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Abstract

This is the first of two papers devoted to the analysis of contour crossing errors that
occur in contour-advective simulations of fluid motion. Here an algorithm is presented for
quantifying the error due to contour crossings. The method for analysing contour crossing
errors works in several stages. The first step is to determine the relative proximity of all
possible pairs of contours. A digital representation of each contour is produced to aid in the
corresponding calculation. Simple analysis of functions is then used to find any crossings
between contours deemed close to each other by the digital representation method. Next,
the area in error of a pair of crossing contours is calculated by identifying the polygon
or polygons that approximately bound the erroneous region. Finally, some preliminary
results of analysis of contour crossings that occur in Contour-Advective Semi-Lagrangian
(CASL) simulations of single layer quasigeostrophic turbulence are presented. It is shown
that the error due to contour crossings is small in the simulations considered here.

1 Introduction

The Contour-Advective Semi-Lagrangian (CASL) algorithm is a powerful hybrid of contour
and grid based techniques for simulating the evolution of inviscid fluid flows. The CASL
technique was first described in Dritschel and Ambaum (1997) with an application to sim-
ulating quasigeostrophic fluid motion in a doubly periodic domain. The method has since
been further developed to be used for a broad range of applications including the simulation
of quasigeostrophic flows in a cylindrical domain (Macaskill et al., 2003), on the surface of a
sphere (Dritschel, 1999), and in a periodic channel (Benilov et al., 2004). A CASL method
now exists for the study of fluid motions governed by the shallow-water equations in Dritschel
et al. (1999) and has been used in the development of an explicit potential vorticity conserving
approach to modelling non-linear internal gravity waves in Viúdez and Dritschel (2002). The
efficiency of the CASL method is such that it allows much higher resolution simulations to be
performed than standard spectral or finite difference simulations of equivalent computational
cost. One of the exciting recent uses of the CASL method has allowed deeper insight into
some aspects of unforced two-dimensional turbulence, (Dritschel et al., 2008). In particu-
lar, the high resolution achievable by the CASL technique allows determination of the high
wavenumber behaviour of the enstrophy and energy spectra and the corresponding time decay
rates. Given the rapid development and uptake of the CASL algorithm it is important to
assess the accuracy of the technique. This paper details a systematic method for quantifying
a form of numerical error that occurs in CASL simulations, as well as simulations performed
by the related techniques of contour dynamics and contour advection with surgery. This error
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manifests itself in the form of contour crossings. To put this problem in context a brief sum-
mary of the development and features of contour dynamics, contour advection with surgery
and the CASL method is provided here.

Contour dynamics is used commonly in the simulation of inviscid vortex motion. The
method of contour dynamics is based on the earlier water-bag model for solving the Vlasov
equation that appears in plasma physics (Berk and Roberts, 1970). Contour dynamics was
initially presented in the context of simulating two-dimensional fluid motions governed by the
barotropic vorticity equation in a domain of infinite extent by Zabusky et al. (1979). Since
then it has been modified to deal with fluid motions in a number of different geometries and
flow regimes, including vortical motions on the surface of a sphere or a cylinder of infinite ex-
tent (Dritschel, 1989) and multilayer quasigeostrophic flows (Dritschel and Saravanan, 1994).
One of the appealing features of contour dynamics and related techniques is the ability to
resolve fine-scale features such as steep gradients in the vorticity or potential vorticity (PV)
field.

In contour dynamics the potential vorticity field of the flow is represented by a series of
contours. Associated with each contour is a jump in potential vorticity. Between contours the
potential vorticity is assumed to be uniform. The contours are represented by nodes, usually
most densely placed in regions of high local curvature, and by some interpolating function
between the nodes. Both the method of node distribution and the type of interpolating func-
tions used vary from author to author (Zabusky et al., 1979; Dritschel, 1988, 1989; Vosbeek
and Mattheij, 1997; Vera and Rebollo, 2001). The nodes on the contours are advected at
each time step according to the prevailing velocity field, which is calculated through the eval-
uation of contour integrals. For n nodes the computational cost of calculating the advecting
velocities is O(n2). As a flow evolves, and often becomes increasingly complex, it is necessary
to insert and redistribute nodes to adequately resolve the features of the flow.

There are two major drawbacks to the method of contour dynamics. The first is the
potentially rapid growth in the number of nodes needed to represent the contours. This
rapid node growth is often associated with the formation of long filamentary structures in the
potential vorticity field that are believed to contribute very little to overall flow dynamics. The
second drawback is the O(n2) dependence of the velocity field calculation which is required
every time step. In combination, the rapid growth in nodes and the cost of the velocity
calculation can cause calculations to grind to a virtual standstill.

Contour surgery (Dritschel, 1988, 1989) was introduced to treat the development of fine
scale structures, and thus help to reduce the growth in the number of nodes in a consistent
manner. This method effectively removes features in the potential vorticity field that form
below a predefined surgical scale, δ, which is chosen consistently with the node distribution
scheme as described in Dritschel (1988) and Dritschel (1989). Contour surgery deletes suitably
small contours, acts to shorten filaments that appear in the PV field and joins together
contours that bound equal levels of potential vorticity provided they are sufficiently close
to each other. Contour surgery is similar in some respects to the procedure of trimming
implemented in the water-bag method in Berk and Roberts (1970).

Moment accelerated contour surgery, as in Dritschel (1993), and the Hierarchical-Element
method of Vosbeek et al. (2000) are amongst a group of techniques developed with the intent
of increasing the speed of contour dynamical simulations by reducing the computational cost
of determining the velocity field. The last decade has also seen the introduction and continued
development of the Contour-Advective Semi-Lagrangian (CASL) algorithm of Dritschel and
Ambaum (1997) which has retained the advantageous features of both contour dynamics and
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contour surgery, whilst removing the O(n2) dependence of the velocity field calculation. The
CASL method was developed after the success of the diagnostic tool “contour advection with
surgery” (Waugh and Plumb, 1994), where a gridded known wind distribution is used to ad-
vect a set of material contours that are treated as passive tracers. As with contour dynamics,
the potential vorticity field is represented by a series of contours in the CASL method. The
velocity field, however, is not calculated by evaluation of contour integrals. Rather, for each
time step required for temporal integration, the potential vorticity field is transferred from
the contours on to a fine grid. The potential vorticity values at each grid point are then av-
eraged, perhaps several times, onto a coarser grid where the velocity is calculated using some
grid based method such as a finite difference scheme or fast Fourier transforms. The grid-
ded velocities are then interpolated back to the nodes on the contours, which are advected
according to an appropriate time integration scheme. The essential technical requirement
needed for such a method to work efficiently is a fast and accurate method for transferring
from the Lagrangian contoured representation of the potential vorticity field to the Eulerian
gridded representation of the same, and then the transfer of the velocities from the grid points
back to the nodal points of the contours. This issue was resolved in Dritschel and Ambaum
(1997) where an O(n) scheme for potential vorticity contour to grid conversion was described.
Bilinear interpolation is used to obtain nodal velocities from the gridded velocity field.

Contour crossings are a form of numerical error common to simulations performed by
contour dynamics, contour advection with surgery and the CASL algorithm. The severity
of contour crossings is dependent on the type of fluid motion simulated. They can range in
size and severity from tiny and simple, as illustrated in figure 1, to relatively large and quite
complex, as illustrated in figure 2. Although the problem of contour crossings has existed
since the original development of contour dynamics it is more important to study the problem
now. This is the case because the CASL algorithm is capable of performing long timescale
calculations whereas contour dynamics was developed to perform short timescale calculations.
Any cumulative numerical error is more likely to be significant in a CASL simulation.

The formation of contour crossings during contour advective simulations has been dis-
cussed in several articles (Dritschel, 1989; Waugh and Plumb, 1994; Vosbeek and Mattheij,
1997; Vera and Rebollo, 2001). In Dritschel (1989) inadequate resolution of contours in re-
gions where they closely approach other contours is identified as the principal cause of contour
crossings. To combat this, a method of node redistribution based on both the local curva-
ture of individual contours and a non-local measure of the curvature of other contours was
developed. The potential for contour crossings that occur with the close approach of individ-
ual contours is discussed again in Vosbeek and Mattheij (1997) where an explicit geometric
technique for preventing crossings is described. The technique involves placing nodes along
contours at points of close approach to other contours.

A different form of contour crossing is discussed in Waugh and Plumb (1994) where the
importance of periodically redistributing nodes along contours is emphasized. In the absence
of some form of node redistribution a contour that has developed increased complexity will
no longer be adequately resolved and can become horribly tangled, as illustrated in figure 11
of Waugh and Plumb (1994).

In Vera and Rebollo (2001) an explicit example of contour crossings between two vortices
is given. The time at which the crossing first occurs is referred to as the singular time. For
a small study which involved varying the total number of nodes, n, and the time step, ∆t, it
was shown that the singular time could be delayed by both increasing n and decreasing ∆t,
although the parameters were not varied independently. In Dritschel (1989) it is suggested
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Figure 1: Detail of three simple contour crossings that have occurred during the period of
peak complexity of quasigeostrophic turbulence in a cylindrical domain as simulated by the
CASL algorithm.
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Figure 2: Detail of contour crossings that occur during the late stages of evolution of the
motion of a vortex patch on the β-plane as simulated by the CASL algorithm. The contours
pictured represent part of the regular component of the flow, which are also referred to as
β-contours.

that reducing ∆t alone cannot prevent a contour crossing as the contours must also be suf-
ficiently resolved to deform correctly according to the prevailing velocity field. This appears
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to be true in general with CASL simulations as well. Provided that ∆t is sufficiently small,
based on considerations such as the rate of rotation of the vortices, it is the spatial resolution
of individual contours that determines if crossings occur. After the singular time Vera and
Rebollo (2001) treats the numerical solution obtained as incorrect. The view of the present
paper is slightly different. Although contour crossings are clearly undesirable, they represent
a form of numerical error resulting from the limitations of finite resolution. As is the case
with other forms of numerical error, a method for quantifying contour crossing errors should
be produced and in cases where the error is considered too severe steps should be made to
remedy the problem.

This paper is devoted to describing a method for quantifying numerical error due to
contour crossings that occur in CASL simulations of geophysical fluid dynamics. Section 2
describes an algorithm for explicitly quantifying numerical error due to contour crossings.
Section 3 follows with some initial analysis of contour crossing errors that occur in CASL
simulations of quasigeostrophic turbulence in a domain with a cylindrical boundary, antic-
ipating a more complete analysis in part 2 of this work. Concluding remarks are made in
section 4.

2 An Algorithm for the Quantification of Contour Crossing

Errors

Associated with the problem of contour crossings is the necessity to develop a method for
quantifying the numerical error due to such crossings. An obvious first step is to create a
technique for finding any crossings that occur during a contour advective simulation. One
measure for quantifying the error due to contour crossings would then be to count the number
of crossings. It turns out that in many cases the number of crossings by itself is not an
accurate reflection of the magnitude of crossing related errors. A simple example can be used
to illustrate this point. Consider two closed circular contours, initially separated by some
distance, that have crossed during the course of a vortex simulation. The crossing contours
will have two points of intersection, regardless of how far one contour has pushed through
the other, but the error will be more severe if the area of intersection of the two contours is
large. It turns out that the combination of the number of contour crossings with the area of
intersection of any crossing contours gives a good indication of the true magnitude of error.
If the areas in error become larger than the smallest scale being resolved in a particular
simulation then the error could have significance. Errors that appear at the grid scale of a
CASL simulation, which is usually ten times larger than the smallest resolved scales of the
contours, would be considered more severe and might influence the future behaviour of the
simulated flow.

This section is devoted to describing an algorithm for quantifying error due to contour
crossings that appear in contour advective simulations. This is the first time that an explicit
technique for analysing contour crossings has been proposed, developed and implemented.
The algorithm first determines any contour crossings through the explicit identification of
any points of intersection, as is described in section 2.1 below. Following the detection of
any crossings, the area of intersection of crossing contours is used to further quantify the
numerical error. A technique for determining the area of intersection of crossing contours is
discussed in section 2.2. In the case of nested contours, such as those used for the discrete
representation of continuous distributions of potential vorticity, the area of intersection often
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does not represent the actual area in error. Rather, it is the area of the protrusion made
by an inner contour through an outer contour that correctly quantifies the associated error.
Section 2.3 describes the necessary modifications to the technique of 2.2 to calculate areas of
extrusion of crossing contours instead of areas of intersection.

2.1 Identification of contour crossings

In the following sections a method for explicitly identifying contour crossings that occur
between an arbitrary number of contours is described. An early version of this algorithm
was described in Schaerf and Macaskill (2004) and so we only provide a summary of the final
version here.

For the purpose of renoding in the CASL method a contour is represented by a locally
defined cubic polynomial between each pair of nodes. Each cubic polynomial’s departure from
linearity is small because nodes are clustered in regions of high curvature.

To simplify the problem of detecting contour crossings the parts of contours between nodes
are treated as straight line segments; this is justified by the small departure from linearity
of the cubic splines. The problem then becomes one of finding the points of intersection
between an arbitrary number of simple polygons (closed contours), each comprised of an
arbitrary number of vertices (nodes) and edges (the interpolating functions between nodes).
The description of the algorithm that follows is limited to the analysis of a single layer two
dimensional flow, but it can be generalised to deal with multilayer flows by using the single
layer algorithm to analyse each layer in turn.

2.1.1 Overview of the algorithm to identify contour crossings

The algorithm developed here to identify contour crossings analyses data from a CASL
simulation at any given time step. For each time step, CASL output provides the number of
contours, the total number of nodes used to represent all the contours, the number of nodes
used to represent each individual contour and the (x, y) coordinates of the nodes. Once the
data has been stored in memory a relatively inexpensive preliminary calculation is performed
to determine the relative proximity of the contours to each other. The method presented in
this paper involves producing a digital representation of each contour and identifying contour
pairs that are close to each other based on their shape and the coordinates of their nodes. This
prelimnary calculation significantly reduces the computational cost of identifying any contour
crossings and is discussed in section 2.1.2. Contour pairs that are deemed to be close enough
to each other that there is a potential for crossing are then flagged for further testing. These
contours are divided up into segments that are single valued functions of x. The segments of
any one contour are then compared with those from nearby contours, checking for any points
of intersection as in section 2.1.4.

2.1.2 Preliminary calculations to determine the relative proximity of contour

pairs
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It is clearly inefficient to check every possible pairing of contours in detail for crossings.
For N contours there are a total of (N2 − N)/2 contour pairs. Rather, a quick test for the
relative proximity of contours to each other is used to avoid unnecessary detailed comparison
of contours that are sufficiently spatially separated.

The method involves the construction of a digital picture of each of the contours on an
ng × ng grid. From experience using a value for ng between about 200 and 300 works well,
and allows fairly accurate depiction of each contour without producing very large matrices.
The construction of the digital representation of each contour will be discussed in two parts.
The first part will deal with forming digital pictures for use in an algorithm that performs
pairwise comparison of contours. The second part will address issues with making a much
more efficient algorithm, particularly in terms of storage.

First we provide a description of an easily implemented method for checking the relative
proximity of contours. We then address the issues involved in making the method more
efficient in terms of storage, and thus more practical for analysing CASL data.

Digital matrix representations of each contour are produced and then stored in the three
dimensional array T , with elements trcj , for r = 1, . . . , ng, c = 1, . . . , ng, j = 1, . . . , N . Layer
j of T contains the digital representation of contour j. Initially, T is set to be the ng ×ng ×N
zero array.

The digital representations of each contour are produced as follows, with reference to
figure 3. The x and y coordinates of the nodes, (xi, yi), are scaled and shifted so that they lie
between 1 and ng. For contours from the standard CASL algorithm in a 2π doubly periodic
domain where −π ≤ x ≤ π, −π ≤ y ≤ π an appropriate scaling and shifting is

x̂i =
(xi + π)(ng − 1)

2π
+ 1, ŷi =

(yi + π)(ng − 1)

2π
+ 1,

where (x̂i, ŷi) are the coordinates of node i when shifted and scaled to the domain 1 ≤ x ≤ ng,
1 ≤ y ≤ ng. The nearest integers to both x̂i and ŷi are calculated and stored as x̄i and ȳi

respectively. For contour j, tȳix̄ij is set to 1. See figure 3, panels (a) to (d), to see the
transition from original contour to digital representation of the nodes.

To complete the representation of each contour the straight lines joining consecutive nodes
are represented by filling appropriate entries in the array T . The Bresenham line algorithm,
see Bresenham (1965) and Hoff (1995), is used to determine efficiently which are the appro-
priate array entries to fill, if any. In essence, the entries of T lying on the straight line segment
from tȳix̄ij to tȳ(i+1)x̄(i+1)j are set to 1, as illustrated in figure 3, panel (e).

Once all the digital representations of the contours are finalised, the relative proximity
of the contours is tested as follows. Consider any two layers of T ; each contains an ng × ng

matrix representation of a different contour. The two matrices are added together and the
result is searched for any entries with value 2, which would imply an overlap in the two
digital representations. A pair of contours, j′ and j′′, are explicitly tested for crossings using
the method to follow in section 2.1.4 if the matrix obtained by adding layers j′ and j′′ of T
contains any entries equal to 2. There are (N2 −N)/2 such matrix additions and subsequent
search operations to perform for N contours.

In practice, comparing digital representations of contours selects many fewer pairs of
contours for further scrutiny than the maximum number of pairings, (N2 − N)/2. One of
the advantages of the method is that it includes information about the general shape of
the contours. It is also quite efficient in comparison with other methods for checking the
relative proximity of contours. Figure 4 illustrates the average number of contour pairs
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Figure 3: Part of a contour is depicted in (a). Dots are used to represent the positions
of nodes. The coordinates of the nodes are scaled and shifted so that they lie between 1
and ng (here ng = 6) in both the x and y directions. The grid lines in (b) represent the
integer coordinates 1 to 6 in both the x and y directions. The nearest integers to the scaled
coordinates are taken, effectively moving the nodes to the nearest vertices of the grid, as
depicted in (c). Then the corresponding entries in T are set to 1, as in (d). Appropriate
intermediate entries are set to 1 with the aid of the Bresenham line algorithm in (e). Nodes
in (e) are represented by circled entries of 1. To aid with visual representation, the rows of
the matrices in (d) and (e) are drawn in ascending order from the bottom of the panels to
the top.

picked out for further analysis by the present method in comparison to a method developed
in Dritschel and Ambaum (1997) across twenty simulations of quasigeostrophic turbulence
in a cylindrical domain. The method of Dritschel and Ambaum (1997) appears on page
1105 of their publication and for our purposes we set δ = 0 in the inequalities at the top
of the page in their section 2 (f). Each vortex simulation started with twenty randomly
distributed circular vortices of equal radius, ten with potential vorticity 4π and the other ten
vortices with potential vorticity −4π. The duration of each simulation was 20 core rotation
periods. A good measure of the general efficacy of either method in reducing the number
of contour pairs that require further testing is the number of contour pairs selected as a
fraction of all possible contour pairing at each time step. Figure 5 provides a plot of the
mean fraction of contour pairs selected by each method across all 20 simulations. It is clear
from these figures that both methods are successful in substantially reducing the number of
contour pairs that are further tested, with the digital representation technique consistently
choosing fewer pairs. The drawback of the method of drawing digital pictures is that due
to finite resolution it is possible that a pair of contours that should be explicitly tested for
crossings may be missed. However, this rarely occurs and in circumstances where it does
any crossings missed from one time step of CASL data are usually detected in the next. By
contrast, Dritschel and Ambaum’s method is a robust approach and guarantees identification
of all potentially crossing contour pairs. Table 1 lists the maximum number of contours and
corresponding number of contour pairs in each simulation, along with the maximum number
of contour pairs selected by each technique. Computational timing tests have shown that the
calculations made by both the digital representation method and the method of Dritschel
and Ambaum (1997) are performed over roughly equal periods of time. In addition, both
preliminary calculation techniques take up a relatively small portion of an overall calculation
to identify contour crossings, with approximately 10% of the total CPU time spent on them.
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Figure 4: Average number of contour pairs selected by the method of Dritschel and Ambaum
(1997) (in black) and the present digital representation method (in magenta). Dashed red
and blue lines are plotted one standard deviation above and below each of these averages
respectively.

2.1.3 Improved efficiency of the digital representation method

The method of producing digital representations of each contour described in section 2.1.2
is more efficient than the method of Dritschel and Ambaum (1997) at reducing the number of
pairs of contours that undergo the final tests for crossings. The digital representation method
as described above is quite poor in terms of storage efficiency. To be able to use this method
for analysis of CASL output improvements need to be made.

Storage efficiency of the digital representation method may be improved in the following
manner. An ng × ng matrix, T̃ , with elements t̃rc is used to temporarily store the digital
representation of each contour. Prior to the construction of the picture of each contour, T̃
is set to be the ng × ng zero matrix. The columns and rows of all the entries of T̃ that are
set to 1 during the construction of a digital picture of a contour are recorded in the vectors
c and r respectively. Another vector, b, is used to record the indices of the entries in c and
r that correspond to the first point on each contour. Once the digital picture of a contour
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Figure 5: Mean fractional number of contour pairs selected by the method of Dritschel and
Ambaum (1997) (in red) and the digital representation method (in blue).

is complete, T̃ is added to S, an ng × ng matrix which is initially set to be a zero matrix
and is to hold the sum of all the digital representations of the contours. T̃ is then reset to
an ng × ng zero matrix before the construction of the next contour’s picture. After all the
contours have been treated in this way, S is searched for entries with value greater than 1. If
any such entries are found, c, r and b are used to determine which contours have part of their
digital representation at these grid points. All pairs of contours that are found to share grid
points in their digital form are then tested for crossings according to the method of section
2.1.4, which follows.

2.1.4 Points of intersection of two contours

The method used for determining if two contours cross is based on some elementary
analysis to determine if two functions intersect. Consider two continuous functions, f(x) and
g(x). If the two functions cross, then the sign of f(x)−g(x) must change. For the calculation
of f(x) − g(x) to make sense when performed by a numerical package both functions must
be known for the same set of x coordinates. There are two difficulties in implementing
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Simulation Maximum Maximum Digital Dritschel
Number Contours Pairs Rep. & Ambaum

1 452 101 926 244 3 953
2 540 145 530 273 3 343
3 419 87 571 218 2 969
4 402 80 601 179 3 207
5 399 79 401 227 2 789
6 335 55 945 150 2 087
7 430 92 235 230 2 678
8 385 73 920 182 2 692
9 403 81 003 211 2 399
10 442 97 461 214 3 116
11 403 81 003 182 2 911
12 339 57 291 206 1 988
13 442 97 461 238 3 948
14 442 97 461 205 2 491
15 498 123 753 230 2 837
16 501 125 250 256 3 733
17 531 140 715 305 3 404
18 449 100 576 187 2 752
19 427 90 951 269 2 676
20 331 54 615 146 2 100

Table 1: Comparison of maximum number of contour pairs over the length of each turbulence
simulation with the maximum number of contour pairs selected by the digital representation
method and the method of Dritschel and Ambaum (1997). The columns of the table are,
from left to right, the turbulence simulation number, maximum number of contours during
a simulation, the corresponding maximum number of contour pairs, the maximum number
of contour pairs selected by the digital representation method and the maximum number of
contour pairs selected by the method of Dritschel and Ambaum.

this approach. Firstly, in general the contours that are being tested for crossings are not
functions but rather are closed curves. The second problem is that there is no regularity in
the positioning of nodes in the x or y directions.

The first step is to split each contour, j, into sj segments that are functions of x, where
j = 1, 2. This is achieved by observing sign changes in the differences of the x coordinates of
consecutive nodes on each contour. Using xi to denote the x coordinate of node i on one of
the contours, a particular node i′ is identified as the last node of one segment and the first
node on the next segment if sgn(xi′+1 −xi′) 6= sgn(xi′ −xi′−1). Here i = 1, . . . , nj for contour
j, and xnj+1 = x1 since all contours are closed.

Segments of contour 1 are then compared to segments of contour 2 in the search for
potential crossings. Only pairs of segments for which the ranges of both x and y coordinates
intersect have the potential to cross. An s1 × s2 matrix M with elements mkl, k = 1, . . . , s1,
l = 1, . . . , s2, is used to record if such an intersection occurs. mk′l′ = 1 if the ranges of x and
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Figure 6: An illustration of two piecewise linear functions. To determine if the two functions
cross as described in section 2.1.4 the y coordinates for both functions must be calculated for
the same set of x coordinates. Identify the curve with the solid line as k′ and the curve with
the dashed line as l′. The original nodes on each curve are represented by filled black circles.
The set of nodes with x coordinates given by the ordered set Xk′ ∪ Xl′ is marked with open
circles on both curves.

y coordinates of segments k′ and l′ overlap, otherwise mk′l′ = 0.
For pairs of segments, k′ and l′, with mk′l′ = 1, the range of intersection in the x direction

is xleft ≤ x ≤ xright where xleft = max(xk′ min, xl′ min), xright = min(xk′ max, xl′ max), and
xk′ min, xl′ min, xk′ max, xl′ max are used to denote the minimum and maximum x values of each
segment. Linear interpolation is used to find the y coordinates of both segments k′ and l′ for
the ordered set Xk′ ∪ Xl′ where Xk′ is the set of x coordinates of the nodes belonging to k′

in the interval xleft ≤ x ≤ xright and Xl′ is the corresponding set of nodes belonging to l′.
Figure 6 illustrates a pair of contour segments where y coordinates corresponding to the set
of x coordinates Xk′ ∪ Xl′ have been calculated using linear interpolation.

Once the linear interpolation has been performed the y coordinates of both segments are
known for the same set of x coordinates in the interval xleft ≤ x ≤ xright. The analysis
described at the beginning of this section can then be used to determine if the two segments,
and hence their corresponding contours, cross. If the segments cross it is possible to determine
which nodes lie to either side of a crossing by locating the indices where there are sign changes
in f(x) − g(x). It is then possible to explicitly calculate the coordinates of all points of
intersection of the two contours, as described below.

2.2 Area of intersection

As noted before, the assumption is made here that although contours are locally defined
cubic polynomials between contiguous nodes, the departure from linearity of these cubic
splines is small. The shape of the contours as well as the area of intersection can thus be well
represented by simple polygons. The procedure to calculate the area in error of two crossing
contours, described below, works by identifying the polygon or polygons that bound the area
of intersection and then determining the area of these shapes.
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Figure 7: Illustration of notation used to represent the coordinates of the nodes to either side
of a point of intersection. Identifying contour j as the curve with the solid line and contour
j′ as the curve with the dashed line, the algorithm to detect contour crossings would return
n1 = [6], n2 = [5], n3 = [12] and n4 = [13] for the particular crossing illustrated.

2.2.1 An algorithm for calculating areas of intersection

The algorithm to detect contour crossings described in section 2.1 gives the following
output. First it identifies the indices of a pair of crossing contours, j and j′. The indices
of the nodes (and hence the coordinates of the nodes) immediately to the left and right of
the crossing point are also provided. The indices of the nodes to the left and the right of a
crossing point on contour j are stored in the vectors n1 and n2 respectively. The indices of
the nodes to the left and right of a crossing point on contour j′ are stored in the vectors n3

and n4 respectively. The entries in each of the vectors n1 to n4 are ordered so that element
k of each vector corresponds to the kth point of intersection of contours j and j′.

The points of intersection of contours j and j′ are calculated. With reference to figure
7, let (x1, y1) and (x2, y2) be the coordinates of the nodes immediately to the left and right
respectively of a crossing on contour j. Let (x′

1, y
′

1) and (x′

2, y
′

2) be the coordinates of the
nodes to the left and right of the same crossing on contour j′. The coordinates of the point
of intersection, (xk, yk), are then given by

xk =
b′ − b

m − m′
and yk =

mb′ − m′b

m − m′
.

where

m =
y2 − y1

x2 − x1

, b = y1 − mx1, m′ =
y′2 − y′1
x′

2 − x′

1

and b′ = y′1 − m′x′

1.

It is necessary to insert dummy nodes a small distance ε to either side of each crossing
on both contours to avoid some problems associated with calculating the area of overlap that
occur with specific types of crossings. The indices in n1, n2, n3 and n4 are adjusted to
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identify the newly inserted dummy nodes as the nodes that are immediately before and after
a crossing.

The polygon that bounds the area of intersection of contours j and j′ is made up of the
nodes on contour j that lie inside contour j′, the nodes on contour j′ that lie inside j and
the points of intersection of the two contours. To determine if a point (xi, yi) lies inside or
outside a contour, which is treated as a polygon, a horizontal line is drawn from (xi, yi) to
some point (xe, ye) which lies to the right of the maximum x coordinates of both j and j′.
If the horizontal line crosses a contour an odd number of times then (xi, yi) lies inside the
contour, an even number of crossings indicates that (xi, yi) lies outside the contour. The
number of crossings of the horizontal line is determined using the same algorithm that is used
to find contour crossings. Information about the nodes on one contour lying inside or outside
the other contour is stored in the vectors L1 and L2. If node i of contour j is inside contour
j′ then L1(i) = 1, otherwise L1(i) = 0. Similarly if node i of contour j′ lies inside contour j
then L2(i) = 1, otherwise L2(i) = 0. The notation a(i) is being used here to denote the ith
element of the vector a.

From the vectors L1 and L2 it is possible to identify “chains” of consecutive nodes that lie
inside either one of the contours. The polygon that bounds the area of intersection is made
by pasting these chains of nodes together at crossing points. The “head” of a chain of nodes
is identified as the node with the lowest index in a set of consecutive nodes that lie inside a
contour. The “tail” of a chain of nodes is identified as the node with the highest index in a
set of consecutive nodes that lie inside a contour. The indices of head and tail nodes on each
contour are identified by forming the differences L1(i + 1) − L1(i) for i = 1, . . . , nj − 1 and
L2(i + 1) − L2(i) for i = 1, . . . , nj′ − 1 where nj is the number of nodes on contour j and nj′

is the number of nodes on contour j′. If Lk(i + 1) − Lk(i) = 1 then node i + 1 is the head of
a chain of nodes, if Lk(i + 1)−Lk(i) = −1 then node i represents the tail of a chain of nodes
(this is true for either contour, hence the use of the subscript k). The indices of heads and
tails of node chains on contour j are stored in the vectors h1 and t1 respectively. Indices of
heads and tails on contour j′ are stored in h2 and t2. In general the index of the head of a
chain should be less than that of the tail, except in the case when a chain includes the last
and first listed nodes on a contour (contours are closed, so that node nj + 1 corresponds to
the first node on contour j for example).

The information in the vectors n1, n2, n3, n4, h1, t1, h2 and t2 is used to identify a
correct order for joining all the node chains together. The vital parts of this information are
stored in a matrix, A, that will be referred to as the connection matrix here. Initially the
connection matrix is set to be a nk × 4 matrix of zeroes where nk is the number of points of
intersection between contours j and j′. Non-zero entries in the connection matrix are filled
according to the following rules. The notation Anm is used to denote the entry in row n,
column m of the matrix A.

If n1(k) = h1(l) then Ak1 = 2l − 1
If n1(k) = t1(l) then Ak1 = 2l
If n2(k) = h1(l) then Ak2 = 2l − 1
If n2(k) = t1(l) then Ak2 = 2l
If n3(k) = h2(l) then Ak3 = 2l − 1
If n3(k) = t2(l) then Ak3 = 2l
If n4(k) = h2(l) then Ak4 = 2l − 1
If n4(k) = t2(l) then Ak4 = 2l

(1)
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Columns 1 and 2 of the connection matrix contain information about contour j, columns 3
and 4 contain information about contour j′. Element k of ni corresponds to the kth point of
intersection of contours j and j′.

A polygon that bounds an area of intersection should be made up of an even number of
node chains and intersection points. An equal number of node chains should come from each
contour, and the node chains should be joined together at intersection points such that a
chain from contour j should be followed immediately by a chain from contour j′ and a chain
from contour j′ should be followed by a chain from contour j. If a pair of contours cross at
two points, for example, then the polygon that bounds the area of intersection will be made
up of two points of intersection and two chains of nodes, one from contour j and the other
from contour j′.

The connection matrix is used to determine the order in which the various chains of nodes
are put together and whether each chain should be connected in ascending or descending
nodal order. Even numbers in the connection matrix correspond to the tails of node chains,
odd numbers correspond to the heads of node chains. An important point to note is that
it is often the case that a pair of crossing contours, j and j′, intersect in several places and
that the area of intersection of the two contours is made up of more than just one polygon,
as illustrated in figure 8. This is taken into account in the following algorithm presented as
pseudocode for traversing the connection matrix. As the matrix is traversed the x and y
coordinates of each polygon that bounds the area of intersection are stored in the vectors px

and py respectively.

Initialisation

Initialise a vector v with nk elements as a zero vector.

Start with row 1 of the connection matrix, this corresponds to the first recorded point of intersection of j and
j′. Store the (x, y) coordinates of the first listed crossing in px and py. Record that row 1 of A has been
visited by setting v(1) = 1 and that the starting row, sr = 1.

Search columns 1 and 2, row 1 of A for a non-zero entry, m.

(∗)
if m is even (if m mod 2 = 0)

Store the coordinates of chain m/2 of contour j in px and py in
descending order.

Search columns 1 and 2 of A for m − 1. Denote the row that
contains m − 1 as n.

else if m is odd (if m mod 2 = 1)

Store the coordinates of chain (m + 1)/2 of contour j in px

and py in ascending order.

Search columns 1 and 2 of A for m + 1. Denote the row
that contains m + 1 as n.

end if
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Insert the coordinates of crossing n in px and py.

Set v(n) = 1, indicating that row n has been visited.

Search columns 3 and 4, row n of A for a non-zero entry, m′.

if m′ is even (if m′ mod 2 = 0)

Store the coordinates of chain m′/2 of contour j′ in px

and py in descending order.

Search columns 3 and 4 of A for m′
− 1. Denote the row that

contains m′
− 1 as n′.

else if m′ is odd (if m′ mod 2 = 1)

Store the coordinates of chain (m′ + 1)/2 of contour j′ in
px and py in ascending order.

Search columns 3 and 4 of A for m′ + 1. Denote the row that
contains m′ + 1 as n′.

end if

Insert the coordinates of crossing n′ in px and py.

Set v(n′) = 1, indicating that row n′ has been visited.

if n′ = sr (the algorithm has returned to the starting row)

A closed polygon has been formed. The area of the polygon
is then calculated and recorded.

if all the entries of v equal 1

All the rows of A have been visited, and
the algorithm terminates.

else

Find the index, n′′, of the first zero entry of v,
corresponding to an unvisited row of the matrix A.
A new polygon is to be constructed.

Set sr = n′′.

Insert the coordinates of crossing n′′ in px and py.

Search columns 1 and 2, row n′′ of A for a non-zero
entry, m, then return to (∗).

end
else

Search columns 1 and 2, row n′ of A for a non-zero
entry m, then return to (∗).
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Figure 8: An example of crossing contours where the area of intersection of the two contours is
made up of two polygons. Contour j is represented by the solid line. Contour j′ is represented
by the dashed line.

end if

Using pi
x to denote the ith element of px and pi

y to denote the ith element of py, the area
of each polygon that describes an area of intersection, PA, is given by

PA =

∣

∣

∣

∣

∣

−
1

2

np
∑

i=1

(

pi+1
x − pi

x

) (

pi+1
y + pi

y + 2c
)

∣

∣

∣

∣

∣

(2)

where np is the number of vertices of the polygon and c is a constant chosen such that pi
y+c ≥ 0

for i = 1, . . . , np. It is assumed that node indices increase as the polygon is traversed in the
anticlockwise direction, however it is possible that polygons with node indices increasing in
the clockwise direction will be identified using the above algorithm so the absolute value of
the area is calculated.

The following example shows how the algorithm described in this section is utilised to
find the area of intersection of the contours illustrated in figure 8. Identify contour j as the
contour with the solid line and contour j′ as the contour with the dashed line. There are four
points of intersection between the two contours and the area of intersection is made up of two
polygons.

The algorithm that identifies contour crossings stores the node indices to the left and right
of the points of intersection on contour j in n1 and n2 respectively. The corresponding node
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indices for contour j′ are stored in n3 and n4, so that

n1 =









7
9
14
16









, n2 =









8
10
15
17









, n3 =









10
5
27
25









, and n4 =









9
4
28
24









and the coordinates of each point of intersection are calculated. Whether a node lies to the
left or right of a crossing is determined by examining its x coordinate.

The heads and tails of chains of nodes of contour j that lie inside contour j′ and the heads
and tails of chains of nodes of j′ that lie inside j are stored in h1, t1, h2 and t2 respectively.
They are

h1 =

[

8
15

]

, t1 =

[

9
16

]

, h2 =

[

5
25

]

, t2 =

[

9
27

]

Chain 1 of contour j is comprised of nodes 8 and 9, chain 2 of j is made up of nodes 15 and
16. Chain 1 of contour j′ extends from node 5 to node 9, chain 2 of j′ is made up of the nodes
from 25 to 27.

Using (1), the connection matrix A is

A =









0 1 0 2
2 0 1 0
4 0 3 0
0 3 4 0









Polygons are then constructed by traversing the connection matrix.
The x and y coordinates of the first listed crossing are stored in px and py. v(1) is set

to 1, indicating that row 1 has been visited and sr = 1, indicating that the starting row is
row 1. Columns 1 and 2 of row 1 are searched for a non-zero entry, in this case A12 = 1,
corresponding to the head of chain 1 of contour j. Chain 1 of contour j is inserted in px and
py with nodes in ascending order. Columns 1 and 2 of A are searched for the entry 2 which
corresponds to the tail of chain 1 of j. A21 = 2, so the second listed crossing is inserted in px

and py. v(2) is set to 1, indicating that row 2 has been visited. Columns 3 and 4, row 2 are
searched for a non-zero entry. A23 = 1, corresponding to the head of chain 1 of contour j′.
Chain 1 of j′ is inserted in px and py with nodes in ascending order. Columns 3 and 4 are
searched for the entry 2, corresponding to the tail of chain 1 of j′. A14 = 2. The coordinates
of crossing 1 are inserted in px and py. The current row, row 1, is the same as the starting
row, sr = 1, indicating that a closed polygon has been formed. The area of this polygon is
calculated according to equation (2).

Currently,

v =









1
1
0
0









indicating that rows 1 and 2 of the connection matrix have been visited, but that rows 3 and
4 have not.

Row 3 is selected as the new starting row with, sr = 3, and v(3) is set to 1. A new
polygon is started with the coordinates of the third listed crossing point inserted as the first

18



point in px and py. Columns 1 and 2, row 3, are searched for a non-zero entry and in this
case A32 = 3 which corresponds to the head of chain 2 of j. The nodes of chain 2 of j are
inserted in px and py in ascending order. The algorithm continues with the remaining parts
of the second polygon made up of crossing 4, the nodes of chain 2 of j′ in ascending order,
then crossing 3 again. The area of the second closed polygon is calculated. As all the rows of
A have been visited,

v =









1
1
1
1









and the algorithm terminates.

2.3 Area of intrusion or extrusion

The algorithm described in section 2.2 deals specifically with the case where two contours are
crossing and the area in error is the area of intersection of the two contours. In other words
the area of intrusion of one contour into the area bounded by another contour is the area in
error. In more general cases the area in error when two contours cross is not necessarily the
area of intersection, but could be the area of the region where one contour protrudes through
another. This is the case in particular when dealing with nested contours, such as those used
to give a discrete representation of parabolic or Gaussian distributions of potential vorticity.
Consider for example the pair of crossing contours illustrated in figure 9. Identify contour j
as the contour with the solid line and contour j′ as the contour marked with a dashed line.
Assuming that contour j′ was initially entirely inside contour j the area in error is the solid
shaded region in the diagram. The polygon that bounds this area in error is comprised of the
two points of intersection of the contours, the nodes of contour j that lie inside contour j′

and the nodes of contour j′ that lie outside contour j. In general, when calculating an area
of extrusion node chains belonging to one of the contours (in this example, contour j′) are
made up of nodes that lie outside the other contour (contour j).

In practice it is not easy to determine whether the solid shaded region or the crosshatched
region depicted in figure 9 represent the true area in error. To deal with this problem the
area of both the shaded polygons depicted is calculated, it is then assumed that the smaller
of the two areas calculated corresponds to the correct area in error. As described in section
2.2, it is possible that the area in error for a pair of crossing contours will be comprised of
multiple polygons. When this is the case and the area in error is an area of extrusion more
care needs to be taken in determining which is most likely to be the region in error. First the
sum of the areas of the polygons comprised of nodes from contour j that lie inside j′ and the
nodes from j′ that lie outside j, denoted by A1, is calculated. The sum of the areas of the
polygons made up of nodes from j that lie outside j′ and the nodes from j′ that lie inside j,
A2, is also calculated. The area in error is most likely to be the minimum of A1 and A2, and
is described by the polygons that bound the minimum total area.

3 Some Results - Analysis of CASL Data

In figures 10 and 11 we present some preliminary results of analysis of contour crossings that
occur in two CASL simulations of quasigeostrophic turbulence in a single layer fluid of finite
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Figure 9: A pair of crossing contours used to illustrate the process of calculating the area of
extrusion of contour j′, represented by the dashed line, through contour j, represented by the
solid line. For the purpose of this example it has been assumed that contour j′ lay entirely
inside contour j initially. The area in error is the solid shaded region.

depth in a cylindrical domain. For the two cases analysed here turbulence was simulated
by observing the motion of twenty vortices initially randomly distributed throughout the
cylindrical domain. Ten of the vortices were cyclonic with corresponding potential vorticity
4π, the other ten were anticyclonic with potential vorticity −4π. The vortices were initially
circular, all with radii of approximately 0.1118 units so that initially they covered 25% of
the domain. The vortices were also initially distributed so that the minimum separation of
vortex centres was twice the vortex radius. In addition, the vortices were positioned randomly
subject to the condition that the initial radial angular momentum profile be zero throughout
the domain. Time stepping was performed by the CASL algorithm’s 4th order Runge-Kutta
time integration scheme with time step ∆t = 0.01, which corresponds to 1/100th of a core
rotation period for the vortices. Each simulation was run for a period of twenty core rotations,
with contour information output every fifth timestep, or every 1/20th of a core rotation period.

Determination of the velocity field was performed on a grid of points equally spaced in
the radial and azimuthal directions. In the radial direction nr = 64 grid points were used
and nθ = 128 grid points were used in the azimuthal direction. Potential vorticity contour to
grid conversion was performed on a grid twice as fine in both radial and azimuthal directions.
The large scale characteristic length scale of the flow, L, was chosen to be the initial diameter
of each of the vortices, that is L = 0.2236. The dimensionless node separation parameter, µ,
was chosen so that the surgical scale, δ, was one eighth of the radial inversion grid spacing. δ
is related to µ and L through the equation δ = 1

4
µ2L. This leads to µ = 0.132714.

The quantities illustrated in panels (a) to (h) of figures 10 and 11 are as follows: (a) the
total number of contours, (b) the total number of nodes, (c) the total are bounded by the
contours, (d) the number of intersecting line segments detected, (e) the number of polygons
that describe the area in error, (f) the mean area of the polygons that describe the area in
error, (g) the total area in error and (h) the total area in error as a fraction of the total area
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Figure 10: Crossing analysis results for a CASL simulation of single layer quasigeostrophic
turbulence in a cylindrical domain.

bounded by the contours, all as a function of time. The areas in error for the turbulence
simulations calculated here are treated as an area of intersection or extrusion according to
the following rules that have been determined based on the initial orientation of the contours
and the potential effects of contour surgery. If a pair of crossing contours are oriented in
the same sense, either clockwise or anticlockwise, then the area of intersection is treated as
the area in error. If the crossing contours are oriented in opposite senses then the smallest
area of extrusion, as discussed in section 2.3, is treated as the area in error. A more detailed
discussion of the choice of the correct area in error is provided in Schaerf (2006) on pages 89
to 96.

The preliminary results presented in figures 10 and 11 show that the number of crossings
and the total area in error grow during the earlier stages of the simulations, roughly following
the growth in the number of nodes and hence the general complexity of the flow. Thereafter
the number of crossings decreases, due in large part to the action of contour surgery in
removing very small scale features from the simulation. For the simulations considered here
the area in error due to contour crossings is small, both in absolute terms and in relative terms
where the error is at most approximately 1/1000 of the total area bounded by the contours.
Visual inspection of the crossing contours has been used to verify that the results presented
here are accurate.
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Figure 11: Crossing analysis results for a second CASL simulation of single layer quasi-
geostrophic turbulence in a cylindrical domain.

4 Conclusions

Here we have presented a general algorithm to quantify contour crossing errors that appear
in various contour-advective simulations. The algorithm works in several stages. The first
step is to perform a simple pairwise comparison of all contours to determine their relative
proximity to each other. This comparison is achieved by producing digital representations of
each contour, a method that has proven to be efficient compared to the method of Dritschel
and Ambaum (1997). Contour pairs identified as being close to each other by the digital
representation method are then closely scrutinised for contour crossings. Some elementary
analysis of functions is used to identify any points of intersection and the nodes that lie to
either side of a crossing point. The information relating to any points of intersection is then
used to help identify polygons that closely approximate the area in error.

Some preliminary results have shown that the contour crossing errors that occur in CASL
simulations of single layer quasigeostrophic turbulence in a cylindrical domain are small.
However, this is not always the case. Further study has shown that depending on the flow
being simulated the error due to contour crossings can be quite significant. This is particularly
the case when simulating a flow that has many different layers of potential vorticity. Part 2 of
this study provides an in depth analysis of the nature of contour crossing that occur in single
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layer quasigeostrophic turbulence simulations and in simulations of vortex motion on the β-
plane. The effects of varying the spatial resolution of CASL simulations on contour crossings
are discussed as are two methods for preventing the onset and growth of such crossings.
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