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Abstract. We prove that the second eigenvalue of the Laplacian
with Robin boundary conditions is minimised amongst all bounded
Lipschitz domains of fixed volume by the domain consisting of the
disjoint union of two balls of equal volume.

1. Introduction

Let Ω ⊂ R
N be a bounded Lipschitz domain (not necessarily con-

nected) and consider the eigenvalue problem for the Laplacian with
Robin boundary condition

−∆u = λu in Ω,

∂u

∂ν
+ βu = 0 on ∂Ω,

(1)

where β > 0 is a constant and ν is the outer unit normal to Ω. This
problem is often referred to as that of the elastically supported mem-
brane. It is well known that, as in the case of Dirichlet boundary
conditions, the associated operator on L2(Ω) has compact resolvent,
with the eigenvalues forming a sequence 0 < λ1 ≤ λ2 ≤ λ3 ≤ . . ..

It has been shown in [1, 5] that the first eigenvalue λ1 = λ1(Ω) sat-
isfies the isoperimetric, or Faber-Krahn, inequality λ1(Ω) ≥ λ1(B),
where B is a ball having the same volume as Ω. The goal of this short
paper is to prove a similar inequality for λ2(Ω).

Theorem 1. The second eigenvalue λ2(Ω) of (1) on a bounded Lips-

chitz domain Ω ⊂ R
N satisfies λ2(Ω) ≥ λ2(D), where D is a domain

of the same volume as Ω consisting of the disjoint union of two balls of

equal volume.
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We defer the proof of Theorem 1 to Section 3 and first discuss some
background issues and consequences.

Acknowledgements. The author would like to thank his thesis su-
pervisor, Daniel Daners, for helpful discussions and advice.

2. Observations and Remarks

We first wish to consider the Laplacian with Dirichlet boundary con-
ditions. Not only is the minimising domain D the same for both Dirich-
let and Robin boundary conditions, but our proof uses ideas from the
Dirichlet case. For this reason we will give a brief sketch of the proof
of the latter here. A more complete proof, together with further refer-
ences, can be found in [10, Sec. 4].

Let ϕ denote an eigenfunction of the second Dirichlet eigenvalue,
which we will call µ2(Ω). The idea is to consider the nodal domains
Ω+ := {x ∈ Ω : ϕ(x) > 0} and Ω− := {x ∈ Ω : ϕ(x) < 0}. Then ϕ is
an eigenfunction of the Dirichlet Laplacian that does not change sign
in Ω+, so that µ2(Ω) = µ1(Ω

+) (µ1 being the first Dirichlet eigenvalue).
Denoting by B+ a ball of the same volume as Ω+, by the usual Faber-
Krahn inequality, µ1(Ω

+) ≥ µ1(B
+), that is, µ2(Ω) ≥ µ1(B

+). Simi-
larly, if B− is a ball of the same volume as Ω−, then µ2(Ω) ≥ µ1(B

−).
Hence µ2(Ω) ≥ max{µ1(B

+), µ1(B
−)}. The latter is minimised if

B+ = B− =: B has half the volume of Ω. But D (defined in Theorem
1) can be written as the disjoint union of two copies of B, so that
µ2(D) = µ1(D) = µ1(B) ≤ µ2(Ω).

We would like to use a similar idea in the Robin case. Denoting
an eigenfunction of λ2(Ω) by ψ, we wish to describe λ2(Ω) as the first
eigenvalue of a problem on Ω+ (and Ω−) with mixed Robin-Dirichlet
boundary conditions ∂ψ

∂ν
+ βψ = 0 on ∂Ω+ ∩ ∂Ω and ψ = 0 on ∂Ω+ ∩

Ω. This is greater than the first eigenvalue λ1(Ω
+) of the pure Robin

problem on Ω+. By the Faber-Krahn inequality for Robin problems
[1, 5], λ1(Ω

+) ≥ λ1(B
+), and we proceed as before.

However, there is a major complication. We cannot directly apply
the inequality from [1, 5] to Ω+, Ω− since that result is only valid for
Lipschitz domains and in general Ω+, Ω− may not be this smooth. The
problem is twofold.

First, we have no control over the behaviour of ∂Ω+, ∂Ω− near where
the nodal surface {x ∈ Ω : ψ(x) = 0} meets ∂Ω. At such points x,
supposing the boundary condition holds pointwise we have ∂ψ

∂ν
(x) = 0.

This is in general consistent with the possibility that ∇ψ(x) = 0.
Second, even though the eigenfunction ψ will be C∞ in Ω, this is

not enough to guarantee that the nodal surface is a smooth manifold
in the interior. Sard’s Lemma (see [11, Ch. 3, Theorem 1.3]) does not
suffice, since 0 may be in the null set of non-regular values of ψ.
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We overcome these problems by constructing suitable approxima-
tions to the nodal domains. Note that we do not use Sard’s Lemma or
even the Courant-Hilbert Theorem [3, Ch. VI, Sec. 6].

Remark 2. (i) We emphasize that we do not require our domains to
be connected. Although connectedness of Ω was implicitly assumed in
the proof sketched above, and is explicitly assumed in Section 3, there
is a standard and easy way to remove this assumption. Suppose that
Theorem 1 holds for connected domains and that Ω is not connected.
Then either λ2(Ω) = λ2(Ω0) for some connected component Ω0 of Ω
or there exist disjoint connected components Ω1, Ω2 of Ω such that
λ1(Ω) = λ1(Ω1), λ2(Ω) = λ1(Ω2). In the former case Theorem 1 applied
to Ω0, together with the monotonicity of λ1(D) = λ2(D) with respect
to the volume of D, yield the result. In the latter case, we use a similar
argument as in the proof that µ2(Ω) ≥ µ2(D), with Ω1 in place of Ω+

and Ω2 in place of Ω−, to deduce λ1(Ω2) ≥ λ2(D). This argument
works equally well for Dirichlet and Robin boundary conditions.
(ii) We might ask if there is a minimiser of λ2 amongst all connected

domains. In the Dirichlet case there is none: we can find a sequence of
connected domains Ωn with µ2(Ωn)→ µ2(D), with D being the unique
(overall) minimiser of µ2 (see [10, Sec. 4]). A similar construction
works in the Robin case (see Example 3), but we cannot yet finish the
argument as we do not yet know if D is the unique minimiser of λ2 (see
Remark 4).

Example 3. We construct a sequence of connected domains Ωn of fixed
volume such that λ2(Ωn) → λ2(D) (see Figure 1). Our domains are
almost identical to the “dumbbells” used in [10]. Start with D =
B1 ∪ B2 and join B1 to B2 with a cylinder Cn of total volume 1

n
.

To keep the volume of Ωn constant, remove part of B1 and B2 in a
small neighbourhood Un near where they meet Cn (as in Figure 1) in
such a way that the resulting boundary is still smooth. It now follows
from [4, Corollary 3.7] that λ2(Ωn)→ λ2(D), since the Un can be chosen
in such a way that Assumption 3.2 of [4] is satisfied.

CnB1

B2

Figure 1. The domain Ωn

Remark 4. We leave as an open problem the sharpness of the inequal-
ity. That is, is the domain D the unique minimiser of λ2? It is for
the Dirichlet Laplacian, at least up to sets of capacity zero and rigid
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transformations such as translations and rotations. Moreover, the in-
equality for the first eigenvalue of the Robin problem (1) is sharp, at
least for C2 domains (see [7, Theorem 1.1]). Our method is unlikely to
yield a sharpness result as it uses approximation arguments.

3. Proof of Theorem 1

First we fix our notation. Let Ω ⊂ R
N be a bounded Lipschitz

domain. As noted in Remark 2(i) we may assume without loss of gen-
erality that Ω is connected. Its second eigenvalue λ2(Ω) has an eigen-
function ψ ∈ H1(Ω) ∩ C(Ω) ∩ C∞(Ω) (interior regularity is standard
and continuity up to the boundary comes from combining [6, Corol-
lary 5.5] with [12, Corollary 2.9]). Since Ω is connected, ψ changes
sign in Ω, so that the open subsets Ω+ = {x ∈ Ω : ψ(x) > 0}
and Ω− = {x ∈ Ω : ψ(x) < 0} are both nonempty. Set ψ+ :=
max{ψ, 0}, ψ− := max{−ψ, 0}. Then ψ+, ψ− ∈ H1(Ω) ∩ C(Ω) and
∇ψ+ 6= 0 only on Ω+, with a similar statement for ∇ψ− (see [9,
Lemma 7.6]). Henceforth λ1(V ) will denote the first eigenvalue of the
Robin problem (1) on the domain V . We will denote N -dimensional
Lebesgue measure by | . | and N − 1-dimensional surface (Hausdorff)
measure by σ.

Let B+, B− be balls having the same volume as Ω+, Ω− respectively.
As sketched at the beginning of Section 2, to prove Theorem 1 it suffices
to show λ2(Ω) ≥ max{λ1(B

+), λ1(B
−)}. Without loss of generality we

only consider Ω+ and prove λ2(Ω) ≥ λ1(B
+).

The key idea is to attach a thin strip near ∂Ω to Ω+ to avoid any
problems when {x ∈ Ω : ψ(x) = 0} meets ∂Ω. Fix ε > 0 and set
Sε := {x ∈ Ω : dist(x, ∂Ω) < δ}, where δ = δ(ε) > 0 is chosen such
that |Sε| < ε. Set Uε := Ω+ ∪ Sε. Then ∂Ω ⊂ ∂Uε. Denote the rest of
∂Uε by Γε. Then Γε is compactly contained in Ω, with dist(∂Ω,Γε) ≥ δ.
Moreover, |Uε \ Ω+| ≤ |Sε| < ε. Note however that Γε may not be
Lipschitz.

We consider the mixed problem on Uε

−∆u = λu in Uε,

∂u

∂ν
+ βu = 0 on ∂Ω,

u = 0 on Γε.

(2)

Denote by HUε
the space of weak solutions to (2). Then HUε

is given
by the closure in H1(Uε) (equivalently, in H1(Ω)) of C∞

c (Uε ∪ ∂Ω),
the space of all C∞(Ω) functions with support compactly contained in
Uε ∪ ∂Ω. (Any element of HUε

may be considered an element of H1(Ω)
by extending it by zero outside Uε.) The problem (2) then has a first
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eigenvalue, call it Λ1(Uε), given by the variational formula

Λ1(Uε) = inf
ϕ∈HUε

Q(ϕ, Uε) := inf
ϕ∈HUε

∫
Uε
|∇ϕ|2 dx+

∫
∂Ω
βϕ2 dσ∫

Uε
ϕ2 dx

. (3)

In fact for arbitrary open V ⊂ Ω with ∂Ω ⊂ ∂V and dist(∂Ω, ∂V \
∂Ω) > 0, we may consider the problem (2) on V , with Λ1(V ) and
HV given by the obvious analogues of Λ1(Uε) and HUε

. We denote
by Q(ϕ, V ) the Rayleigh quotient of (3) on V , for a given function
ϕ ∈ HV . Then we have the following important estimate for λ2(Ω).

Lemma 5. For any ε > 0, λ2(Ω) ≥ Λ1(Uε).

The proof of Lemma 5 is based on the following characterisation of
λ2(Ω), combined with (3).

Lemma 6. For any ε > 0, we have

λ2(Ω) =

∫
Uε
|∇ψ+|2 dx+

∫
∂Ω
β(ψ+)2 dσ∫

Uε
(ψ+)2 dx

. (4)

Proof. λ2(Ω) satisfies∫
Ω

∇ψ · ∇ϕdx+

∫
∂Ω

βψϕ dσ = λ2(Ω)

∫
Ω

ψϕdx

for all ϕ ∈ H1(Ω). Choosing ψ+ ∈ H1(Ω)∩C(Ω) as a test function, we
have ∇ψ · ∇ψ+ = |∇ψ+|2 in Ω (see for example [9, Lemma 7.6]) and
ψψ+ = (ψ+)2 pointwise in Ω. Since ‖ψ+‖2 6= 0,

λ2(Ω) =

∫
Ω
|∇ψ+|2 dx+

∫
∂Ω
β(ψ+)2 dσ∫

Ω
(ψ+)2 dx

.

But the integrands in the volume integrals are nonzero only if x ∈
Ω+ ⊂ Uε. Hence (4) follows. �

Proof of Lemma 5. By Lemma 6 and (3), we only have to prove that
ψ+ ∈ HUε

. Since HUε
is closed in the H1 norm, it suffices to prove that

there exist un ∈ HUε
such that un → ψ+ in H1(Uε).

Noting that ψ+ ∈ H1(Uε) ∩ C(U ε) and ψ+ = 0 on Γε, our claim
follows from a trivial modification of the proof of [2, Théorème IX.17]
(see also Remarque 20 there). The only difference is that the approx-
imating functions un there will have support compactly contained in
Uε∪∂Ω rather than Uε (so that our limit function will lie in HUε

rather
than H1

0(Uε)). �

Next, since Γε may not be smooth, we approximate Uε by a suitable
sequence of smooth domains Un ⊂ Uε such that Λ1(Un)→ Λ1(Uε).

Lemma 7. There exists a sequence of Lipschitz domains Un ⊂ Uε such

that ∂Ω ⊂ ∂Un and dist(∂Ω, ∂Un \∂Ω) > 0 for all n, |Uε \Un| → 0 and

Λ1(Un)→ Λ1(Uε) as n→∞.
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Proof. The existence of the Un converging in volume is a standard
result (see for example [8, Ch. V, Theorem 4.20]); note that since ∂Ω
and Γε are separated, this is equivalent to having a sequence of the
form R

N \ (Ω \ Un) converge to R
N \ (Ω \ Uε). Moreover, the Un can

be chosen such that {x ∈ Uε : dist(x,Γε) >
1

n
} ⊂ Un.

Comparing the characterisation (3) for Un and Uε, and since HUn
⊂

HUε
, we have Λ1(Un) ≥ Λ1(Uε). So we only have to prove that

lim sup
n→∞

Λ1(Un) ≤ Λ1(Uε).

Fix δ > 0 and choose ϕ ∈ HUε
such that the Rayleigh quotient

Q(ϕ, Uε) < Λ1(Uε) + δ. By density, we may assume ϕ ∈ C∞

c (Uε ∪ ∂Ω).
Then suppϕ and Γε are compact and dist(suppϕ,Γε) > 0. In par-

ticular, dist(suppϕ,Γε) >
1

n
for all n ∈ N large enough. By choice of

the Un it follows that suppϕ is compactly contained in Un ∪ ∂Ω for n
large enough.

In particular, ϕ ∈ C∞

c (Un ∪ ∂Ω), whence Q(ϕ, Uε) = Q(ϕ, Un) ≥
Λ1(Un), for all n large enough (where we have used ∂Ω ⊂ ∂Un to get
Q(ϕ, Uε) = Q(ϕ, Un)). That is, for any δ > 0, Λ1(Un) < Λ1(Uε) + δ for
all n large enough. �

Choose a sequence of Un as in Lemma 7 and consider the Robin
problem (1) on Un. Since ∂Un is Lipschitz for each n, we may use the
Faber-Krahn inequality for Robin problems and then pass to the limit.
So let Bn be a ball of the same volume as Un. Then λ1(Un) ≥ λ1(Bn)
for all n, by [5, Theorem 1.1]. Moreover, by a direct comparison of
variational formulae and since HUn

⊂ H1(Un), Λ1(Un) ≥ λ1(Un).
Now let Bε be a ball having the same volume as Uε. As n→∞ and

|Un| → |Uε|, we have |Bn| → |Bε|. Since the first eigenvalue of (1) on
the ball depends continuously on the size of the ball, λ1(Bn)→ λ1(Bε).
By Lemma 7, Λ1(Un)→ Λ1(Uε). Putting this all together we have

Λ1(Uε)← Λ1(Un) ≥ λ1(Un) ≥ λ1(Bn)→ λ1(Bε),

that is, Λ1(Uε) ≥ λ1(Bε).
Finally, let ε → 0. Since |Uε| → |Ω

+|, we have |Bε| → |B
+| and so

λ1(Bε) → λ1(B
+). Also, since λ2(Ω) ≥ Λ1(Uε) by Lemma 5, we con-

clude λ2(Ω) ≥ λ1(B
+). In light of our earlier comments, this completes

the proof of Theorem 1.
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