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Abstract. We consider the problem of minimising the kth eigen-
value, k ≥ 2, of the (p-)Laplacian with Robin boundary conditions
with respect to all domains in R

N of given volume M . When
k = 2, we prove that the second eigenvalue of the p-Laplacian is
minimised by the domain consisting of the disjoint union of two
balls of equal volume, and that this is the unique domain with this
property. For p = 2 and k ≥ 3, we prove that in many cases a
minimiser cannot be independent of the value of the constant α

in the boundary condition, or equivalently of the volume M . We
obtain similar results for the Laplacian with generalised Wentzell
boundary conditions ∆u + β ∂u

∂ν
+ γu = 0.

1. Introduction

We are interested in the eigenvalue problem

− div(|∇u|p−2∇u) = λ|u|p−2u in Ω,

|∇u|p−2∂u

∂ν
+ α|u|p−2u = 0 on ∂Ω,

(1.1)

where Ω ⊂ R
N is a bounded, Lipschitz domain, 1 < p < ∞, α >

0, and ν is the outward pointing unit normal to Ω. Here ∆pu :=
div(|∇u|p−2∇u) is the p-Laplacian of u and the boundary conditions
in (1.1) are of Robin type.

It is known that if Ω is connected, then analogous to the case of
Dirichlet boundary conditions there is an isolated simple first eigen-
value λ1 = λ1(Ω, α) > 0 such that only eigenfunctions associated with
λ1 do not change sign. Moreover, there is a well-defined second eigen-
value λ2 > λ1 at the base of the rest of the spectrum obtainable by the
L-S principle (see [18, Section 5.5]). If p = 2, then we recover the usual
sequence of eigenvalues 0 < λ1 < λ2 ≤ λ3 ≤ . . . → ∞ exhausting the
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spectrum (see for example [7]). For not necessarily connected domains
Ω, we wish to study minimisation problems of the form

min {λk(Ω, α) : Ω ⊂ R
N is bounded, Lipschitz, |Ω| = M} (1.2)

where M > 0 and α > 0 are fixed, k ≥ 2 if p = 2 and k = 2 otherwise,
and | . | is N -dimensional Lebesgue measure. Note that we list repeated
eigenvalues according to their multiplicities. Such problems are often
called isoperimetric problems as they depend on the geometry of the
underlying domain.

When k = 1 the Faber-Krahn inequality asserts that the unique
solution to (1.2) is a ball B with |B| = M (see [2,5]). When k = 2 and
p = 2 it was proved in [16] that a solution to (1.2), which we shall call
D2, is disjoint union of two equal balls of volume M/2.

For k = 2, it was proved in [15] that the domain which we shall call
D2, consisting of the disjoint union of two equal balls of volume M/2,
is a solution to (1.2) when p = 2. Our first goal here is to generalise
this result to all 1 < p <∞, and at the same time prove uniqueness of
this minimiser (that is, sharpness of the associated inequality). This is
done in Section 2 (see Theorem 2.1).

We consider the problem (1.2) for k ≥ 3 in Section 3. Here we restrict
our attention to the case p = 2 because the spectrum of the p-Laplacian
is not well understood otherwise. In particular, it is not known if the L-
S sequence exhausts the spectrum, although we expect our observations
to generalise easily if this is the case. We prove that for many values
of N and k there cannot be a solution (1.2) independent of α > 0 in
(1.1), or equivalently, of the volume M > 0. (See Theorem 3.1.) Note
that actually proving the existence of a solution to (1.2) in general is an
extremely difficult problem – this has not even yet been proved in the
easier Dirichlet case (see [3,14]), and the Robin problem lacks many of
the properties of the Dirichlet problem (see Remark 3.2).

In Section 4, we consider the Laplacian with generalised Wentzell
boundary conditions

−∆u = Λu in Ω,

∆u+ β
∂u

∂ν
+ γu = 0 on ∂Ω,

(1.3)

where β, γ > 0. Here too there exists a sequence of eigenvalues 0 <
Λ1(Ω) ≤ Λ2(Ω) ≤ . . . exhausting the spectrum. Moreover, the first
eigenvalue Λ1 satisfies the (sharp) Faber-Krahn inequality Λ1(Ω) ≥
Λ1(B) for all bounded, Lipschitz Ω ⊂ R

N as the solution for k = 1 to
the analogue of (1.2) (see [15]). This is a similar problem to (1.1), and
we prove analogues of our results for the Robin problem in this case
(see Theorem 4.1). Here we only consider the case p = 2; it appears
no work has yet been done on developing a theory of the p-Laplacian
with boundary conditions ∆pu+ β|∇u|p−2 ∂u

∂ν
+ γ|u|p−2u = 0 on ∂Ω.

Before we proceed, we have a few general remarks.
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Remark 1.1. (i) We will only consider bounded, Lipschitz domains
of fixed volume M > 0 unless otherwise specified, since this is in some
sense the “natural” setting for problems such as (1.1) and (1.3), al-
though a solution to (1.2) could be unbounded or non-Lipschitz.

(ii) We allow our domains to be disconnected. Any disconnected
Lipschitz domain Ω will consist of countably many separated connected
components (c.c.s for short), each having Lipschitz boundary. In such
a case the eigenvalues of Ω (for any operator or boundary condition)
can be found by collecting and reordering the eigenvalues of the c.c.s.

(iii) For such domains U, V , in a slight abuse of notation we will say
U = V iff their c.c.s are in bijective correspondence and for each pair

Ũ , Ṽ of c.c.s, there exists a rigid transformation τ such that τ(Ũ) = Ṽ .
(Thus their spectra will coincide.)

(iv) We will always use λ = λk(Ω, α) to stand for an eigenvalue of
(1.1), Λ = Λk(Ω, β, γ) for (1.3), although we will drop one or more
arguments if there is no danger of confusion, and we will denote by
µk = µk(Ω) the kth eigenvalue of the Dirichlet p-Laplacian on Ω. We
collect some elementary properties of these eigenvalues in the appendix.

2. The second eigenvalue of the Robin p-Laplacian

Choose 1 < p < ∞, α > 0 and M > 0, which will all be fixed for
this section. Let λ2(Ω) be the second eigenvalue of (1.1) on Ω, and let
D2 be the disjoint union of two balls of volume M/2 each.

Theorem 2.1. Suppose Ω ⊂ R
N is a bounded Lipschitz domain of

volume M . Then λ2(Ω) ≥ λ2(D2) with equality if and only if Ω = D2

in the sense of Remark 1.1(iii).

To prove Theorem 2.1 we cannot directly apply the method used in
the Dirichlet case (see for example [14, Section 4] and also [16, Section 2]
for when p = 2; the arguments are the same when p 6= 2) since the
nodal domains may not be smooth enough to apply the Faber-Krahn
inequality, which is only known for Lipschitz domains (see [2]). The
proof we give is a refinement of that in [16], which for p = 2 constructs
an appropriate sequence of approximations to the nodal domain. A
significant additional argument is needed to prove uniqueness of the
minimiser.

Remark 2.2. When p = 2, Theorem 2.1 combined with [16, Exam-
ple 2.2] shows that there is no minimiser of λ2 amongst all connected
domains of given volume, since we can find a sequence of connected Ωn

with λ2(Ωn) → λ2(D2). A similar construct should work when p 6= 2,
but we do not know of domain approximation results akin to those
in [6] for this case.

Before we proceed with the proof of Theorem 2.1, we recall some
properties of the eigenvalues and eigenfunctions of the problem (1.1).
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Here for simplicity we will assume Ω is connected. We understand an
eigenvalue λ ∈ R of (1.1) with eigenfunction ψ ∈ W 1,p(Ω) in the weak
sense, as a solution of∫

Ω

|∇ψ|p−2∇ψ · ∇ϕdx+

∫

∂Ω

α|ψ|p−2ψϕdσ = λ

∫

Ω

|ψ|p−2ψϕdx (2.1)

for all ϕ ∈W 1,p(Ω).

Proposition 2.3. Suppose Ω ⊂ R
N is a bounded, connected Lipschitz

domain. Then

(i) there exists a sequence of eigenvalues (λn)n∈N of (1.1), obtain-
able by the Ljusternik-Schnirelman (L-S) principle, of the form
0 < λ1 < λ2 ≤ . . .;

(ii) the second L-S eigenvalue satisfies

λ2 = inf{λ > λ1 : λ is an eigenvalue of (1.1)};

(iii) the first eigenvalue λ1 > 0 is simple and every eigenfunction ψ
associated with λ1 satisfies ψ > 0 or ψ < 0 in Ω;

(iv) only eigenfunctions associated with λ1 do not change sign in Ω;
(v) every eigenfunction ψ of (1.1) lies in W 1,p(Ω)∩C1,η(Ω)∩C(Ω)

for some 0 < η < 1.

Proof. Parts (i)-(iv) are essentially contained in [18]. Although C1

regularity of Ω is assumed there in order to derive (i) and C1,θ, 0 <
θ < 1, is assumed for (ii)-(iv), a careful analysis of the proofs shows that
only Lipschitz continuity of ∂Ω is needed, since all background results,
including those in the appendices, are valid for Lipschitz domains. (The
extra regularity of ∂Ω is needed only to prove extra boundary regularity
of the eigenfunctions.) For (v), first note that by [8, Theorem 2.7], every
eigenfunction ψ ∈ L∞(Ω) (see also Section 4 there). But now, as noted
in [2, Section 2], the arguments in [17, pp. 466-7] imply that ψ is Hölder
continuous on Ω. Also, by [21], ∇ψ is Hölder continuous inside Ω. �

To prove Theorem 2.1, we first reduce to the case that Ω is con-
nected. For, suppose Theorem 2.1 holds for connected domains, and
that Ω 6= D2 is not connected. There are two possibilities: either

λ2(Ω) = λ2(Ω̃) for some c.c. Ω̃ of Ω, or else there exist c.c.s Ω′, Ω′′

such that λ1(Ω) = λ1(Ω
′), λ2(Ω) = λ1(Ω

′). In the former case, if

we let D̃2 be a scaled down version of D2 with |D̃2| = |Ω̃|, since Ω̃

is connected we may apply Theorem 2.1 to get λ2(Ω̃) > λ2(D̃2) ≥
λ2(D2), where for the last step we have used Lemma A.3. In the
latter case, let B′, B′′ be balls having the same volume as Ω′, Ω′′,
respectively. Then by the Faber-Krahn inequality [2, Theorem 1.1],
λ2(Ω) ≥ max{λ1(Ω

′), λ1(Ω
′′)} ≥ max{λ1(B

′), λ1(B
′′)}, and the latter

maximum is minimised when λ1(B
′) = λ1(B

′′) = λ2(D2). Finally, if
λ2(Ω) = λ2(D2) then equality everywhere in the above argument im-
plies |Ω′| = |Ω′′| = M/2 (also using strict monotonicity in Lemma A.3)
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and sharpness of the Faber-Krahn inequality [2, Theorem 1.1] implies
Ω′ = B′, Ω′′ = B′′; that is, Ω = D2.

So now suppose Ω is connected, and let ψ ∈ W 1,p(Ω) ∩ C(Ω) be
any eigenfunction associated with λ2(Ω). Since ψ must change sign in
Ω, the nodal domains Ω+ := {x ∈ Ω : ψ(x) > 0} and Ω− := {x ∈
Ω : ψ(x) < 0} are both nonempty and open. Set ψ+ := max{ψ, 0},
ψ− := max{−ψ, 0}; then we have ψ+, ψ− ∈W 1,p(Ω) ∩ C(Ω), and

∇ψ+ =

{
∇ψ if ψ > 0

0 if ψ ≤ 0,

with an analogous formula for ∇ψ− (see [11, Lemma 7.6]).
Let B+, B− be balls having the same volume as Ω+, Ω− respectively.

We will show that λ2(Ω) > max{λ1(B
+), λ1(B

−)}. By Lemma A.3 this
maximum is minimal when B+ = B− and λ1(B

+) = λ1(B
−) = λ2(D2).

Without loss of generality we only consider Ω+. Let ∂eΩ
+ := ∂Ω+∩∂Ω

and ∂iΩ
+ := ∂Ω+ ∩ Ω = ∂Ω+ \ ∂eΩ

+ denote the exterior and interior
parts of the boundary of Ω+, respectively (note that ∂iΩ

+ will not be
closed). We first show that a piece of ∂iΩ

+ must be smooth.

Lemma 2.4. There exist x0 ∈ Ω and r > 0 such that ψ(x0) = 0,
B(x0, r) ⊂⊂ Ω, ∇ψ(x) 6= 0 for all x ∈ B(x0, r), and {x ∈ B(x0, r) :
ψ(x) = 0} is a surface of class C∞.

Proof. We first show we can find x0 ∈ ∂iΩ
+ with ∇ψ(x) 6= 0 in a

neighbourhood of x0. Choose any x ∈ Ω+ close to ∂iΩ
+ and let δ0 :=

inf{δ > 0 : ∂B(x, δ)∩ ∂iΩ
+ 6= ∅}. Then B(x, δ0) ⊂ Ω+ but there exists

x0 ∈ ∂B(x, δ0) ∩ ∂iΩ
+.

We now apply a version of Hopf’s Lemma for the p-Laplacian due to
Vázquez. Since ψ(x0) = 0, ψ(x) > 0 in B(x, δ0) and ψ ∈ C1(B(x, δ0)),
by [22, Theorem 5] we have ∂ψ

∂νB
(x0) < 0, where νB is the outer unit

normal to B(x, δ0). Hence ∇ψ(x0) 6= 0, and so by continuity of
∇ψ there exists a neighbourhood V0 of x0 and m > 0 such that
|∇ψ(x)| ≥ m for all x ∈ V0. In particular, inside V0 we may write
−∆pψ = − div(a(x)∇ψ), where a(x) = |∇ψ(x)|p−2 ≥ mp−2 > 0.
Since ψ ∈ C1(V0) is an eigenfuction of the operator − div(a(x)∇u), a
standard bootstrapping argument using elliptic regularity theory yields
ψ ∈ C∞(V0). By the implicit function theorem it follows that the level
surface {ψ = 0} is locally the graph of a C∞ function inside V0. �

Fix x0 and r as in the lemma and set Γ := ∂iΩ
+∩B(x0, r/2) smooth;

then the surface measure σ(Γ) > 0. We will impose Robin boundary
conditions on Γ, strictly lowering the first eigenvalue of a suitable vari-
ational problem on Ω+. To that end set V0 := {ϕ ∈W 1,p(Ω+)∩C(Ω+) :
ϕ = 0 on ∂iΩ

+ \ Γ}, for ϕ ∈ V0 set

Qp(ϕ) :=

∫
Ω+ |∇ϕ|p dx+

∫
∂eΩ+∪Γ

α|ϕ|p dσ∫
Ω+ |ϕ|p dx

(2.2)
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and let
κ(Ω+) := inf

ϕ∈V0

Qp(ϕ) (2.3)

We may characterise λ2(Ω) as follows. In an abuse of notation we will
not distinguish between ψ+ on Ω and ψ+|Ω+.

Lemma 2.5. We have ψ+ ∈ V0 and

λ2(Ω) = Qp(ψ) = Qp(ψ
+) ≡

∫
Ω+ |∇ψ+|p dx+

∫
∂eΩ+ α|ψ

+|p dσ∫
Ω+ |ψ+|p dx

. (2.4)

Proof. We already know ψ+ ∈ V0, since ψ+ ∈ W 1,p(Ω) ∩ C(Ω) is zero
on ∂iΩ

+. To obtain (2.4), choose ψ+ as a test function in the charac-
terisation (2.1) of λ2(Ω). Then |∇ψ|p−2∇ψ · ∇ψ+ = |∇ψ+|p in Ω and
|ψ|p−2ψ ψ+ = |ψ+|p pointwise in Ω. Since ‖ψ+‖pp 6= 0,

λ2(Ω) =

∫
Ω
|∇ψ+|p dx+

∫
∂Ω
α|ψ+|p dσ∫

Ω
|ψ+|p dx

. (2.5)

Now (2.4) follows since {x ∈ Ω : ψ+(x) 6= 0}, {x ∈ Ω : ∇ψ+(x) 6=
0} ⊂ Ω+, and the boundary integrand α|ψ+|p in (2.5) is nonzero only
on ∂eΩ

+. Finally, Qp(ψ) = Qp(ψ
+) is obvious since ψ ≡ ψ+ on Ω+ ∪

∂eΩ
+. �

Lemma 2.6. λ2(Ω) > κ(Ω+).

Proof. It is immediate from Lemma 2.5 and (2.3) that λ2(Ω) ≥ κ(Ω+).
Suppose for a contradiction that we have equality. Then since λ2(Ω)
and ψ satisfy (2.3), we may also characterise them by

∫

Ω+

|∇ψ|p−2∇ψ · ∇ϕdx+

∫

∂eΩ+∪Γ

α|ψ|p−2ψϕdσ

= λ2(Ω)

∫

Ω+

|ψ|p−2ψϕdx

for all ϕ ∈ V0. (This can be seen, for example, by solving

d

dt

(∫
Ω+ |∇(ψ − tϕ)|p dx+

∫
∂eΩ+∪Γ

α|ψ − tϕ|p dσ∫
Ω+ |ψ − tϕ|p dx

)∣∣∣
t=0

= 0,

where t ∈ R and ϕ ∈ V0.)
Now choose an open set U ⊂ Ω+ Lipschitz with U ⊂⊂ Ω and such

that Γ ⊂ ∂U . (Recall ∂iΩ
+ is smooth in an open neighbourhood of Γ.)

For any ϕ ∈ C∞
c (U ∪ Γ) ⊂ V0,∫

U

|∇ψ|p−2∇ψ · ∇ϕdx+

∫

Γ

α|ψ|p−2ψϕdσ = λ2(Ω)

∫

U

|ψ|p−2ψϕdx.

Also, since −∆pψ = λ2(Ω)|ψ|p−2ψ pointwise in U , a simple calculation
gives∫

U

|∇ψ|p−2∇ψ · ∇ϕ− div(|∇ψ|p−2ϕψ) dx = λ2(Ω)

∫

U

|ψ|p−2ψϕdx
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for all ϕ ∈ C∞
c (U ∪Γ). Applying the divergence theorem on U (see for

example [10, Section 5.8]) and comparing the above identities,
∫

Γ

α|ψ|p−2ψϕdσ = −

∫

Γ

|∇ψ|p−2∂ψ

∂ν
ϕ dσ

for all ϕ ∈ C∞
c (U ∪ Γ), where ν is the outward pointing unit normal

to U (equivalently, Ω+) on Γ. Since C∞
c (U ∪ Γ) is dense in L2(Γ), it

follows that ψ ∈ C1(U) satisfies the boundary condition |∇ψ|p−2 ∂ψ
∂ν

+
α|ψ|p−2ψ = 0 pointwise in Γ. But we know ψ = 0 on Γ, while by Hopf’s
Lemma [22, Theorem 5] applied to U and ψ ∈ C1(U), we have ∂ψ

∂ν
> 0

(and |∇ψ| > 0) on Γ, a contradiction. �

We will now construct a sequence of smooth domains Un approxi-
mating Ω+ from the outside, in order to overcome the possible lack of
overall smoothness of ∂Ω+. As in [16, Section 3], we attach a “strip”
near ∂Ω to Ω+ to avoid the points where ∂eΩ

+ and ∂iΩ
+ meet. So fix

n ≥ 1 and set Sn := {x ∈ Ω : dist(x, ∂Ω) < δ}, where δ = δ(n) is
chosen such that |Sn| < 1/(2n). By [9, Theorem V.20] we can approx-
imate Ω+ ∪ Sn from the outside by a sequence of smooth domains Un
as follows. Let Ω ⊃ Un ⊃ Ω+ ∪ Sn be such that ∂Un = ∂Ω ∪ Γn, where
Γn ⊂⊂ Ω is C∞ and |Un \ (Ω+ ∪ Sn)| < 1/(2n). We also impose the
condition that Γ ⊂ Γn, which we can do since ∂iΩ

+ is C∞ in an open
neighbourhood B(x0, r) ⊂ Ω containing Γ. Then for any n ≥ 1, Un is
Lipschitz, |Un \ Ω+| < 1/n, and since B(x0, r) ⊂⊂ Ω, without loss of
generality dist(Un \ Ω+,Γ) > 0 as well. (See Figure 1.)

Ω+ Γ

Ω

Figure 1. Ω+ and Un. The dotted line represents ∂iΩ
+

and the dashed line Γn = ∂Un ∩ Ω.

In order to use the Un, we need the following modification of the stan-
dard result that if U ⊂ R

N is open, arbitrary then functions in W 1,p(U)
vanishing continuously on ∂U lie in W 1,p

0 (U) (cf. [11, Section 7.5]).

Lemma 2.7. Let ϕ ∈ V0 and fix n ≥ 1. The function ϕ̃ : Un → R

given by ϕ̃ = ϕ in Ω+, ϕ̃ = 0 in Un \ Ω+ lies in W 1,p(Un).

Proof. Let ϕ ∈ V0 and ϕ̃ be as in the statement of the lemma. Using
the lattice properties of V0 and W 1,p(Un) (cf. [11, Lemma 7.6]) we may
assume that ϕ ≥ 0 in Ω+. For ξ > 0 let ϕξ := (ϕ − ξ)+ ∈ V0. Then
by continuity of ϕ, there exists an open neighbourhood U = U(ϕ, ξ) of
∂iΩ

+ \Γ such that ϕξ ≡ 0 on U ∩Ω+. Since the intersection of Un \Ω+
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with Ω+ is contained in ∂iΩ
+ \ Γ, we may certainly extend ϕξ by 0 in

Un \ Ω+ to obtain a function ϕ̃ξ ∈W 1,p(Un). Since ϕ̃ξ ր ϕ̃ and

∇ϕ̃ξ(x) ր g(x) :=

{
∇ϕ(x) if x ∈ Ω+

0 if x ∈ Un \ Ω+

pointwise monotonically in Un as ξ → 0, it follows easily that g = ∇ϕ̃
and ϕ̃ ∈W 1,p(Un). �

For any n ≥ 1 and ϕ ∈ V0, using the extension ϕ̃ ∈W 1,p(Un) of ϕ in
the representation

λ1(Un) = inf
ϕ∈W 1,p(Un)

∫
Un

|∇ϕ|p dx+
∫
∂Un

α|ϕ|p dσ∫
Un

|ϕ|p dx

we see Qp(ϕ) ≥ λ1(Un). Hence κ(Ω+) ≥ λ1(Un) by (2.3). Now let
Bn be a ball with |Bn| = |Un|. By the Faber-Krahn inequality [2,
Theorem 1.1], λ1(Un) ≥ λ1(Bn). As n → ∞, |Un| → |Ω+| and so
λ1(Bn) → λ1(B

+) by Lemma A.3. We conclude that λ2(Ω) > κ(Ω+) ≥
lim supn→∞ λ1(Un) ≥ λ1(B

+), which in light of our earlier comments
completes the proof.

3. On the higher eigenvalues of the Robin problem

From now on we will assume p = 2 in (1.1). We will consider the
problem (1.2) for k ≥ 3 fixed. In contrast to the Dirichlet case, this
is not one problem but a family depending on the parameter α > 0.
Here we will show that one cannot in general find a solution to (1.2)
independent of α (alternatively, of the volume M). Roughly speaking,
for large α we are close to the corresponding Dirichlet problem, while
for α close to 0 (a Neumann problem), the domain Dk consisting of the
disjoint union of k equal balls is in some sense a minimiser. We will
denote by Bm a ball of volume m, so that Dk is the disjoint union of k
copies of BM/k, and λk(Dk, α) = λ1(Dk, α) = λ1(BM/k, α).

Theorem 3.1. Let p = 2 in (1.1).

(i) Given any bounded Lipschitz Ω ⊂ R
N such that Ω 6= Dk in the

sense of Remark 1.1(iii), there exists αΩ > 0 possibly depending
on Ω such that λk(Ω, α) > λk(Dk, α) for all α ∈ (0, αΩ).

(ii) There exist N ≥ 2 and k ≥ 3 for which, given M > 0, there
is no solution to (1.2) independent of α; equivalently, there is
no domain D satisfying λk(Ω, α) ≥ λk(D,α) for all α ∈ (0,∞)
and all Ω.

(iii) There exist N ≥ 2 and k ≥ 3 for which, given α > 0, there is
no solution to (1.2) independent of M > 0.

Remark 3.2. (i) The conclusion of Theorem 3.1(ii) and (iii) holds
whenever Dk does not minimise the kth Dirichlet eigenvalue µk. When
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N = 2 this is true for all k ≥ 3 (we prove this below) and when N = 3
at least for k = 3 (for the latter see [3, Section 3]).

(ii) It is easy to see (ii) and (iii) are equivalent assertions, since by
making the homothety substitution x 7→ αx, (1.1) is equivalent to the
problem −∆u = (λ/α2)u in αΩ = {αx : x ∈ Ω}, ∂u

∂ν
+ u = 0 on ∂(αΩ).

(iii) It is clear that any domain Ω with more than k connected com-
ponents (c.c.s) cannot minimise λk for any value of α. However, the
theorem makes a stronger statement than this and as a result the proof
is somewhat more involved. Indeed, for some k, N , we can easily find
a domain Ωn with any n ≥ 1 c.c.s and αΩ <∞. (Just take N = k = 3,
so that for the ball B, αB < ∞. Shrink B slightly and add n − 1
disjoint tiny balls to get Ωn.) Note that the Robin problem (1.1) lacks
many useful properties that the corresponding Dirichlet problem sat-
isfies. For example, the domain monotonicity property fails; that is,
U ⊂ V does not necessarily imply λk(U, α) ≥ λk(V, α) (see [20] or [12]
for a counterexample). Similarly, if λk(U, α) > λk(V, α) holds for some
α > 0, we cannot in general expect this for all α > 0.

(iv) An examination of our proof shows that the conclusion of Theo-
rem 3.1(i) holds for any domain Ω for which the Faber-Krahn inequal-
ity [2, Theorem 1.1] and Theorem 2.1 hold

Proof of Theorem 3.1(i). There are two cases to consider, depending
on how many c.c.s Ω has.

(i) Suppose first that Ω has at most k − 1 c.c.s. If we set ε :=

min {λ2(Ω̃, 0) : Ω̃ is a c.c. of Ω}, then ε > 0 by Lemma A.2. It follows
from Lemma A.1(i) that there exists α̃Ω > 0 such that

max {λ1(Ω̃, α) : Ω̃ is a c.c. of Ω} < ε

for all α ∈ (0, α̃Ω). For all such α, by the pigeonhole principle at least

one element of the set {λm(Ω̃, α) : m ≥ 2, Ω̃ is a c.c. of Ω} must be one
of the first k eigenvalues of Ω (although precisely which m and c.c. may
depend on α). In particular, using Lemma A.1(i),

λk(Ω, α) ≥ inf {λm(Ω̃, α) : m ≥ 2, Ω̃ is a c.c. of Ω}

≥ inf {λ2(Ω̃, 0) : Ω̃ is a c.c. of Ω} ≥ ε

for all α ∈ (0, α̃Ω). Since λk(Dk, α) = λ1(Dk, α) → 0 as α → 0, there
exists αΩ ≤ α̃Ω such that λk(Dk, α) < ε ≤ λk(Ω, α) for all α ∈ (0, αΩ).

(ii) Now suppose Ω has at least k c.c.s. We may write Ω as the
disjoint union of Ω′ and Ω′′, where Ω′ has j <∞ c.c.s and |Ω′′| < M/k
(if Ω′′ = ∅, then we declare λ1(Ω

′′, α) = ∞ for all α > 0). Consider all
possible open subdomains Ωi of Ω′, where Ωi consists of li ≤ k−1 c.c.s
of Ω′ (thus there are fewer than 2j possible choices of Ωi). For each
i, let Dk,i denote a scaled down version of Dk such that |Dk,i| = |Ωi|.
Then by case (i) and Lemma A.3, there exists αi := αΩi

such that

λk(Ωi, α) > λk(Dk,i, α) ≥ λk(Dk, α) (3.1)
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for all α ∈ (0, αi).
Set αΩ := mini αi > 0 and fix α ∈ (0, αΩ). We will show λk(Ω, α) ≥

λk(Dk, α) with equality only if Ω = Dk in the sense of Remark 1.1(iii).
First suppose λ1(Ω

′′, α) ≤ λk(Ω, α). Then by the Faber-Krahn in-
equality [2, Theorem 1.1] and Lemma A.3

λk(Ω, α) ≥ λ1(Ω
′′, α) ≥ λ1(BM/k) = λk(Dk, α). (3.2)

Since |Ω′′| < M/k, Lemma A.3 implies that the second inequality in
(3.2) must be strict.

So assume now that λ1(Ω
′′, α) > λk(Ω, α). There are two subcases to

consider. First, if there are only l < k c.c.s Ω1, . . . ,Ωl of Ω′ whose first

eigenvalue is smaller than λk(Ω, α), then setting Ω̂ to be the disjoint
union of Ω1, . . . ,Ωl, by (3.1) we have

λk(Ω, α) = λk(Ω̂, α) > λk(Dk, α)

by choice of αΩ and α < αΩ. Finally, suppose there are at least k
c.c.s Ωi of Ω′ such that λ1(Ωi, α) ≤ λk(Ω, α) for all i. Then λk(Ω, α) =
max1≤i≤k λ1(Ωi, α). For each i let Bi be a ball with |Bi| = |Ωi|. By the
Faber-Krahn inequality λ1(Ωi, α) ≥ λ1(Bi) for all i and thus

λk(Ω, α) ≥ max
i
λ1(Bi, α) ≥ λ1(BM/k, α) = λk(Dk, α), (3.3)

where the second inequality in (3.3) follows easily from Lemma A.3
using

∑
i |Bi| ≤ |Ω|. If there is equality in (3.3), then for every 1 ≤

i ≤ k, λ1(Ωi, α) = λ1(Bi, α) = λ1(BM/k, α) and so Ωi = Bi = BM/k

using sharpness of the Faber-Krahn inequality [2, Theorem 1.1] and
Lemma A.3, respectively. In this case |Ωi| = M/k and so Ω must
consist of k copies of Ωi = BM/k, so Ω = Dk. �

In order to complete the proof of the theorem and our claim in
Remark 3.2(i), we will use the following lemma. Recall µk(Ω) denotes
the kth eigenvalue of the Dirichlet Laplacian (with p = 2) on Ω.

Lemma 3.3. Let N = 2 and fix k ≥ 3. The domain Dk does not
minimise µk(Ω) amongst all bounded Lipschitz domains in R

2 of given
volume.

Proof. The proof is by an easy induction argument, using results from
[23]. First note that Dk does not even minimise µk amongst all disjoint
unions of balls if 3 ≤ k ≤ 17 (see [23, Section 8]).

Now fix k ≥ 4. We will show that if Dk+1 minimises µk+1, then
Dj must minimise µj for some 3 ≤ j ≤ k. For, arguing as in [23,
Theorem 8.1], Dk+1 may be written as the disjoint union of open sets
U and V , say, where U minimises µj and V minimises µk−j+1 (both
appropriately scaled) for some integer j between 1 and k/2. Now U and
V must both be disjoint unions of equal balls, and since the minimiser
of µj can have at most j c.c.s the only possibility is that U = Dj and
V = Dk−j+1 (both rescaled). Since k ≥ 4, at least one of j, k − j + 1
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must be at least 3. Noting that the Dirichlet minimiser is independent
of the volume of the domain, our claim follows. �

Proof of Theorem 3.1(ii) and Remark 3.2(i). Suppose that Dk is not
the minimiser of µk, which is true if N = 2 and k ≥ 3 or N = k = 3.
Then there exists a Lipschitz domain V such that µk(V ) < µk(Dk). By
Lemma A.1(ii) and (iii), we have λk(V, α) < µk(V ) and λk(Dk, α) =
λ1(Dk, α) → µ1(Dk) = µk(Dk) as α → ∞. Using continuity, it follows
that for α sufficiently large, λk(V, α) < µk(Dk, α). Hence Dk does not
minimise λk for all α ∈ (0,∞). However, if U 6= Dk is any (Lipschitz)
domain which minimises λk for some α̃ ∈ (0,∞), then by part (i)
λk(U, α) > λk(Dk, α) for α < α̃ sufficiently small. Hence for such N
and k no minimiser can exist for all α > 0. �

4. On the higher eigenvalues of the Wentzell Laplacian

Here we will study the Laplacian with generalised Wentzell boundary
conditions (1.3). This problem has been extensively studied in recent
years; see for example [13, 19] and the references therein. We will de-
note by Λk = Λk(Ω, β, γ) the kth eigenvalue, with repeated eigenvalues
counted according to their multiplicity. It was proved in [15] that if
Ω ⊂ R

N is a bounded Lipschitz domain, then

Λ1(Ω, β, γ) ≥ Λ1(B, β, γ) (4.1)

for all β, γ > 0. (As before B is a ball having the same volume M as
Ω.) Moreover, the inequality is sharp if Ω is of class C2. Note that
combining the improved sharpness result in [2] for Robin problems
with the method in [15], we immediately get sharpness of the Wentzell
inequality (4.1) for all bounded Lipschitz domains. We will prove the
following results which basically say that the minimisation problems
for the Robin and Wentzell Laplacians are essentially the same.

Theorem 4.1. Let β, γ > 0 and k ≥ 2 be fixed, let D ⊂ R
N be a

bounded Lipschitz domain, and let Dk ⊂ R
N be as in Section 3.

(i) Suppose that for every bounded Lipschitz Ω ⊂ R
N we have

λk(D,α) ≤ λk(Ω, α) (4.2)

for all α ∈ (0, γ/β). Then

Λk(D, β, γ) ≤ Λk(Ω, β, γ) (4.3)

for all such Ω. Conversely, if (4.3) holds, then (4.2) holds for
some α ∈ (0, γ/β).

(ii) If (4.2) is sharp for all α ∈ (0, γ/β), then so is (4.3) for this
β, γ. If (4.3) is sharp, then (4.2) holds and is sharp for some
α ∈ (0, γ/β).

(iii) Suppose Ω ⊂ R
N is bounded, Lipschitz. There exists αΩ > 0

possibly depending Ω such that Λk(Ω, β, γ) > Λk(Dk, β, γ) for
all β, γ with γ/β < αΩ.
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(iv) If for some k and N the conclusion of Theorem 3.1 holds,
then there does not exist D ⊂ R

N bounded, Lipschitz such that
Λk(Ω, β, γ) ≥ Λk(D, β, γ) for all such Ω and all β, γ > 0.

(v) For any bounded, Lipschitz Ω ⊂ R
N and any β, γ > 0, we have

Λ2(Ω, β, γ) ≥ Λ2(D2, β, γ), with equality if and only if Ω = D2.

In order to prove the theorem we will need some preliminary results.
In what follows we will assume that β, γ > 0 and k ≥ 2 are fixed,
and Ω ⊂ R

N is a fixed bounded Lipschitz domain. We start with an
elementary identification which is the key to the approach.

Lemma 4.2. Let k ≥ 1 and α := (γ − Λk(Ω, β, γ))/β ∈ R. Then

Λk(Ω, β, γ) = λk(Ω, α). (4.4)

Proof. Consider the family of curves gn : R → R, gn(α) := (γ −
λn(Ω, α))/β, n ≥ 1, where we allow multiplicities in counting the λn
(thus if λn(Ω, α̃) = λn+1(Ω, α̃) for some α̃ ∈ R, then gn(α̃) = gn+1(α̃)).

We know that the set of Wentzell eigenvalues {Λk : k ≥ 1} is in one-
to-one correspondence with the set of fixed points {α ∈ R : gn(α) =
α for some n}, via the identification as in [15, Proposition 3.3] (see
also Remark 3.6(i) there). In particular, we know that Λk(Ω, β, γ) =
λn(Ω, α) with α = (γ −Λk)/β for some n ≥ 1; we have to show n = k.

Now by Lemma A.1(i) each curve gn is a continuous and monoton-
ically decreasing function of α. In particular for each n there will be
exactly one fixed point αn ∈ R for which gn(αn) = αn. Moreover,
by definition gn(α) ≤ gm(α) whenever n ≥ m and hence αn ≤ αm if
n ≥ m. It follows inductively that λn(Ω, αn) = γ − αnβ is the nth
Wentzell eigenvalue Λn(Ω, β, γ) for all n ≥ 1. �

Note that we have 0 < Λ1(Ω, β, γ) = γ−αβ for some α > 0 (see [15,
Remark 5.2]). In particular, we obtain the bound Λ1(Ω, β, γ) < γ
always, independent of the volume of Ω. This yields the following result,
which obviously remains true if we replace Dk by any domain Ω having
at least k c.c.s.

Lemma 4.3. We have Λk(Dk, β, γ) < γ for all k ≥ 1.

Proof. As in Section 3, we write Dk as the disjoint union of k balls
BM/k. Then Λk(Dk, β, γ) = Λ1(BM/k, β, γ) < γ. �

We are now in a position to give the proof of Theorem 4.1. Since
β, γ are fixed we will write Λk(Ω, β, γ) = Λk(Ω) if there is no danger of
confusion. The following lemma contains the core of the argument.

Lemma 4.4. Let β, γ > 0 be given and U, V ⊂ R
N bounded, Lipschitz.

(i) If Λk(U) < γ, then for α := (γ − Λk(U))/β,

λk(U, α) ≥ λk(V, α) (4.5)

implies
Λk(U) ≥ Λk(V ). (4.6)
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If the equality in (4.5) is strict, then it is also strict in (4.6).
(ii) Suppose Λk(V ) < γ and let α := (γ − Λk(V ))/β. If (4.6) holds

(resp. is strict), then (4.5) holds (resp. is strict) for this α.

Proof. (i) Suppose (4.5) holds but (4.6) fails. Using Lemma 4.2 and
(4.5) respectively,

Λk(U) = λk(U,
γ − Λk(U)

β
)

≥ λk(V,
γ − Λk(U)

β
) ≥ λk(V,

γ − Λk(V )

β
) = Λk(V ),

where the second inequality follows from Lemma A.1(i) since γ −
Λk(U) ≥ γ − Λk(V ) by the contradiction assumption. Hence Λk(U) ≥
Λk(V ), contradicting the assumption that (4.6) fails. Now suppose
(4.5) is strict and the contradiction assumption becomes Λk(U) ≤
Λk(V ). Since the first inequality in the above line of reasoning is now
strict, we still obtain a contradiction as nothing else changes. Hence
we cannot have equality in (4.6).

(ii) Now suppose that (4.6) holds and that (4.5) fails. Interchanging
the roles of U and V , we may argue essentially exactly as in (i) to
obtain the desired conclusion (and do similarly for strictness). �

Proof of Theorem 4.1. (i) Suppose D satisfies (4.2). Let (Ωm)m∈N be a
minimising sequence for Λk. By Lemma 4.3, we may assume Λk(Ωm) <
γ for all m, so that (γ−Λk(Ωm))/β ∈ (0, γ/β) and thus (4.2) holds for
these values of α. Fixing m ∈ N, we may apply Lemma 4.4(i) with Ωm

in place of U and D in place of V to conclude Λk(Ωm) ≥ Λk(D). Since
(Ωm)m∈N was a minimising sequence, D must minimise Λk(Ω). For the
converse, suppose D satisfies (4.3). Since Λk(D) < γ by Lemma 4.3,
it follows directly from Lemma 4.4(ii) that D satisfies (4.2) for α =
(γ − Λk(D))/β.

(ii) Sharpness in both directions now follows immediately from strict-
ness of the inequalities in Lemma 4.4.

(iii) Fix Ω 6= Dk. By Theorem 3.1(i), there exists αΩ > 0 such
that λk(Ω, α) > λk(Dk, α) for all α ∈ (0, αΩ). If β, γ are fixed with
γ/β < αΩ, then we have λk(Ω, α) > λk(Dk, α) for α = (γ − Λk(Ω))/β
in particular. Since also Λk(Dk) < γ by Lemma 4.3, without loss of
generality we may assume Λk(Ω) < γ (otherwise Λk(Ω) ≥ γ > Λk(D)
and we are done). But in this case it follows from Lemma 4.4(i) (with
Ω = U) that Λk(Ω) > Λk(Dk) anyway.

(iv) Let k andN be such that the conclusion of Theorem 3.1(ii) holds.
By (iii) it suffices to show there exist β, γ > 0 and a domain Ω with
Λk(Ω, β, γ) < Λk(Dk, β, γ). Choose Ω and α∗ > 0 such that λk(Ω, α

∗) <
λk(Dk, α

∗). Now we may write Λk(Dk, β, γ) = Λ1(Dk, β, γ) = γ − αβ,
where α satisfies (γ − λ1(Dk, α))β = α. Since λ1(Dk, α) is continuous
and monotonic with respect to α, an elementary argument shows that
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by fixing β and varying γ, we may obtain every α > 0 as a solution to
(γ − λ1(Dk, α))β = α for some β, γ > 0. Now choose β, γ such that
Λk(Dk, β, γ) = γ−α∗β. For this β, γ, we may apply Lemma 4.4(i) with
U = Dk and V = Ω to conclude Λk(Dk, β, γ) > Λk(Ω, β, γ).

(v) This follows immediately from (i) and (ii) combined with Theo-
rem 2.1. �

Appendix A. Some basic eigenvalue properties

Here we collect some elementary but useful facts about the behaviour
of the eigenvalues of the Robin and Neumann Laplacians.

Lemma A.1. Suppose Ω ⊂ R
N is a fixed Lipschitz domain and p = 2.

Then the following assertions are true.

(i) Let k ≥ 1. Then λk(Ω, α) is continuous and monotonically
increasing as a function of α ∈ R.

(ii) For any α ≥ 0 and k ≥ 1, we have λk(Ω, α) < µk(Ω).
(iii) λ1(Ω, α) → µ1(Ω) as α → ∞.

Proof. Parts (i) and (ii) follow immediately from the minimax formula
for the kth eigenvalue (see [4, Section VI.1]. Note that although [4]
only deals with the case N = 2, none of the relevant arguments depend
on the dimension of the space). For part (iii), see for example [12]. �

Our next lemma expresses in our notation the well-known fact that
the first Neumann eigenvalue of a connected domain is simple (with
the constant functions the only eigenfunctions). We omit the proof.

Lemma A.2. Let p = 2. If Ω is connected, then λ2(Ω, 0) > 0.

The following equally well-known result is true in general for the
kth eigenvalue of (1.1) on any reasonably smooth domain, although we
only need this for the first eigenvalue of a ball. A proof (for balls) can
be found in [2, Lemma 4.1].

Lemma A.3. Suppose 1 < p < ∞. Let Bm denote the ball of volume
m, centred at the origin. For α > 0 fixed, λ1(Bm, α) is a strictly
decreasing, continuous function of m > 0.
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1. Häım Brezis, Analyse fonctionnelle, Collection Mathématiques Appliquées pour
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2. Dorin Bucur and Daniel Daners, An alternative approach to the Faber-Krahn

inequality for Robin problems, Calc. Var. Partial Differential Equations, to ap-
pear.

3. Dorin Bucur and Antoine Henrot, Minimization of the third eigenvalue of the

Dirichlet Laplacian, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 456

(2000), 985–996.
4. R. Courant and D. Hilbert, Methods of mathematical physics. Vol. I, Inter-

science Publishers, New York, N.Y., 1953.



ON THE ISOPERIMETRIC PROBLEM 15

5. Qiuyi Dai and Yuxia Fu, Faber-Krahn inequality for Robin problem involving

p-Laplacian, Preprint.
6. E. N. Dancer and D. Daners, Domain perturbation for elliptic equations subject

to Robin boundary conditions, J. Differential Equations 138 (1997), 86–132.
7. Daniel Daners, Robin boundary value problems on arbitrary domains, Trans.

Amer. Math. Soc. 352 (2000), 4207–4236.
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