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Abstract. Let G be the automorphism group of a regular right-angled building X. The “standard
uniform lattice” Γ0 ≤ G is a canonical graph product of finite groups, which acts discretely on
X with quotient a chamber. We prove that the commensurator of Γ0 is dense in G. For this,
we develop a technique of “unfoldings” of complexes of groups. We use unfoldings to construct
a sequence of uniform lattices Γn ≤ G, each commensurable to Γ0, and then apply the theory of
group actions on complexes of groups to the sequence Γn. As further applications of unfoldings, we
determine exactly when the group G is nondiscrete, and we prove that G acts strongly transitively
on X.

Introduction

Two subgroups Γ0 and Γ1 of a group G are commensurable if the intersection Γ0 ∩ Γ1 has finite
index in both Γ0 and Γ1. The commensurator of Γ ≤ G in G is the group

CommG(Γ) := {g ∈ G | gΓg−1 and Γ are commensurable}.
Note that CommG(Γ) contains the normalizer NG(Γ). It is a classical fact that if G is a connected
semisimple Lie group, with trivial center and no compact factors, and Γ ≤ G is an irreducible
lattice, then either Γ is finite index in CommG(Γ), or CommG(Γ) is dense in G (see [Z]). Moreover
Margulis [M] proved that Γ is arithmetic if and only if CommG(Γ) is dense.

A semisimple Lie group is a locally compact topological group. If X is a locally finite, simply
connected polyhedral complex, then the group G = Aut(X) is also locally compact. It turns out
that a subgroup Γ ≤ G is a uniform lattice in G if and only if Γ acts cocompactly on X with
finite cell stabilizers (see Section 1.1). Lattices in such groups G share many properties with lattices
in semisimple Lie groups, but also exhibit new and unexpected phenomena (see the surveys [Lu]
and [FHT]).

In this setting, the one-dimensional case is X a locally finite tree. Liu [L] proved that the com-
mensurator of the “standard uniform lattice” Γ0 is dense in G = Aut(X); here Γ0 is a canonical
graph of finite cyclic groups over the finite quotient G\X. In addition, Leighton [Le] and Bass–
Kulkarni [BK] proved that all uniform lattices in G are commensurable (up to conjugacy). Hence
all uniform tree lattices have dense commensurators. In dimension two, Haglund [H1] showed that
for certain 2–dimensional Davis complexes X = XW , the Coxeter group W , which may be regarded
as a uniform lattice in G = Aut(X), has dense commensurator.

We consider higher-dimensional cases, focusing on regular right-angled buildings X (see Sec-
tion 1.4). Such buildings exist in arbitrary dimension. Examples include products of finitely many
regular trees, and Bourdon’s building Ip,q, the unique 2–complex in which every 2–cell is a regu-
lar right-angled hyperbolic p–gon, and the link of each vertex is the complete bipartite graph Kq,q

(see [B]). The “standard uniform lattice” Γ0 ≤ G = Aut(X), defined in Section 1.5 below, is a canon-
ical graph product of finite cyclic groups, which acts on X with fundamental domain a chamber.
Our main result is:

Density Theorem. Let G be the automorphism group of a locally finite regular right-angled building
X, and let Γ0 be the standard uniform lattice in G. Then CommG(Γ0) is dense in G.

This theorem was proved independently and using different methods by Haglund [H3].

The second author is supported in part by NSF Grant No. DMS-0805206.
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In contrast, we show in Section 2 below that for all G = Aut(X) with X a locally finite polyhedral
complex (not necessarily a building), and all uniform lattices Γ ≤ G, the normalizerNG(Γ) is discrete.
Hence for G as in the Density Theorem, the density of CommG(Γ0) does not come just from the
normalizer.

For most regular right-angled buildings X, it is not known whether all uniform lattices in G =
Aut(X) are commensurable (up to conjugacy). Januszkiewicz–Świ ↪atkowski [JS1] have established
commensurability of a class of lattices in G which includes Γ0, where each such lattice is a graph
product of finite groups. Hence by the Density Theorem, each such lattice has dense commensurator.
For Bourdon’s building Ip,q, Haglund [H2] proved that if p ≥ 6, then all uniform lattices in G =
Aut(Ip,q) are commensurable (up to conjugacy). Thus by the Density Theorem, all uniform lattices
in G have dense commensurators. On the other hand, for X a product of two trees, Burger–
Mozes [BM2] constructed a uniform lattice Γ ≤ Aut(X) which is a simple group. It follows that
CommG(Γ) = NG(Γ), which is discrete. Thus there are cases (when dim(X) ≥ 2) in which not
all uniform lattices Γ ≤ G = Aut(X) can have dense commensurators. In fact, it is an open
problem to determine whether the only possibilities for CommG(Γ) are discreteness or density. As
for commensurators of nonuniform lattices in G = Aut(X), hardly anything is known, even for X a
tree (see [FHT]).

If the buildingX can be equipped with a CAT(−1) metric, then the Density Theorem may be com-
bined with the commensurator superrigidity theorem of Burger–Mozes [BM1] for CAT(−1) spaces, to
give rigidity results for lattices in G = Aut(X) which are commensurable to Γ0. Regular right-angled
buildings with piecewise hyperbolic CAT(−1) metrics exist in arbitrarily high dimensions [JS2].

We now outline the proof of the Density Theorem, which is given in full in Section 4 below. Fix a
basepoint x0 ∈ X. Denote by Yn the combinatorial ball of radius n about x0 in X. We first reduce
the theorem to showing that for all g ∈ StabG(x0) and for all n ≥ 0, there is a γn ∈ CommG(Γ0)
such that γn agrees with g on the ball Yn. We then construct a canonical uniform lattice Γn with
fundamental domain the ball Yn, and show that Γn is a finite index subgroup of Γ0. By considering
the restriction of g to Yn, we are then able to build a uniform lattice Γ′n which contains a suitable
element γn. By our construction, the lattice Γn is a finite index subgroup of Γ′n. That is, Γ′n and
Γ0 have a common finite index subgroup Γn, as sketched on the left of Figure 1 below. Thus Γ′n is
commensurable to Γ0, and so γn lies in CommG(Γ0), as required.

Γ′

n

Γn

Γ0

G(Yn)

G(Y0)H(Zn)

Figure 1. Inclusions of lattices (left) and coverings of complexes of groups (right)

Our lattices Γn and Γ′n are fundamental groups of complexes of groups (see [BH] and Section 1.5
below). The finite index lattice inclusions on the left of Figure 1 are induced by finite-sheeted
coverings of complexes of groups, as shown on the right of Figure 1. The necessary covering theory
for complexes of groups is recalled in Section 1.6 below (see also [BH] and [LT]).

To construct the sequence of lattices Γn, in Section 3 below we introduce a new tool, that of
unfoldings of complexes of groups. The standard uniform lattice Γ0 may be viewed as the funda-
mental group of a complex of groups G(Y0) over a chamber Y0 of X. By “unfolding” along “sides”
of successive unions of chambers starting from Y0, and defining new local groups appropriately, we
obtain a canonical family of complexes of groups G(Yn) over the combinatorial balls Yn ⊂ X. The
fundamental group Γn of G(Yn) is a uniform lattice in G = Aut(X), and each Γn is a finite index
subgroup of Γ0. We prove these properties of unfoldings inductively by combinatorial arguments,
involving careful consideration of the local structure of X, together with facts about Coxeter groups,
and the definition of a building as a chamber system equipped with a W–distance function (see
Section 1.4).
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The other main tool in our proof of the Density Theorem is that of group actions on complexes
of groups, which was introduced by the second author in [T2] (see Section 1.7 below). This theory
is used to construct the sequence of lattices Γ′n, containing suitable elements γn, as fundamental
groups of complexes of groups H(Zn), such that there are finite-sheeted coverings G(Yn) → H(Zn).

We describe in Section 4.2 below how our two main tools, unfoldings and group actions on com-
plexes of groups, may be combined to construct many uniform lattices in addition to the sequences
Γn and Γ′n used in the proof of the Density Theorem. To our knowledge, the lattices so obtained are
new. In particular, they do not “come from” tree lattices, unlike the lattices in [T1].

In Section 5 below, we give two further applications of the technique of unfoldings. First, in
Theorem 1 below, we characterize the regular right-angled buildings X such that G = Aut(X) is
nondiscrete (the lattice theory of G is otherwise trivial). As we recall in Section 1.4, the building X
is determined by a right-angled Coxeter system W = 〈S | (st)mst〉, and a family of positive integers
{qs}s∈S which give the number of chambers ofX which meet at common faces. A polyhedral complex
L is said to be rigid if for any g ∈ Aut(L), if g fixes the star in L of a vertex σ of L, then g fixes L.
We prove:

Theorem 1. Let X be a regular right-angled building of type (W,S) and parameters {qs}. Let
G = Aut(X) and let G0 = Aut0(X) be the group of type-preserving automorphisms of X.

(1) If there are s, t ∈ S such that qs > 2 and mst = ∞ then G0 and G are both nondiscrete.
(2) If for all t ∈ S with qt > 2 we have mst = 2 for all s ∈ S − {t}, then G0 is discrete, and G

is nondiscrete if and only if the nerve L of (W,S) is not rigid.

If all qs = 2 then the building X is the Davis complex for (W,S), in which case this result is due to
Haglund–Paulin [HP].

The second main result of Section 5 is:

Theorem 2. Let G be the automorphism group of a regular right-angled building X. Then the action
of G on X is strongly transitive.

A group G is said to act strongly transitively on a building X if it acts transitively on the set of
pairs (φ,Σ), where φ is a chamber of X, and Σ is an apartment of X containing φ (see Section 1.4).
By a theorem of Tits (see [D]), if X is a thick building, it follows that the group G has a BN–pair.
For example, Bourdon’s building Ip,q is thick for all q ≥ 3. Theorem 2 was sketched for the case
X = Ip,q by Bourdon in [B, Proposition 2.3.3].

We would like to thank Indira Chatterji and Benson Farb for advice and encouragement, Kenneth
S. Brown, G. Christopher Hruska, Shahar Mozes, and Boris Okun for helpful conversations, Karen
Vogtmann for comments on this manuscript, and the University of Chicago, MSRI and Cornell
University for supporting travel by both authors.

1. Background

In Section 1.1 we briefly describe the natural topology on G the automorphism group of a locally
finite polyhedral complex X, and characterize uniform lattices in G. We present some necessary
background on Coxeter groups and Davis complexes in Sections 1.2 and 1.3 respectively, then discuss
right-angled buildings in Section 1.4. Next in Section 1.5 we recall the basic theory of complexes
of groups, and use this to construct the standard uniform lattice Γ0 in the automorphism group
of a regular right-angled building X. Finally, Section 1.6 contains necessary definitions and results
from covering theory for complexes of groups, and Section 1.7 recalls the theory of group actions on
complexes of groups.

1.1. Lattices for polyhedral complexes. Let G be a locally compact topological group. Recall
that a discrete subgroup Γ ≤ G is a lattice if Γ\G carries a finite G–invariant measure, and that
Γ ≤ G discrete is a uniform lattice if Γ\G is compact.

Let X be a connected, locally finite polyhedral complex, and let G = Aut(X) be the group of
automorphisms, or cellular isometries, of X. Then G, equipped with the compact-open topology, is
a locally compact topological group. A countable neighborhood basis of the identity in G consists of



4 ANGELA KUBENA BARNHILL AND ANNE THOMAS

automorphisms which fix larger and larger combinatorial balls in X. A subgroup Γ of G is discrete
if and only if, for each cell σ of X, the stabilizer Γσ is a finite group. Using a normalization of the
Haar measure on G due to Serre [S], and by the same arguments as for tree lattices (see Chapter 1
of [BL]), if G\X is compact, then Γ ≤ G is a uniform lattice in G exactly when Γ acts cocompactly
on X with finite cell stabilizers.

1.2. Coxeter groups. We recall some necessary definitions and results. Our notation and termi-
nology in this section mostly follow Davis [D].

A Coxeter group is a group W with a finite generating set S and presentation of the form

W = 〈s ∈ S | (st)mst = 1〉
where mss = 1 for all s ∈ S, and if s 6= t then mst is an integer ≥ 2 or mst = ∞, meaning that there
is no relation between s and t. The pair (W,S) is called a Coxeter system.

Given a Coxeter system (W,S), a word in the generating set S is a finite sequence

s = (s1, . . . , sk)

where each si ∈ S. We denote by w(s) = s1 · · · sk the corresponding element of W . A word s
is said to be reduced if the element w(s) cannot be represented by any shorter word. Tits proved
that a word s is reduced if and only if it cannot be shortened by a sequence of operations of either
deleting a subword of the form (s, s), or replacing an alternating subword (s, t, . . .) of length mst by
the alternating word (t, s, . . .) of the same length mst (see Theorem 3.4.2 [D]). In particular, this
implies:

Lemma 3. Any word in S representing some w ∈W must involve all of the elements of S that are
used in any reduced word representing w.

A Coxeter group W , or a Coxeter system (W,S), is said to be right-angled if all mst with s 6= t are
equal to 2 or ∞. That is, in a right-angled Coxeter system, every pair of generators either commutes
or has no relation.

Examples 1. Many later definitions and constructions will be illustrated by the following examples
of right-angled Coxeter groups.

(1) Let W be the free product of n copies of Z/2Z. Then W is a right-angled Coxeter group
with presentation

W = 〈s1, . . . , sn | s2i = 1〉.
In particular, if n = 2, then W is the infinite dihedral group.

(2) Let W be the free product of Z/2Z with the direct product (Z/2Z × Z/2Z). Then W is a
right-angled Coxeter group with presentation

W = 〈s1, s2, s3 | s2i = 1, (s2s3)2 = 1〉.
(3) Let W be the group generated by reflections in the sides of a regular right-angled hyperbolic

hexagon. Then W is a right-angled Coxeter group with presentation

W = 〈s1, . . . , s6 | s2i = 1, (sisi+1)2 = 1〉
where the subscripts of the si are numbered cyclically.

1.3. Davis complexes. Let (W,S) be a Coxeter system (not necessarily right-angled). In this
section we recall the construction of the Davis complex Σ for (W,S), mostly following [D].

For each subset T of S, we denote by WT the special subgroup of W generated by the elements
s ∈ T . By convention, W∅ is the trivial group. A subset T of S is spherical if WT is finite, in which
case we say that WT is a spherical special subgroup. Denote by S the set of all spherical subsets of S.
Then S is partially ordered by inclusion. The poset S>∅ is an abstract simplicial complex, denoted
by L, and called the nerve of (W,S). In other words, the vertex set of L is S, and a nonempty set
T of vertices spans a simplex σT in L if and only if T is spherical.

Examples 2. The nerves L of Examples 1 above are as follows.
(1) The n vertices {s1}, . . . , {sn}, with no higher-dimensional simplices.
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(2) A vertex {s1}, and an edge joining the vertices {s2} and {s3}.
(3) A hexagon with vertices labeled cyclically {s1}, . . . , {s6}.

We denote by K the geometric realization of the poset S. Equivalently, K is the cone on the
barycentric subdivision of the nerve L of (W,S). Note that K is compact and contractible, since it
is the cone on a finite simplicial complex. Each vertex of K has type a spherical subset of S, with
the cone point having type ∅.

For each s ∈ S let Ks be the union of the (closed) simplices in K which contain the vertex {s}
but not the cone point. In other words, Ks is the closed star of the vertex {s} in the barycentric
subdivision of L. Note that Ks and Kt intersect if and only if mst is finite. The family (Ks)s∈S is a
mirror structure on K, meaning that (Ks)s∈S is a family of closed subspaces of K, called mirrors.
We call Ks the s–mirror of K.

Lemma 4 (Lemma 7.2.5, [D]). Let (W,S) be a Coxeter system and let K be the geometric realization
of the poset S of spherical subsets.

(1) For each spherical subset T , the intersection of mirrors ∩s∈TKs is contractible.
(2) For each nonempty spherical subset T , the union of mirrors ∪s∈TKs is contractible.

For any spherical subset T of S, we call the intersection of mirrors ∩s∈TKs a face of K, and the
center of this face is the unique vertex of K of type T . In particular, the center of the s–mirror Ks

is the vertex {s}.
For each x ∈ K, put

S(x) := {s ∈ S | x ∈ Ks}.
Now define an equivalence relation ∼ on the set W ×K by (w, x) ∼ (w′, x′) if and only if x = x′ and
w−1w′ ∈WS(x). The Davis complex Σ for (W,S) is then the quotient space:

Σ := (W ×K)/ ∼ .

The types of vertices of K induce types of vertices of Σ, and the natural W–action on W × K
descends to a type-preserving action on Σ.

We identify K with the subcomplex (1,K) of Σ. Then K, as well as any one of its translates
by an element of W , will be called a chamber of Σ. The subcomplexes Ks of K, or any of their
translates by elements of W , will be called the mirrors of Σ, and similarly for faces.

Examples 3. For Examples 1 above:
(1) As shown in Figure 2 for n = 3, the chamber K is the cone on n vertices. The Davis complex

Σ is the barycentric subdivision of the n–regular tree, and its mirrors are the midpoints of
the edges of this tree. If n = 2 then Σ is homeomorphic to the real line.

{s3}

K = Σ =

{s1}

{s2}

Figure 2. The chamber K and the Davis complex Σ for W the free product of
n = 3 copies of Z/2Z.

(2) The Davis complex Σ for this example is sketched in Figure 1.2 of [D].
(3) The Davis complex Σ for this example is homeomorphic to the barycentric subdivision of

the tesselation of the hyperbolic plane by regular right-angled hexagons. The mirrors are
the edges of these hexagons.
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1.4. Right-angled buildings. We first discuss general chamber systems and buildings in Sec-
tion 1.4.1, before specializing to the right-angled case in Section 1.4.2. The local structure of right-
angled buildings, which is important for our proofs, is described in Section 1.4.3. Again, we mostly
follow Davis [D].

1.4.1. Chamber systems and buildings. A chamber system over a set S is a set Φ of chambers together
with a family of equivalence relations on Φ indexed by the elements of S. For each s ∈ s, two chambers
are s–equivalent if they are equivalent via the equivalence relation corresponding to s, they are s–
adjacent if they are s–equivalent and not equal. Two chambers are adjacent if they are s–adjacent
for some s ∈ S. A gallery in Φ is a finite sequence of chambers (φ0, . . . , φk) such that φj−1 is adjacent
to φj for 1 ≤ j ≤ k. A chamber system is gallery-connected if any two chambers can be connected by
a gallery. The type of a gallery (φ0, . . . , φk) is the word s = (s1, . . . , sk), where φj−1 is sj–adjacent
to φj for 1 ≤ j ≤ k, and a gallery is minimal if its type is a reduced word.

Definition 5. For (W,S) a Coxeter system, the abstract Coxeter complex W of W is the chamber
system with chambers the elements of W , and two chambers w and w′ being s–adjacent, for s ∈ S,
if and only if w′ = ws.

Definition 6. Suppose that (W,S) is a Coxeter system. A building of type (W,S) is a chamber
system Φ over S such that:

(1) for all s ∈ S, each s–equivalence class contains at least two chambers; and
(2) there exists a W–valued distance function δ : Φ × Φ → W , that is, given a reduced word

s = (s1, . . . , sk), chambers φ and φ′ can be joined by a gallery of type s in Φ if and only if
δ(φ, φ′) = w(s) = s1 · · · sk.

Let Φ be a building of type (W,S). Then Φ is spherical if W is finite. The building Φ is thick if
for all s ∈ S, each s–equivalence class of chambers contains at least three elements; a building which
is not thick is thin. The building Φ is regular if, for all s ∈ S, each s–equivalence class of chambers
has the same number of elements.

Example 4. The abstract Coxeter complex W of W is a regular thin building, with W–distance
function δ given by δ(w,w′) = w−1w′.

Suppose Φ is a building of type (W,S). An apartment of Φ is an image of the abstract Coxeter
complex W, defined above, under a map W → Φ which preserves W–distances. The building Φ has
a geometric realization, which we denote by X, and by abuse of notation we call X a building of type
(W,S) as well. By definition of the geometric realization, for each chamber of Φ, the corresponding
subcomplex ofX is isomorphic to the chamberK defined in Section 1.3 above, and for each apartment
of Φ, the corresponding subcomplex of the building X is isomorphic to the Davis complex Σ for
(W,S). The copies of Σ in X are referred to as the apartments of X, and the copies of K in X
are the chambers of X. Note that each vertex of X thus inherits a type T a spherical subset of S.
The copies of Ks, s ∈ S, in X are the mirrors of X, so that two chambers in X are s–adjacent if
and only if their intersection is a mirror of type s. The faces of X are its subcomplexes which are
intersections of mirrors. Each face has type T a spherical subset of S, and a face of type T contains
a unique vertex of type T , called its center.

The building X may be metrized as follows:

Theorem 7 (Davis, Moussong, cf. Theorems 18.3.1 and 18.3.9 of [D]). Let (W,S) be a Coxeter
system and let X be a building of type (W,S).

(1) The building X may be equipped with a piecewise Euclidean structure, such that X is a
complete CAT(0) space.

(2) The building X can be equipped with a piecewise hyperbolic structure which is CAT(−1) if
and only if (W,S) satisfies Moussong’s Hyperbolicity Condition:
(a) there is no subset T ⊂ S such that WT is a Euclidean reflection group of dimension

≥ 2; and
(b) there is no subset T ⊂ S such that WT = WT ′ ×WT ′′ for nonspherical subsets T ′, T ′′ ⊂

S.
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Unless stated otherwise, we equip buildings X with the CAT(0) metric of Part (1) of Theorem 7.

1.4.2. Right-angled buildings. In this section we specialize to right-angled buildings. A building X of
type (W,S) is right-angled if (W,S) is a right-angled Coxeter system. Note that part (2) of Theorem 7
above implies that a piecewise hyperbolic CAT(−1) structure exists for a right-angled building X if
and only if the nerve L has no squares without diagonals (“satisfies the no–2 condition”).

The following result classifies regular right-angled buildings.

Theorem 8 (Proposition 1.2, [HP]). Let (W,S) be a right-angled Coxeter system and {qs}s∈S a
family of cardinalities. Then, up to isometry, there exists a unique building X of type (W,S), such
that for all s ∈ S, each s–equivalence class of X contains qs chambers.

In the 2–dimensional case, this result is due to Bourdon [B]. According to [HP], Theorem 8 was
proved by M. Globus, and was known also to M. Davis, T. Januszkiewicz, and J. Świ ↪atkowski. We
will refer to a right-angled building X as in Theorem 8 as a building of type (W,S) and parameters
{qs}. In Section 1.5 below, we recall a construction, appearing in Haglund–Paulin [HP], of regular
right-angled buildings X as universal covers of complexes of groups.

The following definition will be important for our proofs below.

Definition 9. Let X be a building of type (W,S). Fix K some chamber of X. We define the
combinatorial ball Yn of radius n in X inductively as follows. For n = 0, Y0 = K, and for n ≥ 1,
Yn is the union of Yn−1 with the set of chambers of X which have nonempty intersection with Yn−1.

Examples 5. (1) Let (W,S) be the free product of n copies of Z/2Z, as in part (1) of Examples 1
above. For 1 ≤ i ≤ n let qi = qsi ≥ 2 be a positive integer. Then the right-angled building
X of type (W,S) and parameters {qi} is a locally finite tree. Each mirror Ki = Ksi is a
vertex of X of valence qi. The remaining vertices of X are the centers of chambers and have
valence n. If n = 2 then X is the barycentric subdivision of the (q1, q2)–biregular tree, and
each chamber of X is the barycentric subdivision of an edge of this tree. Figure 3 depicts
the combinatorial ball Y2 of radius 2 in X for an example with n = 3.

K1

K1

K1

K2K2

K3

K3

K1

K3

K3

K1

K1

K2

K2

K3

Figure 3. The combinatorial ball Y2 of radius 2, and mirrors contained in it, in
the building X of type (W,S) and parameters q1 = 2, q2 = 4 and q3 = 3, where W
is the free product of n = 3 copies of Z/2Z.
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(2) In low dimensions, there are right-angled buildings X which are also hyperbolic buildings,
meaning that their apartments are isometric to a (fixed) tesselation of hyperbolic space Hn.
For this, let P be a compact, convex, right-angled polyhedron in Hn; such polyhedra P
exist only for n ≤ 4, and this bound is sharp (Potyagailo–Vinberg [PV]). Let (W,S) be
the right-angled Coxeter system generated by reflections in the codimension one faces of P ,
and let X be a building of type (W,S). By Theorem 7 above, X may be equipped with a
piecewise hyperbolic structure which is CAT(−1). Moreover, in this metric the apartments
Σ of X are the barycentric subdivision of the tesselation of Hn by copies of P . Thus X is
a hyperbolic building. For example, Bourdon’s building Ip,q (see [B]) is of type (W,S) and
parameters {qs}, where W is generated by reflections in the sides of P a regular right-angled
hyperbolic p–gon (p ≥ 5), and each qs = q ≥ 2. Figure 4 below shows the combinatorial ball
Y1 of radius 1 in X = I6,3.

Figure 4. The combinatorial ball Y1 of radius 1 in Bourdon’s building I6,3.

1.4.3. Local structure of right-angled buildings. In our proofs below, we will rely on the following
observations concerning the links of vertices in right-angled buildings.

Let X be a regular right-angled building of type (W,S) and parameters {qs}s∈S . Suppose σ is
a vertex of X, of type a maximal spherical subset T of S. Then the link of σ in X, denoted by
Lkσ(X), is the (barycentric subdivision of the) join of |T | sets of points, denoted Vt, of cardinalities
|Vt| = qt for each t ∈ T . For example, the link of each vertex of Bourdon’s building Ip,q is the
complete bipartite graph Kq,q, which may be thought of as the join of 2 sets of q points. In fact,
Lkσ(X) is a (reducible) spherical building, of type (WT , T ).

Now consider φ a chamber of X such that the vertex σ is in φ. Denote by kφ the subcomplex of
the link Lkσ(X) corresponding to simplices in X which are contained in the chamber φ. For example,
in Bourdon’s building Ip,q, kφ is an edge of the graph Kq,q. By abuse of terminology, we call kφ a
maximal simplex of Lkσ(X). (This is justified by recalling that the chamber φ = K is the cone on
the barycentric subdivision of the nerve L, hence φ is homeomorphic to the cone on L. Moreover,
the maximal simplices of L are correspond precisely to the maximal spherical subsets of S.)

Two chambers φ and φ′ of X containing σ are adjacent in X if and only if the corresponding
maximal simplices kφ and kφ′ in Lkσ(X) share a codimension one face in Lkσ(X). Hence, a gallery
of chambers in X, each chamber of which contains σ, corresponds precisely to a gallery of maximal
simplices in the spherical building Lkσ(X).

1.5. Basic theory of complexes of groups. In this section we sketch the theory of complexes
of groups, due to Haefliger [BH]. The sequence of examples in this section constructs the regular
right-angled building X of Theorem 8 above, as well as the standard uniform lattice Γ0 in Aut(X).
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We postpone the definitions of morphisms and coverings of complexes of groups to Section 1.6 below.
All references to [BH] in this section are to Chapter III.C.

In the literature, a complex of groupsG(Y ) is constructed over a space or set Y belonging to various
different categories, including simplicial complexes, polyhedral complexes, or, most generally, scwols
(small categories without loops):

Definition 10. A scwol X is the disjoint union of a set V (X) of vertices and a set E(X) of edges,
with each edge a oriented from its initial vertex i(a) to its terminal vertex t(a), such that i(a) 6= t(a).
A pair of edges (a, b) is composable if i(a) = t(b), in which case there is a third edge ab, called the
composition of a and b, such that i(ab) = i(b), t(ab) = t(a), and if i(a) = t(b) and i(b) = t(c) then
(ab)c = a(bc) (associativity).

We will always assume scwols are connected (see Section 1.1, [BH]).

Definition 11. An action of a group G on a scwol X is a homomorphism from G to the group of
automorphisms of the scwol (see Section 1.5 of [BH]) such that for all a ∈ E(X) and all g ∈ G:

(1) g.i(a) 6= t(a); and
(2) if g.i(a) = i(a) then g.a = a.

Suppose X is a right-angled building of type (W,S), as defined in Section 1.4 above. Recall that
each vertex σ ∈ V (X) has a type T ∈ S. The edges E(X) are then naturally oriented by inclusion
of type. That is, the edge a joins a vertex σ of type T to a vertex σ′ of type T ′, with i(a) = σ and
t(a) = σ′, if and only if T ( T ′. It is clear that the sets V (X) and E(X) satisfy the properties of a
scwol. Moreover, if Y is a subcomplex of X, then the sets V (Y ) and E(Y ) also satisfy Definition 10
above. By abuse of notation, we identify X and Y with the associated scwols. Note that a group
of type-preserving automorphisms of X acts according to Definition 11, and that if G = Aut(X) is
not type-preserving we may replace X by a barycentric subdivision, with suitably oriented edges, on
which G does act according to Definition 11.

We now define complexes of groups over scwols.

Definition 12. A complex of groups G(Y ) = (Gσ, ψa, ga,b) over a scwol Y is given by:
(1) a group Gσ for each σ ∈ V (Y ), called the local group at σ;
(2) a monomorphism ψa : Gi(a) → Gt(a) along the edge a for each a ∈ E(Y ); and
(3) for each pair of composable edges, a twisting element ga,b ∈ Gt(a), such that

Ad(ga,b) ◦ ψab = ψa ◦ ψb
where Ad(ga,b) is conjugation by ga,b in Gt(a), and for each triple of composable edges a, b, c
the following cocycle condition holds:

ψa(gb,c) ga,bc = ga,b gab,c.

A complex of groups is simple if each ga,b is trivial.
Let X be a regular right-angled building of type (W,S) and parameters {qs}s∈S , where each qs

is an integer qs ≥ 2. We construct X and the standard uniform lattice Γ0 < Aut(X) using a simple
complex of groups GX(Y0), which we now define.

Definition 13 (Compare [HP], p. 160). Let K = Y0 be the cone on the barycentric subdivision of
the nerve L of (W,S) (see Section 1.3 above). The simple complex of groups GX(Y0) over Y0 is
defined as follows. For each s ∈ S let Gs be the cyclic group Z/qsZ. The local group at the vertex of
type ∅ of Y0 is the trivial group. The local group at the vertex of type T a nonempty spherical subset
of S is defined to be the direct product

GT :=
∏

s∈T
Gs.

All monomorphisms between local groups are natural inclusions, and all ga,b are trivial.

Figures 5 and 6 below show this complex of groups for the right-angled Coxeter systems in Examples 1
above.
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G2 × G3

G2

G3

1
G11

G1
∼= Z/q1Z G3

∼= Z/q3Z

G2
∼= Z/q2Z

Figure 5. The complex of groups GX(Y0) when W is as in parts (1) (on the left)
and (2) (on the right) of Examples 1 above. In both figures, Gi = Gqi .

{4, 5}

G3 × G4{1, 2}

{1, 6}

{6}

{5, 6}

{2, 3}

{3, 4}

G1

G1 × G2

G3

G4 × G5

G5 × G6

{2}

{5}

{4}

{3}

{1}

G1 × G6

G2 × G3

G41

G2

G6 G5

∅

Figure 6. Types of vertices in Y0, and the complex of groupsGX(Y0), for Bourdon’s
building I6,q. Each group Gi is isomorphic to Z/qZ.

Suppose a group G acts on a scwol X, as in Definition 11 above. Then the quotient Y = G\X
also has the structure of a scwol, and the action of G on X induces a complex of groups G(Y ) over
Y , as follows. Let p : X → Y be the natural projection. For each σ ∈ V (Y ), choose a lift σ ∈ V (X)
with p(σ) = σ. The local group Gσ of G(Y ) is then defined to be the the stabilizer of σ in G, and
the monomorphisms ψa and the elements ga,b are defined using further choices. A complex of groups
is developable if it is isomorphic (see Definition 14 below) to a complex of groups G(Y ) induced by
such an action.

Complexes of groups, unlike graphs of groups, are not in general developable. We now discuss
a sufficient condition for developability. Let Y be a scwol equipped with the metric structure of a
polyhedral complex. An example is Y a subcomplex of a right-angled building X. Each vertex σ
of Y has a local development in G(Y ), which is, roughly speaking, a simplicial complex determined
combinatorially by the cosets in Gσ of the local groups at vertices adjacent to σ. The local group Gσ
acts naturally on the local development at σ, with quotient the star of σ in Y . (The links of local
developments for the complex of groups GX(Y0) are described in the next example.) The metric
on Y induces a metric on the local development at σ. We say that G(Y ) has nonpositive curvature
if, for every σ ∈ V (Y ), this induced metric on the local development at σ is locally CAT(0). A
nonpositively curved complex of groups G(Y ) is developable (Theorem 4.17, [BH]).

Example 6. We continue the notation of Definition 13 above, and show that GX(Y0) is nonpositively
curved and thus developable. By Section 4.20 of [BH], it is enough to check that the local development
at each vertex σ of Y0, of type T a maximal spherical subset of S, is locally CAT(0). By Gromov’s
Link Condition (see [BH]), for this, it suffices to show that the link of the local development at σ
in GX(Y0) is CAT(1). Now, for each proper subset T ′ of T , there is a unique vertex of Y0 adjacent
to σ of type T ′. In particular, for each t ∈ T , there is a unique vertex of Y0 adjacent to σ of type
T −{t}. It follows, by the construction of GX(Y0) and Section 4.20 of [BH], that the link of the local
development at σ is the join of |T | sets of points, of respective cardinalities |GT /GT−{t}| = qt. That
is, the link of the local development at σ is the same as the link of a vertex of type T in the building
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X. As described in Section 1.4.3 above, the vertices of type T in X have links which are spherical
buildings. So these links are CAT(1). Hence GX(Y0) is nonpositively curved, and thus developable.

The fundamental group π1(G(Y )) of a complex of groups G(Y ) is defined so that if G(Y ) is a
simple complex of groups and Y is simply connected, then π1(G(Y )) is isomorphic to the direct limit
of the family of groups Gσ and monomorphisms ψa.

Example 7. Since the chamber Y0 = K is contractible, the fundamental group Γ0 := π1(GX(Y0)) is
the graph product of the finite cyclic groups (Gs)s∈S . That is, Γ0 is the quotient of the free product
of the groups (Gs)s∈S by the normal subgroup generated by all commutators of the form [gs, gt] with
gs ∈ Gs, gt ∈ Gt and mst = 2.

If G(Y ) is a developable complex of groups, then it has a universal cover G̃(Y ). This is a
connected, simply-connected scwol, equipped with an action of π1(G(Y )), so that the complex of
groups induced by the action of the fundamental group on the universal cover is isomorphic to G(Y ).

For each vertex σ of Y , the star of any lift of σ in G̃(Y ) is isomorphic to the local development of
G(Y ) at σ.

Example 8. By the discussion in Example 6 above, the complex of groups GX(Y0) is developable.
By abuse of notation, denote by X the universal cover of GX(Y0). Since the vertices of Y0 are
equipped with types T ∈ S, the complex of groups GX(Y0) is of type (W,S) in the sense defined in
Section 1.5 of Gaboriau–Paulin [GP]. As discussed above, the links of vertices of Y0 in their local
development are CAT(1) spherical buildings. By an easy generalization of Theorem 2.1 of [GP], it
follows that the universal cover X is a building of type (W,S). (Section 3.3 of [GP] treats the case
of right-angled hyperbolic buildings.) By construction, the building X is regular, with each mirror
of type s contained in exactly qs = |Gs| distinct chambers. Hence by Theorem 8 above, X is the
unique regular right-angled building of type (W,S) and parameters {qs}.

Let G(Y ) be a developable complex of groups over Y , with universal cover X and fundamental
group Γ. We say that G(Y ) is faithful if the action of Γ on X is faithful, in which case Γ may be
identified with a subgroup of Aut(X). If X is locally finite, then with the compact-open topology
on Aut(X), by the discussion in Section 1.1 above the subgroup Γ is discrete if and only if all local
groups of G(Y ) are finite, and a discrete subgroup Γ is a uniform lattice in Aut(X) if and only if the
quotient Y ∼= Γ\X is compact.

Example 9. Since the local group in GX(Y0) at the vertex of type ∅ of Y0 is trivial, the fundamental
group Γ0 acts faithfully on the universal cover X. Since GX(Y0) is a complex of finite groups, Γ0 is
discrete, and since Y0 is compact, Γ0 is a uniform lattice in Aut(X).

We call Γ0 the standard uniform lattice.

1.6. Covering theory for complexes of groups. In this section we state necessary definitions
and results from covering theory for complexes of groups. As in Section 1.5 above, all references
to [BH] are to Chapter III.C.

We first recall the definitions of morphisms and coverings of complexes of groups. In each of the
definitions below, Y and Z are scwols, G(Y ) = (Gσ, ψa) is a simple complex of groups over Y , and
H(Z) = (Hτ , θa, ha,b) is a complex of groups over Z. (We will only need morphisms and coverings
from simple complexes of groups G(Y ).)

Definition 14. Let f : Y → Z be a morphism of scwols (see Section 1.5 of [BH]). A morphism
Φ : G(Y ) → H(Z) over f consists of:

(1) a homomorphism φσ : Gσ → Hf(σ) for each σ ∈ V (Y ), called the local map at σ; and
(2) an element φ(a) ∈ Ht(f(a)) for each a ∈ E(Y ), such that the following diagram commutes

Gi(a)

φi(a)

²²

ψa // Gt(a)

φt(a)

²²
Hf(i(a))

Ad(φ(a))◦θf(a) // Hf(t(a))
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and for all pairs of composable edges (a, b) in E(Y ),

φ(ab) = φ(a)ψa(φ(b))hf(a),f(b).

A morphism is simple if each element φ(a) is trivial. If f is an isomorphism of scwols, and each φσ
an isomorphism of the local groups, then Φ is an isomorphism of complexes of groups.

Definition 15. A morphism Φ : G(Y ) → H(Z) over f : Y → Z is a covering of complexes of
groups if further:

(1) each φσ is injective; and
(2) for each σ ∈ V (Y ) and b ∈ E(Z) such that t(b) = f(σ), the map of cosets




∐

a∈f−1(b)
t(a)=σ

Gσ/ψa(Gi(a))


 → Hf(σ)/θb(Hi(b))

induced by g 7→ φσ(g)φ(a) is a bijection.

We will need the following general result on functoriality of coverings, which is implicit in [BH],
and stated and proved explicitly in [LT].

Theorem 16. Let G(Y ) and H(Z) be complexes of groups over scwols Y and Z and let Φ : G(Y ) →
H(Z) be a covering of complexes of groups. If G(Y ) has nonpositive curvature (hence is devel-
opable) then H(Z) has nonpositive curvature, hence H(Z) is developable. Moreover, Φ induces a
monomorphism of fundamental groups

η : π1(G(Y )) → π1(H(Z))

and an η–equivariant isomorphism of universal covers

G̃(Y ) → H̃(Z).

See [LT] for the definition of an n–sheeted covering of complexes of groups, and the result that
if G(Y ) → H(Z) is an n–sheeted covering then the monomorphism η : π1(G(Y )) → π1(H(Z)) in
Theorem 16 above embeds π1(G(Y )) as an index n subgroup of π1(H(Z)).

1.7. Group actions on complexes of groups. The theory of group actions on complexes of
groups was introduced in [T2]. Let G(Y ) be a complex of groups. An automorphism of G(Y ) is
an isomorphism Φ : G(Y ) → G(Y ). The set of all automorphisms of G(Y ) forms a group under
composition, denoted Aut(G(Y )). A group H acts on G(Y ) if there is a homomorphism ρ : H →
Aut(G(Y )). If H acts on G(Y ), then in particular H acts on the scwol Y in the sense of Definition 11
above, so we may say that the H–action on Y extends to an action on G(Y ). Denote by Φh the
automorphism ofG(Y ) induced by h ∈ H. We say that theH–action on G(Y ) is by simple morphisms
if each Φh is a simple morphism.

Theorem 17 (Thomas, Theorem 3.1 of [T2] and its proof). Let G(Y ) be a simple complex of groups
over a connected scwol Y . Suppose that the action of a group H on Y extends to an action by
simple morphisms on G(Y ). Then the H–action on G(Y ) induces a complex of groups H(Z) over
Z = H\Y , well-defined up to isomorphism of complexes of groups, such that:

• if G(Y ) is faithful and the H–action on Y is faithful then H(Z) is faithful;
• there is a covering of complexes of groups G(Y ) → H(Z); and
• if H(Z) is developable and H fixes a point of Y , then H ↪→ π1(H(Z)).

In particular, if the covering G(Y ) → H(Z) is finite-sheeted, as occurs for example if G(Y ) is a
complex of finite groups over a finite scwol Y , then π1(G(Y )) is a finite index subgroup of π1(H(Z)).
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2. Discreteness of normalizers

Let G be the group of automorphisms of a locally finite polyhedral complex X (not necessarily
a building), and suppose G\X is compact. In this section we show that for any uniform lattice Γ
of G, the normalizer NG(Γ) is discrete. Recall from Section 1.1 above that a uniform lattice Γ in
G = Aut(X) acts cocompactly on X, and fix a compact fundamental domain D for this action.

Lemma 18. The centralizer of Γ in G, denoted ZG(Γ), is discrete in G.

Proof. Suppose otherwise. Then there is a sequence gk → IdX with IdX 6= gk ∈ ZG(Γ). Since
D is compact, it follows that for k sufficiently large gk|D = IdD. Let x ∈ X. As D is a Γ–
fundamental domain, x ∈ γD for some γ ∈ Γ, that is, γ−1x ∈ D. It follows that gk(γ−1x) = γ−1x,
so γ−1gkx = γ−1x as gk ∈ ZG(Γ). Thus gkx = x for all x ∈ X so gk = IdX , a contradiction. ¤
Proposition 19. The uniform lattice Γ is a finite index subgroup of its normalizer NG(Γ). In
particular, NG(Γ) is discrete in G.

Proof. By Lemma 18, it follows directly from Proposition 6.2(c) of [BL] that NG(Γ) is also discrete.
Since Γ < NG(Γ), the group NG(Γ) is also a uniform lattice in G. The ratio of covolumes of Γ and
NG(Γ) gives the index of Γ in NG(Γ). In particular, this index is finite. ¤

We now sketch an alternative argument for NG(Γ) being discrete, which was suggested to us by
G. Christopher Hruska, and uses the theory of group actions on complexes of groups (Section 1.7
above). A uniform lattice Γ of G = Aut(X) is the fundamental group of a complex of groups G(Y ),
where Y = Γ\X is compact and the local groups of G(Y ) are finite. Thus the group Aut(G(Y ))
of automorphisms of G(Y ) is a finite group. Any element g ∈ NG(Γ) induces an automorphism of
Y , and this automorphism extends to an action on the complex of groups G(Y ) (not necessarily by
simple morphisms). The induced action of g on G(Y ) is trivial if and only if g ∈ Γ, so we have an
isomorphism NG(Γ)/Γ → Aut(G(Y )), hence NG(Γ) is discrete.

3. Unfoldings

We now introduce the technique of “unfolding”, which will be used in our proofs in Sections 4
and 5 below. Let X be a regular right-angled building. We first, in Section 3.1, define clumps, which
are a class of subcomplexes of X that includes the combinatorial balls Yn ⊂ X. For each clump
C we then construct a canonical complex of groups GX(C) over C, and we define a clump C to be
admissible if GX(C) is developable with universal cover X. In Section 3.2, we define the unfolding of
a clump C. The main result of this section is Proposition 27, which shows that if C is admissible then
any unfolding of C is also admissible. Finally, in Section 3.3, we prove in Proposition 29 that if C is
a clump obtained by a finite sequence of unfoldings of the chamber Y0, then there is a covering of
complexes of groups GX(C) → GX(Y0). As a corollary, we obtain a sequence Γn of uniform lattices
in G = Aut(X), such that each Γn has fundamental domain Yn, and is of finite index in the standard
uniform lattice Γ0.

3.1. Complexes of groups over clumps. Let X be a regular right-angled building of type (W,S).
In this section, we define clumps, and for each clump C construct a canonical complex of groupsGX(C)
over C.

We will say that two mirrors of X are adjacent if the face which is their intersection has type T
with |T | = 2. Since (W,S) is right-angled, it is immediate that:

Lemma 20. If two adjacent mirrors are of the same type, then they are contained in adjacent
chambers. If two adjacent mirrors are of different types, then there is a chamber of X which contains
both of these mirrors.

Definition 21. Let X be a regular right-angled building of type (W,S).
• A clump in X is a gallery-connected union of chambers C such that at least one mirror of C

is contained in only one chamber of C.
• The boundary of a clump C, denoted ∂C, is the union of all the mirrors in C each of which

is contained in only one chamber of C.
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• Two mirrors in ∂C are type-connected if they are of the same type and are equivalent under
the equivalence relation generated by adjacency.

• If C is a clump, then a maximal union of type-connected mirrors in ∂C will be called a type-
connected component or side of C, and the type of the side is the type of the mirrors in the
side.

Let C be a clump in X. For a vertex σ ∈ V (C) of type T , the boundary type of σ is the subset

{s ∈ T | an s–mirror containing σ is contained in ∂C}.
Note that if σ /∈ ∂C, then the boundary type of σ is ∅.

We now define a simple complex of groups GX(C) over C. For s ∈ S, let Gs be the cyclic group
Z/qsZ. For a vertex σ in C, we denote by Gσ(C) the local group at σ in GX(C). Then GX(C) is
defined as follows:

• The local group Gσ(C) at each vertex σ ∈ C − ∂C is trivial.
• The local group Gσ(C) at a vertex σ ∈ ∂C of boundary type T is the direct product

GT :=
∏

s∈T
Gs.

• The monomorphisms ψa are natural inclusions, for each edge a in C.
• The twisting elements ga,b are all trivial.

A clump C is admissible if GX(C) is developable and its universal cover is (isomorphic to) X. If C
is an admissible clump, then we may identify C with a fundamental domain in X for the fundamental
group of GX(C). The preimage or lift of a vertex σ ∈ V (X) in C is the unique vertex σ′ of C which
is in the same orbit as σ under the action of the fundamental group of GX(C) on X. Lifts of edges
and of chambers in C are defined similarly.

Example 10. The chamber Y0 = K is an admissible clump since GX(Y0) is precisely the defining
complex of groups for the standard uniform lattice Γ0 (see Section 1.5 above).

Example 11. Figure 7 below depicts the complex of groups GX(C) over a clump C in the product
X = Tqs × Tqt of regular trees of valences qs and qt respectively. This clump is nonadmissible, since
the link of the vertex σ in the local development of GX(C) at σ is not a complete bipartite graph,
so this link is not the same as the link of a vertex in X.

Gt

Gs × GtGs × Gt

Gt1

1

1 1 1

Gs × Gt

Gs

Gs × GtGt

Gt

Gs Gs

Gt

Gs × Gt

σ

Gs

Gs × Gt Gs

Figure 7. The complex of groups GX(C) with C a nonadmissible clump.
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3.2. Unfolding along a side of an admissible clump. Given an admissible clump, we now define
a process, called unfolding, that yields larger admissible clumps. In particular, as shown in Lemma 22
below, by starting with Y0 and iterating this process, one can obtain each of the combinatorial balls
Yn. The main result of this section is Proposition 27 below, which shows that if C is admissible then
any unfolding of C is admissible. Hence each Yn is admissible.

Let C be an admissible clump in X, and let K be a side of C of type u. The unfolding of C along
K is the clump

UK(C) := C ∪ {chambers φ ⊂ X | the u–mirror of φ is contained in K}.
Lemma 22. The combinatorial ball Yn can be obtained by a sequence of unfoldings beginning with
a base chamber Y0.

Proof. By induction, it suffices to show that the combinatorial ball Yn can be obtained from Yn−1

by a sequence of unfoldings. Let K1, K2, . . . ,Kk denote the sides of Yn−1. First unfold Yn−1 along
K1 to obtain a new clump UK1(Yn−1). For i > 1, if Ki does not intersect K1, then Ki is also a side
of UK1(Yn−1). Otherwise, replace Ki by the side of UK1(Yn−1) containing Ki. Then unfold along the
(potentially extended) side K2. Iterating this process, the clump C obtained by unfolding along each
of the (extended) sides K1,K2, . . . ,Kk is the combinatorial ball Yn. Figure 8 below illustrates this
process for obtaining Y1 from Y0 in Bourdon’s building I6,3. ¤

We say that a vertex σ in a clump C ⊂ X is fully interior if every chamber in X containing σ is
in C. Note that if some qs > 2, then a vertex can be in C −∂C without being fully interior. However,
if C is admissible, then since X is the universal cover of GX(C), but interior local groups in GX(C)
are all trivial, it follows that every interior vertex of C is fully interior.

We call the local development at a vertex σ in GX(C) complete if it is the same as the local
development of a vertex of the same type in GX(Y0), that is, if it is the star of σ in X. We note
that:

Lemma 23. If σ is a vertex of C such that σ is contained in only one chamber of C, then the local
development of GX(C) at σ is complete.

We next prove several lemmas which will be used in this section and in Section 3.3 below.

Lemma 24. Let C be an admissible clump and let σ ∈ ∂C be a vertex of type T and boundary type
T∂C. If s ∈ T∂C, then every mirror of type s in C containing σ is actually contained in ∂C, and there
are exactly

∏

t∈T−T∂C

qt such mirrors.

Proof. Since C is admissible, the local development of GX(C) at σ is complete, so the link Lkσ(C) of
σ in C is the quotient of the link Lkσ(X) of σ in X by the action of the local group GT∂C . Now, as
discussed in Section 1.4.3 above, Lkσ(X) is the join of |T | sets of vertices Vt for t ∈ T , of cardinalities
respectively |Vt| = qt. By construction of GX(C), the action of the local group GT∂C =

∏
t∈T∂C Gt on

Lkσ(X) is transitive on each set Vt with t ∈ T∂C , and is trivial on the sets Vt for t /∈ T∂C . It follows
that Lkσ(C) is also a join of |T | sets of vertices: it is the join of a singleton set for each t ∈ T∂C , along
with the sets Vt for t /∈ T∂C . For each s ∈ T∂C , the faces in Lkσ(C) corresponding to the s–mirrors
of C which contain σ are precisely those faces in Lkσ(C) which are a join of |T | − 1 vertices: the
singleton sets corresponding to each t ∈ T∂C − {s}, together with one vertex from each of the sets
Vt for t /∈ T∂C . There are

∏

t∈T−T∂C

qt such faces. Now, by construction of GX(C), a face ks in Lkσ(C)

of type s ∈ T∂C corresponds to a mirror in the boundary of C if and only if its stabilizer in GT∂C is
nontrivial. Since the action of GT∂C fixes each vertex in the sets Vt for t /∈ T∂C , it follows that all
such mirrors must be on the boundary of C. ¤

Note that Lemma 24 implies that for an admissible clump C, the boundary type of a vertex σ
of type T is actually equal to {s ∈ T | all s–mirrors containing σ are contained in ∂C}. This is not
necessarily true in nonadmissible clumps. For example, in Figure 7, s and t are in the boundary type
of σ even though neither every s– nor every t–mirror in C containing σ is contained in ∂C.
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4. 5.

7.6.

3.2.1.

Figure 8. Unfolding Y0 to get Y1 in I6,3.

Suppose C′ is an admissible clump, that K is a side of C′ of type u, and that C = UK(C′). Let σ
be a vertex in ∂C of type T and let σ′ be the lift of σ to C′.
Lemma 25. If T∂C′ denotes the boundary type of σ′ in C′ and T∂C is the boundary type of σ in C,
then T∂C′ ⊂ T∂C.

Proof. Suppose s ∈ T−T∂C . Then there are at least two s–adjacent chambers in C whose intersection
contains σ. The lifts of these chambers to C′ are then s–adjacent chambers in C′ containing σ′. Hence
s ∈ T − T ′∂C′ . ¤

Let ChK denote the set of chambers in C = UK(C′) that are not also in C′, that is, ChK is the set
of “new chambers” in C. A sheet of chambers in ChK is an equivalence class of chambers under the
equivalence relation generated by S − {u} adjacency in ChK. So two chambers in ChK are in the
same sheet if and only if there is a gallery of chambers in ChK such that the type of each adjacency
is in S − {u}.
Lemma 26. If K is a side of C′ of type u, there are qu − 1 sheets in ChK.

Proof. Choose Ku ⊂ K a mirror of type u. There are qu − 1 chambers in ChK glued along Ku. Call
these chambers φ1, φ2, . . . , φqu−1. Since K is type-connected, any φ ∈ ChK is in the same sheet as
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some φi. Now suppose there are 1 ≤ i 6= j ≤ qu− 1 such that φi and φj are in the same sheet. Then
there is a gallery of chambers in ChK from φi to φj with the type of each consecutive adjacency
being an element of S − {u}. The chambers φi and φj are u–adjacent, since they are both glued
to the mirror Ku, so the sequence (φi, φj) is also a gallery in X. By the definition of a building,
and, more specifically, using the W–valued distance function, it follows that u is equal to a product
of elements in S − {u}. This is a contradiction, since u /∈ WS−{u}. Hence there are exactly qu − 1
sheets in ChK, namely the equivalence classes of each of φ1, φ2, . . . , φqu−1. ¤

We now prove the main result of this section, that unfolding preserves admissibility.

Proposition 27. Let C0 be an admissible clump in X. If C is a clump obtained from C0 through a
finite sequence of unfoldings, then C is an admissible clump.

Proof. By induction, it suffices to show that if C′ is an admissible clump and K is a side of C′ of type
u, then the clump

C = UK(C′)
is admissible, that is, that GX(C) is developable with universal cover X. We will show that for each
maximal spherical subset T ⊂ S, the local development at each vertex σ ∈ C of type T is complete.
It will then follow that GX(C) is developable with universal cover X, by similar arguments to those
used for GX(Y0) in Section 1.5 above.

Let σ be a vertex of C of type T a maximal spherical subset of S. If σ ∈ C′ − K, then the set of
chambers in C containing σ is the same as the set of chambers in C′ containing σ. Thus the local
development of GX(C) at σ is the same as that of GX(C′) at σ, since the neighboring local groups
are also all the same in the two complexes of groups. Hence by induction the local development at
σ is complete.

Thus it remains to consider the local developments of vertices in the side K of C′ and in C − C′.
We consider separately the three cases:

Case 1: σ ∈ C − C′
Case 2: σ ∈ K −K ∩ ∂C
Case 3: σ ∈ K ∩ ∂C

as depicted in Figure 9 below.

Case 1

Case 2

C = UK(C′)

Case 3

C′

K

Figure 9. A clump C′ in I6,3, a side K of C′, the unfolding C = UK(C′), and the
three cases for vertices on the boundary of C used in the proof of Proposition 27.

Case 1: Suppose σ ∈ C −C′ is a vertex of type T , and let T∂C be the boundary type of σ in C.
If σ is contained in only one chamber of C, then by Lemma 23 above we are done. Otherwise,
we first prove:

Lemma 28. Let σ ∈ C − C′ and suppose σ is contained in more than one chamber of C.
Then there is a unique vertex of type T − T∂C adjacent to σ in C.
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Proof. Let φ1 and φ2 be two chambers of C which contain σ. Let φ′1 and φ′2 be the lifts of
φ1 and φ2 respectively to C′, and let σ′ be the lift of σ to C′.

Since C′ is admissible, the link Lkσ′(C′) of σ′ in C′ is a join. Therefore there is a gallery
β′ in C′ from φ′1 to φ′2, of type say t′, such that each chamber of the gallery β′ contains the
vertex σ′. Without loss of generality, we may assume that β′ is a minimal gallery. Thus t′

is a reduced word. The vertex σ′ is of type T , and every chamber in the gallery β′ contains
σ′, hence every letter in the reduced word t′ must be an element of T .

The two chambers φ′1 and φ′2 both contain a mirror in the side K. Since K is a type-
connected component of mirrors of C′, there is also a gallery α′ in C′ from φ′1 to φ′2, such
that every chamber in the gallery α′ contains a mirror in the side K. Let s′ be the type of
the gallery α′. Since K is of type u, it follows that every letter in s′ commutes with u.

We now have two galleries α′ and β′ from φ′1 to φ′2 in C′, of respective types s′ and t′. By
Lemma 3 above, since t′ is reduced, every letter in t′ appears in s′. Hence every letter in t′

is contained in T and commutes with u.
Now every letter in the type t′ of β′ commutes with u, and the initial chamber φ1 of β′

contains a mirror in the side K. So by induction, every chamber in the gallery β′ contains a
mirror in the side K.

We claim that every letter in t′ is actually contained in T−T∂C , where T∂C is the boundary
type of σ in C. So suppose there is some t ∈ T∂C such that t appears in the reduced word
t′. Denote by T∂C′ the boundary type of σ′ in C′. By Lemma 25, we have that T∂C′ ⊂ T∂C .
So assume first that t ∈ T∂C′ . By Lemma 24, since C′ is admissible, every mirror of C′ of
type t which contains σ′ is in the boundary ∂C′. But the gallery β′ is contained in C′, and
every chamber in β′ contains the vertex σ′, so the gallery β′ cannot cross any mirror of type
t which also contains σ′. So t cannot be contained in T∂C′ .

We now have t ∈ T∂C − T∂C′ . Since t ∈ T∂C , by definition there must be some chamber φ̃
of C which contains σ, such that the t–mirror of φ̃ is only contained in one chamber of C. Let
φ be a chamber of X which is t–adjacent to φ̃, and note that φ is not in C. Let φ̃′ be the lift
of φ̃ to C′. Since φ̃ is in ChK, the chambers φ̃ and φ̃′ are u–adjacent. Since C′ is admissible
and t /∈ T∂C′ , there is a chamber say φ̂′ of C′ such that φ̂′ is t–adjacent to φ̃′. Now, the letter
t commutes with u, and φ̃′ has its u–mirror contained in the side K of C′. Hence the chamber
φ̂′ of C′ also has its u–mirror contained in the side K. Consider the gallery (φ, φ̃, φ̃′, φ̂′) in
X. This gallery has type (t, u, t). Since t commutes with u, we have tut = t2u = u. Hence φ
and φ̂′ are u–adjacent. Therefore the u–mirror of φ is contained in K. But this implies that
φ is in C, a contradiction. We conclude that t ∈ T − T∂C , as claimed.

We now have a minimal gallery β′ of type t′ from φ′1 to φ′2 in C′, such that every chamber
in the gallery β′ contains σ′, every chamber in β′ contains a mirror in the side K, and every
letter in t′ is contained in T − T∂C and commutes with u.

Next consider the gallery α from φ1 to φ2 obtained by concatenating the galleries (φ1, φ
′
1),

β′ and (φ′2, φ2). Let s be the type of α. Then since every letter in t′ commutes with u,

w(s) = uw(t′)u = u2w(t′) = w(t′).

Since t′ is a reduced word, it follows that there is a gallery, say β, in X from φ1 to φ2 of type
t′. But every letter in t′ commutes with u, so every chamber in β has a mirror contained in
the side K. Thus the gallery β is contained in C. That is, there is a minimal gallery β from
φ1 to φ2 in C, of type t′, such that every letter in t′ is in T − T∂C .

Let σ1
T−T∂C and σ2

T−T∂C be the vertices of types T − T∂C in φ1 and φ2 respectively. Then
since every letter in t′ is in T − T∂C , every chamber in the gallery β contains σ1

T−T∂C . In
particular, the chamber φ2 contains σ1

T−T∂C . Hence σ1
T−T∂C = σ2

T−T∂C . We conclude that
there is a unique vertex of type T − T∂C adjacent to σ in C. ¤

By Lemma 28 and Lemma 24 above, the link Lkσ(C) is a join of |T − T∂C | sets of vertices
Vt of cardinality qt for each t ∈ T − T∂C , and a singleton {vs} for each s ∈ T∂C . This is
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precisely the quotient of the link Lkσ(X) of σ in X by the group GT∂C . It follows that the
local development of GX(C) at σ is complete.

Case 2: Suppose σ ∈ K − (K ∩ ∂C). Recall that the side K has type u. Let s ∈ S be in the
boundary type of σ in C′. Then there is a mirror Ks ⊂ ∂C′ of type s containing σ. If s 6= u,
then Ks ⊂ ∂C, so σ ∈ ∂C, a contradiction. Hence the boundary type of σ in C′ is {u}. So the
local group Gσ(C′) at σ in GX(C′) is Gu. Note that if the type of σ in X is also {u}, then σ
is the center of a u–mirror in K, so all the chambers in X containing σ are in C, by definition
of the unfolding across K. Suppose then that the type of σ is not {u}. Let σu be a vertex of
type u in C′ that is adjacent to σ. Since σu is in K, the local group at σu in GX(C′) is also
Gu, so in particular has index 1 in the local group Gσ(C′) = Gu. By induction, the local
development at σ in GX(C′) is complete, so it follows that every vertex of type u adjacent
to σ is in C′. That is, every mirror of type u containing σ is in C′. Thus every chamber of
X containing σ is either in C′ or is adjacent to C′ along K. Hence every such chamber is
contained in C, so σ is fully interior in C, and it follows that the local development of GX(C)
at σ is complete.

Case 3: Suppose finally that σ ∈ K∩∂C and let T∂C′ be the boundary type of σ in C′. Then the
boundary type of σ in C is T∂C = T∂C′ − {u} so its local group in GX(C) is GT∂C = GT∂C′/Gu.
Now, since interior vertices of C have trivial local groups in GX(C), the number of chambers
in the local development of GX(C) at σ is

|GT∂C | ·#{chambers in C containing σ}.
By Lemma 24, the number of chambers in the admissible clump C′ containing σ is |GT−T∂C′ |.
So by unfolding, we see that there are precisely qu · |GT−T∂C′ | chambers in C containing σ.
It follows that the number of chambers in the local development of GX(C) at σ is precisely
|GT |. In fact, we can describe the local structure at σ.

Since C′ is admissible, the link Lkσ(C′) of σ in C′ is GT∂C′\Lkσ(X). This is the join of
the sets Vt for t ∈ T − T∂C′ and singletons {vt} for t ∈ T∂C′ . Since the local construction of
C from C′ at σ consists of adding qu − 1 chambers along each u–mirror in K containing σ, it
follows that the link Lkσ(C) of σ in C is as in Lemma 24 above; it is the join of the |T | sets
of vertices Vt for t ∈ T − T∂C and {vt} for t ∈ T∂C . It follows that the local development of
GX(C) at σ is complete, as required.

This completes the proof of Proposition 27. ¤

3.3. Unfoldings of GX(Y0) cover GX(Y0). Recall from Section 1.5 above that the standard uniform
lattice Γ0 is the fundamental group of the complex of groups GX(Y0) over a single chamber Y0. In this
section, we show that uniform lattices obtained via a sequence of unfoldings starting with GX(Y0)
are finite index subgroups of Γ0. The main result is the following proposition:

Proposition 29. Let C0 = Y0, and suppose that, for all r > 0, Cr is a clump obtained by unfolding
Cr−1 along a side Kr−1. Then there is a covering of complexes of groups GX(Cr) → GX(C0). In
particular, the fundamental group of GX(Cr) is a finite index subgroup of Γ0.

By Lemma 22 above, the combinatorial balls Yn ⊂ X can be obtained by a sequence of unfoldings
of Y0. Let Γn be the fundamental group of GX(Yn). Then Γn is a uniform lattice in Aut(X), and
Proposition 29 immediately implies:

Corollary 30. The lattices Γn are finite index subgroups of Γ0.

A key step in the proof of Proposition 29 is provided by Proposition 31 below, the proof of which
is at the end of this section. It will be convenient to think of all groups GT for T ⊂ S as natural
subgroups of the direct product GS :=

∏

s∈S
Gs.

Proposition 31. Let Cr be as in Proposition 29 above. Let p : Cr → C0 be the natural morphism of
scwols which sends a vertex of Cr to the unique vertex of C0 of the same type. Then there is an edge
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labeling
λ : E(Cr) → GS =

∏

s∈S
Gs

satisfying all of the following:
(1) λ(a) ∈ Gp(t(a)) for each a ∈ E(Cr).
(2) For each pair of composable edges (a, b) in E(Cr),

λ(ab) = λ(a)λ(b).

(3) For each σ ∈ V (Cr) and b ∈ E(C0) such that t(b) = p(σ), the map


∐

a∈p−1(b)
t(a)=σ

Gσ(Cr)/Gi(a)(Cr)


 → Gp(σ)(C0)/Gi(b)(C0)

induced by g 7→ gλ(a) is a bijection.

Proof of Proposition 29. We construct a covering Λ : GX(Cr) → GX(C0) over the natural morphism
p : Cr → C0. The local maps λσ are defined to be the identity map (if σ is of type the empty set, or
if the boundary type of σ equals its regular type), or natural inclusions (if σ is an interior vertex of
type T not the empty set, or if the boundary type of σ is a proper subset of its regular type). Note
that the maps λσ so defined are injective; by abuse of notation, we write g for λσ(g).

We now use the edge labeling λ provided by Proposition 31 above to complete the definition of Λ.
Since all local groups are abelian and the local maps λσ are the identity or natural inclusions, the
morphism diagram (see (2) of Definition 14) commutes no matter what the value of the λ(a). From
the properties of λ guaranteed by Proposition 31, it thus follows that Λ is a covering of complexes
of groups. ¤
Proof of Proposition 31. We proceed by induction on r and write λr for the labeling of the edges of
Cr. See Figure 10 for an example. Given an edge a ∈ E(Cr) such that t(a) is a vertex of type T , we
will choose an element λr(a) of GT ⊂ GS . Recall that GT is the direct product of the cyclic groups
Gt for t ∈ T . So, we can think of an element of GT as an ordered |T |–tuple of elements of the cyclic
groups Gt. To define λr(a), it thus suffices to define elements λrt (a) ∈ Gt for each t ∈ T . We will
refer to λrt (a) as the t–component of λr(a).
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Figure 10. The labeling of edges in C0, C1 and C2, where C0 = Y0 is the barycentric
subdivision of a square. Here C1 is obtained from C0 by unfolding along a side of
type s, with Gs = {1, gs}, and C2 is obtained from C1 by unfolding along a side of
type u, with Gu = {1, gu}.

To begin the induction, let a ∈ E(C0), with t(a) of type T . We define λ0(a) to be the identity
element in GT . Properties (1)–(3) in the statement of Proposition 31 then hold trivially for r = 0
with this labeling.
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Suppose now that we inductively have a labeling λr−1 of E(Cr−1) satisfying properties (1)–(3) in
the statement of Proposition 31, and suppose Cr is obtained from Cr−1 by unfolding along a side
K = Kr−1 of type u. We first use the labeling λr−1 to label the edges of Cr−1 ⊂ Cr. That is, for all
a ∈ E(Cr−1), define λr(a) := λr−1(a).

Next, since Cr−1 is admissible, as in the proof of admissibility of unfoldings (Proposition 27
above), we may think of Cr as a subcomplex of the universal cover of GX(Cr−1). For each edge
a ∈ E(Cr) − E(Cr−1) there is then a unique preimage a′ ∈ E(Cr−1). Define λ̂r(a) := λr−1(a′). If
t(a) /∈ K then this is the labeling we choose for a, that is, we set λr(a) := λ̂r(a). If t(a) ∈ K but
i(a) /∈ K, then for s ∈ S − {u} we define the s–component of λr(a) to be the same as that of λ̂r(a).
The u–component λru(a) is then defined as follows.

Choose Ku ⊂ K a mirror of type u and let c ∈ E(Cr−1) be the edge with initial vertex of type
∅ and terminal vertex the center of Ku. Put g = λr−1

u (c) ∈ Gu, that is, g is the u–component of
λr−1(c). There are qu − 1 chambers in ChK glued along Ku. Call these chambers φ1, φ2, . . . , φqu−1.
For each of these new chambers, we assign distinct elements of Gu − {g}, say gi is assigned to φi
for 1 ≤ i ≤ qu − 1, so that Gu − {g} = {gi | 1 ≤ i ≤ qu − 1}. Now, for all edges a ∈ E(φj) such
that t(a) ∈ Ku but i(a) /∈ Ku, we define the u–component λru(a) := gj . We then extend these
u–components along the qu − 1 sheets of new chambers described in Lemma 26 above. That is, for
a chamber φ ∈ ChK in the same sheet as φj , and for a ∈ E(φ) such that t(a) ∈ K but i(a) /∈ K, we
define λru(a) := gj .

We must verify that this is well-defined. Suppose a ∈ E(φ) ∩E(φ′) for some other φ′ ∈ ChK. We
will show that φ and φ′ are in the same sheet. Consider the link Lki(a)(Cr) of i(a) in Cr. As in the
proof of Proposition 27 above, since Cr is admissible, this is the join of sets of vertices. In particular,
the chambers φ and φ′ correspond to maximal simplices kφ and kφ′ in this join. A gallery in Cr from
φ to φ′ and containing i(a) then corresponds to a sequence of maximal simplices in Lki(a)(Cr) from
kφ to kφ′ , which sequentially intersect along codimension one faces, that is, to a gallery in Lki(a)(Cr).
Such a sequence exists since Lki(a)(Cr) is a join. Hence there is a gallery in Cr from φ to φ′ each
chamber of which contains the vertex i(a). Since i(a) /∈ K, this gallery cannot cross K. It follows
that φ and φ′ are in the same sheet, as required. Thus our assignment of the u–component of λr(a),
for edges a ∈ ChK with t(a) ∈ K but i(a) /∈ K, is well-defined.

This completes the definition of the labeling λr. We now verify that λr satisfies properties (1)–(3)
in the statement of Proposition 31.

For (1), suppose a ∈ E(Cr). That λr(a) ∈ Gp(t(a)) follows immediately from the above construc-
tion.

For (2), for each pair of composable edges (a, b) in E(Cr) we must show that λr(ab) = λr(a)λr(b).
If both a and b are in E(Cr−1), then this follows by induction. Since pairs of composable edges occur
in chambers, the only other possibility is that a and b are edges in the same chamber in ChK. It
suffices to check that λrs(ab) = λrs(a)λ

r
s(b) for all s ∈ S. Let a′ and b′ be the preimages of a and b

in E(Cr−1). By induction, λr−1(a′b′) = λr−1(a′)λr−1(b′). The only possible difference between the
labels λr(a) and λr−1(a′) is in the u–component, and similarly for b and ab (recall that the side K
along which we unfolded is of type u). Hence it suffices to show that λru(ab) = λru(a)λ

r
u(b).

By construction of λr, the only edges whose labels have different u–components from those of
their preimages are edges with terminal but not initial vertex in K. For these edges, we have shown
that the u–component is determined by the chamber containing the edge. Moreover, for a pair of
composable edges (a, b), either none of a, b, and ab have terminal but not initial vertex in K, or ab
and exactly one of a and b do. In the latter case, by construction, the u–component of ab is equal
to the u–component of the other edge (a or b but not both) with terminal but not initial vertex in
K. It follows that λr(ab) = λr(a)λr(b), as required.
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Finally, for property (3) in the statement of Proposition 31, we show that for each σ ∈ V (Cr) and
b ∈ E(C0) such that t(b) = p(σ), the map of cosets

νr = νr,σ :




∐

a∈p−1(b)
t(a)=σ

Gσ(Cr)/Gi(a)(Cr)


 → Gp(σ)(C0)/Gi(b)(C0)

induced by g 7→ gλr(a) is a bijection. For this, we assume that:

σ has type T and i(b) has type U.

So the codomain of νr is GT /GU , and if a ∈ p−1(b) then i(a) has type U .
Suppose σ ∈ Cr−1 −K. Then by induction and the construction of λr, νr = νr,σ is bijective.
Suppose next that σ ∈ K. Recall that K is a side of type u. If T∂Cr−1 is the boundary type of σ

in Cr−1 and T∂Cr
the boundary type of σ in Cr, then T∂Cr

∪ {u} = T∂Cr−1 . Hence for all σ ∈ K,

(1) Gσ(Cr)×Gu = Gσ(Cr−1).

Denote by pr−1 : Cr−1 → C0 and pr : Cr → C0 the natural type-preserving morphisms of scwols.
Assume first that u ∈ U . Then by Lemma 24 above, since Cr−1 is admissible,

{a ∈ p−1
r−1(b) | t(a) = σ} = {a ∈ p−1

r (b) | t(a) = σ} ⊂ K.
For all edges a in this set, by construction λr(a) = λr−1(a) and

(2) Gi(a)(Cr)×Gu = Gi(a)(Cr−1).

By induction, the map νr−1,σ is bijective. Therefore by Equations (1) and (2) it follows that νr,σ is
bijective, as required.

Now assume that u /∈ U . Then for all a ∈ p−1
r (b) with t(a) = σ ∈ K, we have i(a) /∈ K.

Consider an edge a′ ∈ p−1
r−1(b) ⊂ Cr−1 with t(a′) = σ. Since i(a′) ∈ Cr−1 − K, we now have

Gi(a′)(Cr) = Gi(a′)(Cr−1). After unfolding, there are qu − 1 images of a′ in ChK, which we denote
by a2, . . . , aqu . Put a′ = a1. Then by construction, Gu = {λru(a1), λru(a2), . . . , λru(aqu)}, and for
each 1 ≤ j ≤ qu we have Gi(aj)(Cr) = Gi(a′)(Cr). Using Equation (1) above, there is thus a natural
bijection

ζa′ :




qu∐

j=1

Gσ(Cr)/Gi(aj)(Cr)

 → Gσ(Cr−1)/Gi(a′)(Cr−1)

induced by g 7→ gλru(aj). Note also that, by construction of the labeling λr, we have

(3) λr(aj) = λru(aj)λ
r−1(a′)gj

for some element gj ∈ Gu.
Let ζ be the disjoint union of the maps {ζa′ | a′ ∈ p−1

r−1(b), t(a
′) = σ}. Then ζ is a bijection from

the domain of νr,σ to the domain of νr−1,σ. By induction νr−1,σ is bijective. By Equation (3) above,
the map νr,σ factors through ζ. Hence νr,σ is bijective, as required.

We have now proved that νr,σ is a bijection for all σ ∈ Cr−1. For σ ∈ Cr − Cr−1, let σ′ denote the
unique preimage of σ in Cr−1.

If σ ∈ Cr − (Cr−1 ∪ ∂Cr), then the local structure at σ in Cr (meaning the set of edges with
terminal vertex σ, the local groups at the initial vertices of these edges, and the labels of these
edges) is identical to that at σ′ in Cr−1. It follows by induction that νr,σ is bijective.

It remains to prove that νr,σ is bijective for σ ∈ ∂Cr− (∂Cr ∩Cr−1). (Note that σ is the same kind
of vertex as in Case 1 in the proof of Proposition 27 above.) Let T∂Cr be the boundary type of σ in
Cr.
Lemma 32. Suppose a ∈ E(Cr) with t(a) = σ, and that i(a) is of type U ′ where

U ⊂ U ′ ⊂ T.
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Then the boundary type U ′∂Cr
of i(a) in Cr is given by

U ′∂Cr
= U ′ ∩ T∂Cr

.

In particular, for all such edges a, the local group at i(a) in GX(Cr) is the same.

Proof. If U ′ is the empty set then the boundary type U ′∂Cr
⊂ U ′ is also empty and we are done. So

suppose there is some s ∈ U ′. Then there is an s–mirror Ks in Cr which contains i(a). Since U ′ ⊂ T
and t(a) = σ, the mirror Ks also contains σ. By Lemma 24, since Cr is admissible, s is in T∂Cr if
and only if Ks ⊂ ∂Cr. It follows that s is in the boundary type of i(a) if and only if s is also in the
boundary type of σ. ¤

Lemma 33. Let
U ′ = (T − T∂Cr

) ∪ U.
Then there is a unique vertex of type U ′ in Cr adjacent to σ.

Proof. Since U ′ ⊂ T and Cr is a gallery-connected union of chambers, there is at least one such
vertex, say τ . By definition, the local group at σ in GX(Cr) is GT∂Cr

and the local group at τ in
GX(Cr) is GU ′∂Cr

. Since GX(Cr) is admissible, there are thus
∣∣∣GT∂Cr

/GU ′∂Cr

∣∣∣ =
∏

s∈T∂Cr−U ′∂Cr

qs

vertices of type U ′ adjacent to σ in X that lift to τ in Cr. But by admissibility of GX(C0), the total
number of vertices of type U ′ adjacent to σ in X is |GT /GU ′ | =

∏

s∈T−U ′
qs. Since by Lemma 32 above

T − U ′ = T∂Cr − U ′∂Cr

it follows that τ is unique. ¤

For a subset R ⊂ S, the projection of an element g ∈ GS to R, or the R–projection of g, is the
projection of the ordered |S|–tuple g to the components corresponding to R. To simplify notation,
write p = pr : Cr → C0.

Lemma 34. The map νr,σ is bijective if and only if the set of labels

{λr(a) | a ∈ p−1(b), t(a) = σ}
has pairwise distinct projections to T − (T∂Cr ∪ U).

Proof. By admissibility of Cr, the two sets



∐

a∈p−1(b)
t(a)=σ

Gσ(Cr)/Gi(a)(Cr)


 and Gp(σ)(C0)/Gi(b)(C0) = GT /GU

are finite sets of the same size. So νr = νr,σ is a bijection if and only if it is injective. Note
that Gσ(Cr) = GT∂Cr

and that by Lemma 32 above, for all a ∈ p−1(b) with t(a) = σ, we have
Gi(a)(Cr) = GU∂Cr

= GU∩T∂Cr
.

Let a1 and a2 be distinct edges in p−1(b) with t(a1) = t(a2) = σ. Suppose g, g′ ∈ Gσ(Cr). Now
νr(gGi(a1)(Cr)) = νr(g′Gi(a2)(Cr)) if and only if gλr(a1)GU = g′λr(a2)GU . Since GT is abelian, this
equality of cosets holds if and only if (g−1g′)λr(a1)−1λr(a2) ∈ GU .

So if νr is injective, then in particular, putting g′ = 1, it follows that for all g ∈ GT∂Cr
, we have

λr(a1)−1λr(a2) /∈ gGU . Hence λr(a1)−1λr(a2) /∈ GT∂Cr∪U . That is, λr(a1) and λr(a2) have distinct
T − (T∂Cr ∪ U) projections.

Conversely, suppose νr is not injective. Then there are edges a1 and a2 and elements g, g′ ∈ GT∂Cr

such that λr(a1)−1λr(a2) ∈ gg′−1GU . Then λr(a1)−1λr(a2) ∈ GT∂Cr∪U and so the two labels λr(a1)
and λr(a2) have the same T − (T∂Cr ∪ U) projections. ¤
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Thus to prove that νr is a bijection, it suffices by Lemma 34 to show that: for each pair of distinct
edges a1, a2 ∈ E(Cr) with p(a1) = p(a2) = b and t(a1) = t(a2) = σ, the labels λr(a1) and λr(a2)
have distinct T − (T∂Cr ∪U) projections. Let a′1, a

′
2, and σ′ be the lifts of a1, a2, and σ, respectively,

to Cr−1, and let T ′∂Cr−1
be the boundary type of σ′ in Cr−1. By induction and Lemma 34, the

T − (T ′∂Cr−1
∪ U) projections of λr−1(a′1) and λr−1(a′2) are distinct. Since σ /∈ K, the labels λr(a1)

and λr(a2) are the same as the labels λr−1(a′1) and λr−1(a′2), respectively. Hence the T−(T ′∂Cr−1
∪U)

projections of λr(a1) and λr(a2) are distinct.
Now let τ be the unique vertex of type U ′ = (T − T∂Cr

) ∪ U in Cr adjacent to σ, as guaranteed
by Lemma 33 above. Let d be the edge of Cr with i(d) = τ and t(d) = σ. Since U ⊂ U ′ ⊂ T ,
there are edges c1 and c2 of Cr such that i(c1) = i(a1) and i(c2) = i(a2) are vertices of type U ,
and t(c1) = t(c2) = τ is of type U ′. We then have compositions of edges a1 = dc1 and a2 = dc2,
so by the already proved property (2) of the labeling λr, we find that λr(a1) = λr(d)λr(c1) and
λr(a2) = λr(d)λr(c2). Thus λr(a1)λr(a2)−1 = λr(c1)λr(c2)−1 ∈ GU ′ . Note that by definition of U ′

and Lemma 32, T∂Cr∩U ′ = T∂Cr∩U = U∂Cr . So λr(a1) and λr(a2) have the same T−U ′ = T∂Cr−U∂Cr

projections. Since they have different T − (T ′∂Cr−1
∪U) projections, it follows from Lemma 25 above

that they have different T − (T∂Cr
∪ U) projections, as required.

This completes the proof of Proposition 31. ¤

4. Proof of the Density Theorem

We are now ready to complete the proof of the Density Theorem. The main results we use
are those of Sections 1.6 and 1.7 above, on coverings of complexes of groups and group actions
on complexes of groups, and those of Section 3 above, on unfoldings. After proving the Density
Theorem, in Section 4.2 below we sketch how these techniques may be used to construct uniform
lattices in addition to those needed for the proof.

4.1. Proof of the Density Theorem. Let X be a regular right-angled building of type (W,S)
with parameters {qs} (see Section 1.4). Let G = Aut(X) and let Γ0 ≤ G be the standard uniform
lattice (see Section 1.5). Let Yn be the combinatorial ball in X of radius n ≥ 0, and let x0 be the
center of the chamber Y0. We first establish the following reduction:

Lemma 35. To prove the Density Theorem, it suffices to show that for any g ∈ StabG(x0), and for
any integer n ≥ 0, there is a γ = γn ∈ CommG(Γ0) such that

g|Yn = γ|Yn .

Proof. Let GX(Y0) be the complex of groups defined in Section 1.4 above, with fundamental group
Γ0. Let G0 = Aut0(X) be the group of type-preserving automorphisms of X. Then G0\X is the
chamber Y0. With the piecewise Euclidean metric on X provided by Theorem 7 above, the action
of the full automorphism group G on X must preserve the cardinality of types of faces in X. Hence
the quotient G\X is a further quotient of Y0, by the action of the finite (possibly trivial) group of
permutations

H := {ϕ ∈ Sym(S) | qϕ(s) = qs and mϕ(s)ϕ(t) = mst for all s, t ∈ S}.
Let Z0 = H\Y0 = G\X. By construction of GX(Y0), the action of H on Y0 naturally extends to an

action by simple morphisms on the complex of groups GX(Y0). Let H(Z0) be the complex of groups
induced by the H–action on GX(Y0). Let Γ′0 be the fundamental group of H(Z0). By Theorem 17
above, there is an induced finite-sheeted covering of complexes of groups GX(Y0) → H(Z0). Hence
by covering theory for complexes of groups, Γ′0 is a finite index subgroup of Γ0. In particular, Γ′0 is
commensurable to Γ0. So CommG(Γ′0) = CommG(Γ0).

Since G\X = Z0 = Γ′0\X, it follows that

G\X = CommG(Γ′0)\X = CommG(Γ0)\X.
Thus we have equality of orbits G · x0 = CommG(Γ0) · x0, and so

G = CommG(Γ0) · StabG(x0).
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Hence to show that CommG(Γ0) is dense in G, it is enough to show that CommG(Γ0) ∩ StabG(x0)
is dense in StabG(x0). And for this, it suffices to prove the statement of this lemma. ¤

To continue with the proof of the Density Theorem, fix g ∈ StabG(x0) and n ≥ 0, and let GX(Yn)
be the canonical complex of groups over the combinatorial ball Yn, as defined in Section 3.1 above.
Let Hn be the finite group obtained by restricting the action of StabG(x0) on X to Yn, and note
that g|Yn ∈ Hn.

Proposition 36. The action of Hn on Yn extends to an action by simple morphisms on the complex
of groups GX(Yn).

Proof. We first show:

Lemma 37. For all sides K of Yn and all h ∈ Hn, the image h.K is also a side of Yn. That is, the
action of Hn takes sides to sides.

Proof. Let K be a side of Yn, of type t ∈ S. The automorphism h of Yn preserves the boundary ∂Yn,
so for each mirror Kt contained in K, the mirror h.Kt is in ∂Yn as well. Also, h preserves adjacency
of mirrors in Yn (recall that two mirrors are adjacent if their intersection is of type T with |T | = 2).
Thus it suffices to show that if two t–mirrors Kt and K ′

t of K are adjacent, then the mirrors h.Kt

and h.K ′
t have the same type.

Let φt and φ′t be the chambers of Yn containing Kt and K ′
t, respectively. As Kt and K ′

t are
adjacent and of the same type, there is a unique s ∈ S, with mst = 2, such that φt is s–adjacent to
φ′t. Thus the images h.φt and h.φ′t are s̃–adjacent, for some s̃ ∈ S. Hence (h.φt, h.φ′t) is a gallery of
type s̃ in Yn.

Suppose the type of h.Kt is u and that of h.K ′
t is u′, with u 6= u′. Since the mirrors h.Kt and

h.K ′
t are adjacent and of distinct types, there is a chamber φ of X (not necessarily in Yn) which

contains both h.Kt and h.K ′
t. Thus there is a gallery (h.φt, φ, h.φ′t) of type (u, u′) in X. But by the

definition of the W–distance function on X, this means s̃ = uu′, which is impossible. Hence u = u′,
as required. ¤

We now, for each h ∈ Hn, define a simple isomorphism of complexes of groups Φh = (φhσ) :
GX(Yn) → GX(Yn). For each s ∈ S, fix a generator gs of the cyclic group Gs = Z/qsZ. Let σ be
a vertex of Yn. By definition of the complex of groups GX(Yn), if σ is in Yn − ∂Yn then Gσ(Yn)
is the trivial group. Now the vertex h.σ is in the boundary ∂Yn if and only if σ ∈ ∂Yn, so for all
σ ∈ Yn − ∂Yn we may define the local map φhσ : Gσ(Yn) → Gh.σ(Yn) to be the trivial isomorphism.

If σ is in ∂Yn then
Gσ(Yn) = GT∂Yn

=
∏

t∈T∂Yn

〈gt〉.

To define the local map φhσ for σ ∈ ∂Yn, let T∂Yn be the boundary type of σ in Yn and let U∂Yn be
the boundary type of h.σ in Yn. Let t ∈ T∂Yn . Then σ is contained in a side K of Yn of type t. By
Lemma 37 above, the image h.K is a side of Yn. Denote by ut the type of the side h.K. Since h is
an automorphism of Yn, the map t 7→ ut is a bijection T∂Yn → U∂Yn . Since h is the restriction of
an automorphism of X to Yn, for all t ∈ T∂Yn , we have qt = qut . We may thus define the local map
φhσ : Gσ(Yn) → Gh.σ(Yn) to be the isomorphism of groups GT∂Yn

→ GU∂Yn
induced by gt 7→ gut for

each t ∈ T∂Yn .
Recall that all monomorphisms ψa along edges in the complex of groups GX(Yn) are the identity

or natural inclusions. Using this, it is not hard to verify that Φh so defined is a simple morphism
of complexes of groups. Since h is an isomorphism of Yn and each local map φhσ an isomorphism of
groups, it follows that Φh is a simple isomorphism of the complex of groups GX(Yn). Moreover, for
all h, h′ ∈ Hn, from the definition of composition of simple morphisms (see [BH]) it is immediate
that Φh ◦ Φh

′
= Φhh

′
. Hence the group Hn acts on the complex of groups GX(Yn) by simple

morphisms. ¤

To finish proving the Density Theorem, let Γn be the fundamental group of GX(Yn). By Corol-
lary 30 above, Γn is a finite index subgroup of Γ0. Let Zn = Hn\Yn, let H(Zn) be the complex of
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groups induced by the action of Hn on GX(Yn), and let Γ′n be the fundamental group of H(Zn).
Since the induced covering of complexes of groups GX(Yn) → H(Zn) is finite-sheeted, Γn is a finite
index subgroup of Γ′n. Therefore Γ′n and Γ0 are commensurable. Now the group Hn is, by definition,
the restriction of the group StabG(x0) to the combinatorial ball Yn. Hence Hn fixes the basepoint
x0, and so by Theorem 17 above, Hn injects into Γ′n. Since g|Yn ∈ Hn, it follows that there is an
element γ ∈ Γ′n such that γ|Yn

= g|Yn
. But since Γ′n and Γ0 are commensurable, γ ∈ CommG(Γ0).

By the reduction established in Lemma 35 above, this completes the proof of the Density Theorem.

4.2. Constructing other lattices using unfoldings and group actions on complexes of
groups. Let X be a regular right-angled building and let G = Aut(X). In this section we sketch
how the techniques of unfoldings and group actions on complexes of groups may be combined to
construct uniform lattices in G in addition to the sequences Γn and Γ′n above.

Let Y be any subcomplex of X obtained by unfolding the chamber Y0 finitely many times. Let
G(Y ) = GX(Y ) be the canonical complex of groups over Y defined in Section 3.1 above. By
Proposition 27 above, the fundamental group Γ of G(Y ) is a uniform lattice in G. The possible
fundamental domains Y for Γ include many subcomplexes which are not combinatorial balls in X.

Now suppose H is any (finite) group of automorphisms of the subcomplex Y . As in Proposition 36
above, the action of H on Y extends to an action by simple morphisms on the complex of groups
G(Y ). Let Γ′ be the fundamental group of the induced complex of groups over H\Y . Then Γ′ is
also a uniform lattice in G. This construction thus yields many additional uniform lattices in G.

5. Further applications of unfoldings

In this section we give two further applications of the technique of unfoldings, which was developed
in Section 3 above. Let X be a regular right-angled building of type (W,S) and parameters {qs}, as
defined in Section 1.4 above. Let G = Aut(X) and let G0 = Aut0(X) be the group of type-preserving
automorphisms of X. In Section 5.1 we determine exactly when G and G0 are nondiscrete groups
(Theorem 1 of the introduction). We then in Section 5.2 prove Theorem 2 of the introduction, which
states that G acts strongly transitively on X.

5.1. Discreteness and nondiscreteness of G and G0. Let L be a polyhedral complex. Recall
that L is rigid if for any g ∈ Aut(L), if g fixes the star in L of a vertex σ ∈ V (L), then g = IdL.
If L is not rigid it is said to be flexible. For example, a complete graph is rigid, while a complete
bipartite graph L = Kq,q, with q > 2, is flexible.

The following statement is equivalent to Theorem 1 above.

Theorem 38. Let X be a regular right-angled building of type (W,S) and parameters {qs}. Let
G = Aut(X) and let G0 = Aut0(X) be the group of type-preserving automorphisms of X. Suppose
W is infinite and let L be the nerve of (W,S).

(1) If there are s, t ∈ S such that qs > 2 and mst = ∞ then G0 and G are both nondiscrete.
(2) If all qs = 2, then G0 is discrete, and G is nondiscrete if and only if L is flexible.
(3) If there is some qt > 2, and for all t ∈ S with qt > 2 we have mst = 2 for all s ∈ S − {t},

then G0 is discrete, and G is nondiscrete if and only if L is flexible.

Note that if the Coxeter group W is finite then the building X is finite, so both G and G0 are finite
groups.

Proof. Several results of [T1] imply that in Case (1), the group G0 is nondiscrete. For example, the
set of covolumes of lattices in G0 contains arbitrarily small elements. Since a subgroup of a discrete
group is discrete, the full automorphism group G is thus nondiscrete as well.

Suppose next that all qs = 2. ThenX is just the Davis complex Σ for (W,S). Assume g0 ∈ G0 fixes
a chamber φ of X pointwise. Then for each s ∈ S, since qs = 2 there is a unique chamber φs of X such
that φs is s–adjacent to φ. Since g0 preserves types and fixes φ pointwise, the element g0 fixes each
adjacent chamber φs pointwise as well. By induction, g0 fixes the building X pointwise. Hence G0

is discrete. Haglund–Paulin [HP] proved that the full automorphism group G = Aut(X) = Aut(Σ)
is nondiscrete exactly when the nerve L of (W,S) is flexible.
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Suppose finally that we are in Case (3). Then in particular the set T := {t ∈ S | qt > 2} is a
nonempty spherical subset of S. Let C be the clump obtained by unfolding the chamber Y0 along all
of its mirrors of types t ∈ T (in some order). More precisely, C is the clump obtained by unfolding
Y0 along some sequence of (possibly extended) sides of types t ∈ T , as in the proof of Lemma 22
above. By Proposition 27 above, the complex of groups GX(C) is admissible. Hence C is a strict
fundamental domain for the action of a uniform lattice Γ := π1(GX(C)) on X, and so we may think
of X as tesselated by copies of C.

By Lemma 4 above, since T is a nonempty spherical subset of S, the union of mirrors ∪t∈TKt of
Y0 is contractible and thus connected. Therefore, every mirror of C of type t ∈ T is in the interior of
C. Thus every side of C is of type s ∈ S − T .

Now suppose g0 ∈ G0 fixes C pointwise. Let φ be a chamber of X which is s–adjacent to a chamber
in C, for some s ∈ S − T . Then since qs = 2 and g0 is type-preserving, g0 must fix the chamber φ
pointwise. For each t ∈ T , let Kφ,t be the t–mirror of φ. By hypothesis, mst = 2, so the mirror Kφ,t

of φ is adjacent to a mirror (of type s) in ∂C. Thus any chamber of X which is t–adjacent to φ is
s–adjacent to a chamber in C. Since qs = 2, it follows that any chamber of X which is t–adjacent to
φ, for t ∈ T , must also be fixed pointwise by the element g0. Hence g0 fixes pointwise the copy of C
in X which contains the chamber φ.

We have shown that for all s ∈ S − T , every copy of C in X which is s–adjacent to the original
clump C is also fixed pointwise by g0. By induction, g0 = IdX . Thus the group G0 of type-preserving
automorphisms of X is discrete. The proof that G = Aut(X) is nondiscrete if and only if L is flexible
is by similar arguments to those of Haglund–Paulin [HP]. ¤
5.2. Strong transitivity. We conclude by proving Theorem 2 of the introduction. We will actually
show:

Theorem 39. Let X be a regular right-angled building of type (W,S) and parameters {qs}, and let
G0 = Aut0(X). Let x0 be the center of the chamber Y0.

(1) The group H0 := StabG0(x0) acts transitively on the set of apartments containing Y0.
(2) The group G0 acts transitively on the set of pairs

{(φ,Σ) | Σ is an apartment of X containing the chamber φ}.
Corollary 40. The group G acts strongly transitively on X.

Proof of Theorem 39. Since G0 acts transitively on the set of chambers ofX, it is enough to show (1).
We fix an increasing sequence of subcomplexes Cn of X such that Cn is a clump obtained by n
unfoldings of C0 = Y0, and X = ∪∞n=0Cn.
Lemma 41. Let Σ and Σ′ be distinct apartments of X which contain Y0. Let N ≥ 1 be the smallest
integer such that Σ∩CN 6= Σ′ ∩CN . Then there is an element hN ∈ H0 such that hN fixes pointwise
the clump CN−1, and hN (Σ ∩ CN ) = Σ′ ∩ CN .

Proof. Suppose CN is obtained from CN−1 by unfolding along a side K of type u. Recall from
Lemma 26 above that ChK, the set of “new chambers” in CN , consists of qu − 1 sheets. Since
Σ ∩ CN 6= Σ′ ∩ CN , the sets of chambers Σ ∩ ChK and Σ′ ∩ ChK belong to different sheets in ChK.

Now, for each sheet in ChK, the set of chambers in this sheet is in bijection with the set of mirrors
in K. Hence, for any two sheets in ChK, there is a type-preserving element h′N ∈ Aut(CN ) such that
h′N fixes CN−1 pointwise, and h′N exchanges these two sheets.

Since Σ ∩ CN−1 = Σ′ ∩ CN−1, the set of mirrors in K contained in Σ is equal to the set of mirrors
in K contained in Σ′. Thus h′N exchanges the sets of chambers Σ ∩ChK and Σ′ ∩ChK. So h′N fixes
CN−1 pointwise, and h′N (Σ ∩ CN ) = Σ′ ∩ CN .

Consider the group 〈h′N 〉 generated by h′N . By similar arguments to the proof of Proposition 36
above, the action of 〈h′N 〉 on CN extends to an action by simple morphisms on the complex of
groups GX(CN ). Since the group 〈h′N 〉 fixes CN−1 pointwise, in particular it fixes the point x0. By
Theorem 17 above, the group 〈h′N 〉 thus injects into the fundamental group of the induced complex
of groups. Denote by hN the image of h′N in this fundamental group. By construction, hN fixes
CN−1 pointwise, hence hN ∈ H0, and hN (Σ ∩ CN ) = Σ′ ∩ CN as required. ¤
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Let Σ and Σ′ be two apartments of X which contain Y0. For each n ≥ 0 we will construct an
element hn ∈ H0 such that

(1) hn(Σ ∩ Cn) = Σ′ ∩ Cn, and
(2) for all m ≥ 0, we have hn+m|Cn = hn|Cn .

Note that, since Cn ⊂ Cn+1 for all n ≥ 0, to prove (2) it suffices to show that for all n ≥ 0,
hn+1|Cn = hn|Cn .

To construct the sequence {hn}, let N ≥ 1 be the smallest integer such that Σ ∩ CN 6= Σ′ ∩ CN .
For each 0 ≤ n < N we define hn ∈ H0 to be hn = IdX . Let hN be the element of H0 constructed
in Lemma 41 above. Then for each 0 ≤ n ≤ N we have hn(Σ∩ Cn) = Σ′ ∩ Cn, and for all 0 ≤ n < N
we have hn+1|Cn

= hn|Cn
.

For n ≥ N , assume inductively that for k ≥ 0 there are elements hN , hN+1, . . . , hN+k in H0 such
that hN+k(Σ ∩ CN+k) = (Σ′ ∩ CN+k), and hN+k|CN+k−1 = hN+k−1|CN+k−1 . To construct the next
element hN+k+1, note that since

hN+k(Σ ∩ CN+k) = Σ′ ∩ CN+k,

the apartments hN+kΣ and Σ′ have the same intersection with CN+k. If in addition the apartments
hN+kΣ and Σ′ have the same intersection with the next clump CN+k+1, we put hN+k+1 = hN+k

and are done. If not, then N + k + 1 is the smallest integer such that the apartments hN+kΣ and
Σ′ have distinct intersection with CN+k+1. Hence by Lemma 41 above, there is an element h′ ∈ H0

such that h′ fixes pointwise CN+k, and h′(hN+kΣ∩CN+k+1) = Σ′∩CN+k+1. We then define hN+k+1

to be the product h′hN+k, and have that

hN+k+1(Σ ∩ CN+k+1) = Σ′ ∩ CN+k+1.

Since h′ fixes pointwise CN+k, the restriction of hN+k+1 = h′hN+k to the clump CN+k is the same
as that of hN+k. Hence the element hN+k+1 has the required properties. We have thus constructed
a sequence {hn} satisfying (1) and (2) above.

By definition of the topology on G0, the compact subgroup H0 of G0 is complete. The sequence
{hn} in H0 that we have constructed is a Cauchy sequence, by (2) above. Hence there is an element
h ∈ H0 such that hΣ = Σ′. We conclude that H0 acts transitively on the set of apartments containing
Y0. ¤
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