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Abstract. This paper considers reaction diffusion equations from a new point

of view, by including spatiotemporal dependence in the source terms. We show
for the first time that solutions are given in terms of the classical Painlevé tran-

scendents. We consider reaction diffusion equations with cubic and quadratic

source terms. A new feature of our analysis is that the coefficient functions
are also solutions of differential equations, including the Painlevé equations.

Special cases arise with elliptic functions as solutions. Additional solutions

given in terms of equations that do not have the Painlevé property are also
considered. Solutions are constructed using a Lie symmetry approach.

1. Introduction

This paper presents solutions to the following two reaction diffusion equations

(1.1) ut = uxx + q0(x, t)u− u2,

(1.2) ut = uxx + q1(x, t)u + q2(x, t)u2 − u3.

The coefficient functions qi(x, t), i = 0, 1, 2, are not specified explicitly at the out-
set, but are chosen to satisfy particular equations which enable exact solution of
equations (1.1) and (1.2). To the authors’ knowledge solutions of reaction diffusion
equations of this form have not been previously studied. The motivating equations
for the current work are the standard reaction diffusion equations with quadratic
and cubic source terms. These equations are ubiquitous in biological and physical
systems (see [5, 8, 9]) and take the following form: Fisher’s equation

ut = uxx + u(1− u),

and, the Nagumo and Huxley-type equations respectively,

ut = uxx + u(1− u)(u− a), ut = uxx + u2(1− u),

where a is constant. By generalising the Fisher and Nagumo equations to include
variable coefficients we arrive at equations (1.1) and (1.2), which are the focus of
this paper. Equations of Huxley-type with spatial heterogeneity included in the
source terms are considered in [4].

Solutions of the reaction diffusion equations (1.1) and (1.2) are constructed by
exploiting their invariance under Lie groups of point symmetries. We find that
these solutions can only be constructed if the coefficient functions qi(x, t) satisfy
particular partial differential equations. In this case, both equations (1.1) and (1.2)
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are found to admit a three parameter group of point symmetries. Furthermore,
the equations for qi(x, t) also admit a three parameter group of symmetries. These
symmetries are used to reduce both sets of partial differential equations to ordinary
differential equations. We find that the reduced ordinary differential equations
corresponding to (1.1) are explicitly linked with equations of the form

(1.3) y′′(λ) = 6y2 + f(λ),

which have the Painlevé property if f(λ) is linear. Similarly, we find that the
reduced ordinary differential equations corresponding to (1.2) are explicitly linked
with equations of the form

(1.4) y′′(λ) = 2y3 + g(λ)y + h(λ),

which have the Painlevé property if g(λ) is linear and h(λ) is constant. Thus, we
find exact solutions to reaction diffusion equations, which are not usually integrable,
in terms of associated integrable ordinary differential equations.

Solutions to equations (1.1) and (1.2) are given in terms of classical Painlevé
transcendents. The Painlevé equations are six non-linear second order differential
equations with the special (Painlevé) property that all solutions are single valued
around moveable singularities. The generic solutions to these equations cannot
be expressed in terms of standard functions, thus they define new transcendental
functions. Of interest here are the first and second Painlevé equations which are

PI : y′′ = 6y2 + λ, PII : y′′ = 2y3 + λy + α,

where y is a function of λ and α is a constant. These equations are integrable
examples of equations (1.3) and (1.4) respectively and thus they are explicitly
linked with the exact solutions of equations (1.1) and (1.2). The recognition of the
connection between Painlevé equations and variable coefficient reaction diffusion
equations of the form (1.1) and (1.2) is believed to be new.

Solutions to equations (1.1) and (1.2) are also given in terms of Weierstrass and
Jacobi elliptic functions. These functions solve the autonomous forms of equations
(1.3) and (1.4) respectively. In [1], travelling wave solutions to Fisher’s equation
are given in terms of Weierstrass elliptic functions. These solutions are obtained
by demanding that the reduced ordinary differential equation passes the Painlevé
test (see [7]). This restricts the wave speed to a particular value. The solutions
that we construct for the generalised Fisher type equation (1.1) include this as a
special case. Two examples of investigations of reaction diffusion equations which
have found Jacobi elliptic function solutions are: [4], where a spatial dependence
is included in a Huxley-type equation, and [6], where reaction diffusion equations
with non-linear diffusion are considered. In both cases the solutions are constructed
using non-classical symmetry methods. The simpler, classical symmetry approach
followed in this paper produces not only these elliptic function solutions, but also
the Painlevé transcendent solutions. The freedom that the coefficient functions
qi(x, t) afford to equations (1.1) and (1.2) makes them most amenable to study.

2. Symmetry Analysis

Symmetry analysis provides a systematic way to construct solutions to partial
differential equations. We follow the classical approach, which determines the forms
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of X(x, t, u), T (x, t, u), and U(x, t, u) for which the equation is invariant under the
point transformations

x1 = x + εX(x, t, u), t1 = t + εT (x, t, u), u1 = u + εU(x, t, u), ε� 1.

These point transformations form a group with generator

(2.1) Γ = X(x, t, u)
∂

∂x
+ T (x, t, u)

∂

∂t
+ U(x, t, u)

∂

∂u
,

and the invariants of the group, denoted F , are solutions of the equation ΓF = 0.
These invariants are used to construct similarity solutions of the partial differential
equations, in terms of solutions to ordinary differential equations (see [3]).

2.1. Quadratic Case. We will refer to the function q0(x, t) as q(x, t) in all discus-
sion of equation (1.1). The partial differential equation (1.1) has no (non-trivial)
classical symmetries if q(x, t) is free. Fix q(x, t) as a solution to following partial
differential equation

(2.2)
∂q

∂t
=

∂2q

∂x2
+

1
2
q2 + k(x, t),

where k(x, t) is as follows

(2.3)
(
c1 +

c3x

2

) ∂k

∂x
+ (c2 + c3t)

∂k

∂t
+ 2c3k = 0.

Then, equation (1.1) is invariant under a three parameter Lie group of point sym-
metries with infinitesimal group operator (2.1) where

(2.4)

X(x, t, u) = c1 +
c3x

2
, T (x, t, u) = c2 + c3t,

U(x, t, u) =
1
2

{(
c1 +

c3x

2

) ∂q

∂x
+ (c2 + c3t)

∂q

∂t

}
− c3

(
u− q

2

)
,

and c1, c2, c3 are arbitrary parameters.
The partial differential equation (2.2) for q(x, t) is also invariant under a three

parameter Lie group of point symmetries if k(x, t) satisfies (2.3) with ci 7→ ci+3,
i = 1, 2, 3. In this case

X(x, t, q) = c4 +
c6x

2
, T (x, t, q) = c5 + c6t, Q(x, t, q) = −c6q,

for arbitrary parameters c4, c5, c6. Thus each of the similarity reductions of the
independent variables valid for u(x, t) are also valid for q(x, t). The dependent
variable terms in equation (2.2) for q(x, t) come directly from equation (1.1) with
u(x, t) = q(x, t)/2. This relationship is captured in each reduction of the dependent
variable u(x, t), as follows in Table 1.

We explore three possible reductions for each of u(x, t) and q(x, t) which gives
rise to a total of nine possible cases. The reductions come from different linear
combinations of the group operators associated with each constant c1, c2, c3 in (2.4).
The three reductions are (1) Stationary c1 = c3 = 0, c2 = 1; (2) Travelling Wave
c1 = c, c constant, c2 = 1, c3 = 0; (3) Boltzmann transformation c1 = c2 = 0,
c3 = 1. These map the independent variables (x, t) to the following new variables:

(2.5) (1) x = x (t constant), (2) z = x− ct, (3) ζ =
x

t1/2
,
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respectively. The corresponding reductions of the dependent variable u(x, t) are
easily calculated from the characteristic equation associated with the group operator
for each form of (2.4). Similarly, the reduced form of k(x, t) follows from (2.3). Let
the nine cases be numbered (ij), where u(x, t) is reduced according to (i), i = 1, 2, 3
as above (2.5), and q(x, t) is reduced according to (j), j = 1, 2, 3. These cases are
summarised below in Table 1, with reference to equations in Table 2.

Table 1: Summary of reductions of equation (1.1)

Case u(x, t) η(∗) equation q(∗) equation k(∗)
(11) q(x)/2 + η(x) A1 B1 k(x)

(12) q(z)/2 + η(x) A1 B2 constant

(13) q(ζ)/(2t) + η(x) A1 B3 0

(21) q(x)/2 + η(z) A2 B1 constant

(22) q(z)/2 + η(z) A2 B2 k(z)

(23) q(ζ)/(2t) + η(z) A2 B3 0

(31) q(x)/2 + η(ζ) A3 B1 0

(32) q(z)/2 + η(ζ) A3 B2 0

(33) (q(ζ)/2 + η(ζ))/t A3 B3 k(ζ)/t2

Table 2: η(∗) and q(∗) equations

η(∗) equations
A1 : η′′(x)− η2 = k(x)/2

A2 : η′′(z) + cη′(z)− η2 = k(z)/2

A3 : η′′(ζ) + ζη′(ζ)/2− η2 + η = k(ζ)/2

q(∗) equations
B1 : q′′(x) + q2/2 + k(x) = 0

B2 : q′′(z) + cq′(z) + q2/2 + k(z) = 0

B3 : q′′(ζ) + ζq′(ζ)/2 + q2 + q + k(ζ) = 0

2.2. Cubic Case. We will refer to the function q2(x, t) as q(x, t) through all dis-
cussion of equation (1.2). The partial differential equation (1.2) has no (non-trivial)
classical symmetries if q(x, t) and q1(x, t) are free. Fix q(x, t) as a solution to fol-
lowing partial differential equation

(2.6)
∂q

∂t
=

∂2q

∂x2
− 1

9
q3 + j(x, t)q + k(x, t),

and fix q1(x, t) as a function of q(x, t) as follows

(2.7) q1(x, t) = j(x, t)− 1
3
q(x, t)2,

where the functions j(x, t) and k(x, t) both satisfy partial differential equations,
respectively,

(2.8)

(
c1 +

c3x

2

) ∂j

∂x
+ (c2 + c3t)

∂j

∂t
+ c3j = 0,

(
c1 +

c3x

2

) ∂k

∂x
+ (c2 + c3t)

∂k

∂t
+

3c3k

2
= 0.
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Then, equation (1.2) is invariant under the three parameter Lie group of point
symmetries with infinitesimal group operator (2.1) where

X(x, t, u) = c1 +
c3x

2
, T (x, t, u) = c2 + c3t,

U(x, t, u) =
1
3

{(
c1 +

c3x

2

) ∂q

∂x
+ (c2 + c3t)

∂q

∂t

}
− c3

2

(
u− q

3

)
,

and c1, c2, c3 are arbitrary parameters.
The partial differential equation (2.6) for q(x, t) is also invariant under a three

parameter Lie group of point symmetries if j(x, t) and k(x, t) satisfy equations (2.8),
with ci 7→ ci+3, i = 1, 2, 3. In this case

X(x, t, q) = c4 +
c6x

2
, T (x, t, q) = c5 + c6t, Q(x, t, q) =

−c6q

2
,

for arbitrary parameters c4, c5, c6. Thus each of the similarity reductions of the
independent variables valid for u(x, t) are also valid for q(x, t). These are the same
reductions applied to the quadratic equation (1.1) above in Section 2.1. As such,
we proceed in the same way here. Note that the dependent variable terms in
equation (2.6) for q(x, t) come directly from equation (1.2) with u(x, t) = q(x, t)/3
and q1(x, t) given by (2.7). The relationship between u(x, t) and q(x, t) is captured
in each reduction of the dependent variable u(x, t), as follows in Table 3.

Table 3: Summary of reductions of equation (1.2)

Case u(x, t) η(∗) equation q(∗) equation j(∗) k(∗)
(11) q(x)/3 + η(x) C1 D1 j(x) k(x)

(12) q(z)/3 + η(x) C1 D2 constant constant

(13) q(ζ)/(3t1/2) + η(x) C1 D3 0 0

(21) q(x)/3 + η(z) C2 D1 constant constant

(22) q(z)/3 + η(z) C2 D2 j(z) k(z)

(23) q(ζ)/(3t1/2) + η(z) C2 D3 0 0

(31) q(x)/3 + η(x) C3 D1 0 0

(32) q(z)/3 + η(z) C3 D2 0 0

(33) (q(z)/3 + η(ζ))/t1/2 C3 D3 j(ζ)/t k(ζ)/t3/2

Table 4: η(∗) and q(∗) equations

η(∗) equations
C1 : η′′(x)− η3 + j(x)η = k(x)/3

C2 : η′′(z) + cη′(z)− η3 + j(z)η = k(z)/3

C3 : η′′(ζ) + ζη′(ζ)/2− η3 + (2j(ζ) + 1)η/2 = k(ζ)/3

q(∗) equations
D1 : q′′(x)− q3/9 + j(x)q + k(x) = 0

D2 : q′′(z) + cq′(z)− q3/9 + j(z)q + k(z) = 0

D3 : q′′(ζ) + ζq′(ζ)/2− q3/9 + (2j(ζ) + 1)q/2 + k(ζ) = 0
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3. Exact Solutions

3.1. Quadratic Case. In this section we give the transformation from each ordi-
nary differential equation in Table 2 to the following equation

(3.1) y′′(λ) = 6y2 + f(λ).

This is the canonical equation in the analysis of reductions of equation (1.1). Our
goal is to solve equations of this form exactly. This equation is integrable if

(3.2) f(λ) = aλ + b,

for a and b constant, and in such cases equation (3.1) can be solved exactly. For
a 6= 0 equation (3.1) is equivalent to PI, and the solution y(λ) is a first Painlevé
transcendent. For a = 0 the solution to equation (3.1) is y(λ) = ℘(λ;−2b, g3),
where ℘(λ; g2, g3) is the Weierstrass elliptic function with invariants g2 and g3. Of
the nine cases (ij) i, j = 1, 2, 3, given in Table 1, we find that only five are such that
both the equation for η and the equation for q can be transformed to (3.1) with
f(λ) expressed in the form (3.2). For these five cases we provide exact solutions.

3.1.1. Transformations. Each set of equations in η(∗) and q(∗) given in Table 1
can be transformed to two equations of the form (3.1), in y(λ) and ŷ(λ). The
transformations are

(3.3) η(∗) = 6γ′(∗)2y(λ)− δ(∗), q(∗) = −2
(
6γ′(∗)2ŷ(λ)− δ(∗)

)
, λ = γ(∗),

where δ(∗), and γ(∗) are given below in Table 5. The corresponding relations
between the functions k(∗) and f(λ) are

(3.4) k(∗) = 12γ′(∗)4f(λ)− β(∗),
where β(∗) is given in Table 5, and λ is given above.

Table 5: Terms in the transformations (3.3) and (3.4)

Equations * δ(∗) β(∗) γ(∗)
A1 B1 x 0 0 x

A2 B2 z 3c2/25 18c4/625 exp(−cz/5)

A3 B3 ζ
(
3ζ2 − 40

)
/100

(
3ζ4 + 120ζ2 − 600

)
/625

√
5πerf(ζ/(2

√
5))

3.1.2. Solutions. Comparing the conditions on k(∗) from Table 1 on the above forms
we find that f(λ) can only be linear in five cases. Exact solutions for these cases
are given below in Table 6. In this table y(λ) and ŷ(λ) are solutions to equation
(3.1), related to η(∗) and q(∗) through (3.3) where λ = γ(∗). The constant b is
fixed with b = 3c4/625, while g2, g3 and ĝ3 are free in each case.

Table 6: Exact Solutions of Transformed Equations

Case Solution y(λ) Solution ŷ(λ) λ

(11) PI or ℘(λ; g2, g3) PI or ℘(λ; g2, ĝ3) x

(12) ℘(x; 0, g3) ℘(λ; b, ĝ3) γ(z)

(21) ℘(λ; b, g3) ℘(x; 0, ĝ3) γ(z)

(22) PI or ℘(λ; g2, g3) PI or ℘(λ; g2, ĝ3) γ(z)

(33) PI or ℘(λ; g2, g3) PI or ℘(λ; g2, ĝ3) γ(ζ)
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Remark 3.1. Where the same reduction is applied to both u(x, t) and q(x, t), the
solution u(x, t) can be written concisely as a difference of first Painlevé transcen-
dents or elliptic functions, as follows

(11) u(x, t) = 6(y(λ)− ŷ(λ)), λ = x,

(22) u(x, t) = 3 γ′(z)2(y(λ)− ŷ(λ)), λ = γ(z),

(33) u(x, t) = 3γ′(ζ)2(y(λ)− ŷ(λ))/(2t), λ = γ(ζ).

These solutions are constructed from the reductions given in Table 1, the transfor-
mation (3.3) and finally the exact solutions y(λ) and ŷ(λ) where λ = γ(∗) is given
in Table 5. For completeness, the corresponding form of q(x, t) should also be given
in each case, however this is easily calculated in the same way.

Remark 3.2. Where a different reduction is applied to u(x, t) and q(x, t), the
solutions are
(12) u(x, t) = 6

(
y(x)− γ′(λ)2ŷ(λ)

)
+ 3c2/25, q(x, t) = −6

(
2γ′(λ)ŷ(λ)− c2/25

)
,

(21) u(x, t) = −
(

6
(
y(x)− γ′(λ)2ŷ(λ)

)
+ 3c2/25

)
, q(x, t) = −12ŷ(x),

where λ = γ(z) in each case. Here it is useful to specify q(x, t) to distinguish the
two cases.

3.2. Cubic Case. The canonical equation in the analysis of reductions of equation
(1.2) is

(3.5) y′′(λ) = 2y3 + g(λ)y + h(λ).

Our goal is to solve equations of this form exactly. This equation is integrable if

(3.6) g(λ) = aλ + b, h(λ) = d,

for a, b, and d constant, and in such cases equation (3.5) can be solved exactly. For
a 6= 0 equation (3.5) is equivalent to PII, and the solution y(λ) is a second Painlevé
transcendent. For a = 0 the solution can be expressed in terms of Jacobi elliptic
functions.

3.2.1. Transformations. Each set of equations for η(∗) and q(∗) given in Table 3,
can be transformed to two equations of the form (3.5), in y(λ) and ŷ(λ). The
transformations are

(3.7) η(∗) =
√

2γ′(∗)y(λ), q(∗) = 3
√

2γ′(∗)ŷ(λ), λ = γ(∗),
where γ(∗) is given below in Table 7. The corresponding relations between the
function j(∗) and g(λ), and k(∗) and h(λ) are

(3.8) j(∗) = −γ′(∗)2g(λ) + β(∗), k(∗) = ±3
√

2γ′(∗)3h(λ),

where β(∗) is also given in Table 7 and λ is given above. The ± in the k(∗)
expression refers to the η(∗), and q(∗) equations, respectively.

Table 7: Terms in the transformations (3.7) and (3.8)

Equations * β(∗) γ(∗)
C1 D1 x 0 x

C2 D2 z 2c2/9 −3 exp(−cz/3)/c

C3 D3 ζ
(
ζ2 − 6

)
/18

√
3πerf(ζ/(2

√
3))
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3.2.2. Solutions. Comparing the conditions on k(∗) and j(∗) from Table 3 on the
above forms we find that g(λ) is linear and h(λ) is constant only in five cases.
These are the same five cases as in the quadratic case. Before presenting the
exact solutions we note the following: 1. The second Painlevé equation contains a
parameter α. When the solutions y(∗) and ŷ(∗) are expressed in terms of second
Painlevé transcendents, this is for different parameters: α and −α respectively.
We denote these y(∗) = PII(∗;α) and ŷ(∗)=PII(∗;−α); 2. There is no canonical
Jacobi elliptic differential equation corresponding to (3.5) with g(λ) and h(λ) both
constant. Rather, the exact expression of the solution in terms of the Jacobi elliptic
functions depends on the value these constants take (see [2]). Thus for equations
of the form

y′′(∗) = 2y3 + by + d, b, d arbitrary,

we denote the solution as y(∗) =JE(∗; b, d). In the following table b and d are free
constants in each case.

Table 8: Exact Solutions of Transformed Equations

Case Solution y(λ) Solution ŷ(λ) λ

(11) PII(λ;α) or JE(λ; b, d) PII(λ;−α) or JE(λ; b,−d) x

(12) JE(x;−2c2/9, 0) JE(λ; 0, 0) γ(z)

(21) JE(λ; 0, 0) JE(x;−2c2/9, 0) γ(z)

(22) PII(λ;α) or JE(λ; b, d) PII(λ;α) or JE(λ; b,−d) γ(z)

(33) PII(λ;α) or JE(λ; b, d) PII(λ;α) or JE(λ; b,−d) γ(ζ)

4. Discussion

In this paper we have found five exact solutions to each of the variable-coefficient
reaction diffusion equations (1.1) and (1.2). These were constructed by forcing
the reduced ordinary differential equations associated with (1.1) and (1.2) to be
integrable. The symmetry analysis also revealed solutions given in terms of non-
integrable ordinary differential equations, cases (13), (23), (31) and (32), which
remain to be explored. The exact solutions we have found are given in terms of
Painlevé transcendents or elliptic functions. The initial conditions for the Painlevé
transcendents, and the parameter for PII, have not been specified here. Similarly
the invariants g2, g3 in the Weierstrass elliptic function solutions, and parameters
in the Jacobi elliptic function solutions, have been left as arbitrary in many cases.
The specific dynamics of the solutions can be investigated for each choice of these
inputs that are of interest.
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