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ABSTRACT

Let L be a link and ΦA
L(q) its link invariant associated with the vector representa-

tion of the quantum (super)algebra Uq(A). Let FL(r, s) be the Kauffman link invariant
for L associated with the Birman–Wenzl–Murakami algebra BWMf (r, s) for complex
parameters r and s and a sufficiently large rank f .

For an arbitrary link L, we show that Φ
osp(1|2n)
L (q) = FL(−q2n, q) and

Φ
so(2n+1)
L (−q) = FL(q2n,−q) for each positive integer n and all sufficiently large f , and

that Φ
osp(1|2n)
L (q) and Φ

so(2n+1)
L (−q) are identical up to a substitution of variables.

For at least one class of links FL(−r,−s) = FL(r, s) implying Φ
osp(1|2n)
L (q) =

Φ
so(2n+1)
L (−q) for these links.
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1. Introduction

Let L be a link and ΦAL(q) the link invariant for L associated with the vector repre-
sentation of the quantum (super)algebra Uq(A). Let FL(r, s) be the Kauffman link
invariant for L associated with BWMf (r, s), the Birman–Wenzl–Murakami algebra
of sufficiently large rank f and complex parameters r and s. We are here interested
in the invariants Φosp(1|2n)

L (q) and Φso(2n+1)
L (−q) and will prove the following the-

orems.

Theorem 1.1. For an arbitrary link L and each positive integer n,

(i) Φosp(1|2n)
L (q) = FL(−q2n, q), and

(ii) Φso(2n+1)
L (−q) = FL(q2n,−q).

∗Running title: UNCOLOURED Uq(osp(1|2n)) AND U−q(so(2n+ 1)) LINK INVARIANTS
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Recall that the braid group on l strings, Bl, has generators {σ1, σ2, . . . , σl−1}
satisfying the relations

σiσj = σjσi, |i− j| > 1, (1.1)

σiσi+1σi = σi+1σiσi+1. (1.2)

Figure 1 shows a graphical representation of σi and σ−1
i .
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Fig. 1. The generators σi and σ−1
i of Bl

The following theorem is a key result.

Theorem 1.2. Let L(m), m ∈ Z, be a link presented as the canonical closure
of a braid with corresponding braid group element (σ1)m. Then FL(m)(−r,−s) =
FL(m)(r, s) and Φosp(1|2n)

L(m) (q) = Φso(2n+1)
L(m) (−q).

We have not proved a theorem corresponding to Theorem 1.2 for arbitrary links,
but have the following weaker result.

Theorem 1.3. For each arbitrary link L and each positive integer n, Φosp(1|2n)
L (q)

and Φso(2n+1)
L (−q) are equal up a substitution of variables.

The background for the connection between Φosp(1|2n)
L (q) and Φso(2n+1)

L (−q)
starts with Zhang [8], who showed that an isomorphism exists between
U−q(so(2n+ 1)) and Uq(osp(1|2n)) at generic q (i.e. for q not a root of unity)
where U−q(so(2n+ 1)) is restricted to finite dimensional tensorial highest weight ir-
reducible representations and Uq(osp(1|2n)) is restricted to finite dimensional high-
est weight irreducible representations.

The Clebsch-Gordan coefficients for tensor products of these Uq(osp(1|2n))
irreps are identical to those of tensor products of the finite dimensional
U−q(so(2n+ 1)) irreps with the same highest weights [8].

Let V be the module for the (2n+ 1)-dimensional irreducible (vector) repre-
sentation πV of Uq(so(2n+ 1)). Then there also exists a (2n+ 1)-dimensional irre-
ducible representation of Uq(osp(1|2n)) the module of which we also denote by V .
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Representations of Bl exist in the Uq(so(2n+ 1)) and Uq(osp(1|2n)) centralisers of
V ⊗g for all g ≥ l:

ρso : Bl → EndUq(so(2n+1))(V ⊗g),

ρosp : Bl → EndUq(osp(1|2n))(V ⊗g),

and Markov traces can be defined on ρso and ρosp [7]. Link invariants Φso(2n+1)
L (q)

and Φosp(1|2n)
L (q) can then be defined from these Markov traces [7].

The relationship between Φosp(1|2n)
L (q) and Φso(2n+1)

L (−q), for an arbitrary link
L, is unclear notwithstanding the limited isomorphism between U−q(so(2n+ 1))
and Uq(osp(1|2n)). We will prove that the Bratteli diagrams for certain semisimple
quotients of BWMf (−q2n, q) and BWMf (q2n,−q) are identical for each fixed f . An
abstract symmetry between Φosp(1|2n)

L (q) and Φso(2n+1)
L (−q) is then implied from

the combination of the fact that FL(−q2n, q) and FL(q2n,−q) are specialisations of
FL(r, s) and Theorem 1.1.

The reader should note that we would have Φosp(1|2n)
L (q) = Φso(2n+1)

L (−q) for all
links L from Theorem 1.1 if we could extend the result in Theorem 1.2 to arbitrary
links. We fix the notation Z+ = {0, 1, 2, . . .}.

2. Uq(osp(1|2n)) and U−q(so(2n + 1)) link invariants

2.1. Using Markov traces to define link invariants

Let L be a link presented as the canonical closure of a braid on f strings that has
the corresponding braid group element b = σm1

i1
σm2
i2
· · ·σmjij ∈ Bf , mk ∈ Z for each

k. An example of such a braid on f strings, corresponding to the element σ2 ∈ Bf ,
f ≥ 3, is shown in Figure 2.
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Fig. 2. A braid with braid group element σ2 on f strings

Let ρ be a nontrivial representation of Bf . Let ψ : ρ(Bf ) → C be a functional
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satisfying the three Markov properties:

ψ(ρ(θiθj)) = ψ(ρ(θjθi)), ∀θi, θj ∈ Bf , (2.3)

ψ(ρ(θσf−1)) = zψ(ρ(θ)), ∀θ ∈ Bf−1 ⊂ Bf , z ∈ C, (2.4)

ψ(ρ(θσ−1
f−1)) = z̃ψ(ρ(θ)), ∀θ ∈ Bf−1 ⊂ Bf , z̃ ∈ C, (2.5)

where we take ψ on the right hand sides of Eqs. (2.4) and (2.5) to be defined on
ρ(Bf−1) where Bf−1 is the subgroup of Bf generated by {σ±1

i | i = 1, 2, . . . f − 2}.
Then a link polynomial for L is

F̃ (L) = (zz̃)−(f−1)/2(z̃/z)e(b)/2ψ(ρ(b)), (2.6)

where e(b) =
∑j
k=1mk [7].

2.2. Uq(osp(1|2n)) and U−q(so(2n + 1)) and their representations

2.2.1. The quantum superalgebra Uq(osp(1|2n))

Let H∗ be an n-dimensional complex vector space with a basis {εi| i = 1, 2, . . . , n}
and let (·, ·) : H∗ → C be a C-bilinear form defined by (εi, εj) = δij where δij = 1
if i = j and 0 otherwise.

Let {αi| i = 1, 2, . . . , n} be a basis of simple roots of H∗: fix αi = εi − εi+1 for
i ≤ n − 1 and αn = εn. The Cartan matrix A for the Lie superalgebra osp(1|2n)
is identical to that of the Lie algebra so(2n+ 1): A = (Aij)ni,j=1 where aij =
2(αi, αj)/(αi, αi).

The set of positive roots of osp(1|2n) is Φ+ = Φ+
0 ∪ Φ+

1 ; Φ+
0 =

{εi ± εj , 2εk| 1 ≤ i < j ≤ n, 1 ≤ k ≤ n} is the set of positive even roots and Φ+
1 =

{εk| 1 ≤ k ≤ n} is the set of positive odd roots.
Let q be a non-zero complex parameter satisfying q2 6= 1. The Jimbo quan-

tum superalgebra Uq(osp(1|2n)) is a Z2-graded Hopf algebra with generators
{ei, fi, k±1

i | i = 1, 2, . . . , n}. The grading of each generator is even except for en
and fn which are graded to be odd. The generators are subject to the following
relations:

eifj − fjei = δij
ki − k−1

i

q − q−1
, i < n, enfn + fnen =

kn − k−1
n

q − q−1
,

kiejk
−1
i = q(αi,αj)ej , kifjk

−1
i = q−(αi,αj)fj , i, j ≤ n, (2.7)

k±1
i k±1

j = k±1
j k±1

i , k±1
i k∓1

j = k∓1
j k±1

i , i, j ≤ n, (2.8)

together with the quantum Serre relations which we will not be directly using in
this paper and which can be found in [8].

The grading of each graded element x ∈ Uq(osp(1|2n)) is indicated by writing
[x] = 0 if x is even and [x] = 1 if x is odd.
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We will use the co-algebra structure of Uq(osp(1|2n)) in dealing with repre-
sentations of braid groups. The co-multiplication is an algebra homomorphism
∆ : Uq(osp(1|2n))→ Uq(osp(1|2n))⊗ Uq(osp(1|2n)) defined by

∆(ei) = ei ⊗ ki + 1⊗ ei, ∆(fi) = fi ⊗ 1 + k−1
i ⊗ fi, ∆(k±1

i ) = k±1
i ⊗ k

±1
i ,

for i = 1, 2, . . . , n, and the co-unit ε : Uq(osp(1|2n)) → C is a homomorphism
defined by

ε(ei) = ε(fi) = 0, ε(k±1
i ) = ε(1) = 1, i = 1, 2, . . . , n.

The elements xy ∈ Uq(osp(1|2n)) and x ⊗ y ∈ Uq(osp(1|2n)) ⊗ Uq(osp(1|2n))
are graded if both elements x, y ∈ Uq(osp(1|2n)) are graded; in this case [xy] =
[x⊗ y] = ([x] + [y]) (mod 2).

Uq(osp(1|2n)) is a Z2-graded algebra:

Uq(osp(1|2n)) =
⊕
i=0,1

Uq(osp(1|2n))i

where Uq(osp(1|2n))i = {x ∈ Uq(osp(1|2n))| [x] = i}. An element x ∈ Uq(osp(1|2n))
is said to be homogeneous if x ∈

⋃1
i=0 Uq(osp(1|2n))i.

There is a graded permutation operator

P : Uq(osp(1|2n))⊗ Uq(osp(1|2n))→ Uq(osp(1|2n))⊗ Uq(osp(1|2n))

that acts on homogeneous elements x, y ∈ Uq(osp(1|2n)) by:

P (x⊗ y) = (−1)[y][x]y ⊗ x,

the action of which is extended to inhomogeneous elements by linearity.
Uq(osp(1|2n))⊗ Uq(osp(1|2n)) is a Z2-graded algebra with multiplication

(a⊗ b)(x⊗ y) = (−1)[b][x]ax⊗ by,

for homogeneous elements a, b, x, y ∈ Uq(osp(1|2n)) which extends to inhomoge-
neous elements by linearity.

Let πW be any representation of Uq(osp(1|2n)) and denote its module by W .
The quantum supertrace of X ∈ EndC(W ) is defined by

strq(X) = str
(
πW (k2ρ) ◦X

)
,

where str is the usual supertrace and k2ρ is such a product of the ki’s that
k2ρeik

−1
2ρ = q(2ρ,αi)ei for all i, where 2ρ ∈ H∗ is defined by

2ρ =
∑
α∈Φ+

0

α−
∑
β∈Φ+

1

β =
n∑
i=1

(2n− 2i+ 1)εi.

We define the quantum superdimension of πW to be the quantum supertrace of the
identity map on W : sdimq(πW ) = strq(idW ).



January 2, 2009 21:9 WSPC/INSTRUCTION FILE paper

6 Sacha C. Blumen

2.2.2. Representations of Uq(osp(1|2n))

At generic q, the finite dimensional irreducible representations (irreps) of
Uq(osp(1|2n)) are either highest weight deformations of highest weight osp(1|2n)
irreps or non-highest weight irreps.

A highest weight Uq(osp(1|2n)) irrep is completely characterised by its highest
weight. An element λ ∈ H∗ is said to be integral dominant if li = 2(λ, αi)/(αi, αi) ∈
Z+ for all i < n and ln = (λ, αn)/(αn, αn) ∈ Z+. The set of all integral dominant
weights is the set of highest weights of the highest weight Uq(osp(1|2n)) irreps and
we denote it by P+.

We denote the Uq(osp(1|2n)) irrep with highest weight λ ∈ P+ by πλ and its
corresponding module by Vλ.

2.2.3. The quantum algebra Uq(so(2n+ 1))

The quantum algebra Uq(so(2n+ 1)) is generated by {Ei, Fi,K±1
i | i = 1, 2, . . . , n}

subject to the relations

EiFj − FjEi = δij
Ki −K−1

i

q − q−1
, ∀i, j,

the relations (2.7) and (2.8) replacing ei, fi and k±1
i with Ei, Fi and K±1

i , respec-
tively, and the quantum Serre relations which can be found in [8].

2.2.4. Representations of Uq(so(2n+ 1))

At generic q, each λ ∈ P+ is the highest weight of a finite dimensional irreducible
U−q(so(2n+ 1)) representation πλ. The dimension of πλ is equal to the dimension
of the irreducible Uq(osp(1|2n)) representation πλ. We also denote the module of
πλ by Vλ.

Let V denote the module for both the (2n+ 1)-dimensional irreps of
U−q(so(2n+ 1)) and Uq(osp(1|2n)). Whenever V is considered to be a
Uq(osp(1|2n))-module, we takes the grading of its highest weight vector to be odd.

Let πW be a representation of Uq(so(2n+ 1)) with corresponding module W
and let X ∈ EndC(W ). The quantum trace of X is defined to be trq(X) =
tr
(
πW (K2ρ) ◦ X

)
, where tr is the usual trace and K2ρ is a product of the Ki’s

such that K2ρEiK
−1
2ρ = q(2ρ,αi)Ei for all i. We define the quantum dimension of

πW to be the quantum trace of the identity map on W :

dimq(πW ) = trq(idW ).

The 2ρ in Uq(so(2n+ 1)) is identical to the 2ρ in Uq(osp(1|2n)).
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2.3. Braid group representations and Markov traces from

Uq(osp(1|2n)) and U−q(so(2n + 1))

2.3.1. Braid group representations from Uq(osp(1|2n)) and U−q(so(2n+ 1))

For all integral dominant weights λ and µ there exist invertible maps Rso(2n+1)
λµ ∈

EndC(Vλ ⊗ Vµ) satisfying

R
so(2n+1)
λµ · (πλ ⊗ πµ)∆(x) = (πλ ⊗ πµ)∆′(x) ·Rso(2n+1)

λµ ,

∀x ∈ U−q(so(2n+ 1)),

where ∆′ = P ◦∆ is the opposite co-multiplication. For each such λ, the map

Ř
so(2n+1)
λλ = P ◦Rso(2n+1)

λλ (2.9)

commutes with the action of U−q(so(2n+ 1)):

Ř
so(2n+1)
λλ · (πλ ⊗ πλ)∆(x) = (πλ ⊗ πλ)∆(x) · Řso(2n+1)

λλ ,

∀x ∈ U−q(so(2n+ 1)).

Similarly, it was shown in [2] that for all integral dominant weights λ and µ

there exist maps Rosp(1|2n)
λµ ∈ EndC(Vλ ⊗ Vµ) and

Ř
osp(1|2n)
λλ = P ◦Rosp(1|2n)

λλ , (2.10)

where P is the graded permutation operator, satisfying

R
osp(1|2n)
λµ · (πλ ⊗ πµ)∆(x) = (πλ ⊗ πµ)∆′(x) ·Rosp(1|2n)

λµ ,

Ř
osp(1|2n)
λλ · (πλ ⊗ πλ)∆(x) = (πλ ⊗ πλ)∆(x) · Řosp(1|2n)

λλ ,

∀x ∈ Uq(osp(1|2n)).

We can now define representations of Bf , the braid group on f strings, in
the usual way. Let {σ±1

i | i = 1, . . . , f − 1} be the generators of Bf as shown in
Figure 1. Fix k ≥ f to be an integer, then for each i = 1, . . . , k − 1 and each
A ∈ {so(2n+ 1), osp(1|2n)}, fix(

ŘAλλ
)±1

i
= id⊗(i−1) ⊗

(
ŘAλλ

)±1 ⊗ id⊗(k−i−1).

Then the homomorphisms

ρAλ : σ±1
i 7→

(
ŘAλλ

)±1

i
, (2.11)

define representations of Bf in EndU−q(so(2n+1))(V ⊗k) and EndUq(osp(1|2n))(V ⊗k).

2.3.2. Braid group representations from Markov traces on Uq(osp(1|2n)) and
U−q(so(2n+ 1)) vector irreps

We now detail the Markov traces that we define on the representations of Bf given
in (2.11). For A = so(2n+ 1), osp(1|2n), let ŘAV V be the map given in (2.9)–(2.10)
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where

Ř
so(2n+1)
V V ∈ EndU−q(so(2n+1))(V ⊗ V ), (2.12)

Ř
osp(1|2n)
V V ∈ EndUq(osp(1|2n))(V ⊗ V ), (2.13)

and define CAf to be the complex algebra generated

by
{(
ŘAV V

)±1

i

∣∣∣ i = 1, 2, . . . , f − 1
}

. In addition, define the maps ψA : CAf → C
by

ψso(2n+1)(X1) =
tr−q(X1)(

dim−q(V )
)f , ∀X1 ∈ Cso(2n+1)

f , (2.14)

ψosp(1|2n)(X2) =
strq(X2)(

sdimq(V )
)f , ∀X2 ∈ Cosp(1|2n)

f , (2.15)

where we recall that dim−q(V ) = −q2n+q−2n

q−q−1 + 1 is the quantum dimension of the
U−q(so(2n+ 1))-module V and note that sdimq(V ) = dim−q(V ).

It is well known that ψso(2n+1) is a Markov trace and it was shown in [2] that
ψosp(1|2n) is also a Markov trace, i.e. both ψso(2n+1) and ψosp(1|2n) satisfy Eqs.
(2.3)–(2.5) upon substituting them for ψ [2,5].

2.4. Quantum link invariants Φso(2n+1)
L (−q) and Φosp(1|2n)

L (q)

As ψso(2n+1) and ψosp(1|2n) are Markov traces, Eq. (2.6) defines the uncoloured
quantum link invariants Φso(2n+1)

L (−q) and Φosp(1|2n)
L (q) obtained by substituting

ψso(2n+1) and ψosp(1|2n) for ψ in Eq. (2.6), respectively, and using the representa-
tions of the braid group given in Eq. (2.11).

In the next section we define the Kauffman polynomial from the unspecialised
Birman–Wenzl–Murakami algebra BWMf and detail the connections between
the Kauffman link invariant and the quantum link invariants Φso(2n+1)

L (−q) and
Φosp(1|2n)
L (q).

3. Birman–Wenzl–Murakami algebras and the Kauffman link
polynomial

We now discuss the unspecialised and specialised Birman–Wenzl–Murakami alge-
bras [1,3]. These algebras have natually defined trace functionals that we use to
define the Kauffman link invariant [6].

3.1. Unspecialised Birman–Wenzl–Murakami algebra BWMf

3.1.1. Definition

Let f ≥ 2 be an integer and r, s indeterminates. Let C(r, s) be the field of rational
polynomials in r and s with complex coefficients. The unspecialised Birman–Wenzl–
Murakami algebra BWMf [6] is an associative algebra taken over C(r, s) that is
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generated by the invertible elements {gi| 1 ≤ i ≤ f − 1} subject to the relations

gigj = gjgi, |i− j| > 1,
gigi+1gi = gi+1gigi+1, 1 ≤ i ≤ f − 2,
eigi = r−1ei, 1 ≤ i ≤ f − 1,
eig
±1
i−1ei = r±1ei, 1 ≤ i ≤ f − 1,

where each ei is defined by

(s− s−1)(1− ei) = gi − g−1
i , 1 ≤ i ≤ f − 1.

Each gi also satisfies (gi − r−1)(gi + s−1)(gi − s) = 0.

3.1.2. Trace functional on BWMf

BWMf is equipped with a functional tr : BWMf → C(r, s) satisfying [6]:

tr(aχb) = tr(χ)tr(ab), ∀a, b ∈ BWMf−1, χ ∈ {gf−1, ef−1}, (3.16)

where we regard each element of BWMf−1 as an element of BWMf under the
canonical inclusion (i.e. we take gi ∈ BWMf−1 as an element of BWMf via
gi ↪→ gi). We recall the definition of the trace functional tr in section 6 and the
well-known result that we can use tr to construct link invariants in subsection 3.2.

3.2. Link invariants from BWMf

The Kauffman link invariant can be defined using BWMf as follows [6]. Let a link
L be presented as a braid on f strings with corresponding braid group element
b = σm1

i1
σm2
i2
· · ·σmjij ∈ Bf , where mk ∈ Z for each k, and let β ∈ BWMf be

the image of b under the homomorphism σ±1
i 7→ g±1

i . Define e(b) =
∑
kmk and

t̂r(b) = r−e(b)tr(β), then the Kauffman link invariant of L is

FL(r, s) = t̂r(σ1)1−f t̂r(b). (3.17)

We now show that FL(r, s) is a particular example of the link invariant F̃ (L)
defined using (2.6). The homomorphism ρ : σ±1

i 7→ g±1
i ∈ BWMf yields a repre-

sentation of Bf , and tr ◦ ρ is a functional satisfying the three Markov properties as
follows (corresponding to Eqs. (2.3)–(2.5)):

(i) tr(ab) = tr(ba), ∀a, b ∈ BWMf ,
(ii) tr(agf−1) = tr(gf−1)tr(a) = r

x tr(a), ∀a ∈ BWMf−1,
(iii) tr(ag−1

f−1) = tr(g−1
f−1)tr(a) = r−1

x tr(a), ∀a ∈ BWMf−1.

It then follows that tr ◦ ρ can be used to construct a link invariant F̃ (L) following
(2.6): let L be a link that is presented as the closure of a braid with corresponding
braid group element b ∈ Bf . Then the link invariant F̃ (L) for L is

F̃ (L) = xf−1r−e(b)tr(ρ(b)),

which equals the right hand side of (3.17).
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3.3. Specialised Birman–Wenzl–Murakami algebra BWMf(t, q)

3.3.1. Definition and trace functional

We denote by BWMf (t, q) the algebra obtained by formally replacing the indeter-
minates r and s in BWMf with the complex numbers t and q, respectively.

BWMf (t, q) is equipped with a functional tr : BWMf (t, q)→ C satisfying

tr(aχb) = tr(χ)tr(ab), ∀a, b ∈ BWMf−1(t, q), χ ∈ {gf−1, ef−1}, (3.18)

where we regard each element of BWMf−1(t, q) as an element of BWMf (t, q) under
the canonical inclusion.

3.3.2. Representations of BWMf (−q2n, q) and BWMf (q2n,−q) from
Uq(osp(1|2n)) and Uq(so(2n+ 1))

Certain representations of Uq(sp(2n)), Uq(so(2n+ 1)) and Uq(osp(1|2n)) yield
representations of different specialisations of BWMf (t, q). In this subsec-
tion, we recall how representations of Uq(osp(1|2n)) yield representations of
BWMf (−q2n, q) [2] and how representations of U−q(so(2n+ 1)) yield represen-
tations of BWMf (q2n,−q) [5].

Fix q to be generic and non-zero in this rest of this section and in section 3.4.
Recall the maps Řso(2n+1)

V V and Ř
osp(1|2n)
V V from (2.12) and (2.13), respectively. The

homomorphism

ρ
so(2n+1)
V : g±1

i 7→
(
Ř
so(2n+1)
V V

)±1

i

yields a representation of BWMf (q2n,−q) [5], and the homomorphism

Υ : g±1
i 7→ −

(
Ř
osp(1|2n)
V V

)±1

i

yields a representation of BWMf (−q2n, q) [2].

3.3.3. Kauffman link invariants from BWMf (−q2n, q) and BWMf (q2n,−q)

Kauffman link invariants FL(−q2n, q) and FL(q2n,−q) can be respectively defined
from BWMf (−q2n, q) and BWMf (q2n,−q) following (3.17). The only matters that
need to be considered are that the image β(−q2n, q) of b ∈ Bf under the homomor-
phism σ±1

i 7→ g±1
i ∈ BWMf (−q2n, q) is well-defined as is the image β(q2n,−q) of b

under the homomorphism σ±1
i 7→ g±1

i ∈ BWMf (q2n,−q), both of which are true.

3.4. Connections between Φosp(1|2n)
L (q), Φso(2n+1)

L (−q) and

FL(−q2n, q), FL(q2n,−q)

Recall the definitions of the Markov traces ψso(2n+1) and ψosp(1|2n) from (2.14)–
(2.15) and the trace functional tr on BWMf (−q2n, q) and BWMf (q2n,−q).

We can now prove Theorem 1.1, which states that for an arbitrary link L and
each positive integer n,
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(i) Φosp(1|2n)
L (q) = FL(−q2n, q), and

(ii) Φso(2n+1)
L (−q) = FL(q2n,−q).

Proof. Eq. (3.19) was proved in [2] and Eq.(3.20) is well-known:

ψosp(1|2n)
(
Υ(a)

)
= tr(a), ∀a ∈ BWMf (−q2n, q), (3.19)

ψso(2n+1)
(
ρ
so(2n+1)
V (a)

)
= tr(a), ∀a ∈ BWMf (q2n,−q). (3.20)

We firstly prove (i) of the theorem, the proof of (ii) is similar and will be omit-
ted. The invariant FL(−q2n, q) arises from applying tr ◦ ρ(−q2n, q) in (2.6) where
ρ(−q2n, q) : Bf → BWMf (−q2n, q) is a representation defined by the homomor-
phism σ±1

i 7→ g±1
i and tr is the trace functional on BWMf (−q2n, q).

The quantum link invariant Φosp(1|2n)
L (q) arises from applying ψosp(1|2n)

(
Υ(a)

)
◦

ρ(−q2n, q) in (2.6). The proof of Theorem 1.1(i) then follows from (3.19).

Restating Theorem 1.1, the quantum link invariant F̃ (L) obtained by colouring
each component of the link L with the (2n+ 1)-dimensional irreducible represen-
tation of Uq(osp(1|2n)) (resp. U−q(so(2n+ 1))) is identical to the Kauffman link
invariant FL(−q2n, q) (resp. FL(q2n,−q)).

We now prove Theorem 1.2, which states: Let L(m) be a link presented as
the canonical closure of a braid with corresponding braid group element (σ1)m for
m ∈ Z. Then FL(m)(−r,−s) = FL(m)(r, s) and Φosp(1|2n)

L(m) (q) = Φso(2n+1)
L(m) (−q).

Proof. Lemma 3.1 gives FL(m)(−r,−s) = FL(m)(r, s) and Theorem 1.1 completes
the proof.

Lemma 3.1. FL(m)(−r,−s) = FL(m)(r, s) for each link L(m),m ∈ Z, where L(m)
is the closure of a braid with corresponding braid group element (σ1)m.

Proof. From Eq. (3.17), FL(m)(r, s) = t̂r(σ1)1−f t̂r ((σ1)m). Firstly, note that
t̂r(σ1) = x−1 and that x ∈ BWMf (−r,−s) is identical to x ∈ BWMf (r, s) when
both are considered as elements of C(r, s). Now t̂r ((σ1)m) = r−mtr((g1)m) and
from Lemma 6.1 we have:

tr((g1)m) = am(r, s) + bm(r, s)rx−1 + cm(r, s)x−1.

By inspection,

am(−r,−s) = (−1)mam(r, s),

bm(−r,−s) = (−1)m+1bm(r, s),

cm(−r,−s) = (−1)mcm(r, s),

and it follows that

FL(m)(−r,−s) = xf−1(−r)−m
(
am(−r,−s) + bm(−r,−s)(−r)x−1 + cm(−r,−s)x−1

)
= FL(m)(r, s).
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4. The relationship between FL(−q2n, q) and FL(q2n,−q)

Theorem 1.2 shows that FL(m)(−q2n, q) = FL(m)(q2n,−q) for all links L(m). We
now prove Theorem 1.3, which states: for each arbitrary link L and each positive
integer n, Φosp(1|2n)

L (q) and Φso(2n+1)
L (−q) are equal up a substitution of variables.

Proof. We prove the result by showing that FL(−q2n, q) can in principle be ob-
tained from FL(q2n,−q) (and vice-versa) for all links L by a substitution of vari-
ables. The result for Φosp(1|2n)

L (q) and Φso(2n+1)
L (−q) then follows from Theorem

1.1.
In this proof we refer to Bratteli diagrams for BMWf and related concepts but

leave the detail of these to section 5 as their explanation is lengthy.
We fix Ωf to be the set of pairs (R,S) of paths of length f in the Bratteli diagram

for BWMf where shp(R) = shp(S), where shp(R) is the Young diagram on the f th

level of the Bratteli diagram for BWMf at which the path R ends. Ram and Wenzl
wrote down an explicit basis {EST ∈ BWMf | (S, T ) ∈ Ωf} of BWMf [4]. This
basis is a set of matrix units, i.e. the basis elements satisfy EQREST = δRSEQT .

Recall from (3.17) that FL(r, s) is obtained by multiplying together weighted
traces of particular elements of BWMf . Writing each element X ∈ BWMf as a
linear combination of matrix units:

X =
∑

(S,T )∈Ωf

cSTEST , cST ∈ C(r, s),

the trace of X is

tr(X) =
∑

(S,T )∈Ωf

cST tr(EST ),

where tr(ESS) 6= 0 for all (S, S) ∈ Ωf from Lemma 5.1. Given such an element X,
we fix

X(t, q) =
∑

(S,T )∈Ωf

cST (t, q)EST (t, q)

to be the corresponding element of BWMf (t, q) obtained by replacing the indeter-
minates r and s in X with the complex numbers t and q, respectively.

We fix Ωf (−q2n, q) to be the set of pairs (R,S) of paths of length f in the
truncated Bratteli diagram for the semisimple algebraBWMf (−q2n, q)/Jf (−q2n, q)
where shp(R) = shp(S). We similarly define Ωf (q2n,−q).

Note that Ωf (−q2n, q) = Ωf (q2n,−q), which arises from the result in Lemma
6.2 that Qλ(−q2n, q) = Qλ(q2n,−q).

Let X ∈ BWMf be any element where each of X(−q2n, q) and X(q2n,−q) is



January 2, 2009 21:9 WSPC/INSTRUCTION FILE paper

Uncoloured Uq(osp(1|2n)) and U−q(so(2n+ 1)) link invariants 13

well-defined. Then

tr(X)
∣∣
(r,s)=(−q2n,q) = tr

(
X(−q2n, q)

)
=

∑
(S,T )∈Ωf (−q2n,q)

cST (−q2n, q)tr(EST (−q2n, q))

=

 ∑
(S,T )∈Ωf (−q2n,q)

cST tr(EST )

∣∣∣∣∣∣
(r,s)=(−q2n,q)

(4.21)

as tr(ESS)
∣∣
(r,s)=(−q2n,q) = 0 if (S, S) /∈ Ωf (−q2n, q), and similarly

tr(X)
∣∣
(r,s)=(q2n,−q) = tr

(
X(q2n,−q)

)
=

 ∑
(S,T )∈Ωf (q2n,−q)

cST tr(EST )

∣∣∣∣∣∣
(r,s)=(q2n,−q)

.

(4.22)
Note that the sums on the right hand sides of (4.21) and (4.22) are over the same
sets.

We rewrite parts of Eqs. (4.21) and (4.22): ∑
(S,T )∈Ωf (−q2n,q)

cST tr(EST )

∣∣∣∣∣∣
(r,s)

=
{

tr
(
X(−q2n, q)

)
, if (r, s) = (−q2n, q),

tr
(
X(q2n,−q)

)
, if (r, s) = (q2n,−q).

(4.23)

It follows from (4.23) that it is possible in principle to obtain tr(X(q2n,−q)) from
tr(X(−q2n, q)) by applying the mapping (−q2n, q) 7→ (q2n,−q) (and similarly possi-
ble to obtain tr(X(−q2n, q)) from tr(X(q2n,−q)) by applying the reverse mapping).
However, it may be difficult to do this in practise as q2n and q are not independent:
the substitution can be expressed as the mapping qm 7→ (−q)m and −q2n 7→ q2n,
however the first mapping also gives (q)2n 7→ (−q)2n. It follows that the substitu-
tion can be directly done if q2n does not appear in tr(X(−q2n, q)) or if the left hand
side of Eq. (4.23) is explicitly known. Similar considerations hold for applying the
mapping (q2n,−q) 7→ (−q2n, q) to tr(X(q2n,−q)) to obtain tr(X(−q2n, q)).

It follows that there is an abstract symmetry between FL(−q2n, q) and
FL(q2n,−q) given by mapping between the relevant pairs of signed powers of q.
However, it may not be possible to directly obtain one of the invariants from the
other by applying the relevant mappings without additional knowledge of the traces
of certain elements in BMWf .

Similar results will hold for any Kauffman link invariants FL(r, s) and FL(r′, s′)
where the truncated Bratteli diagrams for the relevant semisimple quotients of
BWMf (r, s) and BWMf (r′, s′) are identical.

4.1. The case for q a root of unity

We have not considered the relationship between the relevant quantum link in-
variants when q is a root of unity. However, we believe that similar results hold
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for q a root of unity as at generic q. For q a root of unity, the truncated Bratteli
diagram for BWMf (∓q2n,±q)/Jf (∓q2n,±q) is, for a sufficiently large f (depend-
ing on the root of unity), a proper subgraph of the truncated Bratteli diagram for
BWMf (∓q2n,±q)/Jf (∓q2n,±q) at generic q [2,6]. The fact that this subgraph is
proper is intimately related to the existences of the truncated dominant Weyl al-
coves in the relevant weight spaces of Uq(osp(1|2n)) and U−q(so(2n+ 1)) for q a
root of unity.

5. Bratteli diagrams for Birman–Wenzl–Murakami algebras

5.1. Bratteli diagram for BWMf

Following [6] we say that an algebra A is semisimple if it is isomorphic to a direct
sum of matrix algebras: A ∼=

⊕
iMki(C), where ki ∈ {1, 2, . . .} and Mj(C) is

the algebra of j × j matrices with complex entries. BWMf is semisimple [6] and
its structure can be conveniently represented by a Bratteli diagram, which is an
undirected graph encoding information about a sequence C ∼= A0 ⊂ A1 ⊂ A2 ⊂ · · ·
of inclusions of finite dimensional semisimple algebras [4].

To draw a Bratteli diagram for BWMf , we firstly need the Young lattice [6],
which is (almost) identical to the Bratteli diagram for the sequence of inclusions of
group algebras of the symmetric group: CS1 ⊂ CS2 ⊂ CS3 ⊂ · · · .

The vertices of the Young lattice are grouped into levels:

(i) each Young diagram with f ≥ 0 boxes labels a vertex on the f th level of
the Young lattice,

(ii) a vertex λ on the f th level is connected to a vertex µ on the (f + 1)st level
by an edge if and only if λ and µ differ by exactly one box, and

(iii) the empty Young diagram (containing no boxes) is on the 0th level.

For each f , let Yf be the set of vertices on the f th level of the Young lattice and
define Γf =

⋃
f−2k≥0

Yf−2k where k ranges over all of Z+. Γk is the set of vertices

on the kth level of the Bratteli diagram for BWMf . A vertex λ on the kth level is
connected to a vertex µ on the (k+1)st level if and only if λ and µ differ by exactly
one box. We show the Bratteli diagram for BWMf up to the 4th level in Figure 3.

5.2. A basis of BWMf and matrix units for BWMf

Ram and Wenzl wrote down [4] an explicit basis {EST ∈ BWMf | (S, T ) ∈ Ωf} of
BWMf , this notation we explain below. This basis is a set of matrix units, i.e. the
basis elements satisfy EQREST = δRSEQT .

We say that R is a path of length f in the Bratteli diagram for BWMf if

(i) R = (r0, r1, . . . , rf ) is a sequence of f + 1 Young diagrams where rk ∈ Γk
for each k = 0, 1, . . . , f , and
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Fig. 3. The Bratteli diagram for BWMf up to the 4th level inclusive

(ii) ri is connected by an edge to the vertex ri+1 in the Bratteli diagram for
BWMf for each i = 0, 1, . . . , f − 1.

We write shp(R) = rf and fix Ωf be the set of pairs (R,S) of paths of length f in
the Bratteli diagram for BWMf where shp(R) = shp(S).

The following lemma [6, Lemma 4.2] is important.

Lemma 5.1. let R be a path of length f in the Bratteli diagram for BWMf where
shp(R) = λ. Then tr(ERR) = Qλ(r, s)/xf , where Qλ(r, s) is the function given in

(6.24) and x =
r − r−1

s− s−1
+ 1.

5.3. Semisimple quotients of BWMf(t, q)

Define an ideal Jf (t, q) ⊂ BWMf (t, q) with respect to tr by

Jf (t, q) = {b ∈ BWMf (t, q)| tr(ab) = 0, ∀a ∈ BWMf (t, q)} .

If q is nonzero and not a root of unity and t 6= ±qk for any k ∈ Z, then Jf (t, q) = 0
and BWMf (t, q) is semisimple. If q is not a root of unity and t = ±qk for some k ∈
Z, then Jf (±qk, q) may be non-zero and the quotient BWMf (±qk, q)/Jf (±qk, q)
is semisimple (see [6, Cor. 5.6] for details).

In examining the Kauffman link polynomials, we will draw on the
structures of the semisimple quotients BWMf (−q2n, q)/Jf (−q2n, q) and
BWMf (q2n,−q)/Jf (q2n,−q), which are encoded in the relevant truncated Bratelli
diagrams. These truncated Bratteli diagrams are identical, which arises directly
from the fact that Qλ(−q2n, q) = Qλ(q2n,−q) (Lemma 6.2) and may be related to
the fact that BWMf (−q2n, q) and BWMf (q2n,−q) are isomorphic algebras [6].
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We now describe how to construct the truncated Bratelli diagram for
BWMf (−q2n, q)/Jf (−q2n, q) [6]: we similarly obtain the truncated Bratteli dia-
gram for BWMf (q2n,−q)/Jf (q2n,−q).

Let q be generic. Initially, we inductively obtain a subgraph Y (−q2n, q) of the
Young lattice as follows:

(i) Firstly fix the Young diagram with no boxes to be a vertex in Y (−q2n, q).
(ii) The inductive step is: assume that the Young diagram λ is a vertex in

Y (−q2n, q) and that the Young diagram µ differs from λ by exactly one
box. Then µ is also a vertex in Y (−q2n, q) if the function Qµ(−q2n, q) given
in Eq. (6.24) is non-zero.

Explicitly from [2,6], a Young diagram λ is a vertex in Y (−q2n, q) if and only if
λ′1 + λ′2 ≤ 2n+ 1 where λ′i is the number of boxes in the ith column of λ from the
left.

The truncated Bratteli diagram for BWMf (−q2n, q)/Jf (−q2n, q) is then the
subgraph of the Bratteli diagram for BWMf obtained by removing all vertices
that do not belong to Y (−q2n, q). We show the truncated Bratteli diagram for
BWMf (−q2, q)/Jf (−q2, q) up to the 4th level in Figure 4.

The truncated Bratteli diagram for BWMf (q2n,−q)/Jf (q2n,−q) is obtained in
the same way as is the truncated Bratteli diagram for BWMf (−q2n, q)/Jf (−q2n, q)
except that we replace (−q2n, q) with (q2n,−q) throughout. The fact that
Qλ(−q2n, q) = Qλ(q2n,−q) means that the truncated Bratteli diagrams for
BWMf (−q2n, q)/Jf (−q2n, q) and BWMf (q2n,−q)/Jf (q2n,−q) are identical.
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Fig. 4. The Bratteli diagram for BWMf (−q2, q)/Jf (−q2, q) up to the 4th level inclusive
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Note that BWMf (−q2n, q)/Jf (−q2n, q) ∼=
⊕

λMb(λ)(C) where the direct sum
is over all vertices λ on the f th level of the truncated Bratteli diagram for
BWMf (−q2n, q)/Jf (−q2n, q) and b(λ) is the number of paths of length f in the
truncated Bratteli diagram ending at λ.

We are almost at the point where we can write down a basis for
BWMf (−q2n, q)/Jf (−q2n, q). Fix Ωf (−q2n, q) to be the set of pairs (R,S) of paths
of length f in the truncated Bratteli diagram for BWMf (−q2n, q)/Jf (−q2n, q)
where shp(R) = shp(S). The matrix units{

ERS(−q2n, q) ∈ BWMf (−q2n, q)| (R,S) ∈ Ωf (−q2n, q)
}
,

obtained by replacing the indeterminates r and s with the complex numbers −q2n

and q, respectively, in the relevant matrix units of BWMf , are all well-defined and
non-zero [2]. It is very important to note that tr(ESS(−q2n, q)) 6= 0 for all (S, S) ∈
Ωf (−q2n, q) and that ERS(−q2n, q) /∈ Jf (−q2n, q) for all (R,S) ∈ Ωf (−q2n, q).

6. Technical results

6.1. Definition of tr

For each element a ∈ BWMf+1, there exists a unique element εf (a) ∈ BWMf

such that ef+1aef+1 = xεf (a)ef+1 where εf : BWMf+1 → BWMf is a linear
map. The tr functional on BWMf is then inductively defined by tr(1) = 1 and
tr(a) = tr(εf (a)) for a ∈ BWMf+1. In particular, tr(ei) = 1/x and tr(g±1

i ) = r±1/x

for all i.

6.2. Definition of Qλ(r, s)

Let λ be a Young diagram, let (i, j) denote the box in the ith row and the jth

column of λ and let λi (resp. λ′j) denote the number of boxes in the ith row (resp.
jth column) of λ. Denote the Young diagram λ by λ = [λ1, λ2, . . . , λk] where the
ith row of the Young diagram contains λi boxes for each i = 1, 2, . . . , k, and the lth

row contains no boxes for each l > k. The function Qλ(r, s) is

Qλ(r, s) =
∏

(j,j)∈λ

rsλj−λ
′
j − r−1s−λj+λ

′
j + sλj+λ

′
j−2j+1 − s−λj−λ

′
j+2j−1

sh(j,j) − s−h(j,j)

×
∏

(i,j)∈λ,i6=j

rsd(i,j) − r−1s−d(i,j)

sh(i,j) − s−h(i,j)
, (6.24)

where the hooklength h(i, j) is defined by h(i, j) = λi − i+ λ′j − j + 1, and where

d(i, j) =
{
λi + λj − i− j + 1, if i ≤ j,
−λ′i − λ′j + i+ j − 1, if i > j.

Intuitively, the hooklength h(i, j) is the number of boxes in the hook cornered on
the box (i, j), i.e. the number of boxes below the (i, j) box in the jth column plus
the number of boxes to the right of the (i, j) box in the ith row, plus one.
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6.3. Technical lemmas

Lemma 6.1. For all integers f,m ≥ 2,

(i) (g1)m ∈ BWMf can be written as

(g1)m = am(r, s) + bm(r, s)g1 + cm(r, s)e1, (6.25)

where am(r, s), bm(r, s), cm(r, s) ∈ Z[[r, r−1, s, s−1]], and
(ii)

am(r, s) ∈

{⊕
i

Zrγisδi where (γi + δi) mod 2 ≡ (m) mod 2 ∀i

}
,

bm(r, s) ∈

⊕
j

Zrγjsδj where (γj + δj) mod 2 ≡ (m+ 1) mod 2 ∀j

 ,

cm(r, s) ∈

{⊕
k

Zrγksδk where (γk + δk) mod 2 ≡ (m) mod 2 ∀k

}
.

Proof.

(i) We firstly note that

(g1)2 = 1 + (s− s−1)(g1 − r−1e1).

Assume now that Eq. (6.25) is true for some m ≥ 2, then

(g1)m+1 = am(r, s)g1 + bm(r, s)(g1)2 + cm(r, s)e1g1

= bm(r, s) +
(
am(r, s) + bm(r, s)(s− s−1)

)
g1

+
(
−bm(r, s)r−1(s− s−1) + cm(r, s)r−1

)
e1, (6.26)

proving (i).
(ii) The result is true for m = 2 by inspection and follows for all m ≥ 2 by

induction.

Lemma 6.2. For each Young diagram λ,

Qλ(−q2n, q) = Qλ(q2n,−q). (6.27)

Proof. Simple calculations show that (6.27) is true if and only if

∏
(i,j)∈λ
i 6=j

−q2n+d(i,j) + q−2n−d(i,j) =

 ∏
(i,j)∈λ
i<j

(−1)λ
′
j+λj (q2n+d(i,j) − q−2n−d(i,j))



×

 ∏
(i,j)∈λ
i>j

(−1)λi+λ
′
i(q2n+d(i,j) − q−2n−d(i,j))


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and this last equation is true if

∏
(i,j)∈λ
i 6=j

(−1) =

 ∏
(i,j)∈λ
i<j

(−1)λ
′
j+λj


 ∏

(i,j)∈λ
i>j

(−1)λi+λ
′
i

 . (6.28)

We now show that (6.28) is true. Define the following sets:

Hork = {(k, j) ∈ λ| j = 1, 2, . . . ,min {k − 1, λk}}
Verk = {(i, k) ∈ λ| i = 1, 2, . . . ,min {k − 1, λ′k}} .

Noting that |Verk∩Horl| = 0 for all k and l and that |Hork∩Horl| = 0 = |Verk∩Veri|
for all k 6= i, it follows that (6.28) is true if the following equation holds for each k:

(−1)|Hork∪Verk| =

 ∏
(i,k)∈Verk

(−1)λ
′
k+λk

 ∏
(k,j)∈Hork

(−1)λk+λ′k

 . (6.29)

If |Hork ∪ Verk| is even, the right hand side of (6.29) clearly equals 1 as Hork and
Verk are disjoint. Alternatively, if |Hork ∪ Verk| is odd, then λk ≤ k − 2 and/or
λ′k ≤ k − 2. If λ′k ≤ k − 2, then λk ≤ k − 1 as λ is a Young diagram. Similarly,
if λk ≤ k − 2, then λ′k ≤ k − 1 as λ is a Young diagram. In both cases it follows
that λ′k = |Verk| and λk = |Hork|. If |Hork ∪ Verk| is odd, λk + λ′k is also odd as
λk + λ′k = |Hork|+ |Verk| = |Hork ∪Verk|, and clearly the right hand side of (6.29)
equals −1. Thus (6.29) is true for each k, from which it follows that (6.28) is true,
which completes the proof of the lemma.
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