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Abstract. We explore algebraic characterizations of 2-knots whose
associated knot manifolds fibre over lower-dimensional orbifolds,
and consider also some issues related to the groups of higher-
dimensional fibred knots.

Nontrivial classical knot groups have cohomological dimension 2, and
the knot is fibred if and only if the commutator subgroup is finitely gen-
erated, in which case the commutator subgroup is free of even rank.
Poincaré duality and the condition χ(M(K)) = 0 together impose sub-
tle constraints on 2-knot groups which do not apply in higher dimen-
sions. In particular, if the commutator subgroup π′ of a 2-knot group
π is finitely generated then the virtual cohomological dimension of π
is 1, 2 or 4. In this note we shall show that (modulo several plausible
conjectures) a 2-knot group π is the group of a fibred 2-knot if and only
if π′ is finitely generated, and if moreover π is torsion-free every 2-knot
with group π is s-concordant to a fibred 2-knot. A simple satellite con-
struction gives an example of a 2-knot whose group π is not virtually
torsion-free (and so π′ is not finitely generated).
Although our main interest is in the case of 2-knots, we give examples

of fibred n-knots with groups of cohomological dimension d, for every
n ≥ 4 and d ≥ 1. (No purely algebraic characterization of the groups
of fibred n-knots is yet known for any n.) It is not clear whether there
are fibred 3-knots with such groups. In the final section we consider
other possible fibrations of 2-knot manifolds.
This work was prompted by reading [8], where it is shown that there

is a high-dimensional knot group which contains copies of every finitely
presentable group, and it is suggested that there should be a similar
2-knot group. Our results do not address the questions raised at the
end of [8] beyond the observations that no examples supporting the
suggestions made there can be the groups of fibred 2-knots, and very
likely no such examples have finitely generated commutator subgroup.
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1. fibred 1-knots

Let π be the group of a fibred 1-knot K, and let t ∈ π represent a
meridian of the knot. Then π′ is free of finite rank 2g, and the meridi-
anal automorphism φ determined by conjugation by t is geometric: it
is induced by an orientation-preserving self-homeomorphism f of Tg,o,
the once-punctured surface with g handles.
Conversely, let f be an orientation-preserving self-homeomorphism of

Tg,o which fixes ∂Tg,o. The mapping torusM(f) has fundamental group
π = F (2g) ⋊f∗ Z and boundary a torus. Let h : S1 × S1 → ∂M(f)
be a homeomorphism such that µ = h({∗} × S1) is a section of the
projection to S1. If π has weight 1 we may assume that µ represents a
normal generator for π. Then Σ = M(f) ∪h S

1 ×D2 is a homotopy 3-
sphere, and K = h|S1×{0} is a fibred knot with exterior homeomorphic
to M(f).
Is there an algebraic characterization of such geometric outer auto-

morphism classes? The situation is simpler in higher dimensions.

Lemma 1. Let π be a finitely presentable group with π′ finitely gener-
ated and π/π′ ∼= Z. Then the following are equivalent

(1) π′ ∼= F (r) for some r ≥ 0;
(2) c.d.π ≤ 2 and π′ is FP2;
(3) π has deficiency 1.

If these conditions hold and π has weight 1 then it is the group of a
fibred n-knot, for all n ≥ 2.

Proof. It is easy to see that (1) ⇒ (2) and (3). Conversely, (2) and (3)
each imply that π′ is free, by Corollary 8.6 of [1] and by the “Rapaport
Conjecture” [15], respectively.
If these conditions hold then π ∼= F (r)⋊θ Z, where θ is the automor-

phism induced by conjugation by a normal generator for π. We may re-
alize θ by a basepoint preserving self-homeomorphism h of #r(Sn×S1),
for every n ≥ 2. If π has weight 1 then the cocore of surgery on the
section of the mapping torus M(h) determined by the basepoint is a
fibred n-knot with group π. �

Is it sufficient to assume that c.d.π = 2 and π′ is finitely generated?

2. fibred 2-knots

If K is a 2-knot with π′ finitely presentable then M(K)′ is a PD3-
complex [13], and the indecomposable factors of π′ are PD3-groups or
are virtually free [4]. Hence v.c.d.π = 1, 2 or 4. The main result of this
section is contingent upon the following two ASSUMPTIONS:
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(1) all PD3-groups are 3-manifold groups;
(2) if the fundamental group of an indecomposable PD3-complex

is virtually free and maps onto T ∗
1 then it is finite.

A finitely generated group ν has a decomposition (∗i∈IGi) ∗ F (s),
where the groups Gi are indecomposable but not Z. The non-free fac-
tors are unique up to permutation and conjugacy in ν, by the Grushko-
Neumann Theorem and the Kurosh Subgroup Theorem. Automor-
phisms of ν are generated by automorphisms of the factors, permu-
tations of isomorphic factors, conjugacy and “generalized Whitehead
moves”, corresponding to dragging a summand around a loop. The
latter two types of automorphism induce the identity on the abelian-
izations of the non-free factors Gi. (This analysis of Aut(ν) is due to
D.I.Fuchs-Rabinovitch. See [7] for a more recent account.)

Lemma 2. Let G = ∗i∈Z/rZGi, where the factors are isomorphic, and
let f be an automorphism of G such that f(Gi) = Gi+1, for all i ∈
Z/rZ. Then f is meridianal if and only if the restriction of f r to G1

is meridianal. Similarly, H1(f) − 1 is an isomorphism of H1(G;Z) if
and only if H1(f

r)− 1 is an isomorphism of H1(G1;Z).

Proof. This is clear, since

G/〈〈g−1f(g) | g ∈ G〉〉 ∼= G1/〈〈g
−1f r(g) | g ∈ G1〉〉,

and similarly for the abelianization. �

The semidirect product G⋊f Z has a presentation

〈G1, t | t
rgt−r = f r(g) ∀g ∈ G1〉.

If G1 = π1(N) where N is an S3-manifold or an aspherical 3-manifold
and f r is meridianal and is realizable by a self-homeomorphism of N
then G⋊f Z is the group of an indecomposable fibred 2-knot with fibre
♯ri=1N . In particular, if (s, d) = 1 and r ≥ 1 then there is a fibred
2-knot with fibre ♯ri=1L(d, s) and group having presentation

〈a, t | ad = 1, trat−r = as〉.

If K is a fibred 2-knot such that π′ has no nontrivial free factor and
the meridianal automorphism is in the subgroup generated by factor
automorphisms, permutations and conjugacy then K is a connected
sum of indecomposable 2-knots with groups of the type just described.
Thus such knots provide basic building blocks for fibred 2-knots.

Theorem 3. Let π be a 2-knot group. If the above assumptions hold
the following are equivalent:

(1) π = πK where K is fibred;
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(2) there is a closed orientable 3-manifold N and a meridianal au-
tomorphism θ of ν = π1(N) such that θ∗cN∗([N ]) = cN∗([N ])
and π ∼= ν ⋊θ Z;

(3) π′ is finitely generated.

Proof. The implications (1) ⇒ (2) and (2) ⇒ (3) are clear.
Suppose that π′ is finitely generated. Then M ′ is a PD3-space and

π′ is FP2 [13]. Let π′ = (∗i∈IGi) ∗ F (s) be a factorization of π′ in
which the factors Gi are indecomposable but not free. The argu-
ments of Crisp and Turaev apply equally well here to show that if
Gi has one end it is a PD3-group, and otherwise it is virtually free.
By the above assumptions, the PD3-group factors are the fundamen-
tal groups of aspherical closed 3-manifolds and the remaining non-free
factors have abelianization Z/2Z [12]. The meridianal automorphism
induces an automorphism of H1(π

′;Z) = (⊕∗i∈I H1(Gi;Z))⊕Zs which
acts on ⊕ ∗i∈I H1(Gi;Z) by automorphisms and permutations of the
summands. Thus the non-free factors must admit homologically merid-
ianal automorphisms, by Lemma 2. In particular, the factors which are
virtually free but not free must be finite, and thus must be the groups
of S3-manifolds, by Theorem 15.12 of [10]. Therefore M ′ is homotopy
equivalent to a closed orientable 3-manifold. The covering transfor-
mation t corresponding to the meridian is an orientation-preserving
self-homotopy equivalence, inducing an outer automorphism class [θ].
Thus (3) ⇒ (2).
If (2) holds then we may realize [θ] by a self-homotopy equivalence

of N [19]. If π′ has no finite cyclic factors this is homotopic to a self-
homeomorphism of N [9, 16]. However if π′ has finite cyclic factors
then we may have to modify N . If we choose the lens space summands
carefully, as in the construction following Lemma 2, then we may again
realize [θ] by a self-homeomorphism. Thus (2) ⇒ (1). �

If π = πK̃ and π′ is finitely generated then K̃ need not be fibred. If
K is fibred and π′ ∼= π1(N) has finite cyclic factors the fibre need not
be N . However if N is aspherical no such examples are known, and
under very plausible K- and L-theoretic hypotheses we may obtain a
stronger result.

Theorem 4. Let M be a closed 4-manifold with χ(M) = 0 and such
that π = π1(M) ∼= ν ⋊ Z, where ν = π1(N) for some aspherical closed
3-manifold N . If the ring Z[ν] is coherent and the assembly map from
H∗(ν;L0) to L∗(ν) is an isomorphism then M is s-cobordant to the
mapping torus of a self-homeomorphism of N .
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Proof. The manifold M is also aspherical, and so the infinite cyclic
covering space corresponding to π1(N) is homotopy equivalent to N .
The generator of the covering group corresponds to a self-homotopy
equivalence of N . This is homotopic to a self-homeomorphism, and so
M is homotopy equivalent to a mapping torus N ⋊ S1.
It follows from the Geometrization Conjecture and the work of Farrell

and Jones that Wh(ν) = K̃0(Z[ν]) = 0. If moreover the ring Z[ν] is
coherent then Wh(π) = 0, by the work of Waldhausen. (It is well-
known that 3-manifold groups are coherent.)
A comparison of Mayer-Vietoris sequences for the extension π =

ν⋊Z shows that the assembly map from H∗(π;L0) to L∗(π) is also an
isomorphism. Since M is aspherical it follows that L5(π) acts trivially
on the s-cobordism structure set Ss

TOP (M) (as defined in §2 of Chapter
6 of [10]), and so M is s-cobordant to N ⋊ S1. �

Corollary. Let K be a 2-knot with group π such that π′ ∼= π1(N),
where N is an aspherical closed 3-manifold. If Z[π′] is coherent and
the assembly map is an isomorphism then K is s-concordant to a fibred
2-knot. �

Does this corollary extend to torsion-free 2-knot groups π with π′

finitely generated? It does not hold when π′ ∼= Z/3Z. (See §17.5 of
[10].)

3. high dimensional fibred knots

Although Kervaire’s characterization of high-dimensional knot groups
was one of the first results of high-dimensional knot theory, there is
apparently no corresponding characterization of the groups of fibred
n-knots, and it is not clear whether the class of such groups should be
independent of n for n large.
Let En be the set of n-knot groups π with π′ finitely presentable,

and let Fn be the set of groups of fibred n-knots. It is easy to see that
E1 ⊂ E2 ⊂ E3 = En and Fn ⊆ En, for all n ≥ 1. Moreover Fn ⊆ Fn+1,
for all n ≥ 1, since spins and superspins of fibred knots are fibred and
these constructions preserve the knot group. In low dimensions some
of these inclusions are proper: F1 = E1 ( F2 ( F3 and F3 6⊆ E2 (so
E1 6= E2 6= E3), since twist spins of prime knots are fibred but do
not have free commutator subgroup, and there are fibred 3-knots with
closed fibre the 4-torus [3], whereas solvable 2-knot groups have Hirsch
length 1, 2 or 4.
Theorem 2 suggests that E2 and F2 should agree. We have the

following weaker result. If K is a 2-knot such that π = πK ∈ E2 then
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M(K)′ is a PD3-complex, and so is finitely dominated [13]. Hence
X(K)′ is finitely dominated, and therefore so also are M(σpK)′ and
M(Sp ⊗K)′, where σpK and Sp ⊗K are the iterated spin and the p-
superspin of K, respectively. If Wh(π) = 0 and p ≥ 2 these are fibred
(p + 2)-knots, by the Farrell fibration theorem, and so π is the group
of a fibred n-knot, for all n ≥ 4.
If F3 = E3 then Fn = E3 for all n ≥ 3. If not, there are a variety

of weaker questions. The fact that there are homology 5-sphere groups
which are not homology 4-sphere groups suggests to me that perhaps
F3 6= F4. On the other hand, I expect that F4 = E3 and so Fn = En =
E3 for all n ≥ 4.
There are high-dimensional knot groups π with π′ finitely generated

but not finitely presentable [18]. It is not known whether there are any
such 2-knot groups.

4. cohomological dimension

An n-knot group has cohomological dimension 1 if and only if it is
infinite cyclic. If π is a knot group with π′ finitely presentable and
c.d.π = 2 then π′ is free, by Lemma 1. In particular, π′ 6= π′′. Spinning
repeatedly (or superspinning) a nontrivial classical fibred knot gives
fibred n-knots K with such groups, for all n. We shall give examples
to show that for every d > 2 and n ≥ 4 there is a fibred n-knot with
group π such that c.d.π = d and π′ = π′′. As observed earlier, if π is the
group of a fibred 2-knot then v.c.d.π = 1, 2 or 4. The corresponding
result for fibred 3-knots remains unknown.
Let H be the Higman superperfect group, with presentation

〈a, b, c, d | bab−1 = a2, cbc−1 = b2, dcd−1 = c2, ada−1 = d2〉

and B be the group of the Brieskorn homology 3-sphere Σ(2, 3, 7), with
presentation

〈x, y, z | x2 = y3 = z7 = xyz〉.

Then Hk × Bl is a finitely presentable, superperfect group of coho-
mological dimension 2k + 3l, and so is the fundamental group of an
homology m-sphere, for all k, l ≥ 0 and all m ≥ 5. The groups H and
B have deficiency 0 and so are also the groups of homology 4-spheres.
If t is a generator for the Z factor then the normal closure of the image
of (a, . . . , a, x, . . . , x, t) in Hk ×Bl ×Z is the whole group, and so such
products have weight 1. If N is an homology m-sphere with group
Hk ×Bl then the cocore of surgery on a loop in N ×S1 representing a
normal generator gives a fibred (m− 1)-knot with group Hk ×Bl ×Z.
In particular, there is a fibred n-knot K with c.d.πK = d and π′ = π′′
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for every d 6= 2 and n ≥ 4. This construction shows also that B ×Z is
the group of a fibred 2-knot; in fact B × Z ∼= πτ731.
These groups are also 3-knot groups, but it is not clear whether

they are all realized by fibred 3-knots. Is every cohomological dimen-
sion other than 2 is realized by some fibred 3-knot with perfect com-
mutator subgroup? Since the above construction gives fibred 3-knots
with groups H × Z and B × Z it would suffice to show that for each
d > 4 there is a finitely presentable perfect group G with deficiency 0,
c.d.G = d − 1 and with an element g ∈ G such that {[g, h] | h ∈ G}
has normal closure the whole group. (There are “Cappell-Shaneson”
fibred 3-knots with π ∼= Z4 ⋊ Z. These have c.d.π = 5, but π′′ = 1!)
The groups of fibred 2-knots have solvable word problem, since they

are extensions of Z by 3-manifold groups. There is a 3-knot K whose
group is universal, in the sense that every finitely presentable group
is a subgroup of πK, by Corollary 3.4 of [8]. In particular, πK has
unsolvable word problem. There is a finitely presentable acyclic group
U which is universal. Since U is the fundamental group of an homology
5-sphere there is a fibred 4-knot in an homology 6-sphere whose knot
group has commutator subgroup U . Is there a fibred 3-knot whose knot
group is universal?
If we drop the condition that the commutator subgroup of a 2-knot

group be finitely generated we get new examples. The group π with
presentation

〈a, b, t | tat−1 = a2, aba−1 = b−1, b3 = 1〉

is the group of a satellite [14] of Fox’s Example 10 around τ231 The
image of a in any finite quotient of π must have odd order, and so the
image of b must be trivial. Therefore π is not virtually torsion-free,
and v.c.d.π = ∞. Are there any 2-knot groups G for which v.c.d.G is
finite, but not 1, 2 or 4?

5. finitely generated normal subgroups

In this section we shall consider algebraic criteria for other possible
fibrations for 2-knot manifolds.
Let K be a 2-knot whose group π = πK has an infinite finitely

generated infinite normal subgroup H of infinite index. Then β
(2)
1 (π) =

0 and π has one end. The following results are immediate consequences
of Theorems 4 and 6 of [11].

(1) If π/H has two ends then H has finite index in π′, and so π′

is also finitely generated. Hence π′ and H are the fundamental
groups of PD3-spaces, and are FP2 [13].
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(2) If π/H has one end and H is FP2 then M(K) is aspherical and
either H ∼= Z and H3(π/H ;Z[π/H ]) ∼= Z or H is a PD2-group
and π/H is virtually a PD2-group.

(3) If π/H has infinitely many ends and H is FP3 then H2(π;Z[π])
6= 0 and M(K) is not aspherical. In particular, H has more
than one end.

If M(K) is the total space of an orbifold fibration with fibre F then
H = π1(F ) is FP3. Nevertheless, can the finiteness hypotheses on H in
(2) and (3) be relaxed? If we consider instead knots K such that π has
an ascendant PD2 subgroup H then a transfinite induction using the
Lyndon-Hochschild-Serre spectral sequence shows that Hs(π;Z[π]) = 0
for s ≤ 2, so M is aspherical, and then the only new possibity is that
π be virtually (H ⋊ Z)⋊ Z. See Theorems 5 and 6 of [11].
Most of these possibilities do occur. If K = τ631 (the 6-twist spun

trefoil) or τ2k(e, η) (a 2-twist spun Montesinos knot) then ζπ′ ∼= Z,
ζπ ∼= Z2 and π′ are finitely presentable normal subgroups, and in each
case the quotient has one or two ends. If K = σ31 (the spun trefoil)
then π′ is free of rank 2, while π/ζπ is virtually free of rank 2. If
K = τ441 then M(K) is the mapping torus of a self-homeomorphism
of a non-Haken hyperbolic 3-manifold which has a 10-fold cover which
fibers over the circle, with the fiber having genus 2[17]. Thus π is
virtually (H ⋊ Z)⋊ Z with H = π1(T#T ).
If all hyperbolic 3-manifolds are virtually fibred then this structure

is generic for r-twist spins of simple non-torus knots. Is there such a
knot for which some twist spin is a mapping torus? (The Alexander
polynomial ∆k(t) must be divisible by the cyclotomic polynomial φr(t),
so r must be composite and k must have at least 8 crossings.)
In more detail: the considerations of §2 above apply to 2-knots in

case (1).
It is not known whether a finitely presentable group G such that

H3(G;Z[G]) ∼= Z must be virtually a PD3-group. However we have
the following complement to case (2).

Theorem 5. Let π be a 2-knot group such that π′ is finitely gener-
ated and with an infinite cyclic normal subgroup H such that π/H has
one end. Then π/H is virtually a PD3-group. If moreover H < π′

then M(K) is homotopy equivalent to the mapping torus of a self-
homeomorphism of an aspherical Seifert fibred 3-manifold.

Proof. If K is a 2-knot with group π then M(K) is aspherical, and so
π is a PD4-group. Since π

′ is finitely generated it is a PD3-group [13].
If H ∩ π′ = 1 then (π/H)′ ∼= π′ and [π/H : (π/H)′] = [π : Hπ′] is

finite, so π/H is virtually a PD3-group.
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IfH < π′ thenH ≤ ζπ′, and so π′ is the group of an aspherical Seifert
fibred 3-manifold [2]. In particular, π′/H is virtually a PD2-group, and
so π/H is again virtually a PD3-group. �

The quotient π/H need not be orientable, even if it is a 3-manifold
group. See §15.3 of [10]. Does the lemma hold whenever H ∼= Z and
π/H has one end? If H ∼= Z and π/H is virtually a PD3-group then
H has finite index in a maximal infinite cyclic normal subgroup.
The other possibility in case (2) is realized by orbifold bundle spaces.

Theorem 6. A group π is the group of a 2-knot K such that M(K)
is the total space of an orbifold fibration with aspherical, 2-dimensional
base B and fibre F if and only if it is a torsion-free extension of β =
πorb
1 (B) by φ = π1(F ), φ is a PD+

2 -group, β acts on H2(φ;Z) through
w1(β), π has weight 1 and χ(F )χorb(B) = 0. If these conditions hold
then π/π′φ ∼= β/β ′ is finite cyclic, so φ 6≤ π′, and ζπ ≤ φ.

Proof. The necessity of the algebraic conditions is clear. If they hold
then π is the fundamental group of an orientable orbifold bundle space
M , by Theorem 7.3 of [10]. Since M is orientable and χ(M) = 0
the cocore of surgery on a normal generator for π is a 2-knot K with
M(K) = M .
The final assertions hold since no 2-orbifold group has abelianization

Z, and the centre of a 2-orbifold group with cyclic abelianization is
trivial. �

Corollary. If χ(β) = 0 then B = S2(2, 3, 6) (the 2-sphere with three
cone points), D2(3, 3, 3) (the 2-disc with reflector boundary and three
corner points) or D2(3, 3) (the 2-disc with reflector boundary, one cor-
ner point and one cone point).

Proof. These are the flat 2-orbifolds for which β/β ′ is cyclic. �

Corollary. If χ(φ) = 0 then φ is the unique maximal normal PD+
2 -

subgroup of π.

Proof. If φ̃ is another maximal normal PD+
2 -subgroup of π then φφ̃ is

a normal subgroup which properly contains φ and so [φφ̃ : φ] = ∞.

If χ(φ̃) = 0 also then φ(φ̃∩Cπ(φ)) is abelian, of rank at least 3. But
then either π′ ∼= Z3 or π is virtually Z4, and no such 2-knot group has
an abelian normal subgroup of rank 2. (See §16.4 of [10].)

If χ(φ̃) 6= 0 then φ∩ φ̃ = 1, and the image of φ in β̃ = π/φ̃ has finite
index and centralizer of index ≤ 2, since [π : Cπ(φ)] ≤ 2, by Theorem

16.2 of [10]. But then the holonomy of β̃ has order at most 2, contrary
to β/β ′ being cyclic. �
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IfK is a 2-knot such that πK has an abelian normal subgroup of rank

2 thenM(K) is s-cobordant to a S̃L× E1-manifold or is homeomorphic
to one of the Nil3 × E1-manifolds M(τ631) or M(τ2k(e, η)), for some
even e and η = ±1. The manifoldsM(τ631) andM(τ2k(e, η)) are Seifert
fibred over S2(2, 3, 6) and D2(3, 3, 3), respectively. Consideration of the
possible knot groups shows that no 2-knot manifold is Seifert fibred over
D2(3, 3). (See Chapter 16 of [10].)
At present, no such examples with χ(φ) 6= 0 have been found. What

little we know is summarized in the following theorem.

Theorem 7. If K is a 2-knot such that π = πK is an extension of a
flat 2-orbifold group β by a normal subgroup φ which is a PD+

2 -group
then χ(φ) ≡ 0 mod (6) and π/φ∩π′ is a 3-dimensional crystallographic
group. The group π has no non-trivial abelian normal subgroup.

Proof. The torsion subgroup of β is isomorphic to Z/6Z or S3, by the
Corollary to Theorem 6. The preimage in π of this torsion subgroup
is a torsion-free extension of φ, and so χ(φ) ≡ 0 mod (12), if β is
orientable, and χ(φ) ≡ 0 mod (6) otherwise.
Since β/β ′ is finite φ/φ∩π′ ∼= Z, and so φ∩π′ is free of countable rank.

The preimage in π/φ∩π′ of the translation subgroup of β is isomorphic
to Z3, and π/φ ∩ π′ has no non-trivial finite normal subgroup. Thus
π/φ ∩ π′ is a 3-dimensional crystallographic group.
If A is an abelian normal subgroup of π then A ∩ φ = 1, and so

A maps injectively to an abelian normal subgroup of β. Therefore if
A is non-trivial then A ∼= Z2. But this is impossible, by the second
corollary of Theorem 7. �

Corollary. The knot manifold M(K) is not Seifert fibred, and K is
not a twist spin. �

In particular, if B = S2(2, 3, 6) then π/φ ∩ π′ ∼= G5, the orientable
flat 3-manifold group with holonomy Z/6Z. Are there any examples
with π′ finitely generated (but not solvable)? If so π′ would be a PD3-
group with free commutator subgroup. Must such a group be a semidi-
rect product H ⋊θ Z with H a PD2-group? If H is hyperbolic, θ must
have infinite order in Out(H).
Are there any examples with base B = D2(3, 3) and hyperbolic fibre?
In case (3) are there examples with bothH and π/H having infinitely

many ends? In particular, are then any such with H ∼= F (r) for some
r > 1?
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Comment. Math. Helv. 75 (2000), 232–246.

[5] Farrell, F.T. and Jones, L.P. Isomorphism Conjectures in algebraic K-theory,
J.Amer. Math. Soc. 9 (1993), 249–295.

[6] Fried, D. and Lee, R. Realizing group automorphisms,
in Group actions on manifolds (Boulder, Colo., 1983), CONM 36,
Amer. Math. Soc., Providence, RI, (1985), 427–432.

[7] Gilbert, N.D. Presentations of the automorphism group of a free product,
Proc. London Math. Soc. 54 (1987), 115–140.
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