
COMPUTABLE SUBGROUP CHAINS AND SHADOWING

GENE COOPERMAN AND SCOTT H. MURRAY

Abstract. We present a new structural framework for computational group

theory, based on chains of subgroups. This extends existing methods, such

as Schreier-Sims techniques for permutation groups. This framework is now a
part of the GAP 4 computational algebra system. It will be useful for imple-

menting the matrix group recognition project.

Contents

1. Introduction 1
2. Shadowing and straight line programs 2
3. Computable subgroup chains 3
3.1. Transversals by Schreier tree 4
3.2. Tranversals by homomorphism 5
3.3. Using presentations to verify the chain 6
4. Applications 6
4.1. Structure forests and the O’Nan-Scott theorem 7
4.2. Matrix group recognition 8
4.3. Actions on conjugacy classes and vector spaces 9
4.4. Small base groups 10
References 10

1. Introduction

In this paper, we introduce a new framework for finite group computation, called
computable subgroup chains. This framework requires an object-oriented language
and so we have implemented it in GAP 4. Divide and conquer is an archetypal
method for tackling computational problems—in computational group theory, we
usually use subgroup chains to acheive this. In many older algorithms, such as
Schreier-Sims, all the groups that appear are represented as subgroups of single
permutation or matrix group. This is not true of newer algorithms, such as matrix
group recognition [18], structure forest algorithms [4], Luks’ algorithm for soluble
matrix groups [20], and Kantor’s Sylow subgroup algorithms [13, 14]. Our frame-
work supports standard algorithmic techniques (such as sifting and shadowing)
in a consistent manner regardless of the representations used for subgroups and
quotients.

Subgroup chains are used in the analysis of many algorithms for groups, but
their existence is often obscured in the implementation because it was difficult to
express the concepts involved explicitly in the standard computer algebra systems
(Magma and GAP). A good example is provided by Schreier-Sims techniques, which

1

2 GENE COOPERMAN AND SCOTT H. MURRAY

are the basis of most permutation group algorithms [24]. These techniques involve a
chain of stabiliser subgroups but this chain is stored implicitly as a base and strong
generating set rather than explicitly as a subgroup chain. Our new computable
subgroup chains provide a highly modular framework for group computation which
is as close as possible to how theorists think about groups. This facilitates the
development and implementation of new algorithms and the interlacing of existing
algorithms. For example, one of the oldest techniques in computational group
theory is sifting (or stripping) an element through a stabiliser chain [25]. This idea
has also been used in computations with other kinds of subgroup chain [18], but has
not been implemented in general. In fact, sifting is not supported for chains with
a mixture of different kinds of subgroup, even if it is supported for each particular
kind of subgroup involved. Our framework is especially useful for dealing with
mixed chains—previously algorithms involving more than one kind of subgroup,
such as Luks’ algorithm, tended to be too technically complicated for practical
implementation.

We frequently use the concept of “computability.” Our primary concern is prac-
tical computability—does the algorithm work in a reasonable time on the kinds of
examples we are interested in? However there are more precise models of com-
putability, of which polynomial time is the most common.

Algorithms for computing with large groups generally depend on sampling ran-
dom elements of the group. These algorithms can be of two types: a Monte Carlo
algorithm is guaranteed to be correct with a certain (arbitrarily high) probability,
while a Las Vegas algorithm either returns a correct answer with a certain proba-
bility or it fails. We are primarily interested in Las Vegas algorithms, because the
users of practical implementations cannot be expected to deal with the possibility
that the output is simply wrong. Many Las Vegas algorithms are a combination
of a Monte Carlo algorithm and a deterministic verification algorithm to check the
correctness of the result. The product replacement method [8] or a variant of it
[17] is used in practice to generate random elements of a group; it was shown to be
polynomial time by Pak [22].

In Section 2, we describe shadowing and its relationship to straight-line-program
techniques. This allows us to give a general description of a computable subgroup
chain in Section 3, which captures the precise properties that a chain needs in order
to be useful for the kinds of computation we have in mind. We describe the two main
kinds of subgroups that appear in our chains in Sections 3.1 and 3.2, and verification
techiniques in Section 3.3. The remainder of the paper describes applications of
our framework: Section 4.1 discusses new ideas for permutation groups; Section 4.2
is an application to the matrix group recognition project; Section 4.3 discusses the
use of nonstandard actions. Our implementation of the Luks soluble matrix group
algorithm will be described in a forthcoming paper by Cooperman, Murray and
O’Brien.

2. Shadowing and straight line programs

Suppose we have a group G with generating set X, and a computable homomor-
phism ϕ from G onto another group G. We assume that G is more amenable to
computation than G. In this section we describe methods for deriving information
about G by doing computations in G. In particular, we need to be able to find

COMPUTABLE SUBGROUP CHAINS AND SHADOWING 3

generators for the kernel K = kerϕ, so that we can continue working down our
subgroup chain. Write g = ϕ(g) for g ∈ G and X = ϕ(X) for X ⊆ G.

A typical example is when G ≤ GL(V) is imprimitive; that is, V has a G-
invariant direct sum decomposition U1 ⊕ · · · ⊕ Uk. The action of G on this decom-
position induces a map ϕ : G → Sk. The image of an element of G can be computed
efficiently and the permutation group G is much more amenable to computation
that the original matrix group.

We want to pull information back to our group G by doing computation in
G. Since G is, by definition, the set of all words in X, any computation in G
will inevitably involve computing such words. If a computation in G results in a
word w(X), we can pull information back into G by evaluating the word w(X); for
example, if the computation produces a relation for G (i.e., w(X) = 1), then the
pullback w(X) will be an element of the kernel. This idea has been used in several
published algorithms [4, 13, 14, 20, 18], but it is rarely used in practice because
of the difficulty of going through large amounts of code and adding to each group
operation corresponding code for a word equivalent.

Shadowing is a new method for solving this implementation problem. Like most
object oriented languages, GAP 4 allows different representations to be used for a
given kind of object; for example, matrices can have dense and sparse representa-
tions. Given g in G, the image g corresponds to the coset Kg. A hom-coset is
the pair (g, g) ∈ G×ϕ G considered as a representation of g. All group operations
for hom-coset are defined coordinatewise, but group actions are defined for g only
(i.e., x(g,g) := xg for x in some G-set). This means that all existing programs that
work in the group G will also work in the group of hom-cosets with no change to
existing code, but the hom-cosets will automatically keep track of the corresponding
elements in the preimage G.

Of course we don’t want every operation in G to be shadowed in G. For example,
computing a strong generating set with Schreier-Sims methods is much more effi-
cient if a base and the order of the group is known. So we can start by computing
the base and order of G without shadowing, then recompute the strong generating
set with shadowing in many fewer operations.

However careful we are, shadowing G by G is likely to involve some unecessary
operations in G. The alternative is to shadow elements of G by words in X, and only
evaluate the words as elements of G when absolutely necessary. This requires the
use of straight line programs (SLPs) to represent words [4], since the size of an SLP
grows linearly in the number of operations while the traditional representation for
words can grow exponentially. Hom-cosets allow such SLPs to be computed with
no change to existing code—the overhead of doing one SLP operation for every
operation in G is trivial.

3. Computable subgroup chains

In this section, we describe the core of our framework for group computations.
Before discussing chains, we consider the properties needed for each subgroup in a
chain. Let H be a subgroup of G and let ∆ be a set which indexes the cosets of H
in G. Suppose we can compute two functions:

• the index function G → ∆ which takes any element g to the index in G of
the coset Hg; and

4 GENE COOPERMAN AND SCOTT H. MURRAY

• the representative function ∆ → G, δ 7→ gδ which takes any index to a
unique representative of the corresponding coset.

We now say that the subgroup H has a computable transversal in G. Note that the
set ∆ is included largely for convenience, since there are natural indexing sets for
the transversals in the two most common cases. We could consider the cosets to be
indexed by their representatives, so that we have a single function G → G which
takes every element to the unique representative of its coset.

We now define a computable subgroup chain as a chain of subgroups

G = G1 ≥ G2 ≥ · · · ≥ Gs ≥ Gs+1 = 1,

where each Gi+1 has a computable transversal in Gi with index set ∆i.
Suppose g is in G. Then we can compute the index δ1 for the coset G2g, so

g = hgδ1 where h is a uniquely determined element of G2. Iterating this process we
get

g = gδk
· · · gδ2gδ1

where the sequence (δ1, . . . , δk) is uniquely determined by g. This technique for
decomposing g is called sifting (or stripping). It is the fundamental operation
within our framework and is already used extensively for Schreier-Sims techniques.

Given a computable subgroup chain, we can do several basic computations:

• The order of G is just the product of the sizes of the index sets ∆i.
• We can generate a uniformly distributed random element of G by picking

a random element δi from each index set ∆i and then forming the product
gδk

· · · gδ2gδ1 .
• We can iterate the elements of G by iterating the sequences (δ1, . . . , δk).

This allows us to do a backtrack search in the group [6].

The membership problem is one of the most important in computational group
theory: given an object of the correct type (e.g., a permutation of the same degree
as our permutation group) we wish to determine if it is an element of G. This can
also be done by sifting: if the element is in G, sifting provides a proof of that fact;
if the element is not in G then sifting fails in a predictable way. Failure can only
occur in two ways: either the index of a coset cannot be computed or we end up
with a nontrivial remainder in Gs+1 = 1.

The sifting algorithm can also fail while constructing a chain with a Monte Carlo
algorithm. In this case we get some remainder, which is called the sifted version
of our original element. This is frequently useful because it allows us to generate
elements further down in the chain.

In the following two sections, we discuss the two main kinds of computable
transversal that appear in computational chains: transversals by Schreier tree and
transversals by homomorphism. In both cases, the main difficulty is computing
generators for the subgroup, which is necessary in order to iterate the algorithm.
In practice these generators are computed by randomised Monte Carlo techniques
together with a verification algorithm to test correctness. See Section 3.3 for a
discussion of verification algorithms.

3.1. Transversals by Schreier tree. Schreier-Sims techniques for permutation
groups are among the most successful in computational group theory. They are
based on the computation of a chain of stabiliser subgroups. This project grew

COMPUTABLE SUBGROUP CHAINS AND SHADOWING 5

out of an attempt to implement a version of the Schreier-Sims algorithm in GAP 4
which was able to handle matrices, permutations, and mixed representations.

Consider a group G = 〈X〉 acting on the set Ω. Let α be a point in Ω and
let H be the stabiliser Gα. The most common example is a permutation group
acting on the set Ω = {1, . . . , n}. Other examples are a matrix group acting on
vectors or subspaces, and a group acting on itself by conjugation. Note that we
do not assume that the action is faithful. Most existing implementations of the
Schreier-Sims algorithm only allow a limited range of actions—we have allowed
arbitrary actions in the belief that many different actions are likely to be useful
(see Section 4.3).

We can compute the orbit of α under the action of G by the orbit algorithm:
let ∆ = [α].
for δ in ∆ do

for x in X do
if δx not in ∆ then append it to ∆.

end for
end for

It is easily seen that the set {g ∈ G | αg = δ} is a coset of H for every δ in ∆,
and all cosets are obtained this way. Hence the orbit ∆ naturally indexes the cosets
of H in G with the index function given by g 7→ αg.

Any function u : ∆ → G with the property that αu(δ) = δ is a representative
function. In order to compute such a function, we store a Schreier tree in addition
to the orbit. This tree has a labelled edge δ

x−→ δx for every δx appended to ∆ by
the orbit algorithm. Suppose γ ∈ ∆, then there is a unique path from α to γ in
our Schreier tree:

α = α1
x1−→ α2

x2−→ · · · xl−→ αl+1 = γ.

The representative function is given by u(γ) = x1x2 · · ·xl.
In order to iterate this process to construct a chain, we need to find generators

for the stabiliser subgroup. This can be done using Schreier’s lemma [12], but it
is more efficient to take a random element of G, sift it through the existing chain
of stabilisers, and use this sifted element as a generator. This is called the random
Schreier-Sims algorithm and it is Monte Carlo. We can make it Las Vegas by adding
a verification algorithm (see Section 3.3).

3.2. Tranversals by homomorphism. The ideas of Section 2 can be used to
create computable transversals for the kernel of a homomorphism. Recall that
G = 〈X〉, ϕ : G → G is onto, and g := ϕ(g). Then the subgroup H = ker(ϕ)
has a computable transversal: the elements of G index the cosets of H and the
indexing function is just ϕ. Let X be the generators of G with images X in G. We
assume for any element in G we can find a word in X—this assumption is justified
by the assumption that G more amenable to computation than G. Now, given an
element g in G, we compute ϕ(g) and find a word w(X) for it. Then w(X) is the
representative of the coset containing g.

We finish this section by discussing two important special cases of a transversal
by homomorphism:

Semidirect products: If G = H oK then we have an epimorphism Φ : G →
K with kernel H. In this case ϕ(g) is actually the representative of the coset
containing g, so the techniques above for computing representatives are not

6 GENE COOPERMAN AND SCOTT H. MURRAY

needed. Direct products are an important special case: one application is
the decomposition of abelian matrix groups in Luks’ algorithm.

Simple group recognition: Suppose G is (almost) simple. In this situation
we take H = 1 and use a recognition algorithm to determine which almost
simple group it is. Then we need a constructive recognition algorithm,
which finds some standard set of generators of the group. This gives us an
isomorphism from G to a some standard computer representation for the
group. The actual mechanisms of constructive recognition are an area of
active research (see, for example, [15]).

3.3. Using presentations to verify the chain. In this section, we give a verifi-
cation algorithm for subgroup chains created by Monte Carlo methods. The general
setup for each step in our chain is as follows: H ≤ G with G = 〈X〉, Y is a subset of
H, every element of Y can be expressed as a word (SLP) in X, and ∆ is a (possibly
incomplete) indexing set for the cosets of H in G. We wish to verify that H = 〈Y 〉.

We assume that we have a cheap test for membership of H—this is clearly true
when H is a stabiliser or the kernel of a homomorphism.

Suppose we have an incomplete set R of relators for G on the given generating
set X. Initially R can be taken to be the empty set. Then G̃ = 〈X|R〉 is a (possibly
infinite) group, and G is isomorphic to a quotient of G̃. Let H̃ be the subgroup
of G̃ generated by the words for the elements of Y . Now |G̃ : H̃| is a (possibly
infinite) upper bound on |G : H|, while |∆| is a lower bound. If we can show that
these are equal, then G ∼= G̃, H = 〈Y 〉 ∼= H̃, and we are done. If we have a
transversal by Schreier tree, then its index is bounded by the permutation degree
of G, so it is often practical to compute |G̃ : H̃| by coset enumeration; this is
the Todd-Coxeter-Schreier-Sims algorithm [19]. On the other hand, if we have a
transversal by homomorphism, then we can compute the presentation of G from
presentations for G/H and 〈Y 〉 (which we assume are known by recursion), then it
suffices to check that this presentation is correct by checking the relations; this is
the algorithm of [18].

We can find a new relator for R by sifting a random element through the chain,
since sifting essentially writes an element as a word in the known generating set.
On the other hand, sifting also gives us new generators, if it turns out that the
chain is not complete.

Many tactical issues arrise when implementing this algorithm in practice. We
discuss one such issue as an example. Recall that, in a chain consisting entirely
of stabilisers, each subgroup is defined as a certain subset of the original group
G, whereas in a chain of kernels each subgroup is only defined in relation to the
previous one. In the former case, we can define several steps in the chain without
worry about whether we have found all the generators of the intermediate groups.
In the latter case, if we find a new generator for an intermediate group, all the
subgroups below it are likely to be incorrect. So in a mixed chain, it is a good tactic
to put a lot of effort into completing the generating set for a subgroup defined as a
kernel before defining to the next subgroup

4. Applications

We now discuss several actual and potential applications of our subgroup chain
framework. However, we believe that the greatest advantage of this framework is

COMPUTABLE SUBGROUP CHAINS AND SHADOWING 7

in the way it allows you to mix and match different methods. For example you can
use matrix group recognition techniques, until (for whatever reason) you happen
to come across an action with a reasonably small orbit, then you can switch over
to Schreier-Sims techniques.

The big question now becomes: which technique is going to be best for a par-
ticular group? There does not seem to be any easy way to answer this a priori.
This is where parallelism becomes useful. The experience of [21] suggests that the
best approach is likely to be much better than any other method. So we suggest
that several different approaches be attempted simultaneously and the first one to
return an answer be used.

4.1. Structure forests and the O’Nan-Scott theorem. Our framework al-
lowed us to easily implement the structure forest approach for group membership
pioneered by Babai, Luks and Seress [4]. They demonstrate a novel subgroup chain
that involves normal subgroups induced by nontrivial orbits and block systems. In
fact, we implement a Monte Carlo variation of the structure forest approach given
in [2] that demonstrates O(n3 logc n + |S|n2) Monte Carlo time for appropriate
constant c.

Note that this method uses a mixture of transversals and homomorphisms. The
homomorphisms involved are those given by intransitive and imprimitive actions.
These are the first two classes in the O’Nan-Scott classification of permutation
groups. It is natural to extend this idea to the other four classes. To do this we
need some method for recognising which class we are in; this is straightforward for
the first two classes, and possible for any class provided we already have a base
and strong generating set [23]. We would like to have recognition algorithms for
the other classes that do not require a base and strong generating set, but this is
beyond the scope of this paper.

We now consider how to compute homomorphisms for each of the O’Nan-Scott
classes, using the notation of Kleidman and Liebeck [16] with G = 〈X〉 ≤ Sym(Ω),
n = |Ω|:

A1—Intransitive. In this case the group has more than one orbit; note that orbits
can be computed easily. Fixed points (orbits of size one) can simply be removed,
giving a smaller degree (and hence more efficient) representation. We can define
our homomorphism by restricting permutations to a subset which is closed under
the action of G. If the number k of orbits is large, we should take this subset to be
the union of half the orbits rather than a single orbit—this gives a chain of length
at most log(k) rather than length k − 1.

A2—Imprimitive. Once again, blocks of imprimitivity can be computed easily.
Given a block system Ω = Ω1 ∪ · · · ∪ Ωk, choose one point ωi from each Ωi. Then
the image of g is the element G of Sk such that iG = j iff ωg

i ∈ Ωj .

A3—Affine structures. Here we have an identification of Ω with the affine space Fq
d.

We assume that this identification is computable. To find the image in AGLd(q)
of g ∈ G we simply compute the action of g on 0 and the standard basis in Fq

n.

A4—Wreath product. In this case we have G ≤ H oK where H ≤ Sa, K ≤ Sb and
n = ab. There is an identification of Ω with Hb, which we assume is computable.
Let h be a nontrivial element of H, let hi = (1, . . . , h, . . . , 1) with h in the ith

8 GENE COOPERMAN AND SCOTT H. MURRAY

position, and let Hi = 1× · · · ×H × · · · × 1 with H in the ith position. Then the
image of g is the element G of K such that iG = j iff hg

i ∈ Hj .

A5—Nonabelian socle. In this case we have G ≤ T k.(Out(T) × Sk) where n =
|T |k−1. We can use the same method as for A4 (Of course, computing the identifi-
cation of Ω with T k−1 will be more difficult).

S—Almost simple. Here we can use constructive recognition of (almost) simple
groups, which is an area of much current research and is beyond the scope of this
paper. cf 3.2

4.2. Matrix group recognition. The matrix group recognition algorithm has
been an active area of research for the last decade [18]. Its aim is to find algorithms
for computing with matrix groups over finite fields, using Aschbacher’s theorem [1],
which is a matrix group analogue of the O’Nan-Scott theorem. This fits very well
into our framework, since all but two of the Aschbacher classes give a homomor-
phism with nontrivial kernel. In this section we describe how to compute these
homomorphisms. One again we use the notation of [16]. Let V = Fq

n be the
underlying vector space.

C1—Stabilisers of subspaces. First we can quotient out the subspace of fixed points.
Now suppose the subspace U is stabilised by G. Then we get a three step homo-
morphism chain. The first two steps are given by restriction to U and projection
to V/U . The kernel of these is a unipotent subgroup, which can easily be identi-
fied with a power commutator group (see our forthcoming paper with O’Brien for
details).

C2—Imprimitive. Compute and then look at the image of one vector from each
block as in A2.

C3—Field extensions. If the matrix group is absolutely reducible then we can ex-
tend field and use the techniques of C1.

C4—Tensor decomposition. We can do a change of basis so that our matrices are
Dirac tensor products of matrices. We can then compute the homomorphism by
linear algebra. Note that the image is not actually a matrix, but is in fact a
projective matrix. hence we need algorithms for projective matrix groups—given
how similar these are to matrix groups this should not be difficult.

C5—Subfields. Using the techniques of [11], we can do a change of basis so that all
entries in our matrices are in a subfield. We then restrict to that subfield.

C6—Symplectic normaliser. Our subgroup H has generators x1, y1, . . . , xm, ym, z
and relations [xi, xj] = [yi, yj] = [xi, z] = [yi, z] = 1 for all i and j; [xi, yj] is 1 if
i 6= j and z if i = j; and all generators are of order l for some prime l other than
the characteristic of Fq. Given an element of H we need to be able to write it in
the form

∏m
i=1 xui

i yvi
i zw. For convenience we write xi+m = yi. Given g in G, let

xg
i =

2m∏
j=1

x
aij

j zwi .

Then the image of g is the matrix (aij) in Sp2m(l).

COMPUTABLE SUBGROUP CHAINS AND SHADOWING 9

C7—Tensor imprimitive. In this case V is identified with a tensor power W⊗k. Let
w be a nonzero element of W , let wi = 1⊗· · ·⊗w⊗· · · 1 with w in the ith position,
and let Wi = 1⊗ · · · ⊗W ⊗ · · · 1 with W in the ith position. Then the image of g

is the element G of Sk such that iG = j iff wg
i ∈ Wj .

C8—Classical; and S—Almost simple. These last two cases involve constructive
recognition of simple groups, which is beyond the scope of this paper. cf 3.2

It is worth noting that C2 and C7 lead to permutation groups, while A3 in Sec-
tion 4.2 leads to a matrix group. So our algorithms for these two classes of group
will call each other.

4.3. Actions on conjugacy classes and vector spaces. In this section we dis-
cuss various actions that can be used for with Schreier tree transversal, other than
the standard action of a permutation group. In most current implementations for
finding a base and strong generating set using Schreier-Sims techniques, the chain
is implicit, rather than being explicitly stored. This makes it very difficult to gen-
eralise this algorithm. For example for randomized Schreier-Sims in matrix groups
you can oftenfind a good base point, and then achieve relatively small orbits. We
wanted to use GAP 4’s StabChain facility to do this, but it only understood per-
mutation groups acting on points and could not be generalised tomatrix groups.

An important example in this discussion is the conjugate action. A group G acts
on a subgroup H ≤ G by conjugation. This can be generalized when G has an
embedding in the automorphism group of H, or when H is an appropriate set, such
as a conjugacy class of G. Note that in general, these actions may be unfaithful.
However, our examples will always be for faithful actions.

Murray and O’Brien [21] and Butler [5] developed a methodology for treating a
subgroup of GLn(q) as acting on certain orbits in the union of the set of all vectors
in Fn

q and the union of all vector subspaces of Fn
q . That work used the concept of

generalized eigenspaces to find vectors and subspaces that were heuristically found
to have small orbits—especially for sporadic simple groups. The key to their success
was the ability to heuristically find small orbits.

Cooperman, Finkelstein, Tselman and York [10] developed a methodology for
treating a subgroup of GLn(q) as acting on a conjugacy class. This was demon-
strated by beginning with a matrix representation of Lyons’s group and producing
a permutation representation in the action on its smallest conjugacy class. The key
to their success was the ability to heuristically find small conjugacy classes. While
technically, this involved only a novel use of the conjugacy action, and not a full
subgroup chain, it could be incorporated into other subgroup chains.

Luks, in a seminal paper [20], pointed out that the conjugate action of a matrix
group on itself can be represented easily as a linear action. If G < GLn(q), then
there is an embedding of G in GLn2(q) such that the image of G in this embedding
has a natural linear action on GLn(q). To see this, note that for g ∈ G, and
m ∈ GLn(q), there is a natural embedding of m in Fn2

q as a vector of length n2

whose entries are the original entries of the matrix m. Call this embedding θ and
observe that θ is a vector space homomorphism for GLn(q) viewed as a vector space.
We require a homomorphism ϕ : G → GLn2(q) such that

θ(g−1mg) = θ(m)ϕ(g), m ∈ Fn2

q , g ∈ G

10 GENE COOPERMAN AND SCOTT H. MURRAY

where the multiplication θ(m)ϕ(g) is multiplication of the vector θ(m) by the
matrix ϕ(g). It is clear from linear algebra and the fact that θ is linear that
there is a unique solution g̃ ∈ GLn2(q) such that θ(g−1mg) = θ(m)g̃. We define
ϕ : G → GLn2(q) by ϕ(g) = g̃ for g̃ as above. It is clear that ϕ is a homomorphism
under this definition, and so we are done.

This is particularly striking in our context because it allows the conjugate action
in GLn(q), studied in [20], to be viewed as an action on vectors, as studied in [21]. In
this unified context, one can compare the quality of the “small orbits” discovered
using the two approaches. However, the software architecture described in this
paper was required to allow us to easily compare these two actions in a single
context.

4.4. Small base groups. A small base group is a member of a family of groups
(where the family is usually clear from context) such that the number of base points
is O(logc n) for some constant c. Cameron [7] showed that all primitive permutation
groups are small base groups, except the symmetric groups, the alternating groups,
and nontrivial wreath products in the product action.

A key to fast computation with small base groups is maintaining a small depth
for the Schreier trees. While the original result by Babai, Cooperman, Finkelstein
and Seress [3] provides theoretical guarantees of nearly linear Monte Carlo time
for small base group membership, we have found it advantageous to replace many
of those theoretical guarantees with a different algorithmic version that is more
suited to fast implementations. Many those theoretical guarantees came at the cost
of using theoretically provable algorithms for producing sufficiently independent
random elements. Instead, we use heuristic techniques to more quickly produce
random elements [ref] that typically have a distribution closer to uniform than those
suggested in the original paper. Having once departed from the original theoretical
guarantees, we find it advantageous to replace other techniques of that paper by
cube Schreier trees [9] in order to achieve fast heuristic times. The theoretical
guarantees are not needed since we have a verification algorithm, but are useful as
a guide to how most efficiently to complete the computation.

References

[1] M. Aschbacher. On the maximal subgroups of the finite classical groups. Invent. Math.,

76(3):469–514, 1984.

[2] László Babai, Gene Cooperman, Larry Finkelstein, Eugene Luks, and Ákos Seress. Fast Monte

Carlo algorithms for permutation groups. J. Comput. System Sci., 50(2):296–308, 1995. 23rd
Symposium on the Theory of Computing (New Orleans, LA, 1991).

[3] László Babai, Gene Cooperman, Larry Finkelstein, and Ákos Seress. Nearly linear time algo-
rithms for permutation groups with a small base. In Proceedings of the International Sym-

posium on Symbolic and Algebraic Computation (ISSAC ’91), 1991.

[4] László Babai, Eugene M. Luks, and Ákos Seress. Fast management of permutation groups. I.

SIAM J. Comput., 26(5):1310–1342, 1997.
[5] Gregory Butler. The Schreier algorithm for matrix groups. In SYMSAC ’76, Proc. ACM

Sympos. symbolic and algebraic computation, pages 167–170, New York, 1976. (New York,

1976), Association for Computing Machinery.
[6] Gregory Butler. Computing in permutation and matrix groups. II. Backtrack algorithm. Math.

Comp., 39(160):671–680, 1982.

[7] Peter J. Cameron. Finite permutation groups and finite simple groups. Bull. London Math.
Soc., 13(1):1–22, 1981.

COMPUTABLE SUBGROUP CHAINS AND SHADOWING 11

[8] Frank Celler, Charles R. Leedham-Green, Scott H. Murray, Alice C. Niemeyer, and E. A.
O’Brien. Generating random elements of a finite group. Comm. Algebra, 23(13):4931–4948,

1995.

[9] Gene Cooperman and Larry Finkelstein. Combinatorial tools for computational group theory.
In Groups and computation (New Brunswick, NJ, 1991), pages 53–86. Amer. Math. Soc.,

Providence, RI, 1993.
[10] Gene Cooperman, Larry Finkelstein, Michael Tselman, and Bryant York. Constructing per-

mutation representations for matrix groups. J. Symbolic Comput., 24(3-4):471–488, 1997.

Computational algebra and number theory (London, 1993).
[11] S. P. Glasby and R. B. Howlett. Writing representations over minimal fields. Comm. Algebra,

25(6):1703–1711, 1997.

[12] Marshall Hall Jr. The theory of groups. Chelsea Publishing Co., New York, 1976. Reprinting
of the 1968 edition.

[13] William M. Kantor. Polynomial-time algorithms for finding elements of prime order and

Sylow subgroups. J. Algorithms, 6(4):478–514, 1985.
[14] William M. Kantor. Sylow’s theorem in polynomial time. J. Comput. System Sci., 30(3):359–

394, 1985.

[15] William M. Kantor and Ákos Seress. Black box classical groups. Mem. Amer. Math. Soc.,
149(708):viii+168, 2001.

[16] Peter Kleidman and Martin Liebeck. The subgroup structure of the finite classical groups.
Cambridge University Press, Cambridge, 1990.

[17] C. R. Leedham-Green and Scott H. Murray. Variants of product replacement. In Compu-

tational and statistical group theory (Las Vegas, NV/Hoboken, NJ, 2001), volume 298 of
Contemp. Math., pages 97–104. Amer. Math. Soc., Providence, RI, 2002.

[18] Charles R. Leedham-Green. The computational matrix group project. In Groups and com-

putation, III (Columbus, OH, 1999), pages 229–247. de Gruyter, Berlin, 2001.
[19] Jeffrey S. Leon. On an algorithm for finding a base and a strong generating set for a group

given by generating permutations. Math. Comp., 35(151):941–974, 1980.
[20] Eugene M. Luks. Computing in solvable matrix groups. In Proceedings 33rd IEEE Symposium

on the Foundations of Computer Science, pages 111–120, 1992.

[21] Scott H. Murray and E. A. O’Brien. Selecting base points for the Schreier-Sims algorithm for
matrix groups. J. Symbolic Comput., 19(6):577–584, 1995.

[22] Igor Pak. The product replacement algorithm is polynomial. In Proceedings of the 41st Annual

Symposium on Foundations of Computer Science (Redondo Beach, CA, 2000), pages 476–
485, Los Alamitos, CA, 2000. IEEE Comput. Soc. Press.

[23] Ákos Seress. Permutation group algorithms, volume 152 of Cambridge Tracts in Mathematics.
Cambridge University Press, Cambridge, 2003.

[24] Charles C. Sims. Computational methods in the study of permutation groups. In Computa-

tional Problems in Abstract Algebra (Proc. Conf., Oxford, 1967), pages 169–183. Pergamon,
Oxford, 1970.

[25] Charles C. Sims. Determining the conjugacy classes of a permutation group. In Computers

in algebra and number theory (Proc. SIAM-AMS Sympos. Appl. Math., New York, 1970),
pages 191–195. SIAM–AMS Proc., Vol. IV. Amer. Math. Soc., Providence, R.I., 1971.

