
S2-BUNDLES OVER 2-ORBIFOLDS

JONATHAN A. HILLMAN

Abstract. Let M be a closed 4-manifold with π = π1(M) 6= 1
and π2(M) ∼= Z, and let u : π → Aut(π2(M)) be the natural
action. If π ∼= Ker(u) × Z/2Z then M is homotopy equivalent to
the total space of an RP 2-bundle over an aspherical surface. We
show here that if π is not such a product then M is homotopy
equivalent to the total space of an S2-orbifold bundle over a 2-
orbifold B. There are at most two such orbifold bundles for each
pair (π, u). If B is the orbifold quotient of the orientable surface
of genus g by the hyperelliptic involution there are two homotopy
types of such orbifold bundles and only one of these is geometric.

Every closed 4-manifold with geometry S2 × E2 or S2 × H2 has a
foliation with regular leaves S2 or RP 2. The leaf space of such a foli-
ation may be regarded as a compact 2-orbifold. If the regular leaves
are S2 the singularities of this orbifold are cone points of order 2 or
reflector curves, and the projection to the leaf space is an orbifold bun-
dle projection, with general fibre S2. If there are no exceptional leaves
the projection is a bundle projection, and the total space is geometric.
(See Theorem 10.9 of [2].)
Each pair (π, u) where π = πorb(B) is a 2-orbifold group and u :

π → Z/2Z is an epimorphism with torsion-free kernel is realized by
a standard geometric manifold Mst. In §1 we review the key invari-
ants that we shall use, and consider aspects of the cup-product in
H∗(Mst;F2). In §2 we show that if M is any 4-manifold realizing (π, u)
then k1(M) = k1(Mst, and that if χ(Mst) is even and B has cone
points then v2(Mst) = U2, where U ∈ H1(π;F2) = Hom(π, Z/2Z)
corresponds to the action u.
In §3 we consider local models for orbifold bundle projections, and in

§4 we show that there are at most two 4-manifolds M which are total
spaces of orbifold bundles over B with regular fibre S2 and action u
on π2(M) ∼= Z. The base orbifold B must have a nonsingular double
cover. In particular, its singular locus consists of cone points of order
2 and reflector curves. If B has an “untwisted” reflector curve, the
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bundle is unique. We show also that if B is an H2-orbifold then every
such bundle space is either geometric or has a decomposition into two
geometric pieces. In §5 we review briefly the cases with spherical base
orbifold.
We return to the homotopy classification in §6. Here we show that if

u is nontrivial and π 6∼= Ker(u)×Z/2Z then M is homotopy equivalent
to an S2-orbifold bundle space. If B = S(22g+2) is the orbifold quotient
of the orientable surface of genus g by the hyperelliptic involution then
there are two such orbifold bundles, representing the two homotopy
types of 4-manifolds with fundamental group πorb(B) and π2

∼= Z.
Only one of these is geometric.
In the final three sections we show first that the 22 S2×E2-manifolds

have distinct homotopy types, and there is one more homotopy type
represented by a non-geometric S2-orbifold bundle over S(2, 2, 2, 2).
The TOP structure sets of such manifolds are infinite if π has torsion
but is not a product with Z/2Z. If moreover π/π′ is finite then there
are infinitely many homeomorphism types within each such homotopy
type. Finally we apply the main result to a characterization of the
homotopy types of orientable 4-manifolds which are total spaces of
bundles over RP 2 with aspherical fibre and a section.
I would like to thank Wolfgang Lück for computing the surgery ob-

struction groups L∗(π, w) for the E
2-orbifold groups (for all orientation

characters) at my request [5].

1. the standard example

Although we shall consider quotients of S2 × S2 briefly in §3, our
main concern is with 4-manifolds M covered by S2 × R2. We shall
identify S2 with CP 1 = C ∪ {∞}, via stereographic projection from
(0, 1) ∈ C× R. Under this identification the antipodal map a is given
by a(z) = −z/|z|2 (i.e, a([z0 : z1]) = [−z1 : z0]), and rotation through
an angle θ about the axis through 0 and ∞ is given by Rθ(z) = eiθz.
(Care! Multiplication by −1 in CP 1 is Rπ, not a!)
Let M be a closed 4-manifold with π2(M) ∼= Z and π = π1(M) 6= 1,

and let u : π → Aut(π2(M)) = {±1} be the natural action. Then M

has universal cover M̃ ∼= S2 × R2 and κ = Ker(u) is a PD2-group,
and w = w1(M) is determined by the pair (π, u). (See Chapter 10 of
[2]. Note that if u is nontrivial π may have automorphisms that do not
preserve u.) Let [M ] ∈ H4(M ;Zw) ∼= Z be a fundamental class.
If π is torsion-free then M is TOP s-cobordant to the total space of

an S2-bundle over an aspherical surface. If π ∼= κ × Z/2Z then any
4-manifold M with π1(M) ∼= π and π2(M) ∼= Zu is simple homotopy
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equivalent to the total space of an RP 2-bundle over K(κ, 1). For each
PD2-group κ there are two such bundles, distinguished by whether
v2(M) = 0 or not. As these cases are well-understood, we shall usually
assume that M is not homotopy equivalent to a bundle space.
If π has torsion but is not a direct product then u is nontrivial and

π ∼= κ⋊ Z/2Z. Moreover π is the orbifold fundamental group of a E2-
or H2-orbifold B. Since κ is torsion free the singular locus ΣB consists
of cone points of order 2 and reflector curves.
The surface K(κ, 1) has an involution ζ corresponding to the ac-

tion of π/κ ∼= Z/2Z. The “standard” example of a closed 4-manifold
realizing (π, u) is

Mst = S2 ×K(κ, 1)/(s, k) ∼ (−s, ζ(k)).

This is a S2 × E2-manifold if χ(π) = 0, and is a S2 × H2-manifold
otherwise. Projection onto the first factor induces a bundle projection
from Mst to RP 2, with fibre F = K(κ, 1). Projection onto the second
factor induces an orbifold bundle projection pst : Mst → B with regular
fibre F ∼= S2.
As involutions have fixed points in R2, they must act without fixed

points on S2. Therefore if π is generated by involutions every geometric
4-manifold with group π is diffeomorphic to Mst.
The algebraic 2-type [π, π2(M), k1(M)] determines P2(M), the sec-

ond stage of the Postnikov tower for M , and the homotopy type of
M is determined by the image of [M ] in H4(P2(M);Zw), modulo the
action of Aut(P2(M)). There are at most two possible values for this
image, up to sign and automorphisms of the algebraic 2-type, by The-
orem 10.6 of [2]. It is clear from this Theorem that the homotopy type
of M is in fact detected by the image of [M ] in H4(P ;F2). We shall
construct a model for P2(Mst) in §6.
In the remainder of this section all cohomology shall be with coef-

ficients F2, and we shall drop the coefficients from the notation. Let
M = Mst, and let x ∈ π = π1(M) be an element of order 2. The gen-

erator of π2(M) factors through the double cover M̃ ≃ S2 → M̃/〈x〉 ≃
RP 2, and so the mod-(2) Hurewicz homomorphism is trivial. Hence
H i(π) ∼= H i(M) for i ≤ 2.
We shall identify H1(π) with Hom(π, Z/2Z). Let U ∈ H1(π) be the

cohomology class corresponding to the epimorphism u. Thus U(x) = 1
and U(k) = 0 for all k ∈ κ, while U3 = 0 since U is in the image of
H∗(RP 2).

Theorem 1. The restriction Resκπ : H2(π) → H2(κ) = F2 is surjective,
and cup-product with U maps H1(π) onto Ker(Resκπ).
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Proof. Let θ be the automorphism ofH1(κ) given by θ(A)(k) = A(xkx)
for all A ∈ H1(π) and k ∈ κ. Let r = dimF2

Ker(θ + 1) and s =
dimF2

Im(θ+ 1). Then β1(κ;F2) = r+ s and dimF2
H1(Z/2Z;H1(κ)) =

r− s. It follows from the LHS spectral sequence that β1(π;F2) = 1+ r
and β2(π;F2) = 1 + r − s + δ, where δ = dimF2

Im(Resκπ) ≤ 1. Since
χ(M) = 2−2β1(π;F2)+β2(π;F2) and also χ(M) = χ(κ) = 2−β1(κ;F2),
we see that in fact δ = 1. Therefore Resκπ is surjective.
Certainly Resκπ(U ∪A) = 0 for all A ∈ H1(π), and U2 6= 0. Suppose

that A ∈ H1(π) is such that A(x) = 0. If U ∪ A = 0 there is a
function f : π → F2 such that U(g)A(h) = f(g) + f(h) + f(gh) for
all g, h ∈ π. If g ∈ κ then U(g) = 0 and so f |κ is a homomorphism.
Taking g = x we have A(h) = f(x) + f(h) + f(xh), for all h ∈ π, while
taking h = x we have f(gx) = f(g) + f(x) for all g ∈ π. In particular,
f(xhx) = f(xh)+f(x), for all h ∈ π. Therefore A(h) = f(h)+f(xhx),
for all h ∈ π, and so A ∈ Im(θ + 1). Thus dimF2

Ker(U ∪ −) ≤ s, and
so the image of cup-product with U has rank at least r − s + 1 =
dimF2

Ker(Resκπ). �

If s : RP 2 → Mst is a section then U2(s∗[RP 2]) = 1, and so the
Poincaré dual of s∗[RP 2] has nonzero restriction to H2(κ). (If r > s
then there are classes A,B ∈ H1(π) such that A(x) = B(x) = 0 and
Resκπ(A ∪ B) 6= 0. However if r = s then U ∪H1(π) = 〈U2〉.)

2. the k-invariant

Let M = Mst and P = P2(M). The image of H4(CP∞;F2) in
H4(P ;F2) is fixed under the action of Aut(P ), and so Aut(P ) acts on
this homology group through a quotient of order at most 2. Since M
is geometric Aut(π) acts isometrically. More generally, if M is the
total space of an orbifold bundle then Aut(π) acts by orbifold auto-
morphisms of the base. The antipodal map on the fibres defines a self-
homeomorphism which induces −1 on π2(M). These automorphisms
clearly fix H4(P ;F2). Thus it shall be enough to consider the action
of the subgroup of Aut(P ) which acts trivially on π1 and π2. Since P
is a connected cell-complex with πi(P ) = 0 for i > 2 this subgroup is
isomorphic to H2(π;Zu) [7].
In Lemma 10.4 of [2] it is shown that the u-twisted Bockstein βu

maps H2(π;F2) onto H3(π;Zu), and that the restriction of k1(M) to
each subgroup of order 2 in π is nontrivial. On looking more closely at
the structure of such groups and applying Mayer-Vietoris arguments
to compute these cohomology groups, we can show that there is only
one possible k-invariant.
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Lemma 2. Let α = ∗kZ/2Z = 〈xi, 1 ≤ i ≤ k | x2
i ∀ i〉 and let u(xi) =

−1 for all i. Then restriction from α to φ = Ker(u) induces an epi-
morphism from H1(α;Zu) to H1(φ;Z).

Proof. Let x = x1 and yi = x1xi for all i > 1. Then φ = Ker(u) is free
with basis {y2, . . . , yk} and so α ∼= F (k − 1)⋊ Z/2Z.
If k = 2 then α is the infinite dihedral group D and the lemma

follows by direct calculation with resolutions. In general, the subgroup
Di generated by x and yi is an infinite dihedral group, and is a retract
of α. The retraction is compatible with u, and so restriction maps
H1(α;Zu) onto H1(Di;Z

u). Hence restriction maps H1(α;Zu) onto
each summand H1(〈yi〉;Z) of H

1(φ;Z), and the result follows. �

In particular, if k is even then z = Πxi generates a free factor of φ,
and restriction maps H1(α;Zu) onto H1(〈z〉;Z).
Let S(2k) be the sphere with k cone points of order 2.

Theorem 3. Let B be an aspherical 2-orbifold, and let u : π =
πorb
1 (B) → {±1} be an epimorphism with torsion-free kernel κ. Sup-

pose that ΣB 6= ∅, and that B has r reflector curves and k cone points.
Then H2(π;Zu) ∼= (Z/2Z)r if k > 0 and H2(π;Zu) ∼= Z ⊕ (Z/2Z)r−1

if k = 0. In all cases βu(U2) is the unique element of H3(π;Zu) which
restricts non-trivially to each subgroup of order 2.

Proof. Suppose first that B has no reflector curves. Then B is the con-
nected sum of a closed surface G with S(2k), and k is even, by Lemma
2. If B = S(2k) then k ≥ 4, since B is aspherical. Hence π ∼= µ ∗Z ν,
where µ = ∗k−2Z/2Z and ν = Z/2Z ∗ Z/2Z are generated by cone-
point involutions. Otherwise π ∼= µ ∗Z ν, where µ = ∗kZ/2Z and
ν = π1(G\D2) is a non-trivial free group. Every non-trivial element of
finite order in such a generalized free product must be conjugate to one
of the involutions. In each case a generator of the amalgamating sub-
group is identified with the product of the involutions which generate
the factors of µ and which is in φ = Ker(u|µ).
Restriction from µ to Z induces an epimorphism from H1(µ;Zu) to

H1(Z;Z), by Lemma 7, and so

H2(π;Zu) ∼= H2(µ;Zu)⊕H2(ν;Zu) = 0,

by the Mayer-Vietoris sequence with coefficients Zu. Similarly,

H2(π;F2) ∼= H2(µ;F2)⊕H2(ν;F2),

by the Mayer-Vietoris sequence with coefficients F2. Let ei ∈ H2(π;F2)
= Hom(H2π;F2),F2) correspond to restriction to the ith cone point.
Then {e1, . . . , e2g+2} forms a basis for H2(π;F2) ∼= F

2g+2
2 , and Σei
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is clearly the only element with nonzero restriction to all the cone
point involutions. Since H2(π;Zu) = 0 the u-twisted Bockstein maps
H2(π;F2) isomorphically onto H3(π;Zu), and so there is an unique
possible k-invariant.
Suppose now that r > 0. Then B = rJ∪Bo, where Bo is a connected

2-orbifold with r boundary components and k cone points. Hence
π = πG, where G is a graph of groups with underlying graph a tree
having one vertex of valency r with group ν = πorb

1 (Bo), r terminal
vertices, with groups γi ∼= πorb

1 (J) = Z ⊕ Z/2Z, and r edge groups
ωi

∼= Z. If k > 0 then restriction maps H1(ν;Zu) onto ⊕H1(ωi;Z)
and then H2(π;Zu) ∼= ⊕H2(γi;Z

u) ∼= Z/2Zr. However if k = 0 then
H2(π;Zu) ∼= Z ⊕ (Z/2Z)r−1.
The Mayer-Vietoris sequence with coefficients F2 gives an isomor-

phism H2(π;F2) ∼= H2(ν;F2) ⊕ (H2(Z ⊕ Z/2Z;F2))
r ∼= F

2r+k
2 . The

generator of the second summand of H2(Z ⊕ Z/2Z;F2) is in the im-
age of reduction modulo (2) from H2(Z ⊕ Z/2Z;Zu), and so is in the
kernel of βu. Therefore the image of βu has a basis corresponding to
the cone-points and reflector curves, and we again find an unique k-
invariant. Since βu(U2) restricts to the generator of H3(Z/2Z;Zu) at
each involution in π, we must have k1(M) = βu(U2). �

Corollary. If M is a closed 4-manifold with π2(M) ∼= Z and π1(M) ∼=
πorb(B) then P2(M) ≃ P2(Mst), where Mst is the standard geometric
4-manifold with the same fundamental group. �

Theorem 4. If χ(M) is even then v2(M) = 0 or U2. If the base
orbifold has cone points then v2(M) 6= 0.

Proof. If χ(κ = χ(M) is even then α2 = 0 for all α ∈ H1(κ). Therefore
if A ∈ H1(π) then Resκπ(A

2) = 0, and so A2 = U ∪ B, for some
B ∈ H1(π), by Theorem 1. Hence (U ∪ A)2 = U2 ∪ A2 = U3 ∪ B = 0.
It follows easily that v2(M) = 0 or U2.
The exceptional fibre over a cone point of order 2 has nonzero self-

intersection, by Lemma 10.14 of [2]. Thus if the base orbifold has cone
points v2(M) 6= 0. �

This was proven by hand for the cases with χ(M) = 0 in Theorem
10.16 of [2].
Whereas regular fibres in an S2-orbifold bundle over a connected base

are isotopic, exceptional fibres over distinct components of the singular
locus of B are usually not even homologous. An arc γ in B connecting
two such components is in fact a reflector interval, and the restriction
of the fibration over γ has total space RP 3#RP 3. Thus it should not
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be surprising that fibres over reflector curves have self-intersection 0,
whereas fibres over cone points have self-intersection 1.

3. local models for orbifold bundles

A cone point of order 2 in a 2-orbifold has a regular neighbourhood
which is orbifold-homeomorphic to D(2) = D2/w ∼ −w. Let J =
[[0, 1] = [−1, 1]/x ∼ −x be the compact connected 1-orbifold with
one reflector point. A reflector curve (with no corner points) in a 2-
orbifold has a regular neighbourhood which is orbifold-homeomorphic
to J× S1. However this is the quotient of a nonsingular surface in two
ways, as there are two possible surjections u : πorb(J × S1) → Z/2Z
with torsion-free kernel. If the cover is the Möbius bandMb = [−1, 1]×
S1/(x, u) ∼ (−x,−u) with involution [x, u] 7→ [−x, u] = [x,−u] we
shall say that the curve is u-twisted; if the cover is [−1, 1] × S1 with
involution (x, u) 7→ (−x, u) we shall say that the curve is untwisted.
(Note that this notion involves both the reflector curve and the action.)
For example, as the quotient of an involution of the torus T the

“silvered annulus” A = S1 × S1/(u, v) ∼ (u, v̄) has two untwisted
reflector curves. However it is also the quotient of an involution of the
Klein bottle Kb, and the reflector curves are then both twisted. On the
other hand, the “silvered Möbius band” Mb = S1 × S1/(u, v) ∼ (v, u)
has two distinct (but isomorphic) nonsingular covers, but in both cases
the reflector curve is untwisted.
Models for regular neighbourhoods of the exceptional fibres of such

orbifold bundles may be constructed as follows. Let

E(2) = S2 ×D2/(z, w) ∼ (a(z),−w),

E = S2 × [−1, 1]× S1/(z, x, u) ∼ (a(z),−x, u)

and

E
′ = S2 × [−1, 1]× S1/(z, x, u) ∼ (a(z),−x, u) ∼ (z,−x,−u).

Then p2([z, w]) = [w], pE([z, x, u]) = [u, x] and pE′([z, x, u]) = [x, u]
define bundle projections p2 : E(2) → D(2), pE : E → J× S1 (with
untwisted reflector curve) and pE′ : E′ → J×S1 (with twisted reflector
curve). Any S2-bundle over J×S1 or D(2) with nonsingular total space
must be of this form. The other local models for nontrivial actions on
the fibre have base Mb and total space S2 × Mb (non-orientable) or
S2 × [−1, 1]× [0, 1]/(z, t, 0) ∼ (a(z),−t, 1) (orientable).
It is also convenient to let D(2, 2) = [−1, 1]×S1/(x, u) ∼ (−x, ū) be

the disc with two cone points of order 2 and

E(2, 2) = S2 × [−1, 1]× S1/(z, x, u) ∼ (a(z),−x, ū),
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with projection p2,2([z, x, u]) = [x, u]. Then D(2, 2) is the boundary-
connected-sum of two copies of D(2), and E(2, 2) is the corresponding
fibre sum of two copies of E(2).
The manifolds E(2) and E′ have boundary S2×̃S1, and p2|∂E(2) and

p|∂E′ are nontrivial S2-bundles over S1. In all the other cases the restric-
tion of the fibration over the boundary of the base orbifold is trivial.
(When the base is B = Mb or D(2, 2) this can be seen by noting that
∂B is homotopic to the product of two generators of πorb

1 (B), and con-
sidering the action on π2(E) ∼= Z.) For later uses we may need to
choose homeomorphisms ∂E ∼= S2 × S1.
Let α, β and τ be the self-homeomorphisms of S2 × S1 defined by

α(z, u) = (a(z), u), β(z, u) = (z, ū) and τ(z, u) = (uz, u), for all (z, u) ∈
S2 × S1. The images of α, β and τ generate π0(Homeo(S2 × S1)) ∼=
(Z/2Z)3. The group π0(Homeo(S2×̃S1)) ∼= (Z/2Z)2 is generated by

the involution β̃([z, u]) = [z, ū] and the twist ξ([z, u]) = [uz, u].

Lemma 5. (1) The self-homeomorphisms α and β of S1 × S2 ex-
tend to fibre-preserving self-homeomorphisms of S2 × D2 and
E(2, 2).

(2) Every self-homeomorphism of S1×S2 extends to a fibre-preserving
self-homeomorphism of E.

(3) The self-homeomorphism β̃ of S2×̃S1 extends to fibre-preserving
self-homeomorphisms of E(2) and E′.

Proof. It is sufficient to check that the above representatives of the
isotopy classes extend, which in each case is clear. �

However τ does not extend across S2 × D2 or E(2, 2), as we shall
see. Nor does ξ extend across E(2) or E′.

4. general results on orbifold bundles

Let M be a closed 4-manifold which is the total space of an orbifold
bundle p : M → B with regular fibre F ∼= S2 over the 2-orbifold
B. Then πorb

1 (B) ∼= π1(M). Let ΣB be the singular locus of B. For
brevity, we shall say that M is an S2-orbifold bundle space and p is an
S2-orbifold bundle.

Lemma 6. The singular locus ΣB consists of cone points of order 2
and reflector curves (with no corner points). The number of cone points
plus the number of u-twisted reflector curves is even. In particular, the
base orbifold must be good.

Proof. The first assertion holds since the stabilizer of a point in the
base orbifold must act freely on the fibre S2.
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Let N be a regular neighbourhood of ΣB, and let V be the restriction
of U to B \N . Then V (∂N) = 0. The action u is trivial on boundary
components ofN parallel to untwisted reflector curves, but is nontrivial
on all other boundary components. Therefore V (∂N) is the sum of the
number of cone points and the number of u-twisted reflector curves,
modulo (2). Thus this number must be even, and B cannot be S(2),
which is the only bad orbifold in which all point stabilizers have order
at most 2. �

If B is spherical then M̃ ∼= S2 × S2; otherwise M̃ ∼= S2 × R2.

Lemma 7. Let q : E → F be an S2-bundle over a surface with
nonempty boundary. If q is nontrivial but q|∂E is trivial then there
is a non-separating simple closed curve γ in the interior of F such that
the restriction of the bundle over F \ γ is trivial.

Proof. The bundle is determined by the action of π1(F ) on π2(E), and
thus by a class u ∈ H1(F ;F2). Since u|∂F = 0 and u 6= 0 the Poincaré-
Lefshetz dual of u is represented by a simple closed curve γ in the
interior of F , and u restricts to 0 on F \ γ. �

The restrictions to each fibre of a bundle automorphism of an S2-
bundle over a connected base must either all be orientation-preserving
or all be orientation-reversing.

Lemma 8. Let q : E → F be an S2-bundle over a surface such that
q|∂E is trivial. If ∂E has boundary components {Ci | 1 ≤ i ≤ d} for
some d > 0 and if φi is an orientation-preserving bundle automorphism
of q|Ci

for i < d then there is a bundle automorphism φ of q such that
φ|q−1(Ci) = φi for i < d.

Proof. We may clearly assume that d ≥ 2. Suppose first that q is triv-
ial. We may obtain F by identifying in pairs 2k sides of a (2k+ d)-gon
P . (The remaining sides corresponding to the boundary components
Ci.) A bundle automorphism of a trivial S2-bundle over X is deter-
mined by a map from X to Homeo(S2). Let [φi] be the image of φi

in π1(Homeo(S2)) = Z/2Z, for i < d, and define φd on q−1(Cd) so
that [φd] = Σi<d[φi]. Let φ be the identity on the images of the other
sides of P . Then [φ|∂P ] = 0 and so φ|∂P extends across P . This clearly
induces a bundle automorphism φ of q compatible with the data.
If q is nontrivial let γ be a simple closed curve in F as in the previous

lemma, and let N be an open regular neighbourhood of γ. If q is trivial
let N = ∅. Then the restriction of q over F ′ = F \ N is trivial, and
so E ′ = q−1(F ′) ∼= F ′ × S2. If N ∼= γ × (−1, 1) then ∂E ′ has d + 2
components; if N ∼= Mb and ∂E ′ has d+1 components. In either case,
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we let φ be the identity on the new boundary components, and proceed
as before. �

The two exceptional fibres in E(2, 2) have regular neighbourhoods
equivalent to E(2). If we delete the interiors of two such neighbour-
hoods we obtain the S2-bundle over the thrice-punctured sphere B =
S2 \ 3intD2 which is trivial over exactly one component of ∂E. (There
is one such bundle up to isomorphism, since B ≃ S1 ∨ S1.)

Lemma 9. Let q : E → B be the S2-bundle over B = S2\3intD2 which
is trivial over exactly one component of ∂E. Then there is a bundle
automorphism which restricts to τ on the orientable component, to the
identity on one non-orientable boundary component and to ξ on the
other.

Proof. Let L = S2 × [0, 1]2/ ∼, where (z, x, 0) ∼ (a(z), x, 1) for all
s ∈ S2 and 0 ≤ x ≤ 1. Then L is the total space of an S2-bundle
over the annulus A = [0, 1] × S1, with projection p : L → A given
by p([z, x, y]) = (x, e2πiy). The boundary components of L are each
homeomorphic to S2×̃S1. Let k = (1

2
, 1) ∈ A, D = {(x, u) ∈ A |

d((x, u), K) < 1
4
}, B = A \ D and E = L \ p−1(D). Then p|E is a

model for q.
Let P = (0,−1), Q = (1,−1) R = (3

4
, 1) and S = (1, 1) be points

in B and let B′ = B \ (PQ ∪ RS) × (−ε, ε). Then B′ ∼= D2, and
so the restriction q′ = q|B′ is trivial. We may clearly define a bundle
automorphism of q′ which rotates the fibre once as we go along each of
the arcs corresponding to {1}×S1 and ∂D and is the identity over the
rest of the boundary. Since the automorphisms agree along the pairs of
arcs corresponding to PQ and RS, we obtain the desired automorphism
of q. �

Let j : S2 × D2 → M be a fibre-preserving embedding of a closed
regular neighbourhood of a regular fibre of p, and let N be the image
of j. The Gluck reconstruction of p is the orbifold bundle pτ : M τ → B
with total space M τ = M \ intN ∪jτ S

2 ×D2 and projection given by
p on M \ intN and by projection to the second factor on S2 ×D2.

Theorem 10. Let p : M → B and p′ : M ′ → B be S2-orbifold bundles
over the same base B and with the same action u : πorb

1 (B) → {±1}.
If ΣB is nonempty then p′ is isomorphic to p or pτ , and so M ′ ∼= M
or M τ .

Proof. The base B has a suborbifold N which contains ΣB and is a
disjoint union of copies of regular neighbourhoods of reflector curves
and copies of D(2, 2), by Lemma 6. If C is a reflector curve, with
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regular neighbourhood N(C) ∼= J × S1, then p−1(N(C)) ∼= E or E′,
while if D(2, 2) ⊂ B then p−1(D(2, 2)) ∼= E(2, 2).
Since N is nonempty and the restrictions of p and p′ over B\N are S2

bundles with the same data they are isomorphic. Moreover the bundles
are trivial over the boundary components of B \ N . After composing
with a fibrewise involution, if necessary, we may assume that the bun-
dle isomorphism restricts to orientation-preserving homeomorphisms of
these boundary components. Let R be a regular neighbourhood of a
regular fibre S2. Using Lemma 8 we may construct a fibre-preserving
homeomorphism h from M \ p−1(R) to M ′ \ p′−1(R). If h|∂R extends
across R then p′ ∼= p; otherwise p′ ∼= pτ . �

If u is nontrivial the standard geometric 4-manifold Mst realizing
π = πorb

1 (B) is the total space of an orbifold bundle pst with regular
fibre S2, base B and action u.

Corollary (A). Every S2-orbifold bundle is either geometric or is the
Gluck reconstruction of a standard geometric orbifold bundle. �

Corollary (B). If ΣB contains an untwisted reflector curve then every
S2-orbifold bundle over B is a standard geometric bundle. �

We may also realize actions with base a non-compact hyperbolic 2-
orbifold by geometric orbifold bundles.

Corollary (C). If B has a nontrivial decomposition into hyperbolic
pieces then M has a proper geometric decomposition. �

In particular, if B is hyperbolic then either M is geometric or it has
a proper geometric decomposition.

5. spherical base orbifold

If the base orbifold is spherical then it must be one of S2, RP 2,
S(2, 2), D or D(2), by Lemma 6. There are two S2-bundle spaces
over S2, and four over RP 2. The latter are quotients of S2 × S2 by
involutions of the form (A,−I), where A ∈ GL(3,Z) is a diagonal
matrix, and projection to the quotient of the second factor by the
antipodal map induces the bundle projection.
If A = diag[−1,−1, 1] = Rπ or diag[1, 1,−1] = aRπ then projection

to the first factor induces an orbifold bundle (over S(2, 2) or D, respec-
tively) with general fibre S2. The geometric orbifold bundle over S(2, 2)
has total space E(2, 2)∪S2×D2. There is one other such orbifold bundle
over S(2, 2), with total space RP 4#S1RP 4 = E(2, 2)∪τ S

2×D2. (Note
that by Lemma 5 there is a bundle automorphism of E(2, 2) \ E(2)
which is the twist τ on ∂E(2, 2) and the twist ξ on ∂E(2). Hence
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E(2, 2)∪τ S
2 ×D2 ∼= E(2)∪ξ E(2). The latter model for RP 4#S1RP 4

is used in [3].) These spaces are not homotopy equivalent, since the
values of the q-invariant of [3] differ. Thus τ does not extend to a
homeomorphism of E(2, 2).
The S2-orbifold bundle over D = S2/z ∼ aRπ(z) given by this con-

struction is the unique such bundle, by Lemma 6. (The reflector curve
is untwisted.) The total space is orientable and has v2 = 0.
Finally, D(2) is the quotient of S2 by the group (Z/2Z)2 generated by

a and Rπ. Since these generators commute, Rπ induces an involution
of RP 2 which fixes RP 1 and a disjoint point. The corresponding S2-
orbifold bundle space is S2 × S2/(x, y) ∼ (x,−y) ∼ (−x,Rπ(y)). This
is also the total space of the nontrivial RP 2-bundle over RP 2.

6. the image of [M ] in H4(P2(M);F2)

If u is trivial then π is a PD2-group, and so k1(M) = 0. Let F be a
closed surface with π1(F ) = π, and let P = CP∞×F ≃ ΩK(Z, 3)×F .
The natural inclusion fst : Mst = S2 × F → P is 3-connected, and so
it is the second stage of the Postnikov tower for Mst.
The nontrivial bundle space with this group and action is the Gluck

reconstruction M τ
st. We may assume that the neighbourhood N of a

fibre is a product S2×D2, where D2 ⊂ F . Let h : M τ → CP 2 × F ⊂ P
be the map defined by h(m) = fst(m) for all m ∈ M \N and h([z0 :
z1], d) = ([dz0 : z1 : (1 − |d|)z0], d) for all [z0 : z1] ∈ S2 = CP 1 and
d ∈ D2. (The two definitions agree on S2 × S1, since τ([z0 : z1], u) =
([uz0 : z1], u) for u ∈ S1.) Then h is 3-connected, and so is the second
stage of the Postnikov tower for M τ

st.
By the Künneth Theorem,

H4(P ;F2) ∼= H4(CP∞;F2)⊕ (H2(CP∞;F2)⊗H2(F ;F2)) ∼= F
2
2.

Homotopy classes of self-maps of P which induce the identity on π
and π2 are represented by maps (c, f) 7→ (c.s(f), f), where s : F →
ΩK(Z, 3) and we use the loop space multiplication on ΩK(Z, 3). It
is not hard to see that these act trivially on H4(P ;F2). Since auto-
morphisms of π and π2 are realized by self-homeomorphisms of F and
CP∞, respectively, Aut(P ) acts trivially on H4(P ;F2).
Let q : P → CP∞ be the projection to the first factor. Then qfst

factors through the inclusion of CP 1, and so has degree 0. On the
other hand, if (w, d) is in the open subset U = C× intD2 with z0 6= 0
and |d| < 1 then qh(w, d) = [d : w : 1 − |d|], and (qh)−1([a : b : 1]) =
(b/(1 + |a|), a/(1 + |a|)). Hence qh maps U bijectively onto the dense
open subset CP 2 \ CP 1, and collapses M τ

st \ h(U) = M \ intN onto
CP 1. Therefore qh : M τ

st → CP 2 has degree 1. Thus the images of
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[Mst] and [M τ
st] in H4(P2(M);F2) are not equivalent under the action

of Aut(P ).
This is not surprising, as v2(Mst) = 0, but twisting the neighbour-

hood of a regular fibre changes the mod-(2) self-intersection number of
a section to the bundle, and so v2(M

τ
st) 6= 0.

If M is an S2-orbifold bundle space with exceptional fibres then
the image of a regular fibre in H2(M ;F2) is trivial, since the inclusion
factors through the covering S2 → RP 2, up to homotopy. Therefore the
mod-(2) Hurewicz homomorphism is trivial, and Gluck reconstruction
does not change the mod-(2) self-intersection pairing. In particular,
H2(π;F2) ∼= H2(M ;F2), and v2(M

τ
st) = v2(Mst).

Although we cannot expect to detect the effect of twisting through
the Wu class, we may adapt the argument above to S2-orbifold bundles
with u 6= 1. Then

K(π, 1) ≃ S∞ ×K(κ, 1)/(s, k) ∼ (−s, ζ(k)).

(If π is torsion-free we do not need the S∞ factor.) The antipodal map
of CP 1 = S2 extends to involutions on CP n given by

[z0 : z1 : z2 : · · · : zn] 7→ [−z1 : z0 : z2 : · · · : zn].

(Here only the first two harmonic coordinates change position or sign.)
Since these are compatible with the inclusions of CP n into CP n+1 given
by [z0 : · · · : zn] 7→ [z0 : · · · : zn : 0], they give rise to an involution σ on
CP∞ = lim−→CP n. Let

P = CP∞ × S∞ ×K(κ, 1)/(z, s, k) ∼ (σ(z),−s, ζ(k)).

Then π1(P ) ∼= π, π2(P ) ∼= Zu and πj(P ) = 0 for j > 2. We shall
exclude the case of RP 2-bundle spaces, with π ∼= κ×Z/2Z, as these are
well understood. (The self-intersection number argument does apply
in this case.)

Theorem 11. Let π be a group with an epimorphism u : π → Z/2Z
such that κ = Ker(u) is a PD2-group, and suppose that π is not a
direct product κ×Z/2Z. Let Mst be the standard geometric 4-manifold
corresponding to (π, u) and P = P2(Mst). Then the images of [Mst]
and [M τ

st] in H4(P ;F2) are distinct.

Proof. The diagonal map from S2 to S2×S2 = CP 1×S2 determines a 3-
connected map fst : Mst → P by fst([s, k]) = [s, s, k]. This is the second
stage of the Postnikov tower for Mst, and embeds Mst as a submanifold
of CP 1 × S2 ×K(κ, 1)/ ∼ in P . We again have H4(P ;F2) ∼= F2

2, with
generators the images of [Mst] and [CP 2].
The projection of CP∞ × S∞ × K(κ, 1) onto its first two factors

induces a map g : P → Q = CP∞×S∞/(z, s) ∼ (σ(z),−s) which is in
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fact a bundle projection with fibre K(κ, 1). Since gfst factors through
S2 the image of [Mst] in H4(Q;F2) is trivial.
Since π is not a direct product, Mst is the total space of an S2-

orbifold bundle pst. Let v : S2 ×D2 → V ⊂ Mst be a fibre-preserving
homeomorphism onto a regular neighbourhood of a regular fibre. Since
V is 1-connected fst|V factors through CP∞ × S∞ ×K(κ, 1). Let f1
and f2 be the composites of a fixed lift of fstvτ : S2 × S1 → P with
the projections to CP∞ and S∞, respectively. Let F1 be the extension
of f2 given by

F2([z0 : z1], d) = [dz0 : z1 : (1− |d|)z0]

for all [z0 : z1] ∈ S2 = CP 1 and d ∈ D2. Since f2 maps S2 × S1 to S2

it is nullhomotopic in S3, and so extends to a map F2 : S
2 ×D2 → S3.

Then the map F : M τ
st → P given by fst on Mst \ N and F (s, d) =

[F1(s), F2(s), d] for all (s, d) ∈ S2 ×D2 is 3-connected, and so it is the
second stage of the Postnikov tower for M τ

st.
Now F1 maps the open subset U = C × intD2 with z0 6= 0 bi-

jectively onto its image in CP 2, and maps V onto CP 2. Let ∆ be
the image of CP 1 under the diagonal embedding in CP 1 × CP 1 ⊂
CP 2 × S3. Then (F1, F2) carries [V, ∂V ] to the image of [CP 2, CP 1] in
H4(CP 2×S3,∆;F2). The image of [V, ∂V ] generates H4(M,M \U ;F2).
A diagram chase now shows that [M τ

st] and [CP 2] have the same image
in H4(Q;F2). Since this is nonzero it follows that M τ

st is not homotopy
equivalent to Mst. Thus every homotopy type in this algebraic 2-type
is realized by an S2-orbifold bundle space. �

Is there a more explicit invariant? The q-invariant of [3] is 0 for every
orbifold bundle with regular fibre S2 over an aspherical base.

Corollary. Let M be a closed 4-manifold with π2(M) ∼= Z. Assume
that π = π1(M) acts nontrivially on π2(M), but is not a product, and
let Mκ be the double cover associated to the kernel κ of the action
u : π → {±1}. Then M is homotopy equivalent to an S2-bundle space,
and Mκ ≃ S2 ×K(κ, 1).

Proof. The first assertion is an immediate consequence of Theorems 3
and 11, since Mst and M τ

st exhaust the possibilities allowed by Theorem
10.6 of [2].
The double cover of Mst is S

2×K(κ, 1), and the double cover of M τ
st

may be obtained from this by two Gluck reconstructions. Hence these
covers are homeomorphic. The second assertion follows. �
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The quotient of the total space of any S2-bundle over a closed surface
F by the fibrewise antipodal involution is an RP 2-bundle over F . Thus
the condition that π be not a product is necessary for this corollary.
Since S2 ×D2 = (D2 ×D2)∪ (D2 ×D2) = (D2 ×D2) ∪D4, we may

obtain each of Mst and M τ
st from Mst \ N (up to homotopy) by first

adding a 2-cell and then a 4-cell. The attaching maps for the 2-cells
are the inclusions u 7→ (1, u) and u 7→ (u, u) of S1 into ∂N = S2 × S1,
respectively. Since these are clearly homotopic, M τ

st may be obtained
from Mst by changing the attaching map for the top cell of Mst =
Mo∪D4. (It can be shown that the attaching maps differ by the image
of the Hopf map η in π3(Mo).)
The inclusion of Mo induces isomorphisms of cohomology with coef-

ficients F2 in degrees ≤ 3. Since U3 = 0 in Mst it follows that U
3 = 0

in general. (Can we see this more directly?)

7. S2 ×H2-manifolds

Let M be the total space of an S2-orbifold bundle with hyperbolic
base orbifold B. If B has an untwisted reflector curve then M must
be diffeomorphic to Mst. If B has no reflector curves and π = πorb(B)
is generated by involutions then B = S(22k) is the quotient of the
orientable surface of genus k − 1 by the hyperelliptic involution. By
Lemma 7, there is an unique k-invariant realized by 4-manifolds with
this fundamental group and π2

∼= Z. Moreover, H2(π;Zu) = 0, and
so there are two distinct homotopy types of such manifolds. Each is
represented by an S2-orbifold bundle space over B, but only one one is
geometric. However, if B has no reflector curves but π is not generated
by involutions, or if all reflector curves are twisted then it is not clear
whether M τ

st is also geometric.

8. S2 × E2-manifolds

In this section we shall assume that M is a closed 4-manifold with
χ(M) = 0 and π2(M) ∼= Z (equivalently, that π is virtually Z2). In
Chapter 10 of [2] it is shown that there are between 21 and 24 possible
homotopy types of such 4-manifolds. Ten are total spaces of S2-bundles
over T or Kb, four are total spaces of RP 2-bundles, and four are map-
ping tori of self-homeomorphisms of RP 3#RP 3. These bundle spaces
are all S2 × E2-manifolds, and their homotopy types are detected by
the fundamental groups and Stiefel-Whitney classes.
The uncertainty relates to the three possible fundamental groups

with finite abelianization. Each such group is realized by at most two
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homotopy types. In each case, the Stiefel-Whitney classes are deter-
mined by the group, and the orientation character w is non-trivial.
There is one geometric manifold for each of the groups D ∗Z D and
(Z ⊕ (Z/2Z)) ∗Z D, and two for Z ∗Z D. We shall show that there is
another (non-geometric) orbifold bundle over S(2, 2, 2, 2) (with group
D ∗Z D), and that these five homotopy types are distinct.
IfM is an orbifold bundle over a flat base then it follows from Lemma

2 that either

(1) M is an S2- or RP 2-bundle over T or Kb; or
(2) B = A or Mb; or
(3) B = S(2, 2, 2, 2), P (2, 2) or D(2, 2).

When the base is S(2, 2, 2, 2) = D(2, 2)∪D(2, 2) there are two possi-
ble S2-orbifold bundles. The total spaces are not homotopy equivalent,
since H2(D ∗Z D;Zu) = 0, by Lemma 7. The double of E(2, 2) is
geometric, whereas E(2, 2) ∪τ E(2, 2) is not.
There is just one S2-orbifold bundle with base D(2, 2) = J × S1 ∪

D(2, 2), by Lemma 6. It has geometric total space.
The orbifold P (2, 2) = D(2, 2) ∪Mb is the quotient of the plane R2

by the group of euclidean isometries generated by t = (1
2
j, (−1 0

0 1 )) and
x = (1

2
(i + j),−I). There are two possible S2-orbifold bundles with

base P (2, 2). If we fix identifications of ∂Mb with S1 and ∂E(2, 2)
with S2 × S1 then one has total space M = E(2, 2) ∪ S2 × Mb and
the other has total space M ′ = E(2, 2)∪τ S

2×Mb. (The bundles with
total space E(2, 2) ∪(τ) S

2×̃Mb are each equivalent to one of these via
the automorphism of the base induced by reflection of R2 across the
principal diagonal.)
The total spaces of these two S2-orbifold bundles are the two affinely

distinct S2×E2-manifolds with fundamental group Z∗ZD ∼= πorb
1 (P (2, 2)).

Let T = (U, t) and X = (a, x), where U = ±1 ∈ S1. (Equivalently,
U = I3 or Rπ = diag[−1,−1, 1] ∈ GL(3,Z).) Then {t, x} generates a
free, discrete, cocompact isometric action of Z ∗Z D on S2 × R2. The
subgroup κ ∼= Z ⋊−1 Z is generated by T and (XT )2.

Let Ã = S2× [−ǫ, ǫ]×R and B̃ = S2× [ǫ, 1
2
−ǫ]×R, where 0 < ǫ < 1

2
.

Then in each case the total space M = Ã/〈T 〉 ∪ B̃/〈X, T 2〉. Note that

B̃/〈X, T 2〉 is independent of the choice of U . If U = id then there is

an obvious homeomorphism Ã/〈T 〉 = S2 × Mb. If U = Rπ then we

may define a homeomorphism h : Ã/〈T 〉 → S2 ×Mb by h([z, x, y] =
(eiyz, [x, y]). It is then clear that these S2-orbifold bundles differ by
the twist τ . These two manifolds are not homotopy equivalent, since
H2(Z ∗Z D;Zu) = 0, by Theorem 9.
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The example constructed using U = id fibres over RP 2, with fibre
Kb. Does the other example also fibre over RP 2?

9. surgery

If χ = 0 the relevant surgery obstruction groups can be computed (or
shown to be not finitely generated) in most cases, via the Shaneson-
Wall exact sequences and the results of [1] on Ln(D,w). Lück has
settled the one case in which such reductions do not easily apply [5].
(The groups L(π) ⊗ Z[1

2
] are computed for all aspherical 2-orbifold

groups π when w is trivial in [6].)
Let σ be the automorphism of D = Z/2Z ∗Z/2Z which interchanges

the factors. Let Iπ : π/π′ → L1(π) be the natural transformation
described in §6.2 of [2].
(a) Z2 and Z ⋊−1 Z.
(b) κ× (Z/2Z)−. L1(π, w) ∼= (Z/2Z)2.
(c) L1(D × Z) ∼= Cok(: L0(1) → L0(Z/2Z)

2) ∼= Z3. The direct
summand L1(Z) ∼= Z is the image of Iπ.
(d) D × Z−. L1(π, w) = 0. L0(π, w) has exponent 2 and infinite

rank.
(e) L5(D ⋊σ Z) ∼= Ker(1 − L0(σ)) ∼= Z2. The direct summand

L1(Z) ∼= Z is the image of Iπ.
(f) D ⋊σ Z

−. L1(π, w) ∼= Ker(1 + L0(σ)) ∼= Z.
The remaining three groups L1(π, w) are not finitely generated.
(g) D ∗Z D retracts onto D(−,−) = Z/2Z− ∗ Z/2Z−, compatibly

with w1.
(h) (Z ⊕ (Z/2Z)) ∗Z D retracts onto D(−,−) = Z/2Z− ∗ Z/2Z−,

compatibly with w1.
(i) Z ∗Z D does not surject to D. However L1(Z ∗Z D,w) has an

infinite UNil summand, of exponent 4 [5].
For closed 4-manifolds with χ = 0 and π of type (a) homotopy type

implies homeomorphism. If π ∼= Z2×Z/2Z then |STOP (M)| = 8, while
if π ∼= Z ⋊−1 Z × Z/2Z then 8 ≤ |STOP (M)| ≤ 32. If M is in type d
then |STOP (M)| ≤ 16.
In each of the remaining cases the structure sets are infinite. In

order to estimate the number of homeomorphism types within each
homotopy type we must consider the actions of the groups E(M) of
homotopy classes of self-homotopy equivalences.

Let M be a closed 4-manifold with M̃ ≃ S2. As observed above, if M
is the total space of an orbifold bundle then Aut(π) and Aut(π2(M)) act
on M via homeomorphisms. Thus in order to understand the action of
E(M) on STOP (M) it is sufficient to consider the action of the subgroup
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Kπ(M) of self-homotopy equivalences which induce the identity on π
and π2(M). (Note also that if f : M → M is a self-map such that

π2(f) = id then lifts of f to M̃ are homotopic to the identity, and so
πk(f) = id for all k ≥ 2.)
We may assume that Mo = M \ intD4 is homotopy equivalent to

a 3-complex. Fix a basepoint ∗ ∈ Mo. Let P3(M) = M ∪ e≥5 be
the 3-stage of the Postnikov tower for M . (Thus πi(M) ∼= πi(P3(M))
for i ≤ 3 and πj(P3(M)) = 0 for all j > 3). If (X, ∗) is a based
space let E∗(X) be the group of based homotopy classes of based self-
homotopy equivalences. If f ∈ E∗(M) is in the kernel of the natural
homomorphism from E∗(M) to E∗(P3(M)) then we may assume that
f |Mo

is the identity, by cellular approximation. Thus f differs from idM
by at most a pinch map corresponding to ηSη ∈ π4(M̃) = Z/2Z.
Let K# be the kernel of the natural homomorphism from E∗(P3(M))

to Πj≤3Aut(πj). Let P = P2(M) be the 2-stage of the Postnikov tower
for M . Then K#(M) maps onto K#, with kernel of order ≤ 2. There
is an exact sequence

H1(π;Zu)
∆

−−−→ H3(P ;Z) → K# → H2(π;Zu)
ρ

−−−→ H3(P ;Z),

and the image of H3(P ;Z) under the second homomorphism is cen-
tral. The homomorphism ∆ involves the second k-invariant k2(M) ∈
H4(P ;Z) and factors through the finite group H3(π;Z). The kernel of
ρ is the isotropy subgroup of k2(M) under the action of H2(π;Zu) on
P . (See Corollary 2.9 of [7].)
Since v.c.d.π = 2 spectral sequence arguments show thatH i(π;Zu) is

commensurable with H0(Z/2Z;H i(κ;Z)⊗Zu), for all i, and H3(P ;Z)
is commensurable with H1(π;Z). Thus K# is a finitely generated,
nilpotent group. In particular, if π/π′ is finite then K# is finite, and
so there are infinitely many homeomorphism types within each such
homotopy type.
However, if π ∼= D × Z or D ⋊ Z then K# is infinite, and it is not

clear how this group acts on STOP (M).

10. surface bundles over RP 2

Let F be a closed aspherical surface and p : M → RP 2 be a bundle
with fibre F , and such that π2(M) ∼= Z. (This condition is automatic
if χ(F ) < 0.) Then π = π1(M) acts nontrivially on π2(M). The
covering space Mκ associated to the kernel κ of the action is an F -
bundle over S2, and so Mκ

∼= S2×F , since all such bundles are trivial.
The projection admits a section if and only if π ∼= κ⋊ Z/2Z.
The product RP 2 × F is easily characterized.
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Theorem 12. Let M be a closed 4-manifold with fundamental group
π, and let F be an aspherical closed surface. Then the following are
equivalent.

(1) M ≃ RP 2 × F ;
(2) π ∼= Z/2Z × π1(F ), χ(M) = χ(F ) and v2(M) = 0;
(3) π ∼= Z/2Z × π1(F ), χ(M) = χ(F ) and M ≃ E, where E is the

total space of an F -bundle over RP 2.

Proof. Clearly (1) ⇒ (2) and (3). If (2) holds then M is homotopy
equivalent to the total space of an RP 2-bundle over F , by Theorem
5.16 of [2]. This bundle must be trivial since v2(M) = 0. If (3) holds
then there are maps q : M → F and p : M → RP 2 such that π1(p) and
π1(q) are the projections of π onto its factors and π2(p) is surjective.
The map (p, q) : M → RP 2 × F is then a homotopy equivalence. �

The implication (3) ⇒ (1) fails if F = RP 2 or S2.
We may assume henceforth that π is not a product.

Theorem 13. A closed orientable 4-manifold M is homotopy equiv-
alent to the total space of an F -bundle over RP 2 with a section if
and only if π = π1(M) has an element of order 2, π2(M) ∼= Z and
κ = Ker(u) ∼= π1(F ), where u is the natural action of π on π2(M).

Proof. The conditions are clearly necessary. If they hold, then M is
homotopy equivalent to an S2-orbifold bundle space (since it is not
homotopy equivalent to an RP 2-bundle space). The double cover Mκ

is an S2-bundle over F . Since M is orientable and κ acts trivially, F
must also be orientable. Hence the base orbifold must have untwisted
reflector curves. Therefore M ≃ Mst, which is the total space of an
F -bundle over RP 2 with a section. �

Orientability is used here mainly to ensure that π is the group of a
2-orbifold with an untwisted reflector curve. (Note that the S2-orbifold
bundle over D(2) is also an RP 2-bundle over RP 2.)
When π is torsion-free M is homotopy equivalent to the total space

of an S2-bundle over a surface B, with π = π1(B) acting nontrivially
on the fibre. Inspection of the geometric models for such bundle spaces
shows that if also v2(M) 6= 0 then the bundle space fibres over RP 2.
(See Theorems 10.8 and 10.9 of [2].) Is the condition v2(M) 6= 0 nec-
essary?
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