =

(
− u

v2
+

1

2

)
φ (d+) and,

∂222B(u, v) =

(
u2

v3
− v

4

)
φ (d+) ;

1See Proposition 2.11 for a simpler condition.
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which are easily obtained using that exp(u)φ(d−(u, v)) = φ(d+(u, v)) for u, v ∈ R

with v 6= 0 and φ′(z) = −zφ(z) for all z ∈ R.
We now turn to the proof of the first part of the present claim.

(A1) Convexity in K: The following argument for (A1) is due to Durrleman (see
[Dur03]).

Fix (x, τ) ∈ R × (0,∞) and let K = s exp(x). We use that K > 0 which holds
by assumption on s. The positivity of Ξ and Equation (3), give that

0 ≤ φ(d+)

K2Ξ

((
1− x

Ξ
∂1Ξ

)2
− 1

4
Ξ
2 (∂1Ξ)2 + Ξ∂211Ξ

)
,

where, here and following, Ξ and d+ are evaluated at (x, τ) and (x,Ξ) re-
spectively. Now,

φ(d+)

K2Ξ

((
1− x

Ξ
∂1Ξ

)2
− 1

4
Ξ
2 (∂1Ξ)2 + Ξ∂211Ξ

)

=
φ(d+)

K2

(
1

Ξ
+

(
1− 2x

Ξ2

)
∂1Ξ +

(
x2

Ξ3
− Ξ

4

)
(∂1Ξ)2 + ∂211Ξ − ∂1Ξ

)

=
1

K2

(
∂211B+ 2∂1Ξ∂212B+ (∂1Ξ)2∂222B+ (∂211Ξ − ∂1Ξ)∂2B− ∂1B

)
,

where, here and following, B is evaluated at (x,Ξ),

=

[
1

K2
∂211B+

1

K2
∂212B∂1Ξ

]
−
[
1

K2
∂1B

]
+

[(
1

K
∂212B+

1

K
∂222B∂1Ξ

)
∂1Ξ

K

]

+

[(
1

K2

(
−∂1Ξ + ∂211Ξ

))
∂2B

]

=

{[
1

K

(
∂211B∂Kx+ ∂212B∂KΞ

)]
−
[
1

K2
∂1B

]}

+
{[(

∂212B∂Kx+ ∂222B∂KΞ

)
∂KΞ

]
+
[
∂2KKΞ∂2B

]}

= {∂K(∂1B∂Kx)}+ {∂K(∂2B∂KΞ)}
= ∂KKB.

We may conclude that

∂KKC̃(K, τ) = s∂KKB(ln(K/s),Ξ(ln(K/s), τ)) ≥ 0,

as required.
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(A2) Monotonicity in τ:
B is a strictly increasing function of its second argument, since ∂2B(u, v) =
φ(d+(u, v)) > 0. Since Ξ(x, τ) is non-decreasing in τ for each fixed x ∈ R by

(IV4), it follows that C̃(K, ·) = sB(ln(K/s),Ξ(ln(K/s), ·)) is non-decreasing
for each fixed K > 0. The case K = 0 is an immediate consequence of the

definition of C̃.

(A3) Large strike limit:
Much of the argument for (A3) is taken from Durrleman (see [Dur03]). The
case τ = 0 is obvious. Fix τ > 0. We must show that

lim
x→∞

sB(x,Ξ(x, τ)) = s lim
x→∞

[Φ(d+(x,Ξ))− exp(x)Φ(d−(x,Ξ))] = 0.

We have that
lim
x→∞

d+(x,Ξ(x, τ)) = −∞.

It follows from this that

lim
x→∞

Φ(d+(x,Ξ)) = 0.

It remains to show that

lim
x→∞

exp(x)Φ(d−(x,Ξ)) = 0.

To see that this is the case, argue as follows. LetD = (0,∞)× (0,∞). As Dur-
rleman (see [Dur03]) observed, we can use the Arithmetic-Geometric mean
inequality and the fact that Ξ is strictly positive (by (IV2)), to get

d−(x,Ξ(x, τ)) = − x

Ξ(x, τ)
− Ξ(x, τ)

2
≤ −

√
2x, ∀(x, τ) ∈ D.

Now, Φ(·) is increasing, so

0 ≤ exp(x)Φ(d−) ≤ exp(x)Φ(−
√
2x), ∀(x, τ) ∈ D.

By L’Hôpital’s Rule, we have exp(x)Φ(−
√
2x) → 0 as x → ∞, so that

lim
x→∞

exp(x)Φ(d−) = 0.

We have shown that
lim
x→∞

sB(x,Ξ(x, τ)) = 0,
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given that d+ → −∞. It follows that

lim
K→∞

C̃(K, τ) = 0

when d+ → −∞.

(A4) Bounds:
As already noted in Remark 2.5, we have for all x ∈ R and θ ∈ [0,∞] that

(1− exp(x))+ ≤ B(x, θ) ≤ 1.

Multiplying through by s, which is assumed to be positive, and recalling that
x = ln(K/s) we are done.

(A5) Expiry value:
Immediate.

The proof is therefore complete.

Remark 2.10. The following proposition delivers a simpler test for the Large mon-
eyness behaviour. The test is based on the behaviour ofsef

Ξ(x, τ)√
2x

,

for large x. Lee [Lee05] presents his Large moneyness test as Lee requires

lim sup
x→∞

Ξ(x, τ)√
2x

≤ 1

while Durrleman [Dur03] requires

lim sup
x→∞

Ξ(x, τ)√
2x

< 1.

In fact, the case lim supx→∞

Ξ(x, τ)√
2x

= 1, requires special treatment as we now see.

Proposition 2.11. We have that

1. d+(x,Ξ(x, τ)) → −∞ when lim supx→∞

Ξ(x, τ)√
2x

∈ [0, 1);
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2. d+(x,Ξ(x, τ)) may or may not converge to −∞ when lim supx→∞

Ξ(x, τ)√
2x

= 1;

3. d+(x,Ξ(x, τ)) 9 −∞ when lim supx→∞

Ξ(x, τ)√
2x

∈ (1,∞); and

4. d+(x,Ξ(x, τ)) 9 −∞ when lim supx→∞

Ξ(x, τ)√
2x

= ∞.

Proof. Throughout, we let

U := lim sup
x→∞

Ξ(x, τ)√
2x

.

1. (U ∈ [0, 1)). We have that U is the smallest real number such that (∀ǫ >

0)(∃M)(∀x > M)
Ξ(x, τ)√

2x
< U + ǫ. (4)

In particular, we may choose ǫ =
1−U

2
, such that 0 < U+ ǫ = (1+U)/2 <

1. From Equation (4), we have for all x large enough that

√
2x

Ξ(x, τ)
>

1

U + ǫ
and − Ξ(x, τ)√

2x
> −(U + ǫ).

Therefore, since 0 < U + ǫ < 1,

√
2x

Ξ(x, τ)
− Ξ(x, τ)√

2x
>

1− (U + ǫ)2

U + ǫ
> 0,

for x large enough, by the choice of ǫ. It follows, using Durrleman’s decom-
position (see [Dur03]) of d+, that

lim sup
x→∞

d+(x,Ξ(x, τ)) = lim sup
x→∞

−
√
x√
2

( √
2x

Ξ(x, τ)
− Ξ(x, τ)√

2x

)

= −∞

= lim
x→∞

d+(x,Ξ(x, τ))

So d+ → −∞ as x → ∞.
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2. (U = 1). Let

Ξ(x, 1) =
√
2(x

1
2 − x

1
4 ), x large enough.

It satisfies d+(x,Ξ) → −∞ as x → ∞ and limx→∞ Ξ(x, 1)/
√
2x = 1. Now

suppose that

Ξ(x, 1) =
√
2x, x large enough.

Clearly, lim supx→∞
Ξ(x, 1)/

√
2x = 1. But,

d+(x,Ξ) = − x√
2x

+

√
2x

2
= −

√
x√
2
+

√
x√
2
= 0 9 −∞.

3. (U ∈ (1,∞)) It is sufficient to show that for any given M > 0 we can find an
x ≥ M such that

d+(x,Ξ) > 0.

Let us choose and take an M > 0. By definition of U and the assumption
that it is in (1,∞), we have that

(∀ǫ > 0)(∀M > 0)(∃x > M) Ξ(x, τ)/
√
2x > U − ǫ.

We take
ǫ := U − 1.

Then there exists at least one x > M such that Ξ/
√
2x > U− ǫ = 1. Fix such

an x. We have −Ξ/
√
2x < −(U − ǫ). Since U − ǫ = 1 > 0 and Ξ/

√
2x > 0

by the positivity assumption,
√
2x/Ξ < 1/(U − ǫ) = 1. Therefore

√
2x

Ξ
− Ξ√

2x
<

1

U − ǫ
− (U − ǫ)

=
1− (U − ǫ)2

U − ǫ

= 0.

Hence

d+ =
−√

x√
2

(√
2x

Ξ
− Ξ√

2x

)
> 0

for such x. We see that d+ cannot converge to −∞ as x → ∞.
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4. (U = ∞) Same proof as in (3) with U being any number > 1.

Remark 2.12. In [Lee04], Lee assumes that the stock price is a non-negative mar-
tingale and derives that Ξ must satisfy

lim sup
x→−∞

Ξ
2(x, τ)

|x| ∈ [0, 2], (5)

equivalently

lim sup
x→−∞

Ξ(x, τ)√
2 |x|

∈ [0, 1],

for each τ ≥ 0. We do not require such a condition. However, we know that
this property must be satisfied by any function Ξ satisfying all the conditions in
Theorem 2.9. Indeed, we have shown that there exists a non-negative martingale

matching the call surface C̃: Lee’s argument may then be applied and we can con-
clude that Equation (5) holds. It is difficult to see how to directly derive Equation
(5) from the analytic conditions that we have imposed.

In [Lee05], Lee presents Gatheral’s bounds on the derivative of (time-scaled) im-
plied volatility (in log-moneyness form).
We now show that the lower bound is a consequence of the other assumptions of
Theorem 2.9, most importantly the convexity assumption. Following Lee [Lee05],
we will use the Mill’s Ratio.

Definition 2.13. The function

M : R → R

x 7→ 1− Φ(x)

φ(x)
.

is termed theMill’s Ratio, where Φ is the standard normal cumulative distribution
function and φ is the standard normal density.

Corollary 2.14. Let C̃ be defined in terms of Ξ as in the Theorem 2.9 Then for each x ∈ R

and τ > 0

−M(d+(x,Ξ(x, τ))) ≤ ∂xΞ(x, τ) ≤ M(−d−(x,Ξ(x, τ))).
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Proof. We have the bounds (s − K)+ ≤ C̃(K, τ) ≤ s for each K and τ. For the
lower bound we can then use Lemma 1.7 to get that for K > 0

∂KC̃(K, τ) =
s

K
(∂1B+ ∂2B∂xΞ)

≥ C̃(K, τ)− s

K

=
sB− s

K

=
s(B− 1)

K
.

Hence,
∂1B+ ∂2B∂xΞ ≥ B− 1,

so that

∂xΞ ≥ B− 1− ∂1B

∂2B

=
Φ(d+)− exΦ(d−)− 1+ exΦ(d−)

∂2B

=
Φ(d+)− 1

φ(d+)

= −1− Φ(d+)

φ(d+)

= −M(d+).

For the upper boundwe note from Lemma 1.7 that C̃ is non-increasing fromwhich

∂KC̃ ≤ 0

⇔ s

K
(∂1B+ ∂2B∂xΞ) ≤ 0

⇔ ∂1B+ ∂2B∂xΞ ≤ 0

⇔ ∂xΞ ≤ −∂1B

∂2B

⇔ ∂xΞ ≤ exΦ(d−)
φ(d+)

⇔ ∂xΞ ≤ M(−d−).
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We now show that the stated conditions are necessary under the smoothness and
positivity requirements to ensure that the resulting call surface is free from static
arbitrage.

Theorem 2.15. Let s > 0 and Ξ : R × [0,∞) → R. Let Ξ satisfy the following condi-
tions

(1) (Smoothness) For every τ > 0, Ξ(·, τ) is twice differentiable.

(2) (Positivity) For every x ∈ R and τ > 0,

Ξ(x, τ) > 0.

Let

C̃ : [0,∞)× [0,∞) → R

(K, τ) 7→
{
sB(ln(K/s),Ξ(ln(K/s), τ)), if K > 0,

s, if K = 0.

Then if Ξ violates any of the remaining conditions (IV3)-(IV6) of Theorem 2.9, C̃ is not a
call surface free from static arbitrage.

Proof. The necessity of conditions (IV3), (IV4) was shown in Durrleman [Dur03];
in fact, the argument is clear by “reversing” the proofs of (A1) and (A2) in Theo-
rem 2. Our condition of (IV5) differs from Durrleman’s version of the property in
order to allow for the case

lim sup
x→∞

Ξ(x, τ)√
2x

= 1.

( See Remark 2.11.) The necessity of (IV3) and (IV4) in this paper are taken directly
from Durrleman [Dur03]. (Durrleman [Dur03] assumes that (IV1) and (IV2) hold.)
With respect to the condition (IV6) we simplify specify the expiry value, whereas
Durrleman [Dur03] takes it to be given as the small time expiry.

3 Examples: Parameterisations of the Implied Volatil-

ity Smile

In this section, we investigate whether or not some proposed parameterisations
of the implied volatility smile are arbitrage-free or not. By the implied volatility
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smile, we mean the function x 7→ Ξ(x, τ), i.e. time scaled implied volatility (in
log-moneyness form) with time to expiry fixed. That is we fix τ and analyse the
dependence of Ξ on x alone. In order to check whether or not our conditions on
the implied volatility are satisfied, we consider the proposed parameterisations as
x 7→ Ξ(x, 1).
The conditions that we need to check and, in particular, Durrleman’s Condition,
are onerous to check algebraically. We therefore resort to graphical analysis. For
each of the three parameterisations we plot Ξ(·, 1) and I Ξ(·, 1). The parameter
choice is set out in the subsections below. The function I Ξ is given by

I Ξ(x, τ) :=

(
1− x∂xΞ(x, τ)

Ξ(x, τ)

)2

− 1

4
Ξ(x, τ)2 (∂xΞ(x, τ))2 + Ξ(x, τ)∂2xxΞ(x, τ),

where ∂x :=
∂

∂x
and ∂xx :=

∂2

∂x2
. Observe that this is the right hand side of

Durrleman’s Condition in Equation (3).
From Theorem 2.15, we know that a no arbitrage condition is that for each τ > 0
and x ∈ R we must have

I Ξ ≥ 0. (6)

We note that this condition is non-linear, so the properties of the parameterisations
may be very sensitive to change. We therefore use the specific numerical values
of the various parameters indicated by the author of the parameterisation.
We now present the graphical analysis of three proposed smile parameterisations.

3.1 Gatheral’s “SVI” Parameterisation

In [Gat06] and [Gat04], Gatheral proposed the implied volatility smile parameter-
isation

Ξ
SVI(x, τ) =

√∣∣∣∣a+ b

{
ρ(x−m) +

√
(x−m)2 + σ2

}∣∣∣∣;

the absolute value and the square root appear because Gatheral specified Ξ
2 in-

stead of Ξ. We will refer to this parameterisation as the SVI parameterisation. For
a fixed time to maturity, which we will take to be one time unit, Gatheral ([Gat04])
suggests the parameter values

a = 0.04 b = 0.8 σ = 0.1 ρ = −0.4 and m = 0.

In Figure 2, we can see that I Ξ is negative for x ∈ (−1,−0.5). Therefore, the
inequality in Equation (6) is not satisfied for all x and hence the parameterisation
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is not arbitrage free. (Gatheral’s condition that b(1+ |ρ|) ≤ 4/τ is clearly satisfied
by the parameters we used.)

0.5

1

1.5

2

-1.5 -1 -0.5 0.5 1 1.5

Log-moneyness vs Ξ
SVI

Ξ
SVI

Figure 1: Plot of the implied volatility function Ξ
SVI
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Log-moneyness vs. I Ξ
SVI

I Ξ
SVI

Figure 2: Plot of I Ξ
SVI

7

3.2 Avellaneda’s “SABR” Parameterisation

In [Ave05], Avellaneda gives the following parameterisation

Ξ
SABR(x, 1) =

κ |x|
ln(κ | f (x)| +

√
1+ κ2 f 2(x))

where

f (x) =
1− exp(−βx)

σ0β
.

Avellaneda takes
σ0 = 0.2 β = −4.0 and κ = 0.5.

From Figure 4, we can see that the condition in Equation (6) is not satisfied by
Ξ
SABR. Therefore the parametersation is not arbitrage free.
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Log-moneyness vs Ξ
SABR

Ξ
SABR

Figure 3: Plot of the implied volatility function Ξ
SABR
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Figure 4: Plot of I Ξ
SABR
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3.3 Quadratic Parameterisation

We take, as suggested in [Ave05], a quadratic parameterisation for the smile curve,
in particular,

Ξ(x, 1) = 0.16− 0.34x+ 4.45x2,

taking the coefficients as given in [Ave05]. This is not really meant as a plausible
candidate since it does not satisfy Lee’s moment formula, i.e.

lim
x→∞

Ξ√
2x

∈ [0, 1] and lim
x→−∞

Ξ√
2 |x|

∈ [0, 1].

However, it appears that close to zero this parameterisation is often used and
the behaviour at large |x| is specified by some other formula if it is required. In
addition, from Figure 6, we can see that the condition (6) is not satisfied by Ξ

QUAD.
Therefore the parametrisation is not arbitrage free.

0.5

1

1.5

2

-1.5 -1 -0.5 0.5 1 1.5

Log-moneyness vs Ξ
QUAD

Ξ
QUAD

Figure 5: Plot of the implied volatility function Ξ
QUAD
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Figure 6: Plot of I Ξ
QUAD

4 Summary of Results

In this paper, we have

(1) presented sufficient and necessary conditions for a call price surface to be free
from static arbitrage;

(2) presented sufficient and close to necessary conditions for a time-scaled im-
plied volatility surface in log-moneyness form to be free from static arbitrage.

(3) investigated whether or not some proposed parameterisations of the time-
scaled implied volatility smile are free of static arbitrage.
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