
2-KNOTS WITH SOLVABLE GROUP

JONATHAN A. HILLMAN

Abstract. The 2-knots with torsion-free, elementary amenable knot group
and which have not yet been fully classified are fibred, with closed fibre the
Hantzsche-Wendt flat 3-manifold HW or a Nil-manifold with base orbifold
S(3, 3, 3). We give explicit normal forms for the strict weight orbits of normal
generators for the groups of such knots, and determine when the knots are
amphicheiral or invertible.

The largest class of groups π over which TOP surgery techniques in dimension 4
are known to hold is the class SA obtained from groups of subexponential growth
by extensions and increasing unions. No such group has a noncyclic free subgroup.
The known 2-knot groups in this class are either torsion-free and solvable or have
finite commutator subgroup. (It seems plausible that there may be no others. See
Theorem 15.13 of [5] and §4 below for evidence in this direction.)

If the group of a nontrivial 2-knot K is torsion-free and elementary amenable
then K is either the Fox knot (Example 10 of [2]) or is fibred, with closed fibre
R

3/Z3, the Hantzsche-Wendt flat 3-manifold HW = R
3/G6 or a Nil3-manifold.

(See Lemma 1.) Each such knot is determined up to Gluck reconstruction, TOP
isotopy and change of orientations by its group π and weight orbit (the orbit of
a weight element under the action of Aut(π)). This orbit is unique for the Fox
knot and for the fibred knots with closed fibre R

3/Z3 (the Cappell-Shaneson knots)
or a coset space of the Lie group Nil. In each of these cases the questions of
amphicheirality, invertibility and reflexivity have been decided, and so such knots
may be considered completely classified. (See [5, 6, 7].)

We shall give explicit normal forms for the strict weight orbits. Using these, we
shall show that (with at most six exceptions) no 2-knot with closed fibre HW is am-
phicheiral or invertible. The remaining knots have closed fibre the 2-fold branched
cover of S3, branched over a Montesinos knot k(e, η) = K(0|e; (3, η), (3, 1), (3, 1)),
with e even and η = ±1. This include the 2-twist spins of these Montesinos knots,
which are strongly +amphicheiral but not invertible, and are reflexive. None of the
other knots are amphicheiral or invertible.

When the commutator subgroup of a 2-knot group is finite the list of possible
groups and weight orbits is known, but the surgery obstruction groups are large, and
there are in general infinitely many TOP locally flat knots with a given such group.
Thus it is reasonable to restrict attention to those which are fibred. The closed
fibre is then a spherical manifold S3/π′. In this case the question of reflexivity has
been settled for 10 of the 17 possible families of such knots [13].

It is likely that none of the remaining knots are reflexive, but this has not yet
been confirmed.
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1. knot groups

An automorphism φ of a group G is meridianal if 〈〈g−1φ(g) | g ∈ G〉〉G =
G. When G is finitely generated and solvable this holds if and only if H1(φ) −
1 is an automorphism of the abelianization H1(G). If φ and ψ are meridianal
automorphisms ofG then the semidirect productsG⋊φZ andG⋊ψZ are isomorphic
if and only if the outer automorphism class [φ] is conjugate to [ψ] or [ψ]−1 inOut(G).
There is an isomorphism preserving the stable letters of the HNN extensions if and
only if φ and ψ are conjugate in Aut(G). (See Lemma 1.1 of [5].)

Let t ∈ π = G⋊φZ be an element whose normal closure 〈〈t〉〉π is the whole group.
Every such “weight element” w is of the form w = gt or w = (gt)−1, for some g ∈ G.
The strict weight orbit of w is the set {α(w) | α ∈ Aut(π), α(w) ≡ w mod G}.

Let ct ∈ Aut(G) be the automorphism induced by conjugation by t in π. By
Theorem 14.1 of [5], two weight elements t, u such that [ct] = [cu] in Out(G) are
in the same strict weight orbit if and only if there is an automorphism ψ of G such
that cu = ψ.ct.ψ

−1. In particular, ct and cu have the same order.
Although it is possible to study the automorphism groups considered below by

purely algebraic means, we shall use embeddings in the appropriate affine groups
to guide the construction of homeomorphisms and isotopies.

2. self-homeomorphisms of knot exteriors

We assume that the spheres Sn are oriented. Let K : S2 → S4 be a 2-knot
with exterior X , and fix a homeomorphism ∂X ∼= S2 × S1 which is compatible
with the orientations of the spheres S1, S2 and X ⊂ S4. Let τ(x, y) = (ρ(y)(x), y)
for all (x, y) in S2 × S1, where ρ : S1 → SO(3) is an essential map. The Gluck

reconstruction of K is the knot K∗ given by the composite inclusion

S2 ⊂ S2 ×D2 ⊂ X ∪τ S
2 ×D2 ∼= S4.

The knot K is reflexive if K∗ is isotopic to one of the four knots K, r4K,Kr2 or
−K = r4Kr2 obtained by composition with reflections rn of Sn.

A self-homeomorphism of X extends “radially” to a self-homeomorphism of the
knot manifold M(K) = X ∪ D3 × S1 which maps the cocore C = {0} × S1 to
itself. If h preserves both orientations or reverses both orientations then it fixes the
meridian, and we may assume that h|C = idC . If h reverses the meridian t, we may
still assume that it fixes a point on C. We take such a fixed point as the basepoint
for M(K). Let h′∗ be the induced automorphism of π′.

If K is invertible or ±amphicheiral there is a self-homeomorphism h of (S4,K)
which changes the orientations appropriately, but does not twist the normal bundle
of K(S2) ⊂ S4. If it is reflexive there is such a self-homeomorphism which changes
the framing of the normal bundle. Thus if K is −amphicheiral there is such an
h which reverses the orientation of M(K) and h′∗ commutes with the meridianal
automorphism ct. If K is invertible or +ampicheiral there is a homeomorphism h
such that h′∗cth

′
∗ = c−1

t and which preserves or reverses the orientation.

3. sections of the mapping torus

Let θ be a self-homeomorphism of a 3-manifold F , with mapping torus M(θ) =
F × [0, 1]/ ∼, where (f, 0) ∼ (θ(f), 1) for all f ∈ F , and canonical projection
pθ : M(θ) → S1, given by pθ([f, s]) = e2πis for all [f, s] ∈ M(θ). The mapping
torus M(θ) is orientable if and only if θ is orientation-preserving. If θ′ = hθh−1 for
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some self-homeomorphism h of F then [f, s] 7→ [h(f), s] defines a homeomorphism
m(h) : M(θ) →M(θ′) such that pθ′m(h) = pθ. Similarly, if θ′ is isotopic to θ then
M(θ′) ∼= M(θ).

If P ∈ F is fixed by θ then the image of P × [0, 1] in M(θ) is a section of pθ. In
particular, if the fixed point set of θ is connected there is a canonical isotopy class of
sections. If moreover θ∗ = π1(θ) is meridianal these determine a preferred conjugacy
class of weight elements in the group π1(M(θ)). (Two sections are isotopic if and
only if they represent conjugate elements of π.)

In general, we may isotope θ to have a fixed point P . Let t ∈ π1(M(θ)) cor-
respond to the constant section of M(θ), and let u = gt with g ∈ π1(F ). Let
γ : [0, 1] → F be a loop representing g. There is an isotopy hs from h0 = idF to
h = h1 which drags P around γ, so that hs(P ) = γ(s) for all 0 ≤ s ≤ 1. Then
H([f, s]) = [(hs)

−1(f), s] defines a homeomorphism M(θ) ∼= M(h−1θ). Under this
homeomorphism the constant section of ph−1θ corresponds to the section of pθ given
by mu(t) = [γ(t), t], which represents u. If F is a geometric 3-manifold we may
assume that γ is a geodesic path.

Suppose henceforth that θ is orientation-preserving and θ∗ is meridianal. Then
surgery on a section gives a 2-knot. There are two possible framings for the surgery,
but the exteriors of the two knots are homeomorphic.

This is the situation for twist-spins, where F is a cyclic branched cover of S3,
branched over a classical knot, and θ generates the covering group. The subset fixed
by θ is connected and nonempty, since it is the branch locus. The knot exterior is
the complement of an open regular neighbourhood of the canonical section of the
mapping torus of θ.

If F has universal cover F̃ ∼= R
3 and h is a self-homeomorphism of M(θ) which

fixes a section setwise the behaviour of h with respect to the orientations is detected
by the effect of h′∗ on H3(F ; Z) and whether h′∗cth

′
∗ = ct or c−1

t . As in [1, 4, 7]
(and Chapter 18 of [5]), in order to determine whether h changes the framing it

shall suffice to pass to the irregular covering space M(θ̃) = F̃ ×eθ
S1. We seek a

coordinate homeomorphism F̃ ∼= R
3 which gives convenient representations of the

maps in question, and then use an isotopy from the identity to θ̃ to identify M(θ̃)
with R

3 × S1.

4. torsion-free elementary amenable implies solvable

We shall let Φ denote the group of the Fox knot. This is an ascending HNN
extension Φ ∼= Z∗2, with presentation 〈a, t | tat−1 = a2〉.

Theorem 1. Let K be a 2-knot whose group π = πK is torsion-free and elementary

amenable. Then K is trivial, the Fox knot, or is fibred with closed fibre a flat 3-
manifold or a Nil-manifold.

Proof. If π is torsion-free and has more than one end then π ∼= Z, and so K is
trivial [3]. If π has one end and H2(π; Z[π) = 0 then M(K) is aspherical, by
Theorem 3.5 of [5], and so H4(π; Z[π) 6= 0. Otherwise H2(π; Z[π) 6= 0. In all cases
Hs(π; Z[π]) 6= 0 for some s ≤ 4, and so π is virtually solvable, by Proposition 3 of
[8]. It then follows that either π ∼= Z or π ∼= Φ = Z∗2, or that π is virtually poly-Z
of Hirsch length 4. (See Theorem 15.13 of [5].) If π ∼= Φ then K is the Fox knot or
its reflection [6], while the remaining cases are covered in Chapter 16 of [5]. �
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Can we relax the condition on torsion? Let π be an elementary amenable knot
group. Since π is finitely presentable and has an infinite cyclic quotient it is an
HNN extension with finitely generated base and associated subgroups. Since it has
no noncyclic free subgroups the HNN extension is ascending: π ∼= H∗φ, where H is
finitely generated and φ : H → H is injective. If moreover H is FP3 and virtually
indicable then either π′ is finite or π is torsion-free, by Theorem 15.13 of [5].

The additional hypotheses on H could be removed if we had a better understand-
ing of when H2(π; Z[π]) = 0. Suppose that whenever G is a finitely presentable
group such that either

(1) G has an elementary amenable normal subgroup E such that
(a) h(E) > 2; or
(b) h(E) = 2 and G/E is infinite; or
(c) h(E) = 1 and G/E has one end; or

(2) G ∼= B∗φ is an ascending HNN extension with finitely generated, 1-ended
base B;

then H2(G; Z[G]) = 0.
We may then argue as follows. Since π is finitely presentable and has an infinite

cyclic quotient it is an HNN extension with finitely generated base and associated
subgroups. Since it has no noncyclic free subgroups the HNN extension is ascending:
π ∼= H∗φ, where H is finitely generated and φ : H → H is injective. Since π is

elementary amenable and infinite β
(2)
1 (π) = 0. If h(π) = 1 then π′ is finite. Suppose

that π′ is infinite. Then π has one end. If h(π) > 2 or h(π) = 2 and the HNN base
H has one end then H2(π; Z[π]) = 0 and so the knot manifold M(K) is aspherical,
by Theorem 3.5 of [5]. Hence π is torsion-free and virtually solvable, by Theorem
1.11 of [5]. (Closer examination shows that it must be polycyclic. See Chapter
16 of [5].) Otherwise H must have two ends. Let T be the maximal finite normal
subgroup of H . Then φ(T ) = T , since φ is injective, and so T is normal in π. Hence
T = 1 and π ∼= Φ, by Theorem 15.2 of [5].

5. the hantzsche-wendt flat 3-manifold

The group of affine motions of 3-space is Aff(3) = R
3
⋊GL(3,R). The action is

given by (v,A)(x) = Ax+v, for all x ∈ R
3. Therefore (v,A)(w,B) = (v+Aw,AB).

Let {e1, e2, e3} be the standard basis of R
3, and let X,Y, Z ∈ GL(3,Z) be the di-

agonal matrices X = diag[1,−1,−1], Y = diag[−1, 1,−1] and Z = diag[−1,−1, 1].
Let x = (1

2e1, X), y = (1
2 (e2 − e3), Y ) and z = (1

2 (e1 − e2 + e3), Z). The subgroup
of Aff(3) generated by x and y is the Hantzsche-Wendt flat 3-manifold group G6,
with presentation

〈x, y, z | xy2x−1y2 = yx2y−1x2 = 1, z = xy〉.

The translation subgroup T = G6 ∩ R
3 is free abelian, with basis {x2, y2, z2}.

(This is the maximal abelian normal subgroup of G6.) The holonomy group H =
{I,X, Y, Z} ∼= (Z/2Z)2 is the image of G6 in GL(3,R). (Thus H ∼= G6/T .) We
may clearly take {1, x, y, z} as coset representatives for H in G6. The commutator
subgroup G′

6 is free abelian, with basis {x4, y4, x2y2z2}. Thus 2T < G′
6 < T ,

T/G′
6
∼= (Z/2Z)2 and G′

6/2T
∼= Z/2Z.

The orbit space HW = G6\R
3 is the Hantzsche-Wendt flat 3-manifold. If θ :

HW → HW is a self-homeomorphism of finite order then M(θ) is a flat 4-manifold.
The group N = NAff(3)(G6) acts on HW via isometries, and Isom(HW ) ∼=
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N/G6 = Out(G6). The orientation-preserving subgroup is represented by pairs
(v,A) with det(A) = 1.

6. the automorphism group of G6

Let C = CAff(3)(G6) and N = NAff(3)(G6) be the centralizer and normalizer of
G6 in Aff(3), respectively. Every automorphism of G6 is induced by conjugation
in Aff(3), by a theorem of Bieberbach, and so Aut(6) ∼= N/C and Out(G6) ∼=
N/CG6. In Chapter 8.§2 of [5] we showed that Aut(G6) was generated by the
automorphisms a, b, c, d, e, f, i and j which send x to x−1, x, x, x, y2x,z2x, y, z and y
to y, y−1, z2y, x2y, y, z2y, x, x, respectively, and deduced a presentation forOut(G6).
Here we shall identify these generators in terms of conjugation by elements of N .

We shall also need more detailed knowledge of Aut(G6). The subgroup gener-
ated by {a, b, c, d, e, f} is normal, and is a semidirect product Z3

⋊ (Z/2Z)2 with
presentation

〈a, b, c, d, e, f | a2 = b2 = c2 = 1, ab = ba, ac = ca, bc = cb, de = ed, df = fd,

ef = fe, ada = d−1, ae = ea, af = fa, bd = db, beb = e−1, bf = fb,

cd = dc, ce = ec, cfc = f−1〉.

This subgroup contains the inner automorphisms cx = bcd, cy = acef and cz = cxcy
determined by conjugation by x and y. In particular, c2x = d2, c2y = e2 and c2z = f2.

Adjoining the generator j gives another normal subgroup, in which j3 = abce, so
j6 = 1, and j acts on 〈a, b, c, d, e, f〉 as follows:

jaj−1 = c, jbj−1 = ad−1, jcj−1 = be, jdj−1 = f, jej−1 = d, jfj−1 = e−1.

This subgroup has index 2 in Aut(G6). The remaining generator i is an involution
(i2 = 1), and there are further relations

idi = e, iei = d, ifi = f−1, iai = b, ibi = a, ici = cf, jiji = d.

(In particular, Aut(G6) is generated by {a, i, j}, but this does not seem useful.)
If (v,A) ∈ Aff(3) commutes with all elements of G6 then AB = BA for all

B ∈ H , so A is diagonal, and v+Aw = w+Bv for all (w,B) ∈ G6. Taking B = I,
we see that Aw = w for all w ∈ Z

3, so A = I, and then v = Bv for all B ∈ H , so
v = 0. Thus C = 1, and so Aut(G6) ∼= N .

If (v,A) ∈ N then A ∈ NGL(3,R)(H) andA preserves T = Z
3, soA ∈ NGL(3,Z)(H).

Therefore W = AXA−1 is in H . Hence WA = AX and so WAe1 = Ae1 is up to
sign the unique basis vector fixed by W . Applying the same argument to AY A−1

and AZA−1, we see that NGL(3,R)(H) is the group of “signed permutation matri-
ces”, generated by the diagonal matrices and permutation matrices. Let

P =




0 1 0
1 0 0
0 0 −1


 and J =




0 1 0
0 0 −1
1 0 0


 .

If A is a diagonal matrix in GL(3,Z) then (0, A) ∈ N . Thus ã = (0,−X), b̃ =
(0,−Y ) and c̃ = (0,−Z) are in N . It is easily seen that N ∩ R

3 = 1
2Z

3, with

basis d̃ = (1
2e1, I), ẽ = (1

2e2, I) and f̃ = (1
2e3, I). It is also easily verified that

ĩ = (− 1
4e3, P ) and j̃ = (1

4 (e1 − e2), J) are in N , and that N is generated by

{ã, b̃, c̃, d̃, ẽ, f̃ , ĩ, j̃}.
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Conjugation by ã, b̃, c̃, d̃, ẽ, f̃ , ĩ and j̃ induces the automorphisms a, b, c, d, e,
f, i, j as defined above. (We shall henceforth drop the tildes.) Then Out(G6) has a
presentation

〈a, b, c, e, i, j | a2 = b2 = c2 = e2 = i2 = j6 = 1, a, b, c, e commute, iai = b, ici = ae,

jaj−1 = c, jbj−1 = abc, jcj−1 = be, jej−1 = bc, j3 = abce, (ji)2 = bc〉.

The natural homomorphism from Out(G6) to Aut(G6/T ) ∼= GL(2,F2) is onto, as
the images of i and j generate GL(2,F2), and its kernel is the normal subgroup
〈a, b, c, e〉 ∼= (Z/2Z)4. Thus Out(G6) has order 96. The generators a, b, c, and j
represent orientation reversing isometries.

Since G6 is solvable and H1(G6) ∼= (Z/4Z)2, an automorphism (v,A) of G6 is
meridianal if and only if its image in Aut(G6/T ) ∼= GL(2, 2) has order 3. Thus
its image in Out(G6) is conjugate to [j], [j]−1, [ja] or [jb]. The latter pair are
orientation-preserving and each is conjugate to its inverse (via [i]). However [ja] is
not conjugate to [jb]±. Let G(+) = G6 ⋊[ja] Z and G(−) = G6 ⋊[jb] Z.

Comparison with [14]. As the group element labeled z and the automorphisms
labeled a, b, c by Zimmermann differ from ours, we shall add the subscript “Z” for
clarity. The presentation for G6 used in [14] reduces to

〈x, y, zZ | xy2x−1y2 = yx2y−1x2 = 1, zZyx = x2z2
Z = z2

Zx
2〉.

Thus zZ = yx−1, so zZ = y2z−1, and z2
Z = z−2. His choice of representatives for

a generating set for Out(G6) is {aZ , bZ , cZ , I, S, T}, where aZ = d−1, bZ = e−1,
cZ = f−1, I = xade, S = ideab and T = j−1i−1xadf . He observes also that
Out(G6) is an extension of S3×Z/2Z by the normal subgroup 〈〈d, e, f〉〉 ∼= (Z/2Z)3,
but the extension does not split, since the centre of Out(G6) is 〈ab〉 = Z/2Z, which
is too small.

7. 2-knots with group G(+)

The orthogonal matrix −JX is a rotation though 2π
3 about the axis in the

direction e1 + e2 − e3. The fixed point set of the isometry [ja] of HW is the image
of the line λ(s) = s(e1 + e2 − e3) −

1
4e2. The knots corresponding to the canonical

section are the 3-twist spin of the figure eight knot τ341 and its Gluck reconstruction
τ34

∗
1. The knot τ341 is ±amphicheiral and invertible [10], but is not reflexive [4].

We shall show that τ341 is strongly ±amphicheiral, but not strongly invertible. We
shall also show that none of the other 2-knots with group G(+) are amphicheiral
or invertible.

Theorem 2. Let π = G(+). Then every strict weight orbit representing a given

generator t for π/π′ contains an unique element of the form x2nt.

Proof. If t ∈ π represents a generator of π/π′ ∼= Z it is a weight element, since π is
solvable. Suppose that ct = ja = (1

4 (e1−e2),−JX). If u is another weight element
with [cu] = [ja] then cu is conjugate in Aut(G6) to cg′′t, for some g′′ ∈ π′′ = G′

6,
by Theorem 14.1 of [5]. Thus we may assume that cu = (û+ 1

4 (e1 − e2),−JX), for
some (û, I) ∈ G′

6. Every element of G′
6 arises in this way.

Let λ(Σxiei) = (e1 +e2−e3)•Σxiei = x1 +x2−x3. Then Ker(λ) = Im(I+JX).
If λ(v̂ − û) = 0 and (v̂ − û, I) ∈ G′

6 < T then (v̂ − û) ∈ Ker(λ|Z3) = (I + JX)(Z3).
Therefore v̂− û = (I + JX)(w) for some w ∈ Z

3. Let ψ = (w, I). Then ψ ∈ N and
cv = ψ.cu.ψ

−1.
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Conversely, if cv = ψ.cu.ψ
−1 for some ψ = (w,A) ∈ N then v̂ = û+ (I + JX)w

and A(−JX)A−1 = −JX . Hence λ(v̂) = λ(û), since λ(I + JX) = 0.
In particular, x2nt is a weight element representing [ja], for all n ∈ Z, and x2mt

and x2nt are in the same strict weight orbit if and only if m = n. �

Lemma 3. If n = 0 then CAut(G6)(ja) = 〈ja, def−1, abce〉, and NAut(G6)(〈ja〉) =

〈ja, ice, abce〉. The subgroup which preserves the orientation of R
3 is 〈ja, ice〉.

If n 6= 0 then NAut(G6)(〈d
2nja〉) = CAut(G6)(d

2nja) = 〈d2nja, def−1〉. This

subgroup acts orientably on R
3.

Proof. This is straightforward. (Note that abce = j3 and def−1 = (ice)2.) �

Lemma 4. The mapping torus M([ja]) has an orientation reversing involution

which fixes a canonical section pointwise, and an orientation reversing involution

which fixes a canonical section setwise but reverses its orientation. There is no

orientation preserving involution of M which reverses the orientation of any section.

Proof. Let ω = abcd−1f = abce(ice)−2, and let p = λ(1
4 ) = 1

4 (e1 − e3). Then

ω = (2p,−I3), ω
2 = 1, ωja = jaω and ω(p) = ja(p) = p. Hence Ω = m([ω])

is an orientation reversing involution of M([ja]) which fixes the canonical section
determined by the image of p in HW .

Let Ψ([f, s]) = [[iab](f), 1 − s] for all [f, s] ∈ M([ja]). Since (iab)ja(iab)−1 =
(ja)−1 this is well-defined, and since (iab)2 = 1 it is an involution. It is clearly
orientation reversing, and since iab(λ(1

8 )) = λ(1
8 ) it reverses the section determined

by the image of λ(1
8 ) in HW .

On the other hand, 〈ja, ice〉 ∼= Z/3Z ⋊−1 Z, and the elements of finite order in
this group do not invert ja. �

Theorem 5. Let K be a 2-knot with group G(+) and weight element u = x2nt,
where t is the canonical section. If n = 0 then K is strongly ±amphicheiral, but is

not strongly invertible. If n 6= 0 then K is neither amphicheiral nor invertible.

Proof. Suppose first that n = 0. Since −JX has order 3 it is conjugate in GL(3,R)

to a block diagonal matrix Λ(−JX)Λ−1 =
(

1 0
0 R( 2π

3
)

)
, where R(θ) ∈ GL(2,R) is

rotation through θ. Let Rs = R(2π
3 s) and ξ(s) = ((I3 − As)p,As), where As =

Λ−1
(

1 0
0 Rs

)
Λ, for s ∈ R. Then ξ is a 1-parameter subgroup of Aff(3), such that

ξ(s)(p) = p and ξ(s)ω = ωξ(s) for all s. In particular, ξ|[0,1] is a path from ξ(0) = 1

to ξ(1) = ja in Aff(3). Let Ξ : R
3 × S1 → M(ja) be the homeomorphism given

by Ξ(v, e2πis) = [ξ(v), s] for all (v, s) ∈ R
3 × [0, 1]. Then Ξ−1ΩΞ = ω× idS1 and so

Ω does not change the framing. Therefore K is strongly −amphicheiral.
Similarly, if we let ζ(s) = ((I3 − As)λ(

1
8 ), As) then ζ(s)(λ(1

8 )) = λ(1
8 ) and

iabζ(s)iab = ζ(s)−1, for all s ∈ R, and ζ|[0,1] is a path from 1 to ja in Aff(3). Let

Z : R
3 × S1 → M(ja) be the homeomorphism given by Z(v, e2πis) = [ζ(s)(v), s]

for all (v, s) ∈ R
3 × S1. Then Z−1ΨZ(v, z) = (ζ(1 − s)−1iabζ(s)(v), z−1) =

(ζ(1 − s)−1ζ(s)−1iab(v), z−1) = ((ja)−1iab(v), z−1) for all (v, z) ∈ R
3 × S1. Hence

Ψ does not change the framing, and so K is strongly +amphicheiral. However it is
not strongly invertible, by Lemma 4.

If n 6= 0 every such self-homeomorphism h preserves the orientation and fixes
the meridian, by Lemma 3, and so K is neither amphicheiral nor invertible. �
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8. 2-knots with group G(−)

A similar analysis applies when the knot group is G(−), i.e., when the meridianal
automorphism is jb = (1

4 (e1 − e2),−JY ). All 2-knots with group G(−) are fibred,
and the characteristic map [jb] has finite order, but none of these knots are twist-
spins, as we shall show below.

Theorem 6. Let π = G(−). Then every strict weight orbit representing a given

generator t for π/π′ contains an unique element of the form x2nt.

Proof. The proof is very similar to that of Theorem 2. The main change is that the
orthogonal matrix −JY is now a rotation though 2π

3 about the axis in the direction
e1 − e2 + e3. Thus we should define the homomorphism λ by dot product with
e1 − e2 + e3. �

Corollary. No 2-knot with group G(−) is a twist-spin.

Proof. Suppose that G(−) is the group of the r-twist-spin of a classical knot. Then
the rth power of a meridian is central. The power (x2nt)r is central in G(−) if and
only if (d2njb)r = 1 in Aut(G6). But (d2njb)3 = d2nf2ne−2n(jb)3 = (de−1f)2n+1.
Therefore d2njb has infinite order, and so G(−) is not the group of a twist-spin. �

Lemma 7. If n = 0 then CAut(G6)(jb) = 〈jb〉, and NAut(G6)(〈jb〉) = 〈jb, i〉. If n 6=

0 then NAut(G6)(〈d
2njb〉) = CAut(G6)(d

2njb) = 〈d2njb, de−1f〉. These subgroups act

orientably on R
3. �

The isometry [jb] has no fixed points in G6\R
3. We shall defined a preferred

section as follows. Let γ(s) = 2s−1
8 (e1−e2)−

1
8e3, for s ∈ R. Then γ(1) = jb(γ(0)),

and so γ|[0,1] defines a section of p[jb]. We shall let the image of (γ(0), 0) be the
basepoint for M([jb]).

Theorem 8. Let K be a 2-knot with group G(−) and weight element u = x2nt,
where t is the canonical section. If n = 0 then K is strongly +amphicheiral but not

invertible. If n 6= 0 then K is neither amphicheiral nor invertible.

Proof. Suppose first that n = 0. Since i(γ(s)) = γ(1 − s) for all s ∈ R the section
defined by γ|[0,1] is fixed setwise and reversed by the orientation reversing involution
[f, s] 7→ [[i](f), 1 − s]. Let Bs be a 1-parameter subgroup of O(3) such that B1 = jb,
and let ζ(s) = ((I3 − Bs)γ(s), Bs) for s ∈ R. Then ζ|[0,1] is a path from 1 to jb in

Aff(3) such that ζ(s)(γ(s)) = γ(s) and iζ(s)i = ζ(s)−1 for all 0 ≤ s ≤ 1. As in
Theorem 5 it follows that this involution does not change the framing and so K is
strongly +amphicheiral.

The other assertions follow from Lemma 7, as in Theorem 5. �

In particular, only τ341, τ34
∗
1 and the knots obtained by surgery on the section

of M([jb]) defined by γ|[0,1] admit orientation-changing symmetries.

9. normal forms for meridianal automorphisms of Γ(e, η)

The other case of interest is when the commutator subgroup of the knot group
is the fundamental group Γ(e, η) of a Seifert fibred 3-manifold M(e, η) which is
a 2-fold branched covering of S3, branched over a Montesinos knot k(e, η) =
K(0|e; (3, η), (3, 1), (3, 1)), with e even and η = ±1. (See Chapter 16.§4 of [5].)
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This 3-manifold is Seifert fibred over the flat 2-orbifold S(3, 3, 3), and Γ(e, η) has a
presentation

〈h, x, y, z | x3 = y3 = z3η = h, xyz = he〉,

for some η = ±1. Let u = z−1x, v = xz−1 and q = 3e− η − 2. Then Γ(e, η) also
has the presentation

〈u, v, z | zuz−1 = v, zvz−1 = v−1u−1z3η−3, vuv−1u−1 = z3ηq〉.

The image of z3η in Γ(e, η) generates the centre ζΓ(e, η), and P = Γ(e, η)/ζΓ(e, η)
is the orbifold fundamental group of S(3, 3, 3).

An automorphism φ of Γ(e, η) must preserve characteristic subgroups such as
the centre ζΓ(e, η) (generated by z3) and the maximal nilpotent normal subgroup√

Γ(e, η) (generated by u, v and z3). Let K be the subgroup of Aut(Γ(e, η))

consisting of automorphisms which induce the identity on Γ(e, η)/
√

Γ(e, η) ∼= Z/3Z

and
√

Γ(e, η)/ζΓ(e, η) ∼= Z2. Automorphisms in K also fix the centre, and are of
the form km,n, where

km,n(u) = uz3ηs, km,n(v) = vz3ηt and km,n(z) = z3ηp+1umvn,

for (m,n) ∈ Z
2. These formulae define an automorphism if and only if

s− t = −nq, s+ 2t = mq and 6p = (m+ n)((m+ n− 1)q + 2(η − 1)).

In particular, conjugation by u and v give cu = k−2,−1 and cv = k1,−1, respectively.

If η = 1 then q = 3e, so s = (m− 2n)e, t = −(m+n)e and p =
(
m+n

2

)
e are integers

for all m,n ∈ Z. In this case K ∼= Z
2 is generated by k = k1,0 and cu. If η = −1

then m+n ≡ 0 mod (3), and K is generated by cu and cv. In this case K has index
3 in Z

2.
We may define automorphisms b and r by the formulae:

b(u) = v−1z3ηe−3, b(v) = uvz3η(e−1) and b(z) = z; and

r(u) = v−1, r(v) = u−1 and r(z) = z−1.

It is easily checked that b6 = r2 = (br)2 = 1 and that conjugation by z gives cz = b4.
Since Γ(e, η)/Γ(e, η)′ is finite, Hom(Γ(e, η), ζΓ(e, η)) = 0, and so the natural homo-
morphism from Aut(Γ(e, η)) to Aut(P ) is injective. If η = +1 this homomorphism
is an isomorphism, and Aut(Γ(e, 1)) = has a presentation

〈b, cu, k, r | b
6 = r2 = (br)2 = 1, cuk = kcu, bcub

−1 = c−1
u k−3, bkb−1 = cuk

2,

rcur = cuk
3, rkr = k−1〉.

(Here cv = cuk
3.) On the other hand, Aut(Γ(e,−1)) has a presentation

〈b, cu, cv, r | b
6 = r2 = (br)2 = 1, cucv = cvcu, bcub

−1 = c−1
v , bcvb

−1 = cucv,

rcur = cv, rcvr = cu〉.

Hence Out(Γ(e, 1)) ∼= S3 × Z/2Z, while Out(Γ(e,−1)) ∼= (Z/2Z)2.
In each case an automorphism φ is meridianal if and only if [φ] is conjugate to

[r], and so there is an unique corresponding knot group π(e, η) = Γ(e, η) ⋊r Z.
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10. embeddings in the affine group

The group P embeds as a discrete subgroup of Isom(E2), via u 7→ (e1, I2), v 7→
(e2, I2) and z 7→ (0,−β), where β =

(
0 1
−1 1

)
. The images of u and v in P form a basis

for the translation subgroup T (P ) ∼= Z2, and P = T (P )⋊−β(Z/3Z). It is easily seen
that CAff(2)(P ) = 1, and so Aut(P ) ∼= NAff(2)(P ). If (v,A) ∈ NAff(2)(P ) then

(I2 +β)v ∈ Z
2 and A is in the subgroup D of GL(2,R) generated by the matrices β

and ρ =
(

0 −1
−1 0

)
, which has order 12. Thus Aut(P ) = (I2 + β−1)T (P ) ⋊D. Hence

Out(P ) ∼= D ∼= S3 × Z/2Z, where the first factor is generated by the images of u
and (0,−I2) and the second factor is generated by the image of (0,−ρ).

Let Nil < GL(3,R) be the group of 3 × 3 upper triangular matrices

[x, y, w] =




1 x w
0 1 y
0 0 1


 ,

and let Aut(Nil) be the group of Lie automorphisms. As a set, Aut(Nil) is
the cartesian product GL(2,R) × R

2, with (A, µ) = (( a cb d ) , (µ1, µ2)) acting via
(A, µ)([x, y, w]) =

[ax+ cy, bx+ dy, µ1x+ µ2y + (ad− bc)w + bcxy +
ab

2
x(x − 1) +

cd

2
y(y − 1)].

All such automorphisms are orientation preserving. The product of (A, µ) with
(B, ν) = (

(
g j
h k

)
, (n1, n2)) is

(A, µ) ◦ (B, ν)=(AB,µB + det(A)ν +
1

2
η(A,B)),

where

η(A,B) = (abg(1 − g) + cdh(1 − h) − 2bcgh, abj(1− j) + cdk(1 − k) − 2bcjk).

Let Aff(Nil) = Nil ⋊ Aut(Nil). Then Aff(Nil) acts on the open 3-manifold
Nil ∼= R

3 by (n, σ)(n′) = nσ(n′). The abelianization Nil → R
2 = Nil/ζNil

extends to an epimorphism p : Aff(Nil) → Aff(2), given by p(n,A, µ) = (( xy ) , A)
for n = [x, y, w] ∈ Nil, A ∈ GL(2,R) and µ ∈ R

2. We may embed Γ(e, η) in
Aff(Nil) by

u 7→ ([1, 0, 0], ι), v 7→ ([0, 1, 0], ι) and z 7→ ([0, 0,
−1

3q
], α),

where ι = idNil and α = (−β, (0, η−1
q

)). (Note that vuv−1u−1 7→ ([0, 0,−1], ι).)

Let N = NAff(Nil)(Γ(e, η)) and C = CAff(Nil)(Γ(e, η)). As in the flat case,
Aut(Γ(e, η)) ∼= N/C and Out(Γ(e, η)) ∼= N/CΓ(e, η).

It is easily seen that C = ζNil = {([0, 0, z], ι) | z ∈ R}. If n = [x, y, w] and
(n,A, µ) ∈ N then (( xy ) , A) ∈ NAff(2)(P ), so A ∈ D and ( xy ) ∈ (I2 + β)−1

Z
2. If

A = I2 then (n, I2, µ) is in N if and only if it normalizes
√

Γ(e, η) and (n, I2, µ)z =

(n′, ι)z(n, I2, µ) for some n′ ∈
√

Γ(e, η). The latter condition implies that (I2, µ)α =
α(I2, µ), and so µ(β + I2) = 0. Thus we must have µ = 0 and (I2, µ) = ι. The
remaining conditions then imply that x, y ∈ 1

q
Z. If η = 1 (so q = 3e) this satisfied

by all ( xy ) ∈ (I2 + β)−1
Z

2 < 1
3Z

2. If η = −1 then x, y ∈ Z. Thus the natural map
from Aut(Γ(e, η)) to Aut(P ) is an isomorphism if η = 1, and has image of index 3
if η = −1.
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11. 2-knots with group π(e, η)

Let R = ([0, 0, 0], ρ, (0, 0)) in Aff(Nil). Then R2 = 1 and R([x, y, z]) =
[−y,−x,−z] for all [x, y, z] ∈ Nil. The fixed point set of the action of R on Nil is
the connected curve {[s,−s, 0] | s ∈ R}. Thus the fixed point set of the involution
[R] of M(e, η) induced by R is connected and nonempty. The corresponding 2-knot
is τ2k(e, η). This is reflexive and +amphicheiral, as was first shown by Litherland.
(He showed more generally that every 2-twist spin is reflexive. See [4, 11, 12] for
proofs.)

Theorem 9. Let π = π(e, η). Then every strict weight orbit representing a given

generator t for π/π′ contains an unique element of the form unt.

Proof. If ψrψ−1 = rk for some k ∈ K then we may assume that ψ ∈ K, and
then k ∈ (I − ρ)K. The result follows by the argument of Theorem 3, with minor
changes. (Note that t 7→ th defines an automorphism of π.) �

The next result is based on Lemma 1 of [7]. (See also Lemma 18.1 of [5]).

Theorem 10. The knot K = τ2k(e, η) is strongly +amphicheiral and reflexive but

is not invertible.

Proof. Let S([m, s]) = [b3(m), s] and h([m, s]) = [m, 1 − s] for m ∈ M(e, η) and
0 ≤ s ≤ 1. Then S and h define commuting involutions of M([R]), which each fix
the canonical section setwise.

As remarked in §3, in order to determine how these involutions affect the framing
we may pass to the irregular covering space M(R) = Nil×R S

1. We shall identify
the space Nil with R

3, in the obvious way.

Let R(θ) ∈ GL(2,R) be rotation through θ, and let P =
(
R( π

4
) 0

0 1

)
∈ GL(3,R).

Then PRP−1 = diag[1,−1,−1]. We may isotope PRP−1 back to the identity,

via Qs =
(

1 0
0 R(sπ)

)
, for 0 ≤ s ≤ 1. Let Q : R

3 × S1 → M(PRP−1) be the

homeomorphism given by Q(v, e2πis) = [Qs(v), s] for all (v, s) ∈ R
3 × [0, 1]. Then

Q−1hQ((v, z) = (Q2s−1(v), z
−1) for all (v, z) ∈ R

3 × S1. After reversing the S1

factor this is just the twist, and so h changes the framing. Thus K is reflexive.
The automorphism b3 acts linearly, via b3([x, y, z]) = [−x,−y, z+(eη−1)(x+y)],

and so Pb3P−1 =
(
−I2 0
µ 1

)
, where µ = (eη − 1, eη − 1)R(−π

4 ). We may isotope

Pb3P−1 to d = diag[−1,−1, 1] through invertible matrices which commute with
PRP−1. Let D([v, s]) = [d(v), s]. Then S and D twist the framing in the same way.
Since Q−1DQ(v, e2πis) = (Q−sdQs(v), e

2πis) = (dQ2s(v), e
2πis), for all (v, s) ∈

R
3× [0, 1], it follows that S changes the framing. The composite sh is an involution

which reverses the orientation and the meridian, but does not twist the framing.
Hence K is strongly +amphicheiral.

Since automorphisms of Γ(e, η) are orientation preservingK is not −amphicheiral
or invertible. �

Theorem 11. Let K be a 2-knot with group π(e, η) and weight element unt, where t
is the canonical section and n 6= 0. Then NAut(Γ(e,η))(〈u

nr〉) = CAut(Γ(e,η))(u
nr) =

〈unr, uv−1〉, and unr is not conjugate to its inverse. Hence K is neither am-

phicheiral nor invertible.
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Proof. The first assertion is straightforward. Since unt is not conjugate to its
inverse K is not +amphicheiral, and since automorphisms of Γ(e, η) are orientation
preserving K is not −amphicheiral or invertible. �
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