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INNA (KORCHAGINA) CAPDEBOSCQ AND ANNE THOMAS

Abstract. Let G be a topological Kac–Moody group of rank 2 with symmetric Cartan matrix, defined over

a finite field Fq . An example is G = SL(2,Fq((t−1))). We determine a positive lower bound on the covolumes
of cocompact lattices in G, and construct a cocompact lattice Γ0 < G which realises this minimum. This

completes the work begun in Part I, which considered the cases when G admits an edge-transitive lattice.

Introduction

A classical theorem of Siegel [8] states that the minimum covolume among lattices in G = SL2(R) is
π
21 , and determines the lattice which realises this minimum. In the nonarchimedean setting, Lubotzky [6]
and Lubotzky–Weigel [7] constructed the lattice of minimal covolume in G = SL2(K), where K is the field
Fq((t−1)) of formal Laurent series over Fq.

The group G = SL2(Fq((t−1))) has, in recent developments, been viewed as the first example of a topolog-
ical Kac–Moody group of rank 2 over the finite field Fq. Such Kac–Moody groups are locally compact, totally
disconnected topological groups, which may be thought of as infinite-dimensional analogues of semisimple
algebraic groups. The so-called affine case G = SL2(Fq((t−1))) is actually quite special among such Kac–
Moody groups, since it is the only case in which there is a linear representation.

Our main result is Theorem 1 below. The groups G in this statement are topological Kac–Moody groups,
meaning that each such G is the completion of a minimal Kac–Moody group Λ with respect to some topology.
We use the completion in the ‘building topology’, discussed in [4]. The groups G in our result have Bruhat–
Tits building a regular tree X, and the kernel of the G–action on X is the finite group Z(G), the centre
of G (see [4]). We recall in Section 1.3 below that if Γ is a cocompact lattice in G, then Γ acts on X
cocompactly and with finite vertex stabilisers. Moreover, the Haar measure µ on G may be normalised so
that the covolume µ(Γ\G) is equal to

∑
|Γy|−1, where this sum is over the finitely many vertices y in a

fundamental domain Y ⊂ X for Γ. Using this normalisation, we obtain the following.

Theorem 1. Let G be a topological Kac–Moody group of rank 2 defined over the finite field Fq, with symmetric

generalised Cartan matrix
(

2 −m
−m 2

)
, m ≥ 2. Then for q ≥ 514

min{µ(Γ\G) | Γ a cocompact lattice in G} =
2

(q + 1)|Z(G)|δ
where δ ∈ {1, 2, 4} (depending upon the particular group G). Moreover, we construct a cocompact lattice
Γ0 < G which realises this minimum.

The action of G on its Bruhat–Tits tree X is edge-transitive and induces the graph of groups

G =
B

P2P1

1
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where P1 and P2 are the standard parabolic/parahoric subgroups of G, and B = P1 ∩ P2 is the standard
Borel/Iwahori subgroup. In Part I of this work, we classified the edge-transitive cocompact lattices in G (see
Theorems 1 and 2 of [3]). We then proved for q ≥ 514 that in the cases when G admits an edge-transitive
lattice, the cocompact lattice of minimal covolume in G is edge-transitive (Theorem 3 of [3]). Hence in these
cases, the lattice Γ0 in Theorem 1 above appeared in our classification.

In order to prove Theorem 1 above in the cases where G does not admit any edge-transitive lattice, we
first, in Section 3 below, construct a cocompact lattice Γ0 < G which acts on the tree X inducing a graph
of groups of the form

A =

S

N2

S

N1

1

The finite groups S, N1 and N2 will be defined in Section 3 below. Our construction generalises Example
(6.2) of Lubotzky–Weigel [7].

In Section 4 below, we compute the covolume of the cocompact lattice Γ0 to be 2/(q+1)|Z(G)|δ. We then
complete the proof of Theorem 1 by showing that Γ0 is the cocompact lattice in G of minimal covolume. A
key ingredient here is Proposition 5 of our previous work [3], which concerns p–torsion in G (where q = pa

with p prime), and which we restate in Section 4 below.
The lattice Γ0 that we construct in Section 3 below is the only known cocompact lattice in such rank 2

complete Kac–Moody groups G, except for the free Schottky groups constructed by Carbone–Garland in [5].
Several methods can be used to show that the fundamental group Γ0 of the graph of groups A above

embeds as a cocompact lattice in G. One can achieve this by generalising the criterion of Lubotzky and
Weigel in [7]. Alternatively this result can be obtained by explicitly constructing a covering of graphs of
groups (see Bass [1]). After verifying that both of these methods worked, we realised that a third approach
was possible. In Section 2 below we provide our own embedding criterion, which applies to many locally
compact groups G acting on the edges of a regular tree X with fundamental domain an edge f = [x1, x2].
For i = 1, 2, denote by EX(xi) the set of edges of X which are adjacent to the vertex xi. We prove the
following sufficient condition for the fundamental group of a graph of groups with two vertex groups A1 and
A2 acting on respectively EX(x1) and EX(x2) with the same number of orbits to embed as a lattice in G.

Proposition 2. Suppose that there are finite groups A1 ≤ Gx1 and A2 ≤ Gx2 , and a positive integer n, such
that:

(1) for i = 1, 2, the group Ai has n orbits of equal size on EX(xi);
(2) there are representatives f = [x1, x2] = f1, f2, . . . , fn of the orbits of A1 on EX(x1), and elements

1 = g1, g2, . . . , gn ∈ Gx1 , and representatives [x2, x1] = f̂1, f̂2, . . . , f̂n of the orbits of A2 on EX(x2),
and elements 1 = ĝ1, ĝ2, . . . , ĝn ∈ Gx2 , such that for j = 1, . . . , n:
(a) gj · f1 = fj and ĝj · f̂1 = f̂j;
(b) A1 ∩G

gj
f = A1 ∩A2 = A2 ∩G

ĝj
f ; and

(c) (A1 ∩A2)gj = (A1 ∩A2)ĝj .
Let A be the graph with two vertices a1 and a2 and n edges connecting a1 to a2. (The case n = 2 is

sketched above.) Then there is a graph of groups A over A with vertex group Ai at ai for i = 1, 2, and all
edge groups A1 ∩ A2, such that the fundamental group of the graph of groups A is a cocompact lattice Γ in
G, with quotient A = Γ\X.

Our criterion applies in particular to the Kac–Moody groups G of our main result, Theorem 1 above.
The constructions of edge-transitive lattices in [6] and in [3] are a particular case. In [7], the covering
theory developed for graphs of groups by Bass in [1] was employed. We are able to provide somewhat
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simpler proofs by using covering theory for complexes of groups, which was developed more recently by
Bridson–Haefliger [2], and in which the notion of morphism is less complicated.

Acknowledgements. We would like to thank Chris Parker and Ron Solomon for valuable conversations.

1. Preliminaries

We recall necessary definitions and fix notation concerning graphs, in Section 1.1, and graphs of groups,
in Section 1.2. Lattices in groups acting on trees are discussed briefly in Section 1.3 below, and then in
Section 1.4 below we recall necessary definitions and a result from covering theory for graphs of groups.
For all relevant terminology, notation and results for Kac–Moody groups, we refer the reader to our earlier
work [3].

1.1. Graphs. Let A be a connected graph, with sets V A of vertices and EA of oriented edges. The initial
and terminal vertices of e ∈ EA are denoted by ∂0e and ∂1e respectively. The map e 7→ e is orientation
reversal, with e = e and ∂1−je = ∂je for j = 0, 1 and all e ∈ EA. Given a vertex a ∈ V A, we denote by
EA(a) the set of edges

EA(a) := {e ∈ EA | ∂0e = a}

with initial vertex a.
Let A and B be graphs. A morphism of graphs is a function θ : A → B taking vertices to vertices and

edges to edges, such that for every edge e ∈ EA, θ(e) = θ(e) and θ(∂i(e)) = ∂i(θ(e)) for i = 1, 2.

1.2. Bass–Serre theory. A graph of groups A = (A,A) over a connected graph A consists of an assign-
ment of vertex groups Aa for each a ∈ V A and edge groups Ae = Ae for each e ∈ EA, together with
monomorphisms αe : Ae → A∂0e for each e ∈ EA.

Let X be a tree. A group Γ is said to act on X without inversions if for all edges e ∈ EX and all g ∈ Γ,
g ·e 6= e. Any action of a group Γ on a tree X without inversions induces a graph of groups over the quotient
graph A = Γ\X. See for example [1] for the definitions of the fundamental group π1(A, a0) and the universal

cover X = (̃A, a0) of a graph of groups A = (A,A), with respect to a basepoint a0 ∈ V A. The universal
cover X is a tree, on which π1(A, a0) acts by isometries inducing a graph of groups isomorphic to A.

1.3. Lattices in groups acting on trees. Let X be a locally finite tree and let G be a cocompact group
of automorphisms of X, which acts without inversions and with compact open vertex stabilisers. As recalled
in our Part I [3], a subgroup Γ < G is discrete if and only if it acts on X with finite vertex stabilisers, and
the Haar measure µ on G may be normalised so that the covolume of a discrete Γ < G is µ(Γ\G) =

∑
|Γy|−1

where the sum is over the vertices y of Y ⊂ X a fundamental domain for Γ. Moreover, a discrete subgroup
Γ < G is a cocompact lattice in G if and only if the graph Γ\X is finite. Hence the graph of groups induced
by a cocompact lattice Γ < G will be a finite graph of finite groups.

1.4. Definitions and a result from covering theory. We adapt definitions from covering theory for
complexes of groups (Chapter III.C of [2]) to graphs of groups, and recall a necessary result from covering
theory. For the precise relationship between the category of graphs of groups and the category of complexes
of groups over 1–dimensional spaces, see Proposition 2.1 of [9].

Definition 1 (Morphism of graphs of groups). Let A = (A,A) and B = (B,B) be graphs of groups,
with monomorphisms from edge groups to vertex groups respectively αe : Ae → A∂0e for e ∈ EA and
βe : Bf → B∂0f for f ∈ EB. Let θ : A → B be a morphism of graphs. A morphism of graphs of groups
Φ : A→ B over θ is given by:

(1) a homomorphism φx : Ax → Bθ(x) of groups, for every x ∈ V A ∪ EA; and
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(2) an element φ(e) ∈ B∂0(θ(e)) for each e ∈ EA such that the following diagram commutes, where
a = ∂0e:

Ae
αe

��

φe

// Bθ(e)

ad(φ(e))◦βθ(e)
��

Aa
φa

// Bθ(a)

Definition 2 (Covering of graphs of groups). With notation as in Definition 1 above, Φ : A → B is a
covering of graphs of groups if in addition:

(1) for each x ∈ V A ∪ EA the homomorphism φx : Ax → Bθ(x) is injective; and
(2) for each edge f ∈ EB and each vertex a ∈ V A with ∂0f = b = θ(a), the map

Φa/f :
∐

e∈EA(a)∩θ−1(f)

Aa/αe(Ae)→ Bb/βf (Bf )

induced by g 7→ φa(g)φ(e) is bijective.

The result from covering theory that we will need is:

Proposition 3 (Bass, Proposition 2.7 of [1]). Let A = (A,A) and B = (B,B) be graphs of groups. Choose
basepoints a0 ∈ A and b0 ∈ B. If there is a covering of graphs of groups Φ : A → B over θ : A → B with
θ(a0) = b0, then π1(A, a0) injects into π1(B, b0).

2. Embedding criterion

We now prove our embedding criterion, Proposition 4 below, which implies Proposition 2 of the introduc-
tion. We will apply Proposition 4 in Section 3 below to show that the fundamental group Γ0 of the graph
of groups A sketched in the introduction embeds as a cocompact lattice in the Kac–Moody group G of our
main result, Theorem 1.

Our embedding criterion in fact applies to more general groups G. Let q be a positive integer and let X
be the (q + 1)–regular tree. Let G be any locally compact group of automorphisms of X, which acts on X
without inversions, with compact open vertex stabilisers Gx for x ∈ V X, and with fundamental domain an
edge [x1, x2]. Denote by Pi the stabiliser Gxi for i = 1, 2, and let B = P1 ∩ P2. For notational convenience,
we denote by C the subgraph of X with vertex set {x1, x2} and edge set {f, f}, such that ∂0(f) = ∂1(f) = x1

and ∂1(f) = ∂0(f) = x2. Then G is the fundamental group of an edge of groups G over C, as sketched in
the introduction.

For some integer n ≥ 1 dividing q + 1, let A = An be the graph with two vertices a1 and a2 and edge set
{e1, . . . , en, e1, . . . , en}, so that ∂0(ej) = ∂1(ej) = a1 and ∂1(ej) = ∂0(ej) = a2. The case n = 2 is sketched
in the introduction. We now state and prove a sufficient criterion for the fundamental group of a graph of
groups over A to embed in G as a cocompact lattice.

Proposition 4. Suppose that there are finite groups A1 ≤ P1 and A2 ≤ P2 such that:
(1) for i = 1, 2, the group Ai has n orbits of equal size on EX(xi);
(2) there are representatives f = f1, f2, . . . , fn of the orbits of A1 on EX(x1), and elements 1 =

g1, g2, . . . , gn ∈ P1, and representatives f = f̂1, f̂2, . . . , f̂n of the orbits of A2 on EX(x2), and el-
ements 1 = ĝ1, ĝ2, . . . , ĝn ∈ P2, such that for j = 1, . . . , n:
(a) gj · f1 = fj and ĝj · f̂1 = f̂j;
(b) A1 ∩Bgj = A1 ∩A2 = A2 ∩Bĝj ; and
(c) (A1 ∩A2)gj = (A1 ∩A2)ĝj .

Let A be the graph of groups over A with vertex groups Aai = Ai for i = 1, 2, and all edge groups
Aej = Aej = A1 ∩A2. Each monomorphism αej from an edge group A1 ∩A2 into A1 is inclusion composed
with ad(gj ĝ−1

j ), and the monomorphisms αej from edge groups A1 ∩A2 into A2 are inclusions.
Then the fundamental group of the graph of groups A is a cocompact lattice in G, with quotient A.
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Proof. We will construct a covering of graphs of groups Φ : A→ G. Since A is a finite graph and the vertex
groups A1 and A2 are finite, it follows from our discussion of lattices in Section 1.3 above and Proposition
3 above that the fundamental group of A is a cocompact lattice in G with quotient the graph A.

Let θ : A → C be the graph morphism given by θ(ai) = xi for i = 1, 2, and θ(ej) = f and θ(ej) = f for
j = 1, . . . , n. We construct a morphism of graphs of groups Φ : A → G over θ as follows. For i = 1, 2 let
φai : Aai → Pi be the natural inclusion Ai ↪→ Pi. For j = 1, . . . , n let φej : Aej → B be the composition of
the natural inclusion A1 ∩ A2 ↪→ Bĝj with the map ad(ĝ−1

j ) : Bĝj → B. Define φ(ej) = gj and φ(ej) = ĝj .
Then it may be checked that Φ is indeed a morphism of graphs of groups.

To show that Φ is a covering, we first show that the map

Φa1/f :
n∐
j=1

Aa1/αej (Aej )→ P1/B

induced by g 7→ φa1(g)φ(ej) = ggj for g representing a coset of αej (Aej ) = (A1 ∩ A2)gj ĝ
−1
j = A1 ∩ A2 in

Aa1 = A1, is a bijection. For this, we note that since the edges fj = gj ·f1 = gj ·f represent pairwise distinct
A1–orbits on EX(x1), for all g, h ∈ A1 and all 1 ≤ j 6= j′ ≤ n the cosets ggjB and hgj′B are pairwise
distinct. The conclusion that Φa1/f is a bijection then follows from the assumption that A1∩Bgj = A1∩A2.

The proof that the map

Φa2/f
:
n∐
j=1

Aa2/αej (Aej )→ P2/B

is a bijection is similar. We conclude that Φ : A→ G is a covering of graphs of groups, as desired. �

3. Construction of the lattice Γ0

Let G be as in Theorem 1 above, and assume that G does not admit any edge-transitive lattices. In
this section we show that the fundamental group Γ0 of the graph of groups A sketched in the introduction
embeds as a cocompact lattice in G. We first in Section 3.1 define finite subgroups S, N1 and N2 of G and
discuss their structure, then in Section 3.2 verify that our embedding criterion, Proposition 4 above, may be
applied with A1 = N1 and A2 = N2.

3.1. The groups S, N1 and N2. As in our earlier work [3], for i = 1, 2 let Pi be a standard maximal
parabolic/parahoric subgroup of G. Then Pi is the stabiliser in G of a vertex xi of X, with [x1, x2] an edge
of X. Since G is rank 2 and has symmetric Cartan matrix, P1

∼= P2. Moreover, if Li is a Levi complement of
Pi, then Li = MiT where T ≤ B ≤ P1 ∩ P2 is a torus of G and A1(q) ∼= Mi / Li, where A1(q) is isomorphic
to either SL2(q) or PSL2(q), depending upon G. Since by assumption G has no edge-transitive lattices,
Theorem 1 of [3] implies that q ≡ 1 (mod 4), and either Li/Z(Li) ∼= PSL2(q), or if Li/Z(Li) ∼= PGL2(q),
Q0
i 6≤ Z(G) where Q0

i is the unique subgroup of index 2 of the Sylow 2–subgroup of Z(Li).
For i = 1, 2 let Hi be a fixed non-split torus of Mi such that NT (Hi) is as big as possible. Then either

Hi
∼= C q+1

2
or Cq+1, depending on whether Mi

∼= PSL2(q) or SL2(q) respectively. Also, NT (Hi)/CT (Hi) ∼=
C2 and Hi ∩NT (Hi) = Z(Mi). Define

S := NT (H1) ∩NT (H2).

Let us try to describe S in more definite terms. Let Q be the Sylow 2–subgroup of T (it is unique since
T is abelian). First of all, let us notice that if z ∈ NT (Hi), i = 1, 2, is of odd order, then [z,Hi] = 1 and
[z,Mi] = 1. Hence, if z ∈ S and z is of odd order, z ∈ CG(〈M1,M2〉) thus z ∈ Z(G). It follows immediately
that Z(G) ≤ S ≤ Z(G)Q. Let us now investigate what happens when z ∈ NT (Hi) ∩Q, i = 1, 2.

Take x ∈ Q such that x normalises but not centralises Hi for some i ∈ {1, 2}. Then x acts on Hi as an
element of order 2, and so x2 centralises Hi. It follows that x2 centralises Mi. Now consider Ri := {x ∈ Q |
x2 ∈ CT (Mi)}. Then Ri ≤ Q and Ri ≤ NT (Hi). Define

Q0 := R1 ∩R2 = {x ∈ Q | x2 ∈ CT (M1) ∩ CT (M2)} = {x ∈ Q | x2 ∈ Z(G)}
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Clearly, Q0 ≤ S. On the other hand, take s ∈ S ∩ Q. If [s,Hi] = 1 for both i = 1, 2, then [s,Mi] = 1
for i = 1, 2 implying s ∈ Z(G) ∩ Q ≤ Q0. Let s ∈ S ∩ Q be such that [s,Hi] 6= 1 for some i ∈ {1, 2}. As
noticed above, s2 ∈ CT (Hi) ≤ CT (Mi). Hence, s2 ∈ CT (Mj), {i, j} = {1, 2}. Therefore, s2 ∈ Z(G). Thus
S ∩Q ≤ Q0. It follows that:

Lemma 5. S = Z(G)Q0.

Notice that |NS(Hi) : CS(Hi)| = 2. We also define

N1 := SH1 and N2 := SH2.

3.2. Application of embedding criterion. By construction, for i = 1, 2, Ni is a finite subgroup of Pi,
and S = N1 ∩N2. We now verify that our embedding criterion, Proposition 4 above, may be applied with
A1 = N1 and A2 = N2.

Notice first that the intersection of Ni with an edge stabiliser in Li is of index q+1
2 . The Orbit-Stabiliser

Theorem yields immediately that Ni has 2 orbits of equal size 1
2 (q + 1) on EX(xi). That is, with n = 2,

condition (1) in the statement of Proposition 4 above holds.
Denote by f1 the edge [x1, x2] of X and by f̂1 the edge [x2, x1]. Choose an edge f2 ∈ EX(x1) so that the

edges f1 and f2 represent the two N1–orbits on EX(x1), and choose an edge f̂2 ∈ EX(x2) so that the edges
f̂1 and f̂2 represent the two N2–orbits on EX(x2).

The edges f1 and f̂1 are fixed by S, since S ≤ T ≤ B = P1 ∩ P2. We claim that the edges f2 and f̂2

may be chosen so that S fixes both f2 and f̂2. To see this, consider first the action of N1 on the edges
EX(x1). Now N1 ≤ L1, and L1 acts on the set EX(x1) as on the points of projective line, i.e., we observe
this action via a homomorphism φ : L1 → PGL2(q). The kernel of this action is ker(φ) = Z(L1) = CT (M1).
We know that N1 has 2 orbits, say θ1 and θ2 in this action, each of length q+1

2 , which is odd. Assume that
the fixed points of S all lie inside the same orbit of N1, say θ1. Then S would act fixed points free on θ2.
Now, S ker(φ)/ ker(φ) ∼= S/S ∩ ker(φ) and as |S ker(φ)/ ker(φ)| = 2, S would have a fixed point on θ2, a
contradiction. Hence we may choose the edge f2 ∈ EX(x1) so that f2 is fixed by S. Similarly, we may choose
f̂2 ∈ EX(x2) to be fixed by S.

Now let g1 = ĝ1 = 1G. Consider the fixed points of S on EX(xi), i = 1, 2. Since |S ∩Mi : Z(Mi)| = 2,
they are the two points fixed by the whole of T . Choose g2 ∈ NP1(T ) that represents w1 ∈ W . Then
g2 ·f1 = f2. Similarly, we may choose ĝ2 ∈ NP2(T ) that represents w2 and such that ĝ2 · f̂1 = f̂2. Then (2a) in
Proposition 4 above holds. Let τ := g2ĝ

−1
2 . We observe that Sτ = S, since by Lemma 5 above S = Z(G)Q0,

a characteristic subgroup of T which is therefore NG(T )–invariant. Hence (N1 ∩N2)g2 = (N1 ∩N2)ĝ2 , and
so (2c) in Proposition 4 above is satisfied.

To show that (2b) in Proposition 4 above holds, we must show that N1 ∩ B = N1 ∩ Bg2 = N2 ∩ B =
N2 ∩Bĝ2 = S. Since N1 ≤ L1 ≤ P1, we have that N1 ∩B = N1 ∩ (B ∩ L1). Now, B ∩ L1 is isomorphic to a
Borel subgroup TU0 of L1, where U0

∼= Epa , the elementary abelian group of exponent p and order q = pa, is
normalised by T . On the other hand N1 is a finite subgroup of L1. The order of N1 is |S| q+1

2 and it divides
|T | q+1

2 . Moreover, (|S|, q+1
2 ) = 1. Therefore, numerical reasons imply that N1 ∩ B is a finite group whose

order divides |T | and is actually at most |S|. But S ≤ N1 and S ≤ T ≤ B. Hence N1 ∩ B = S as required.
The argument that N2 ∩B = S is similar.

Since S fixes the edge f2 = g2 · f1, we have S ≤ Bg2 . The argument that N1 ∩ Bg2 = S is then similar
to the previous paragraph. Finally, S also fixes the edge f̂2 = ĝ2 · f̂1, and again by similar arguments we
conclude that N2 ∩ Bĝ2 = S. Therefore all hypotheses of Proposition 4 above are satisfied with A1 = N1

and A2 = N2, and so the fundamental group Γ0 of the graph of groups A as sketched in the introduction is
a cocompact lattice in G with quotient the graph A.

4. Minimality of covolume

Let G be as in Theorem 1 above. In this section we compute the covolume of the lattice Γ0 constructed
in Section 3 above, and prove that for q ≥ 514, the lattice Γ0 is the cocompact lattice of minimal covolume
in G. We will make repeated use of the following result from our earlier work [3]:
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Proposition 6. Let G be as in Theorem 1 above, with q = pa where p is prime. If Γ is a cocompact lattice
in G, then Γ does not contain p–elements.

From the construction of Γ0 in Section 3 above and the discussion of covolumes in Section 1.3 above, it
follows that the covolume of Γ0 is given by µ(Γ0\G) = 1

|Ax1 |
+ 1
|Ax2 |

= 1
|SH1| + 1

|SH2| . Recall that S ∩Hi =

Z(Mi) ≤ Q0 and |Hi : Z(Mi)| = q+1
2 . Hence

|SHi| =
|S||Hi|
|S ∩Hi|

= |S|q + 1
2

= |Z(G)||Q0 : (Q0 ∩ Z(G))|q + 1
2

.

Since |Q0 : (Q0 ∩ Z(G))| = 2δ where δ ∈ {1, 2} and its precise value depends on G, we obtain that

(1) µ(Γ0\G) =
2

δ|Z(G)|(q + 1)
with δ ∈ {1, 2} depending on G.

Let us now discuss the issue of minimality of covolume of Γ0. As in Part I, in order to simplify arguments
we assume that G has trivial centre, that is, the finite group Z(G) satisfies |Z(G)| = 1. To avoid tedious
technical calculations we suppose that q ≥ 514 (the case when q < 514 can be done in a similar manner, but
requires more patience).

Assume now that there is a cocompact lattice Γ of G whose covolume µ(Γ\G) is strictly smaller than the
covolume Γ0 given above. Let Y ⊂ X be a connected fundamental domain for Γ and let A be the graph
A = Γ\X. Since Γ has at least two orbits of vertices, Y contains at least two vertices x1 and x2 (connected by
at least one edge), such that without loss of generality Gxi ≤ Pi for i = 1, 2. By the discussion in Section 1.3
above,

µ(Γ\G) =
∑
y∈V Y

1
|Γy|

≥ 1
|Γx1 |

+
1
|Γx2 |

Since Γ is discrete, |Γxi | is finite. But Γ is cocompact, and so Proposition 6 above implies that, in fact, we
may suppose that Γxi is a subgroup of Li of order co-prime to p (where Li is a Levi complement of the
parabolic Pi, i = 1, 2).

Remark 7. Notice that T ≤ P1 ∩ P2 together with Γ ∩ Pi = Γxi yields Γx1 ∩ T = Γx2 ∩ T .

As in the proof of Theorem 3 of Part I, we organise our remaining discussion based on the following cases:

Case 1 : For i = 1 , 2 ,Li/Z (Li) ∼= PSL2 (q), and Case 2 : For i = 1 , 2 , Li/Z (Li) ∼= PGL2 (q).

4.1. Case 1. In this case Li = Mi ◦Ti, that is, Li is a central (commuting) product of Mi and Ti = CT (Mi).
Moreover, if an element of T centralises a non-split torus of Mi, then from the structure of Mi and Li, it
follows immediately that it centralises Mi. Now, Z(G) = 1 implies that Ti ∩Tj = 1 and Ti acts faithfully on
Mj with {i, j} = {1, 2}. Let us make a few more comments about the structure of the Li’s. Recall that for
a finite group F , O2(F ) denotes the largest normal 2-subgroup of F .

Suppose first that Li = Mi×Ti. Assume that Z(Mi) 6= 1, i.e., Mi
∼= SL2(q). Then 1 6= Q0 ≤ CG(Mi) for

i = 1, 2, and so Q0 ≤ CG(〈M1,M2〉) ≤ Z(G) = 1, a contradiction. Thus if Li = Mi × Ti, Mi
∼= PSL2(q).

Moreover, as far as the value of our parameter δ is concerned, it follows immediately that |Ti| is odd
whenever δ = 1, and |Ti| is even whenever δ = 2. (In particular, in the key example G = PSL2(Fq((t))),
|Ti| = 1 and δ = 1.) Furthermore, Ti must act faithfully on Mj and so Ti must be isomorphic to a
subgroup of Mj . It follows that |Ti| divides q−1

2 . Suppose now that Z(Mi) 6= 1, Ti ∩Mi 6= 1, 4 | |Ti| and
Li = Mi ◦〈−I〉 Ti. In particular, Mi

∼= Mj
∼= SL2(q). Choose an element gi ∈ T ∩Mi of order (q − 1). Then

〈g
q−1
2

i 〉 = Z(Mi). Since gi ∈ T , it follows that gi ∈ Lj and g
q−1
2

i must act faithfully on Mj . Thus O2(〈gi〉)
acts faithfully on Mj via inner automorphisms, which is a contradiction since O2(〈gi〉) ∼= C2−part of (q−1)

while Inn(SL2(q)) = PSL2(q) does not contain such a subgroup. Therefore, this case does not happen.
Hence Mi

∼= PSL2(q) and Li ∼= Ti ×Mi.
If |Γxi ∩ Ti| ≤ δ, then

(2) Γxi/Γxi ∩ Ti ∼= ΓxiTi/Ti ≤MiTi/Ti ∼= Mi
∼= PSL2(q).
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Notice, that |Γxi ∩ Ti| = 2 implies that δ = 2. By Dickson’s Theorem, it follows that |Γxi | ≤ δ(q + 1).
Therefore if |Γxi ∩ Ti| ≤ δ for both i = 1, 2, it follows that µ(Γ\G) ≥ µ(Γ0\G), a contradiction (this is
precisely the case in [7] implying the minimality of the lattice constructed there). Hence, without loss of
generality we may assume that there exists 1 6= y1 ∈ Γx1 ∩ T1 such that 〈y1〉 = Γx1 ∩ T1 with o(y1) > δ.
Then o(y1) | q−1

2 and 〈y1〉 acts faithfully on M2 via inner automorphisms. Notice that if δ = 1, o(y1) 6= 1
is odd, and so for δ ∈ {1, 2}, o(y1) ≥ 3. As noticed in Remark 7, since y1 ∈ Γx1 ∩ T , y1 ∈ Γx2 . Thus Γx2

acts non-trivially on M2. Now Dickson’s Theorem asserts that Γx2 must act on M2 either as a subgroup
of a normaliser of a split torus of M2, or as a subgroup of K2 with K2 ∈ {S4, A5} (notice that in this case
|o(y1)| ≤ 5).

Assume first that |Γx2 ∩ T2| ≤ δ. Then (2) implies that Γx2 is actually isomorphic to a subgroup of
PSL2(q) × Cδ. If Γx2 acts on M2 as a subgroup of K2, then using the previous paragraph we obtain that
µ(Γ\G) ≥ 1

5·(q+1) + 1
60δ >

2
δ(q+1) = µ(Γ0\G) for q > 107. Since this obviously contradicts the minimality of

covolume of Γ, Γx2 must be acting on M2 as a subgroup of a normaliser of a split torus of M2. It follows
that 〈y1〉 is normal in Γx2 .

We are now interested in the action of Γx1 on M1. By abuse of notation, we identify xi with its image
in the quotient graph A = Γ\X for i = 1, 2. Then in the graph A, x1 is a neighbour of x2. If |A| = 2,
it follows immediately that 〈y1〉 / Γ, a contradiction. And so |A| > 2. Let z1, ..., zk be representatives
of the other neighbouring vertices of x2 in A. If for some i, |CΓzi

(Mzi)| ≤ δ, |Γzi | ≤ (q + 1)δ. Hence,
µ(Γ\G) ≥ µ(Γ0\G), a contradiction. Therefore for all i, |CΓzi

(Mzi)| > δ. Denote by yzi an element of
Γzi such that 〈yzi〉 = CΓzi

(Mzi). We may use exactly the same arguments for yzi as we did for y1. Then
o(yzi) ≥ 3, just like y1, yzi acts faithfully on M2 and yzi ∈ Γx2 . But Γx2 acts on M2 as a subgroup of the
normaliser of the split torus. Hence, [y1, yzi ] = 1. Using the fact that we know how L2 acts on EX(x2), we
observe that y1 then must fix the edge (x2, zi). It follows that y1 fixes x1, x2, z1, ..., zk and that y1 ∈ Γzi .

Assume that y1 acts on Mzi as a non-trivial element of Kzi ∈ {S4, A5}. Suppose first that o(y1) =
2β1 · 3β2 · 5β3 where either β1 ≤ 2 and βi ≤ 1 for i = 2, 3 (this corresponds to Kzi

∼= A5), or β1 ≤ 3, β2 ≤ 1
while β3 = 0 (this is when Kzi

∼= S4). Let us evaluate the covolume of Γ. Let a2 ∈ Γx2 be such that 〈a2〉
acts faithfully on M2 and 〈a2〉 ≤ Γx2 ≤ (〈a2〉 o 〈s2〉)(Γx2 ∩ T2) where 〈a2〉 o 〈s2〉 ∼= D2·o(a2), |Γx2 ∩ T2| ≤ δ
and 〈a2〉× (Γx2 ∩T2) = Γ2 ∩T . Then a2 ∈ Γx1 and without loss of generality we may assume that y1 ∈ 〈a2〉.
If o(y1) = o(a2), then |Γx2 | ≤ (22 · 3 · 5) · 2δ which immediately contradicts the minimality of covolume
of Γ ( 1

120δ ≥
2

(q+1)δ for q ≥ 240). Hence, o(a2) > o(y1) and so Γx1 acts on M1 as either a subgroup of
K1 ∈ {S4, A5}, or as a subgroup of NM1(M1 ∩ T ).

In the former case |Γx1 | ≤ 2β1 · 3β2 · 5β3 · 60. In particular, |Γx1 ∩ T | ≤ 2β1 · 3β2 · 5β3 · 5. As we noticed
earlier, Γx1 ∩ T = Γx2 ∩ T , and so |Γx2 ∩ T | ≤ 2β1 · 3β2 · 5β3+1. Since Γx2 acts on M2 as a subgroup of a
normaliser of split torus of M2, |Γx2 | ≤ (2β1 · 3β2 · 5β3+1) · 2. Note that if β1 = 1, δ = 2. If follows that
µ(Γ\G) > 1

2β1+2·3β2+1·5β3+1 + 1
2β1+1·3β2 ·5β3+1 ≥ 2

(q+1)δ for q ≥ 514, again a clear contradiction.

In the latter case, |Γx1 | ≤ o(y1)2 o(a2)δ
o(y1) ≤ (q − 1)δ. Since |Γx2 | ≤ (q − 1)δ, we again get a contradiction

with the minimality of covolume of Γ. Therefore either o(y1) is divisible by 2β1 ·3β2 ·5β3 with either β1 ≥ 3 or
βi ≥ 2 for some i = 2, 3, or by 2β1 ·3β2 with β1 ≥ 4 or β2 ≥ 2, or o(y1) is divisible by α1 6= 1 with (α1, 30) = 1.
In all the cases there exists 1 6= y′1 ∈ 〈y1〉 such that [y′1,Mzi ] = 1 for all i’s. Moreover, o(y′1) ≥ 3. We may
now replace y1 by y′1 if necessary in all the previous subgroups to obtain the following conclusion: either y1

centralises Mzi or acts on it as a subgroup of a normaliser of a split torus of Mzi where i = 1, ..., k. In both
situations, 〈y1〉 is normal in Γzi for i = 1, ..., k. If x1 has no other neighbouring vertices than x2 in A, we
continue with the argument (i.e., next look at y1 in the Γ–stabilisers of the neighbouring vertices of the yzi ’s
in A and so on) only to conclude that 〈y1〉 / Γ, an obvious contradiction.

Therefore, it is possible that x1 has more than one neighbouring vertex in A. One is x2 and let z be among
the other neighbouring vertices of x1. If |Γz ∩ Tz| ≤ δ, then using |Γx2 | and |Γz|, we obtain a contradiction
with the minimality of covolume of Γ. Therefore |Γz ∩ Tz| > δ and we may take x2 = z. Thus whether
x1 has one or more neighbouring vertices in A, we may assume that |Γx2 ∩ T2| > δ. Hence, there exists
y2 ∈ Γx2 ∩ T2 with o(y2) > δ and 〈y2〉 = Γx2 ∩ T2. As for y1, we notice that o(y2) | q−1

2 , o(y2) ≥ 3, y2 ∈ Γx1

and 〈y2〉 acts faithfully on M1 via inner automorphisms. Now Dickson’s Theorem allows us to conclude that



COCOMPACT LATTICES IN RANK 2 KAC–MOODY GROUPS 9

either Γx1 acts on M1 as a subgroup of K1 where K1 ∈ {S4, A5} (in which case o(y2) ≤ 5), or Γx1 acts on
M1 as a subgroup of NM1(M1 ∩ T ).

Let us begin with the case when Γx1 acts on M1 as a subgroup of K1. If Γx2 acts on M2 as a subgroup
of K2, then µ(Γ\G) ≥ 2

60·5 >
2

(q+1)δ = µ(Γ′\G) for q ≥ 514, a contradiction. Hence, Γx2 acts on M2 as a
subgroup NM2(M2 ∩ T ) and in particular, 〈y1〉 / Γx2 . Again, if |V A| = 2, 〈y1〉 / Γ, a clear contradiction.
Thus |V A| > 2 and let v1, ..., vk be the neighbours of x1 in V A− {x2}. Since y1 fixes every edge in EX(x1),
it follows that y1 acts faithfully on Mvi and holding a discussion similar to the above one with vi in place
of x2, we may assume that Γvi acts on Mvi as a subgroup of a normaliser of a split torus of Mvi . It follows
that 〈y1〉 is normal in each Γvi . Now let z1, ..., zm be the neighbours of x2 in V A − {x1}. Let us consider
Γzi = Γ ∩ Pzi . If |CΓzi

(Mzi)| ≤ δ, then there is at most one such vertex, otherwise we would contradict the
minimality of covolume of Γ. Hence, we may assume that if it happens, i = 1, i.e., |CΓz1

(Mz1)| ≤ δ. Then we
may further assume that T ≤ Pz1 . Thus y1, y2 ∈ Γz1 . If Γz1 acts on Mz1 as a subgroup of Kz1 ∈ {S4, A5},
then |Γz1 | ≤ 60δ, which is a contradiction, as always ( 1

60δ ≥
2

(q+1)δ for q > 120). Hence, Γz1 acts on Mz1 as
a subgroup of a normaliser of a split torus of Mz1 . It follows that 〈y1〉 is a normal subgroup of Γz1 . Now for
i > 1, there exists yzi ∈ CG(Mzi) whose order o(yzi) > δ (and thus is at least 3) and does divide q−1

2 . But
this element sits in the kernel of action of Lzi on EX(zi) and therefore, yzi ∈ Γx2 . On the other hand by the
usual argument, y2 acts faithfully on Mzi and so [y2, yzi ] = 1. It follows that 〈yzi〉 is normal in Γx2 . Finally,
as CΓx2

(M2) stabilises (x2, zi), it follows that CΓx2
(yzi) ≤ Γzi . It follows that y1 ∈ Γzi and so 〈y1, y2〉 ≤ Γzi .

Assume that y1 acts on Mzi as a subgroup of Kzi ∈ {S4, A5}. Using the same argument as before we obtain
that there exists y′1 ∈ 〈y1〉 with [y′1,Mzi ] = 1 for all i > 1 and with o(y′1) ≥ 3. In this case we will replace
y1 by y′1 if necessary in all the previous subgroups to obtain the following conclusion: 〈y1〉 is normal in Γv
for all the vertices mentioned so far, i.e., x1, x2, z1, ..., zm, v1, ..., vk. By iterating this argument we may show
that 〈y1〉 / Γ which is a contradiction.

We are now reduced to the last possible situation: Γx1 acts on M1 as a subgroup of NM1(M1∩T ). Notice,
that because of the symmetry between x1 and x2 to finish the analysis it remains to consider the case when
Γx2 acts on M2 as a subgroup of NM2(M2 ∩ T ). But in this case 〈Γx1 ,Γx2〉 ≤ N . Hence, we may move to
the next vertex y on our graph. Using the previous argument we obtain that again that the only possible
case will be Γy ≤ N , and so on and so forth. Therefore, in the end of this case, the only possible conclusion
will be Γ ≤ N , which is a contradiction as N is not a uniform lattice of G, not does it contain any uniform
lattice.

4.2. Case 2. We are now in the situation when T induces some non-trivial outer-diagonal automorphisms
on Mi, that is Li/Z(Li) ∼= PGL2(q). Consider Li = MiT . As before Mi / Li and Ti = CT (Mi). Then there
exists an element ti ∈ T − TiMi such that t2i ∈ TiMi and ti induces an outer diagonal automorphism on Mi.
Since q ≡ 1 (mod 4), if x is an involution in Li ∩ T , x ∈MiTi.

Recall that G does not admit any edge-transitive lattice. Therefore, if Qi ∈ Syl2(Li) and Q0
i is its unique

subgroup of index 2, then Q0
i 6≤ Z(G). It follows that |Qi/Qi ∩ Z(G)| ≥ 4 and so, δ = 2.

The minimality of covolume of Γ0 can be now shown by repeating exactly the same sequence of arguments
as in Case 1 applied to subgroups of Li, i = 1, 2. It turns out that the difference in the structure of Li (which
is now a quotient of GL2(q)) does not significantly affect the argument and so we omit it here in order to
avoid a fairly routine repetition.
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