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Abstract. We show that if the fundamental group π of an in-
decomposable PD3-complex is the fundamental group of a finite
graph of finite groups then the vertex groups have periodic coho-
mology and the edge groups are metacyclic. If the vertex groups
all have cohomological period dividing 4 then they are dihedral,
the edge groups are Z/2Z, and the underlying graph is a tree. We
also ask whether every PD3-complex has a finite covering space
which is homotopy equivalent to a closed orientable 3-manifold.

It is a well known consequence of the Sphere Theorem that every
closed 3-manifold is a connected sum of indecomposable factors, which
are either aspherical or have fundamental group Z or a finite group.
There is a partial analogue for PD3-complexes: Turaev showed that a
PD3-complex whose fundamental group is a free product is a connected
sum [24], while Crisp showed that every indecomposable PD3-complex
is either aspherical or its fundamental group is the fundamental group
of a finite graph of finite groups [3]. However the group may have
infinitely many ends, in contrast to the situation for 3-manifolds. The
only examples known thus far are orientable and have group S3∗Z/2Z S3

[15].
Crisp showed also that if X is an orientable PD3-complex then the

centralizer of a nontrivial element of prime order must be finite. We
shall use this observation repeatedly in §1 and §2. In Theorem 5 we
show that if X is indecomposable and π1(X) = πG for some finite graph
G of finite groups then the vertex groups have periodic cohomology
and the edge groups are metacyclic. If moreover the vertex groups are
metacyclic then the edge groups are cyclic. In Theorem 9 we show that
if the vertex groups all have cohomological period dividing 4 then they
are dihedral, the edge groups have order 2 and the underlying graph is
a tree. There are no known examples of nonorientable PD3-complexes
with virtually free fundamental group. In Theorem 11 we give a further
constraint on any such example.
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In the final part of this paper we turn to the aspherical case. Here the
main question is whether every aspherical PD3-complex is homotopy
equivalent to a closed 3-manifold. An equivalent question is whether ev-
ery PD3-complex has a finite covering space which is homotopy equiv-
alent to a closed orientable 3-manifold. We suggest a reduction of this
question to a question about Dehn surgery on links.

1. vertex groups have periodic cohomology

A graph of groups (G, Γ) consists of a graph Γ with origin and target
functions o and t from the set of edges E(Γ) to the set of vertices V (Γ),
and a family G of groups Gv for each vertex v and subgroups Ge ≤ Go(e)

for each edge e, with monomorphisms φe : Ge → Gt(e). (We shall
usually suppress the maps φe from our notation.) The fundamental

group of (G, Γ) is the group πG with presentation

〈Gv, te | tegt−1
e = φe(g) ∀ g ∈ Ge, te = 1 ∀ e ∈ E(T )〉,

where T is some maximal tree for Γ. Different choices of maximal tree
give isomorphic groups. The graph is minimal if each edge group is a
proper subgroup of the adjacent vertex groups.

If G is a group G′ and ζG shall denote the commutator subgroup
and centre of G, while if H ≤ G is a subgroup CG(H) and NG(H) shall
denote the centralizer and normalizer of H in G, respectively.

Lemma 1. Let π = πG, where (G, Γ) is a finite graph of groups. If C
is a subgroup of an edge group Ge with NGe

(C) properly contained in

each of NGo(e)
(C) and NGt(e)

(C) then Nπ(C) is infinite.

Proof. If go ∈ Go(e) − Ge and gt ∈ Gt(e) − Ge each normalize C then
gogt normalizes C and has infinite order in π. �

A finitely generated group is the fundamental group of a finite graph
of finite groups if and only if it is virtually free. Let F be a maximal
free normal subgroup of π. Then G = π/F is finite, and the canonical
surjection s : π → G is injective on every finite subgroup of π. In
particular, if H is a finite subgroup of π then the subgroup FH =
s−1s(H) generated by F and H is a semidirect product F ⋊ H .

Theorem 2. Let π = π1(X), where X is an orientable PD3-complex,

and suppose that π ∼= πG, where (G, Γ) is a minimal finite graph of

finite nilpotent groups. Then all edge groups are trivial and the vertex

groups are finite cyclic or direct products of cyclic groups of odd order

with quaternionic 2-groups.
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Proof. If e is an edge the normalizer of Ge in each of Go(e) and Gt(e) is
strictly larger, since nilpotent groups satisfy the normalizer condition.
(See Chapter 5.§2 of [20].) Therefore Nπ(Ge) is infinite. If g ∈ Ge

the centralizer Cπ(g) is also infinite, since Aut(Ge) is finite. Hence
g = 1, by Theorem 17 of [3], and so the edge groups are all trivial.
Therefore π is the free product of finite groups. Since X has a connected
sum decomposition inducing this splitting of π it follows that each
vertex group is the fundamental group of a PD3-complex. Hence it
has periodic cohomology.

A finite nilpotent group has periodic cohomology if and only if it is
cyclic or is the direct product of a cyclic group of odd order with a
quaternionic 2-group Q(2k), for some k ≥ 3. �

Finite cyclic groups have cohomological period 2, while direct prod-
ucts Q(2k) × Z/dZ have cohomological period 4.

Corollary 3. If X is finite and the vertex groups are cyclic or iso-

morphic to Q(2k) for some k ≥ 3 then X is homotopy equivalent to a

connected sum of S
3-manifolds.

Proof. All finite Swan complexes for cyclic groups or for such quater-
nionic 2-groups are homotopy equivalent to S

3-manifolds [22]. �

Lemma 4. Let G be a finite group with periodic cohomology. If the

2-Sylow subgroup of G is not cyclic then G has a central involution.

Proof. This follows on examining the standard list of finite groups with
periodic cohomology. �

If a group G has periodic cohomology all subgroups of order p2 are
cyclic. In particular, if g ∈ G is an involution it is central if and only
if it is the unique involution.

Theorem 5. Let π = π1(X), where X is an orientable PD3-complex,

and suppose that π ∼= πG, where (G, Γ) is a finite graph of finite groups.

Then the vertex groups have periodic cohomology and the edge groups

are metacyclic. For each edge e the highest common factor of [Go(e) :
Ge], [Gt(e) : Ge] and |Ge| is 1.

Proof. Let F be a maximal free normal subgroup of π. If S is a Sylow
p-subgroup of a vertex group Gv then FS is the fundamental group of
a finite graph of finite p-groups. Hence FS is a free product of finite
nilpotent groups with periodic cohomology, by Theorem 2. Therefore S
has periodic cohomology. Since a finite group has periodic cohomology
if and only if this holds for all its Sylow subgroups (see Proposition
VI.9.3 of [2]) it follows that Gv has periodic cohomology.
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If Ge is not metacyclic then the Sylow 2-subgroups of Ge, Go(e) and
Gt(e) are all non-cyclic. Hence Ge has a central involution which is also
central in each of Go(e) and Gt(e). As in Theorem 2 this contradicts
Theorem 17 of [3].

Let p be a prime divisor of |Ge|, and let P be the p-Sylow subgroup
of G = π/F . The projection s maps the p-Sylow subgroups of the edge
and vertex groups into P . Thus the p-Sylow subgroup of Ge is an edge
group in the induced graph of groups structure of πP = s−1(P ), and
the adjacent vertex group groups are the p-Sylow subgroups of Go(e)

and Gt(e). On applying Theorem 2 we see that at least one of the two
inclusions is an isomorphism. Thus p cannot divide both [Go(e) : Ge]
and [Gt(e) : Ge]. �

If all the Sylow subgroups of a finite group are cyclic then it is
metacyclic, with a presentation

〈a, b | am = bn = 1, bab−1 = ar〉,

where (n(r − 1), m) = 1. (See Proposition 10.1.10 of [20].) In such a
group the commutator subgroup is the cyclic group of order m gener-
ated by the image of a.

Corollary 6. If the vertex groups are all metacyclic then each edge

group is cyclic.

Proof. Every subgroup of the commutator subgroup of a metacyclic
group is normal. Thus if an edge group is not cyclic its commutator
subgroup is nontrivial, and is normal in each of the adjacent vertex
groups. As in Theorem 5, this contradicts Theorem 17 of [3]. �

In particular, this corollary applies if π/F has odd order.

2. cohomological period dividing 4

The fact that the Sylow subgroups of Gv have cohomological period
dividing 4 does not imply that Gv has cohomological period dividing
4. (The simplest example is the nonabelian group of order 21, which
has cyclic Sylow subgroups and cohomological period 6. See Exercise
VI.9.6 of [2].) However, if this holds for all the vertex groups we can
say much more.

We recall that a group G has cohomological period dividing 4 if
and only if it is a cyclic group or a direct product B × Z/dZ, where
B is a generalized quaternionic group Q(8a, b, c), an extended binary
polyhedral group T ∗

k , O∗
k or I∗, or a metacyclic group A(m, e), and

(d, |B|) = 1 [4].
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Lemma 7. If C < G < H are finite groups with cohomological period

dividing 4 and C = Z/pZ where p is an odd prime then NG(C) <
NH(C), unless G = T ∗

1 × Z/dZ, H = I∗ × Z/dZ and p = 3.

Proof. It is easy to see from the list of such groups that if p > 5 then
NG(C) = G. If p = 5 this holds also unless G = I∗ × Z/dZ, in
which case NG(C) = C × Z/dZ. If p = 3 then NG(C) = G unless G =
T ∗

1 ×Z/dZ, O∗
1×Z/dZ or I∗×Z/dZ, in which case NG(C) = C×Z/dZ,

S3×Z/dZ or C×Z/dZ, respectively. The only proper inclusion G < H
between such groups is induced by the inclusion of T ∗

1 as a subgroup
of I∗. Thus NG(C) < NH(C) except when p = 3, G = T ∗

1 × Z/dZ and
H = I∗ × Z/dZ, in which case NG(C) = NH(C) = C × Z/dZ. �

Lemma 8. Let π = A ∗C B, where A and B are indecomposable and

C 6= 1. Then π is indecomposable.

Proof. See pages 245-246 of [19]. �

Theorem 9. Let π = π1(X), where X is an indecomposable orientable

PD3-complex, and suppose that π ∼= πG, where (G, Γ) is a finite graph

of finite groups. Suppose that every vertex group has cohomological

period dividing 4. Then the vertex groups are dihedral, the edge groups

have order 2 and Γ is a tree.

Proof. Let Ge be an edge group. If Ge
∼= T ∗

1 × Z/dZ then Ge has
a central involution g. But then g is also central in each of Go(e)

and Gt(e), and so Nπ(〈g〉) is infinite. Thus it follows from Lemma
7 that Ge must be a 2-group. If g is the central involution of Ge

it cannot be central in both of Go(e) and Gt(e), for otherwise Cπ(〈g〉)
would be infinite, contradicting Theorem 17 of [3]. Hence one of them
is a dihedral group A(m, 1)×Z/dZ, by Lemma 4, and so Ge must have
order 2, since A(m, 1) × Z/dZ has order 2md with md odd. Since the
cyclic direct factor Z/dZ centralizes g we must in fact have d = 1.

Suppose that there are vertices v 6= w such that Gv and Gw have
involutions gv and gw with centralizers Cv and Cw of order > 2, and
choose a (minimal) path connecting these vertices. Each vertex group
has an unique conjugacy class of involutions, and so gw = agva

−1 for
some a in the subgroup generated by the intermediate vertex groups
along the path. Thus gw is centralized by the subgroup generated by
Cw and aCva

−1, which is infinite. This again contradicts Theorem 17
of [3].

If there is a nontrivial cycle γ in Γ incorporating an edge e we may
choose a maximal tree T which does not contain e. (Here we do not re-
quire that the edges making up a cycle be compatibly oriented.) There-
fore if ge is a generator of Ge we have te(ge)t

−1
e = wgew

−1, where w is
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a word in the union of the vertex groups along the rest of the cycle.
The element tew

−1 has infinite order, and so the normalizer of ge in π
is infinite. This again contradicts Theorem 17 of [3].

The underlying graph is a tree T , by Theorem 6. Since each vertex
group has an unique conjugacy class of involutions we may assume that
T is linear, and that A(m, 1) = Go(e) where o(e) is an extremal vertex.
Hence π = H ∗Z/2Z A(m, 1), where H is the subgroup determined by
the subgraph obtained by deleting the edge e and vertex o(e). Suppose
that A(m, 1) is generated by {a, z} where a has order m and z is the
involution in H ∩ A(m, 1). Then π has a non-normal subgroup of
index m, which has a graph of groups structure with vertex groups the
conjugates of H by the powers of a and edge groups of order 2. On
representing each conjugate of H as a graph-group we see that each
of the original vertex groups other than Go(e) = A(m, 1) appears m
times as a vertex group, and all the edge groups are Z/2Z. Iterated
applications of Lemma 8 show that this group is again indecomposable.
Since it has finite index in π it is also the group of a PD3-complex.
Since each isomorphism class of vertex group occuring is represented
more than once, there can be no non-dihedral vertex groups. �

Corollary 10. The group π is a semidirect product π ∼= π′
⋊ Z/2Z,

π′ is a free product of cyclic groups of odd order, and the associated

covering space X ′ is homotopy equivalent to a connected sum of lens

spaces.

Proof. It is easy to see that π/π′ ∼= Z/2Z and that π′ is the normal
subgroup generated by the images of the commutator subgroups of the
vertex groups. The inclusion of any one of the edge groups is a splitting
map. The final assertion follows from [24]. �

If the vertex groups are all isomorphic then π ∼= F ⋊ A(m, 1) for
some m. However the number of vertex groups may be arbitrarily large.
Applying the final construction of Theorem 9 to S3 ∗Z/2Z S3 gives an
indecomposable subgroup of index 3 isomorphic to S3 ∗Z/2Z S3 ∗Z/2Z S3.
Iterating this process gives trees of unbounded length which are realized
by indecomposable PD3-complexes.

Must the vertex groups be all isomorphic? Is S3 ∗Z/2Z A(5, 1) the
fundamental group of a PD3-complex?

Are any PD3-complexes of the type considered here homotopy equiv-
alent to an infinite cyclic covering of a closed 4-manifold?

Although there are no known examples of nonorientable, indecom-
posable PD3-complexes X with π1(X) virtually free, we have only the
following explicit constraints.
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Theorem 11. Let X be a nonorientable PD3-complex. If π = π1(X)
is virtually free then it is infinite. If moreover Ker(w1(X)) ∼= L⋊Z/2Z
where L/L′ has odd order then π/π′ ∼= Z/4Z.

Proof. The first assertion is clear, since PD3-complexes with finite fun-
damental group are orientable [25]. The hypothesis in the second asser-
tion implies that π′ = L and π/π′ ∼= (Z/2Z)2 or Z/4Z. Suppose that
π/π′ ∼= (Z/2Z)2. The kernel of the map from the symmetric product
H1(π; F2) ⊙ H1(π; F2) ∼= F

3
2 to H2(π; F2) induced by cup product is

the dual of a quotient of X2(π)/[π, X2(π)], where X2(π) is the verbal
subgroup generated by squares [13]. It is easy to see that in this case
X2(π) = π′ and [π, X2(π)] = π′. Hence β2(π; F2) ≥ 3. But this contra-
dicts the bound β2(π; F2) ≤ β2(X; F2) = 2 given by Poincaré duality.
Thus we must have π/π′ ∼= Z/4Z. �

In particular, the involutions of the free factors of π′ must admit
square roots, and so no such complex X has π′ ∼= Z/3Z ∗ Z/3Z. Is
there a PD3-complex with fundamental group having the presentation

〈a, b, c | a4 = b5 = c5 = aba−1b2 = aca−1c2 = 1〉?

3. is every aspherical PD3-complex virtually a

3-manifold?

It is well known that every PD2-complex is homotopy equivalent to a
closed surface. The argument of Eckmann and Müller [7] for the cases
with β1 6= 0 involves delicate combinatorial group theory. (The hypoth-
esis β1 6= 0 is removed in [6].) More recently, Bowditch used geometric
group theory to obtain the stronger result that an FP2 group Γ with
H2(Γ; Z[Γ]) ∼= Z acts properly discontinuously on E

2 or H
2 [1]. Higher

dimensional considerations suggest another, more topological strategy,
which can be justified a posteriori. The bordism Hurewicz homomor-
phism from Ωn(X) to Hn(X; Z) is an epimorphism in degrees n ≤ 4.
Therefore if X is an orientable PDn-complex with n ≤ 4 there is a
degree-1 map f : M → X with domain a closed orientable n-manifold.
(See [12] for the corresponding result for nonorientable PDn-complexes,
using w1-twisted bordism and homology.) Choose compatible base-
points mo and xo = f(mo), and let π = π1(X, xo) and f∗ = π1(f). If X
is a finite PD2-complex then such a map f is a homotopy equivalence
⇔ Ker(f∗) = 1 ⇔ χ(M) = χ(X). If Ker(f∗) contains the class of
an essential simple closed curve γ we may reduce χ(M) by surgery on
γ. Combining the results of [6, 7, 8] we see that there is always such
a simple closed curve. Can this be shown directly, without appeal to
[6, 7]?
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We would like to study PD3-complexes in a similar manner. Let X
be a PD3-complex and f : M → X a degree-1 map, where M is a
closed 3-manifold. Then f is a homotopy equivalence ⇔ Ker(f∗) = 1.
Since π1(M) and π1(X) are finitely presentable, this kernel is normally
generated by finitely many elements of π1(M), which may be repre-
sented by the components of a link L ⊂ M . We would like to modify
M using such a link to render the kernel trivial. This is possible if X is
homotopy equivalent to a closed orientable 3-manifold N , for M may
then be obtained from N by Dehn surgery on a link whose components
are null-homotopic in N [9]. Gadgil’s argument appears to use the
topology of the target space in an essential way.

Unfortunately there are PD3-complexes which are not homotopy
equivalent to 3-manifolds, so this strategy cannot be carried through
in all cases. The known counter examples have virtually free funda-
mental groups [15, 21]. Since an orientable PD3-complex with free
fundamental group is homotopy equivalent to #r(S1 × S2) for some
r ≥ 0, it remains possible that every PD3-complex is virtually a 3-
manifold, i.e., has a finite covering space which is homotopy equivalent
to a closed orientable 3-manifold. If this is true it must be possible to
kill Ker(f∗) by surgery (and passing to finite covering spaces).

In general we might expect to encounter obstructions in L3(π, w)
to obtaining a Z[π]-homology equivalence by integral surgery. For in-
stance, there are finite groups of cohomological period 4 which have fi-
nite Swan complexes but which do not act freely on homology 3-spheres
[11]. However the validity of the Novikov conjecture for aspherical 3-
manifolds suggests that such obstructions may never arise in the cases
of most interest to us. (See [16, 18].) In any case, we allow the use of
Dehn surgeries also.

4. Some reductions

Let X be a PD3-complex and f : M → X be a degree-1 map with
domain a closed 3-manifold M .

Lemma 12. Let X = X1♯X2 be a PD3-complex which is the connected

sum of PD3-complexes which are virtually 3-manifolds. Then X is

virtually a 3-manifold.

Proof. Let X̂i be a finite regular covering space of Xi which is homo-
topy equivalent to a closed 3-manifold Mi, for each i = 1 or 2. Let

Gi = Aut(X̂i/Xi) and let H be the kernel of the natural projection of
π1(X) = π1(X1) ∗ π1(X2) onto G1 × G2. Then the associated cover-
ing space XH with fundamental group H is homotopy equivalent to a
connected sum of copies of M1 and M2. �
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Thus we may assume that X is aspherical. There is then no need to
pass to finite covers.

Lemma 13. If an aspherical PD3-complex X is virtually a 3-manifold

then X is homotopy equivalent to a closed 3-manifold.

Proof. Let f : M → X̂ be a homotopy equivalence from a closed 3-

manifold M to a finite regular covering space X̂. Then M is aspherical,
and is either Seifert fibred, Haken or hyperbolic, by the Geometrization
Theorem of Thurston and Perelman. If M is Seifert X is homotopy
equivalent to a Seifert 3-manifold, by Theorem 15.1 of [1]. If M is

hyperbolic the covering group G = Aut(X̂/X) is isomorphic to a group
of isometries of M , by Mostow rigidity. The group Γ of all lifts of

such isometries to M̃ = H
3 is isomorphic to π1(X) and acts properly

discontinuously on H
3. Since Γ is torsion-free the action is free, and

so H
3/Γ is a closed 3-manifold homotopy equivalent to X. If M is an

orientable Haken 3-manifold it has a canonical JSJ decomposition into
Seifert fibred and hyperbolic pieces, and a similar conclusion holds
[26]. (Zimmermann assumes M orientable, but his argument holds
more generally.) �

We shall however assume for simplicity that X and M are orientable.
As every closed orientable 3-manifold is the target of a degree-1 map
from a hyperbolic 3-manifold [17], we could also assume that M is
aspherical. As we may lose asphericity of M under surgery, we shall
settle for a simpler result.

Lemma 14. Let X be an aspherical PD3-complex and f : M → X a

degree-1 map. Then we may assume that the irreducible factors of M
are aspherical.

Proof. Let M = ♯i=k
i=1Mi be a factorization of M as a connected sum of

irreducible 3-manifolds, with Mi aspherical if i ≤ r and π1(Mi) finite,
Z or Z ⊕ (Z/2Z) if i > r. Since X is aspherical f extends to a map
F : ∨i=k

i=1Mi → X. If π1(Mi) is finite then F |Mi
is nullhomotopic, while

if π1(Mi) ∼= Z or Z ⊕ (Z/2Z) then F |Mi
factors through S1. In either

case the restriction to such terms has degree 0. Hence F induces a
degree-1 map from ♯i=r

i=1Mi to X. �

Let L ⊂ M be a link whose components represent a subset of π1(M)
whose normal closure is Ker(f∗). We may assume that the number of
components of L is minimal among all such pairs (f, L).

We shall say that a link L = ∐i≤mLi in a 3-manifold N with an open
regular neighbourhood n(L) = ∐i≤mn(Li) admits a drastic surgery if

there is a family of slopes γi ⊂ ∂n(Li) such that the normal closure
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of {[γ1], . . . , [γm]} in π1(N − n(L)) meets the image of each peripheral

subgroup π1(∂n(Li)) in a subgroup of finite index. If f : M → N
is a degree-1 map of closed 3-manifolds Ker(f∗) is represented by a
link which admits a drastic surgery [9]. (Gadgil’s result is somewhat
stronger.)

Lemma 15. If X is an aspherical PD3-complex and L admits a drastic

surgery then X is homotopy equivalent to a closed 3-manifold.

Proof. After a drastic surgery on L we may assume that Ker(f∗) is
normally generated by finitely many elements of finite order. Let M =
N#N ′ where π1(N) is torsion-free and the fundamental groups of the
irreducible summands of N ′ are finite. As in the previous lemma f
factors through the collapse of M onto N , and so induces a degree-
1 map g : N → X. This map is clearly π1-injective, and so it is a
homotopy equivalence. �

There are knots which admit no drastic surgery. The following ex-
ample was suggested by Cameron Gordon. Let M be an orientable
3-manifold which is Seifert fibred over S2(p, q, r), where 1

p
+ 1

q
+ 1

r
≤ 1,

and let K be a regular fibre. Let φ, µ ⊂ ∂n(K) be a regular fibre and
a meridian, respectively. Then surgery on the slope sµ + tφ gives a
3-manifold N which is Seifert fibred over S2(p, q, r, s), if s 6= 0, or is a
connected sum of lens spaces, if s = 0. If s 6= 0 the image of φ has infi-
nite order in π1(N); otherwise the image of µ has infinite order there.
Thus no surgery on a regular fibre of M is drastic. (We may modify
this example to obtain one with M not Seifert by replacing a tubular
neighbourhood of another regular fibre by the exterior of a hyperbolic
knot.)

However we have considerable latitude in our choice of link L repre-
senting Ker(f∗). In particular, we may modify L by a link homotopy,
and so the key question may be:

is every knot K ⊂ M homotopic to one admitting a drastic surgery?

The existence of PD3-complexes which are not homotopy equivalent
to 3-manifolds shows that we cannot expect a stronger result, in which
“contains . . . π1(∂n(Li))” replaces “meets the image . . . finite index”
in the definition of drastic surgery.

The argument for the existence of a degree-1 map f : M → X does
not require us to assume a priori that X be finite, nor even that π1(X)
be finitely presentable. The latter condition is needed to ensure that
Ker(f∗) is represented by a link in M . In all dimensions n ≥ 4 there
are PDn-groups of type FF which are not finitely presentable [5]. This
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leaves the question: are PD3-groups finitely presentable? Our strategy
does not address this issue.
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