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Abstract. A closed 4-manifold (or, more generally, a finite PD4-
space) has a finitely dominated infinite regular covering space if
and only if either its universal covering space is finitely dominated
or it is finitely covered by the mapping torus of a self homotopy
equivalence of a PD3-complex.

A Poincaré duality space is a space X of the homotopy type of a
cell complex which satisfies Poincaré duality with local coefficients. It

is finite if the singular chain complex of the universal cover X̃ is chain
homotopy equivalent to a finite free Z[π1(X)]-complex. (The PD-space
X is homotopy equivalent to a Poincaré duality complex ⇔ it is finitely
dominated ⇔ π1(X) is finitely presentable. See [2].)

In this note we show that finiteness hypotheses in two theorems
about covering spaces of PD-complexes may be relaxed. Theorem 4
extends a criterion of Stark to all Poincaré duality groups. The main
result is Theorem 5, which characterizes finite PD4-spaces with finitely
dominated infinite regular covering spaces.

We shall often write “vPD-group” instead of “virtual Poincaré du-
ality group”, and similarly vPDr, vFP , etc. We say also that a group
G is a weak PDr-group if Hr(G; Z[G]) ∼= Z and Hq(G; Z[G]) = 0 for
q 6= r.

1. some lemmas

The following lemma is essentially from [5]. We shall use it in con-
junction with universal coefficient spectral sequences.

Lemma 1. Let G be a group and k be Z or a field, and let A be
a k[G]-module which is free of finite rank m as a k-module. Then
Extq

k[G](A, k[G]) ∼= (Hq(G; k[G]))m for all q.

Proof. Let (gφ)(a) = g.φ(g−1a) for all g ∈ G and φ ∈ Homk(A, k[G]).
Let {αi}1≤i≤m be a basis for A as a free k-module, and define a map
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f : Homk(A, k[G]) → k[G]m by f(φ) = (φ(α1), . . . , φ(αm)) for all φ ∈
Homk(A, k[G]). Then f is an isomorphism of left k[G]-modules. The
lemma now follows, since Extq

k[G](A, k[G]) ∼= Hq(G; Homk(A, k[G])).

(See Proposition III.2.2 of [3].) �

Lemma 2. If Hq(G; Z[G]) is 0 (respectively, finitely generated as an
abelian group) for all q ≤ q0 and B is a Z[G]-module which is finitely
generated as an abelian group then Extq

Z[G](B, Z[G]) is 0 (respectively,

finitely generated as an abelian group) for all q ≤ q0.

Proof. Let T be the Z-torsion submodule of B, and let H be the kernel
of the action of G on T . Then T is a finite Z[G/H ]-module, and so is
a quotient of a finitely generated free Z[G/H ]-module A. Let A1 be
the kernel of the projection from A to T . Clearly A and A1 are Z[G]-
modules which are free of (the same) finite rank as abelian groups. We
now apply the long exact sequence of Ext∗

Z[G](−, Z[G]) together with
Lemma 1 to the short exact sequences 0 → A1 → A → T → 0 and
0 → T → B → B/T → 0. �

2. virtual Poincaré duality groups

Stark has shown that a finitely presentable group G of finite virtual
cohomological dimension is a virtual Poincaré duality group if and only
if it is the fundamental group of a closed PL manifold M whose uni-

versal cover M̃ is homotopy finite [10]. The main step in showing the
sufficiency of the latter condition involves showing first that G is of
type vFP , and is established in [11]. If G1 is an FP subgroup of finite
index in G then B = K(G1, 1) is finitely dominated. Hence on apply-

ing the Gottlieb-Quinn Theorem to the fibration M̃ → M1 → B of

the associated covering space M1 it follows that M̃ and B are Poincaré
duality complexes. In particular, G1 is a Poincaré duality group.

There are however Poincaré duality groups in every dimension n ≥ 4
which are not finitely presentable. We shall give an analogue of Stark’s
sufficency result for such groups, using an algebraic criterion instead of
the Gottlieb-Quinn Theorem. In the next two results we shall assume
that M is a PDn-space with fundamental group π, F = Mν is the
covering space associated to a normal subgroup ν of π, G = π/ν and
k is Z or a field.

Lemma 3. Suppose that Hp(F ; k) is finitely generated for all p ≤
[n/2]. Then Hp(F ; k) is finitely generated for all p if and only if
Hq(G; k[G]) is finitely generated as a k-module for q ≤ [(n − 1)/2],
and then Hq(G; k[G]) is finitely generated as k-module for all q. If
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Hs(G; k[G]) = 0 for s < q then Hn−s(F ; k) = 0 for s < q and
Hn−q(F ; k) ∼= Hq(G; k[G]).

Proof. Let Epq
2 = Extq

k[G](Hp(M ; k[G]), k[G]) ⇒ Hp+q(M ; k[G]) be the

Universal Coefficient spectral sequence for the equivariant cohomology
of M . Then Epq

2 = Extq
k[G](Hp(F ; k), k[G]), while Hp+q(M ; k[G]) ∼=

Hn−p−q(F ; k), by Poincaré duality for M .
If Hq(G; k[G]) is finitely generated for q ≤ [(n − 1)/2] then Epq

2 is
finitely generated for all p+q ≤ [(n−1)/2], by Lemmas 1 and 2. Hence
Hp(F ; k) is finitely generated for all p ≥ n− [(n− 1)/2], and hence for
all p. Conversely, if this holds and Hs(G; k[G]) is finitely generated for
s < q then Eps

r is finitely generated for all p ≥ 0, r ≥ 2 and s < q.
Since Hq(M ; k[G]) ∼= Hn−q(F ; k) is finitely generated as a k-module
it follows that Hq(G; k[G]) is finitely generated as a k-module. Hence
Hq(G; k[G]) is finitely generated for all q.

The final assertion is an immediate consequence of duality and the
UCSS. �

Theorem 4. If Hp(F ; k) is finitely generated for all p then G is FP∞

over k and Hs(G; k[G]) 6= 0 for some s ≤ n. If moreover k = Z and
v.c.d.G < ∞ then G is virtually a PDr-group, for some r ≤ n.

Proof. Let C∗(M̃) be the equivariant chain complex of the universal

covering space M̃ . Since M is a PDn-space C∗(M̃) is chain homo-
topy equivalent to a finite projective Z[π]-complex. Hence C∗(F ; k) =

k[G] ⊗Z[π] C∗(M̃) is chain homotopy equivalent to a finite projective
k[G]-complex. The arguments of [11] apply equally well with coeffi-
cients k a field (instead of Z), and thus the hypotheses of Lemma 3
imply that G is FP∞ over k.

If v.c.d.G < ∞ we may assume without loss of generality that
c.d.G < ∞, and so G is FP . Since Hq(F ; Z)) is finitely generated
for all q the groups Hs(G; Z[G]) are all finitely generated, and since
H0(F ; Z) = Z we must have Hs(G; Z[G]) 6= 0 for some s ≤ n, by
Lemma 3. Then G is a PDr-group, where r = min{s | Hs(G; Z[G]) 6=
0} ≤ n, by Theorem 3 of [5]. �

This complements the main result of [9], in which it is shown that

if the Z[ν]-chain complex C∗(F̃ ) = C∗(M̃)|ν has finite [n/2]-skeleton
and G is a weak PDr-group then F is a PDn−r-space. If we drop
the hypothesis “v.c.d.G < ∞” must G still be a weak PDr-group
for r = min{s | Hs(G; Z[G]) 6= 0}? (In other words, if G is FP∞,
Hs(G; Z[G]) = 0 for s < r and Hr(G; Z[G]) ∼= Z must G be a weak
PDr-group?) If r ≤ 2 such a group is in fact a vPDr-group (by the
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main result of [1], when r = 2), but for each n ≥ 2 and k ≥
(

n+1
2

)
there

are weak PDk-groups which act freely and cocompactly on S2n−1×R
k,

but which are not virtually torsion-free [6]. Thus if r ≥ 6 weak PDr-
groups need not be vPDr-groups, and so the other conditions do not
imply that v.c.d.G < ∞, in general. Little is known about the interme-
diate cases r = 3, 4 or 5. In paricular, it is an open question whether a
group G of type FP∞ such that H3(G; Z[G]) ∼= Z is virtually a PD3-
group. (The fact that local homology manifolds which are homology
2-spheres are standard may be some slight evidence for this being true.)

Stark’s argument for realization in the finitely presentable case can
be adapted to show that any vPDn-group acts freely on a 1-connected
homotopy finite complex, with quotient a PDm-space for some m ≥ n.
However finite presentability is needed in order to obtain a free cocom-
pact action on a 1-connected complex. A natural converse to Theorem
4 (analogous to Stark’s realization result) might be to show that every
vPD group acts freely and cocompactly on some connected manifold X
with Hq(X; Z) finitely generated for all q. It would be enough to show
that G acts freely on an m-complex Y such that H∗(Y ; Z) is finitely
generated and X = Y/G is a finite complex. For we may realize the
homotopy type of X by a 2m-dimensional handlebody Mo, and the
closed manifold DM = Mo ∪ Mo has the desired properties, by Theo-
rem 3 and Poincaré duality in DM . (Since every such G is FP2, and
hence is the quotient of a finitely presentable group by a perfect normal
subgroup, by Exercise VIII.§5.3(b) of [3], we might also require that
H1(Y ; Z) = 0. Note also that if Y is 1-connected, finite-dimensional
and Hq(Y ; Z) is finitely generated for all q then Y is homotopy finite.)

3. finitely dominated covering spaces

In [7] we showed that if a PD4-complex M has a finitely dominated
infinite regular covering space Mν and ν = π1(Mν) is FP3 then either

the universal covering space M̃ is contractible or homotopy equivalent
to S2 or S3, or M is the mapping torus of a self homotopy equivalence
of a PD3-complex. The hypothesis that ν be FP3 was used at only
one point (and is a consequence of Mν being finitely dominated, if M
is aspherical). We shall show here that we may assume instead that M
be a finite PD4-space, which is perhaps a more natural hypothesis, as
it is satisfied by all closed 4-manifolds.

Theorem 5. Let M be a finite PD4-space with fundamental group π,
and let ν be an infinite normal subgroup of π such that G = π/ν has
one end and the associated covering space Mν is finitely dominated.
Then G is of type FP∞ and M is aspherical.
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Proof. Let F = Mν and let k be Z or a field. Then G is of type FP∞

and Hq(G; k[G]) is finitely generated as a k-module for all q, by Lemma
3 and Theorem 4. Moreover Extq

k[π](Hp(F ; k), k[π]) = 0 for q ≤ 1 and

all p, since G has one end, and so Hq(F ; k) = 0 for q ≥ 3. In particular,
H2(G; Z[G]) ∼= H2(F ; Z) is torsion-free, and so is a free abelian group
of finite rank.

We may assume that F is not acyclic and G is not virtually a
PD2-group, by Theorem 3.9 of [7]. (Note that in the original ver-
sion of [7] Theorem 3.9 was formulated in terms of PD4-complexes.
The arguments given there apply equally well to PD4-spaces.) There-
fore H2(G; k[G]) = 0 for all k, by the main result of [1]. Hence
H2(F ; Fp) = 0 for all primes p, so H1(F ; Z) is torsion-free and nonzero.
Therefore Hs(G; Z[G]) = H4−s(F ; Z) = 0 for s < 3 and H3(G; Z[G]) ∼=
H1(F ; Z) is a nontrivial finitely generated abelian group. Therefore
H3(G; Z[G]) ∼= Z [5].

Thus we may assume that F is an homology circle. Let G̃ = π/ν ′

and let t ∈ G̃ represent a generator of the infinite cyclic group ν/ν ′.
Since F is finitely dominated a Wang sequence argument shows that
Hq(F

′; k) is a finitely generated k[t, t−1]-module on which t − 1 acts
invertibly, for all q > 0. Then Hq(F

′; Fp) is finitely generated for all

primes p and all q > 0. Since Hs(G̃; k[G̃]) = 0 for all k and all s < 4,
it follows that Hq(F

′; Fp) = 0 for all primes p and all q > 0. Nontrivial
finitely generated Z[t, t−1]-modules have nontrivial finite quotients, and
so we may conclude that F ′ is acyclic.

Since M is a finite PD4-space C∗(M̃) is chain homotopy equivalent
to a finite free Z[π]-complex C∗. Thus D∗ = Z ⊗Z[ν′] C∗ is a finite free

Z[G̃]-complex, and is a resolution of Z. Therefore G̃ is a PD4-group.
(In particular, we see again that G = G̃/(ν/ν′) is FP∞.)

Since ν/ν′ is a torsion-free abelian normal subgroup of G̃ the group
ring Z[G̃] has a safe extension R, obtained by localising with respect to
the nonzero elements of Z[t, t−1]. This means that R is a flat extension

of Z[G̃] which is weakly finite and such that R ⊗
Z[G̃] Z = 0. (See page

23 of [7] and the references there.) Hence R ⊗
Z[G̃] D∗ is a contractible

complex of finitely generated free R-modules. It follows that χ(M) =
χ(R⊗

Z[G̃]D∗) = 0. Since ν is an infinite FP2 normal subgroup of π and

π/ν has one end β
(2)
1 (π) = 0 and Hs(π; Z[π]) = 0 for s ≤ 2. Therefore

M is aspherical, by Theorem 3.5 of [7]. �

With this result we may now reformulate Theorem 3.9 of [7] as fol-
lows.



6 JONATHAN A. HILLMAN

Corollary. A finite PD4-space M has a finitely dominated infinite
regular covering space if and only if either M is aspherical, or has a
2-fold cover which is homotopy equivalent to the mapping torus of a

self-homotopy equivalence of a PD3-complex, or M̃ ≃ S2 or S3. If M
is nonaspherical and has a finitely dominated regular covering space it
is a PD4-complex.

Proof. Only the final sentence needs any comment. If M̃ ≃ S2 or S3

then π1(M) is virtually a PD2-group or has two ends. In either case it
is finitely presentable. This is also clear if M has a 2-fold cover which
is the mapping torus of a self-homotopy equivalence of a PD3-complex.
Thus in all three cases M is a PD4-complex. �

There are PDn groups of type FF which are not finitely presentable,
for each n ≥ 4 [4]. The corresponding K(G, 1) spaces are aspherical
finite PDn-spaces which are not PDn-complexes.

Finiteness of M seems irrelevant to the conclusion of Theorem 5. (It
is used here only in the calculation of χ(M).) Moreover the argument
for Theorem 5 does not extend to the case when ν is an ascendant
subgroup of π, as considered in [8] (where the FP3 condition is also
used). It would be of interest to find an argument along the following
lines. Let C∗ be a finite projective Z[π]-complex with H0(C∗) ∼= Z and
H1(C∗) = 0. Show that HomZ[π](H2(C∗), Z[π]) = 0 if [π : ν] = ∞ and
C∗|ν is chain homotopy equivalent to a finite projective Z[ν]-complex.
The proofs of Theorem 3.9 of [7] and Theorem 6 of [8] would then
apply, without needing to assume that ν is FP3 or that M is finite.
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References

[1] Bowditch, B.H. Planar groups and the Seifert conjecture,
J. Reine u. Angew. Math. 576 (2004), 11–62.
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